A DECOMPOSITION METHOD FOR STRUCTURED
LINEAR AND NON-LINEAR PROGRAMS

M.D,Grigoriadis & K. Ritter

Computer Sciences Technical Report #10

January 1968






ABSTRACT

A decomposition method for non-linear programming problems
with structured linear constraints is described. The structure of the
constraint matrix is assumed to be block diagonal with a few coupling
constraints and/or variables. The method is further specialized for linear
objective functions. An algorithm for performing post optimality analysis -
ranging and parametric programming - for such structured linear programs
is included. Some computational experience and results for the linear

case are presented.
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§1. Introduction

In practice, large non-linear programming problems with linear
constraints, as well as large linear programs, almost always exhibit some
structure in their constraint matrix. The most common of these structures
is the block diagonal structure with a few coupling constraints and/or
variables., To date, various methods for the solution of such large problems
with either coupling constraints or coupling variables (both linear and non-
linear) and linear, quadratic, separable or general non-linear objective fun-
ctions have been developed (see e.g. [1,2,3,4,7.9]). In[l4,15], Rosen
describes partition methods which use the special block diagonal structure

of the constraints to reduce the given problem by elimination of variables.
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A common assumption in all decomposition or partitioning methods
known to the authors is that the constraint matrix represents a "weakly

coupled" system: The number of coupling constraints and/or coupling

variables is assumed to be much smaller than the corresponding dimension
of the problem. Violation of this rather qualitative criterion reportedly has
led to poor convergence and other computational irregularities.

The block diagonal structure with a small number of coupling con~-
straints and variables frequentlyarises in dynamic formulations of multi-
plant, multi-commodity production scheduling and distribution models in various
industries, This type ofalinear model can be converted into the familiar
block diagonal structure with only coupling constraints (or only coupling
variables) but this conversion results in a drastic increase in the number
of such coupling constraints (or variables). Thus, the most desirable
property of this inherently weakly coupled system is sacrificed.

This paper describes a decomposition or partitioning method [11]
which uses the special structure of the constraints to reduce the given problem

through elimination of variables. If may be readily applied to problems having

a block diagonal structure with coupling constraints and/or variables. The
objective function is assumed to be non-linear, differentiable and concave

in all variables. Dual feasibility is maintained throughout the optimization

procedure.



The method is further specialized to the case of a linear objective
function, first treated by Ritter[10] as a generalization of Rosen's Primal
Partition Programming[!5]. In addition, an algorithm for performing post-
optimality studies for the linear case [12] is offered. This uses the computa-
tional tools developed for the linear version of the proposed decomposition
algorithm.

In the next section, the non-linear problem is defined and the basic
idea of the method, to be detailed in section 3, is summarized. In section
4, the simplifications arising from the linearity of the objective function
are discussed. The post-optimality algorithm is given in section 5. The
validity of the proposed algorithm is demonstrated in section 6. In the
final section some computational aspects and our experience with this

algorithm are presented.

§2. The Non-Linear Problem

We consider the following problem:

Maximize

)

(2.1) F(y,x oy X

l’oo k

subject to the linear constraints

k
2.2) s A .x, +D = b
( Zoh oY

O

i
o

(2.3) B X, +Djy (=L, «v ey k)
J



(2.4) YEOX z 0 (j=L,...,k),

where F (y,xl, . .,xk) is a differentiable and concave function,

A (j:is . ..;k) is an (mO’ nj) - matrix, Bj (j:-l: o0 0y k) 1s an (mj’n ) -

3 )

matrix, Dj (=0, 1, ..., k) is an (mj,no) - matrix, while Xj and c, are

)

nj - vectors, y 1is a no-vector and bj (j=0, 1, ..., k) is an mj -~ vector.

The feasible domain defined by (2.2} - (2.4) is assumed to be bounded. This

problem will be referred to as the Primal Problem (B). The corresponding dual is:

Minimize
2.5 ! X
( . ) F(Y:Xl’°°°’xk) —uO (jz‘:—lAij + DOy—bO)
k k
- uw (B.x, + Dy ~-b,)+ w'y + w' x,
El J( J 3 Jy J) Oy % J
j= j=1
subject to the constraints
2.6 X ! ! 7/
(2.6) JEL Dj uj + DOuO—wO— yF(y’XL""’Xk)"O
2.7 Bu, +A'"u -w, -~ V, Fy,X,,..0,% ) =0 (j=1, ...,k
(2.7) jU T A U, T Wy x; FYs % i) (J )
(2.8) w, 2z 0 (j=0,1,...,k),

where the uj (j=0, 1, ..., k) and Wj (j=0, 1, ..., k) represent the dual
variables or Lagrange multipliers and are mj, and nj -vectors respectively;
"7yF is a no-vector corresponding to the portion of /F which consists

of the partial derivatives of F with.respect to the components of y only,




and ‘7XjF are n - vectors corresponding to the portions of /F which

consist of partial derivatives of F with respect to the components of x,

only.

A more convenient form of the dual problem, which will be referred

to as B, may be obtained by eliminating the variables w,  (j=0,1,...,k)
from (2.5) - (2.7) and using {2.8). This is given by:

Minimize

(2.9) F{y, x x, )+ }}3 u' b, ~ (y', %' x!) 7F( X X, )
° 3 l! LS k j_—O j *j 3 l’ LR AL | k A4 y’ |, 3 ’
subject to
k ) [ 7

Z.l - 3 v e 0y . =
( 0) ji‘,l D,j uj + Do uo yP(y,xL Xk) = 0
2.11 B'u +A'"u - 7y F(y,X,,eees% )2 0 =1, ...,k
(2.11) Lup A x, Py, %, Dz 0od )

The decomposition method described in this paper is mainly based

on the following observation. If ’13 has an optimal solution, then the
variables in this solution have non-negative values,

Since we have a
total of

variables, we would expect to have, at most, as many active constraints

in P . However, the

e d



equality constraints (2.2) - (2.3) are always active. Therefore, provided

that (2.2) - (2.3) are linearly independent, L)

at most (n-m) of the non-
negativity constraints (2.4) are active. The remaining m non-negativity
restrictions, which are inactive, may be canceled with no effect on the
optimal solution of '5 .

A further simplification may be effected by using the special structure
of the constraints (2. 3) to eliminate at least (m-—mo) of the variables which
are not restricted in sign. Thié elimination procedure reduces the maximiza-

tion problem f, to a concave programming problem with at most

s = n - (m-—mo)

variables, all of which are restricted to be non-negative, and mo linear
equality constraints. This problem will be referred to as the Modified
Primal Problem (M), and may be regarded as analogous to the "master
problem" in Dantzig-Wolfe decomposition [1] or the "Problem II" in
Rosen's Primal Partition Programming [l5].

Clearly, if the set of non-negativity restrictions (2.4) active in the
optimal solution to 5 were known in advance, then the solution of M
would provide the optimal solution to i . Generally, however, it is unlikely
that one might predict the optimal basic variable set or equivalently the non-
negativity restrictions which would be active in the optimal solution to ’E .

To circumvent this difficulty, we begin by ignoring the non-negativity

restrictions for an arbitrary set Sl of at least (m -~ mo) variables chosen




among the xJ . In this case, the optimal solution to M need not be
feasible for f, since some of the eliminated variables may take on
negative values. If it is feasible, however, then it is also an optimal solu-
tion to P (Theorem L),

~

If some variables have negative values, we determine a new set
S2 of at least (m - mo) variables and repeat the procedure. It can bhe
shown (Lemma 1 and 2) that corresponding to the sequence of optimal
solutions to the modified primai problems (M), there is a sequence of
solutions to B which give non-increasing values of the dual objective
function. From this fact it follows {(Theorem 2) that after a finite number

of steps, we obtain a modified maximization problem (M) which has the

same optimal solution as 3 .

§3. The Algorithm

We assume that each of the matrices Bj contains a non-singular
square matrix of order mj . This is no loss of generality since if Bj does
not contain such a matrix, we can add suitable unit vectors and artificial
variables having sufficiently large negative entries in the objective function.
Then, provided that the original problem (E) has a feasible solution, the
optimal solution to this enlarged problem is identical to that for ’li .

Let le be an mj—order non-singular square submatrix of Bj . We
denote the matrix formed by the remaining columns by BjZ and partition AJ, ,
respectively.

Xj and c:j accordingly into Ajl’ A X le, X and c¢

j j2 i1 2



Then, the constraints {2.3) can be written as:

B x..+B ., X =b -D
jUEL T B2 T TR T Y

or

-1 -1 -1
g1 =By by B B x, B Dy

(3. 1) X 2 il j

Substituting (3.1) into (2.1) - (2.2) we can eliminate the vectors xjl
(j=1, ..., k) and obtain the "Mudified Primal Problem" (M) as:
o
Maximize

(3.2) (’(y’xxz’xzz"”’xkz)

subject to the linear constraints

k
z

M, x,
=17

J2+I\/IOy:]o

(3.3)

w
o

o>
XJ'Z =z 0, v
where the function Gy, Xlz’ Xy o "’sz) is concave and differentiable

since it is obtained from the function F(y, (x“, XIZ)’ .o (Xkl’ xkz)) by

the linear transformation (3.1); and

| k -1
b = bo -g A“Bﬂbj
j=1
k -1
(3.4) Mo:Do—,‘g‘ Alejl Dj
j=1
!
M. =A _ -A B

It M has no feasible solution, then the original problem 3 has

no feasible solution since it contains all constraints (3.3) of M . In the
Fad




following, we assume that rg has a feasible solution and M attains an
o~

optimal solution for a finite point (y, x, _, ..., X, ). (If not, the pre-

12 k2

cautionary procedure outlined in Section 6, Remark 2, may be used).

‘We note that M is a concave maximization problem considerably
smaller than the original problem 3 , with at most s variables and m
linear equality constraints (in addition to the non-negativity restrictions).
Efficient and computationally successful methods for the solution of non-
linear programming problems subject to linear constraints developed by
Rosen [ 13], Frank and Wolfe [5], and others, may be used.

The solution of M , theoretically, may not be a finite procedure.

Let (y%, x%

2) (j =1,...,k) be an optimal solution to M
] P~

Substituting this solution into (3.1) we obtain

-1 -1 -1
3.5 x* =B, b, ~B., B _x¥ -B _ Dy*
( ) il il il 7j2 j2 j2 Jy

Now we apply the following optimality criterion (Theorem 1):

If X;kl = 0 (J=1,...,k), then (y*, x%

o k) (= LK)

j2

is an optimal solution to the original problem }3 .

Suppose x’flfL (3 =1, a0, kl £ k) has at least one negative

component. We Construct a new problem M , of the form (3.2) - (3.3),

in such a way that in the resulting solution (y**, x;kl*, x;“;) one of the
components of Xj G=1,... kl) which was negative in (y*, x*j L X*jZ)

is forced to be non- negative. This procedure will now be outlined for a

general cycle.
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% e S : 0
A) Let (x )l’ (x )2, R (le)l be the negative components of x.‘

il jl il

Denote the first ¢ rows of the matrix Bj ) BjZ by g}l, eeoy gj’ﬁ . Further-

*
more, suppose that x has q positive components, say the first g components.

j2

Then, for each j = kl’ consider the following two cases:

i

I) At least one of the components (g il=1,...00;v=1,...,9)

v
is non-zero.

2)

II) (g, = 0 for i:l’-awf; Vv = 1, cosy °

Ji)V

. If the

‘ th
In case I, let (gji)v # 0., Denote the Vv column of sz by hjv

#
ith column of le is replaced by hjv’ the new matrix le is nonsingular since

— b4
(Bj 11 hjv)i = (gji)v # 0 implies that the columns of le are linearly independent.

3 o
Thus, replace le by le for any j for which x;l has negative components

and for which case I holds. Then, the procedure (3.4) which leads to the con-

-1
struction of M is applied using the new matrices B . It should be noted

jl

that those I\/Ij for which x* > 0, are not altered and need not be recomputed.

il

In case II, let (x%) < 0. Denote the vth component of B;ll B

ji'v j2

-1
and le Dj by g% and e' respectively, and the vth component of

jv v
-1
B b by B, . Then, add the condition:
it jv
.6 - = ! i - <
(3.6) (}cjl)V Iiy sz‘rejvy ijf 0

to the constraints (3.3) of M after all changes dictated by case I have been
implemented.

Finally, the new M problem'((3.2) - (3.3)is solved resulting in
(y k%, x;*‘z*) as its optimal solution. The corresponding x’;,“ll‘ (J=1,.00,k)

is obtained by inserting this solution into (3.1).

|
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By Theorem [, (y%%*, x;"f‘, x}k;i?‘) is an optimal solution to ’g if all

componentsof x¥* =2 0 (J=1,...,k).

i1

B) If at least one of the vectors xﬁ?, has negative components,

the "additional constraints" of the form (3.6) are treated as follows:

Case 1) If g}v x;kz* + e}v y ok~ ij < 0 then this constraint is canceled.

e 1] Pyl - = 4
Case 2) If g sz +evy>n By 0 and (g,.) (sz)u;t’ 0, then

v ] ] v

the constraint is canceled and the vth column of B is

jl
replaced by the p,th column hj of sz' The resulting
K
-1
matrix B** is non-singular since (B, h, = 0
i g (B ‘m)v (gjv)u #

implies that the columns of Bj*l* are linearly independent.3

' ! sk ' Mk — =
Case 3) If gjvsz + ejv vy ij 0 and ( "

for all |, , then this constraint is left unaltered in M

3¢ Kk
gjv)u (x5 )
Since in this case

1o gk R R
Gy K52 T Gy Y Sv Y Biv

M may contain, except for degenerate cases, at most no
constraints of the form (3.6) at the conclusion of any cycle.
The presence of linear dependence among the rows of the
original constraint matrix (2.2) - (2.3) may cause a slight

increase in the number of constraints of M .

The modification of the "additional constraints” outlined above,

completes a decomposition "cycle". We let x}-"l = x;."l* and start the next

cycle at A .



12

Since in each cycle at most k "additional constraints" are
appended to M , it follows from Case 3, that, disregarding degeneracy,
a4
M may contain at most (nO + k) "additional constraints" at any cycle.

By Theorem 2, an optimal solution to 3 is obtained after a finite

number of cycles.

Remark:
The above procedure yields the optimal solution to }3 after a finite
number of decomposition cycles, even when only one of the variables
th th
negative in the t cycle is forced to be non-negative at the (t + 1)
cycle. Consequently, it would suffice to append at most one "additional

constraint" of the form (3.6) at each cycle. Then, the number of additional

constraints involved in any single cycle would reduce to at most (nO + 1),
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§4. The Linear Case -- Simplifications

The linear case is characterized by a linear objective function in

(2.1), i.e.

(4‘1) P(Y,Xl’ "')Xk)
resulting in the Linear Primal problem (I’:’Ii) and leading to the following

formulation of the dual problem (I.D) corresponding to (2.5) - (2.8):

Minimize
k
(4.2) s b'j uj
j=0
subject to
k
(4.3) S D u, + DDu -w_=c¢
j=1 i o © o) o)
k
4.4 5 B 'u + A''u -w, =c, i =1, ...,k)
(4.4 j=1 3 ) oo 3 U
(4.5) w, 2 0 (j=1,...,k)

]

For the sake of conformity with the previous section we state the linear

version of the dual program corresponding to (2.9) - (2.11):

Minimize
k
(4.6) ji‘.o b} uj
subject to
k
(4.7) z D'j uj + D'O ug z ¢
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4,8) B u, + A" u =z c, i =1, ...,k
(4. By i Y i (] ’ )

The obvious, and most important, simplification resulting from our

assumption of a linear objective function is the linearity of M, 1i.e.:
[

Maximize
k

4,9 v + & d') x,, + d'
(4.9) a 209 2 oY

subject to

k

4.10 = M, x,., + M = b
( ) 20 Mt 0¥
(4.11) yz 0, ijEO (3 =L,...,Kk)

where MO, Mj (j =1,...,k) and b are given by (3.4) and

-1
j1 By by

(4.12) o’ c

1t
W Mx

koo -1
(4.13) d = c.- 5 (B, D) d =c._ - (B

o D) e i 4 c
LTS A L RS T

1
il Bip)" ¢y -

We note that the above linear version of M, which will be
referred to as ‘L\I’\é , is an ordinary linear programming problem with mo
equality constraints and s variables. It may be solved using any of the
commercially available linear programming codes. Although the maximum

number of constraints in Li\f» may differ from one cycie to the next, the
last remark in section 3 suggests that a constant size of at least (no + 1),
and not more than (no‘+ k), rows may be selected in advance and used for

all cycles. This will facilitate the use of an existing linear programming

code for solving LM .
TGP~
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§5. Post-Optimality Analysis -- The Linear Case

We consider the following parametric form of LP:

Maximize

k
(5.1) JEL (cj + )\,fj)' Xj + (c:O + )\fo)' ¥

subject to the constraints

k
50 4 =
(5.2) % Aj x‘1 + Doy bO + >\,e0
j=1
5.3 B x, + D = Db, + e, =1,...,K
(5.4) vz 0 x, 20 {(J=1,...,k)

where fj and ej ( =0,1,...,k) are given n, and mj - vectors

j

respectively and ) 1s a parameter in a specified range >\‘£ =3 = >‘u .

This problem will be referred to as the Parametiric Linear Primal problem

(PLP).

L d

Considering the partitioning introduced in section 3, we may write

a relation analogous to (3.1) as:

(5.5) x =B (b, +xe)) - B

-1
-B.Dy.
il jl Jy

X
j2 2 i1
whence, by substitution into (5.1) and (5.2) we may state the Parametric

Linear Modified primal problem (PLM) as:

Maximize
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subject to the constraints

where

k
b+)e = (b0+>\e0) ji:l Ajl le (b.sMej)
2 koo
- - B 1
dy +ady = (¢ + afy) El <le Dj) (cjl + xfjl)
dl+>\d2~(c +f)—(B—1B)'( + 2f.))
0" T T My i1 2 O T A

Clearly, all properties of LM are shared by PLM and the two problems
A NS
are equivalent for ) =0 .

We assume that an optimal solution for ) =), has already been

0
obtained by the decomposition method outlined in the previous sections.

The questions of post-optimality analysis to be examined here, are:

I) For which values of the parameter ), xﬂ == xu, X7 >‘0
does the current solution remain feasible and optimal? - This question is
commonly referred to as "ranging information” on the current optimal solution.
II) For a given change in the value of the parameter ) , for which

the current basic solution for ) = Ao is no longer feasible and/or optimal,

what is the new feasible and optimal basic solution? This is usually




referred to as "parametric programming” .

Each of the above questions is colncident to a set of two problems:
that of feasibility and that of optimality. The problem of feasibility it
associated with the right hand side of the constraints, hence the usual
terms "right hand side ranging" and "right hand side parametrization”.
Similarly, optimality is associated with the cost row, hence the terms "cost
ranging' and "cost parametrization". The parametric programming algorithm
to be described in this section provides solutions to these questions by using,
and expanding on, information available from the current optimal solution
for ) = Ao ¢

The ranging information is obtained by the well known ratios. Thus,
we obtain one interval for preserving feasibility in the last w and another
for the nonnegativity of le (3 =1,...,k). Clearly, overall feasibility is
maintained for those values of the parameter in the intersection of these two
intervals. The interval for optimality is obtained by simply applying the
optimality criterion of the simplex method to the last EE‘M

The parametrization algorithm provides mechanisms for altering the
existing optimal solution, so that it remains feasible and optimal when the
value of the parameter falls outside one of the computed "ranges"”. Therefore,

1) If feasibility in the last f\l&\l\ﬁ is violated, a basis change is
performed using the dual simplex method.

2) If the non-negativity of at least one variable (le)v is violated

for at least one j, either the current partitioning is altered by exchanging
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) , or the violated non-negativity con-

by a non-basic variable (x
) 12 n

(x,,)

'y

straint expressed in terms of x and y is appended to the last PLM .

LY

j2
3) If the optimality condition is violated, a basic change is made

in the last PLM using the primal simplex method, provided that the resulting

levels of the x,, (j =1,...,k) variables are non-negative. If not, their

jl

non-negativity is secured by following (2) above.

The Algorithm

Let (y(\) x.(\)s sz(')\)) (j =1,...,k) be the optimal solution to

jl

PLP for » =). and (vy(\), sz(x)) (j=1,...,k) be the solution to the

Lol 0

last PLM whose definition and data are also available. The latter is

La "o

assumed to have g rows, mo +p4+l=qgs mo +p+k, and s variables.

We now examine the post-optimality question (I), 1i.e.
I) For which values of »; A s 5 = Ayt M # No does

(y(O), le(x),sz(x) ) saj:isfy the conditions for:
1) feasibility
2) optimality
3) both feasibility and optimality.
For (1), we wish to determine the largest interval for which overall
feaslibility is maintained. We distinguish two cases.
a) Feasibility condition on the last PLM:
PAPVN

This is a necessary condition for feasibility in the original

problem PLP. The largest interval for which this condition is satisfied,
Pala ol




L9

denoted by [le, xil] » 1s obtained by considering the right hand side vector

of the last PLM (i.e. for » = XO) updated by the inverse of its optimal
[

basis Mgl, i.e. we consider

2 -1
(gl+xg) = MB (b +xe)

and apply the non-negativity condition

(5.6) g + g%z 0

which gives

i) For x>\

0
1
I (g)v 2
(5.7) >\ul=min i — (g)v <0; v=1...,q9
(g),
orkf=+°° if(gz) >0 for v =1,...,q.
ul v = ’ ’ ’
i <
ii) For A xO
1
¢ (g) >
- > . =
(5.8) Ny = max > (g)v 0; v =1, »q

or K;fl:-—w if (gz)v___é_o for v =1...,09.

b) Feasibility condition on the %) variables:
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In addition to (a) above, it is necessary to satisfy the non-

negativity restrictions on the variables x,

Jl( A) whose levels, denoted by

1 2
g + Ng , are established by substituting the optimal levels of the basic Xj 2( )

and y(\) into (5.5) which gives the optimal le( \) as linear functions of \ ,

denoted by (ng, + ngz) (i =1,...,k) . The largest interval [ngz, kiz] for

which non-negativity of the le( A} is maintained is obtained by:

i F N> N
(1) or 5

l .
(g.)
(5.9) )\f = min ( - —% (gz,) <O; v=4L...,m,; j=1...,k
A u2 2) j'v J
(gjv

f 2
=00 i > ; i
or )\uZ if (gj)v=0 forall v and j

(i1) For A <X\

0
, 1
(5,10) N, = max > (g5),> 05 val.ooo,m j=l...,k
(gj)v
f , 2 .
or XIZZ:— if (gj)véo for all v and j.

For overall feasibility we must therefore have

£Fof. £f
Mo D Al OV D s Aol

e e

Now for (2), we wish to determine the largest interval D‘ﬂ . xul] for

which the current solution remains optimal. This is easily accomplished by
considering the cost row of the last PLM (updated by the inverse of its

optimal basis), denoted by (hﬁ + _)\hf) (3 =0,1,..0,k). Thus, for optimality

we must have, for the x,. ()\) variables:

12(



2]

1 2

(5.11) hj+>\hj§o (i =1,..,k)
and for the y(\) variables:
1 2
, <0.
(5.12) ho“‘ho:O

The sought interval is immediately established by:

i XA
i) TFor 0

(" (uh

J v,
] 2 \
(5.13) ”ui=min("—"§“l‘ (h), >0; all > viid =00k
' (h) j
v,
or Xfl:-i-w if (h?)v. <0 fér a114) vj; i=0,1,..,k.
j
il) For XN <A\
(), 8
(5.14) p=max( ——= | (n% <o an® uosy=0,1,.. 0k
(h ) RS J

or " =-00 if (h) 20 forall) vJ. i3 =0

2] L
]

Lo, ke

Finally, {3) 1is obtained as an obvious consequence of (1) and ( 2). That

n
is, the solution will remain both feasible and optimal for X\ ¢ [x*, N ] where

1
o M = max g, N, 2 N
5.15) s £ f
N = min {A° Ll xul, xuz, xu}

b3
It N\, = )‘f and A = ?xu‘then the post-optimality question I has been
answered and question II is clearly not relevant. We must assume, therefore,
5%
that either >\£< )\* and/or x < )\u. In the ensuing discussion we consider only

sk
the case N < )\u- This is no loss of generality since the case \ < A, leads to
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entirely symmetric results.
The post-optimality question II, i.e.'parametric programming', is stated as:

II) Utilizing the information available from the current optimal solution for
£ B3
A =N , obtain the optimal solution to PLP for X =X +g; € >0.
PR
We consider three cases:
3 f B3 ,
Iy A =X\ ? i.e. for X =X +4g ;e >0 the current optimal solution to the
u
last PLM does not satisfy the feasibility condition of PLM.
e e ad PN~
5% B3
2) N = )\iz; l.e. for N =X + ¢ ;e >0 the current optimal solution does
not satisfy the non-negativity condition on the le( N) .
3 e . 3 ,
3y N = xul, i.e. for X =N + ¢ ;e >0 the current optimal solution does
not satisfy the optimality conditions,

For (1), we would like to effect a basis change in the last PLM optimal

L e oY

basic colution such that the feasibility condition (5.6 ) will be restored with
respect to the new basis. This is easily accomplished by considering the optimal
levels of the basic y(A) and le( \) wvariables (earlier denoted as gl + ng)

for X\ = )‘ufl' Due to {5.7) we must have (gl + )\gz)v =0 for at least one
component v. For \ = )‘ufl+ e , therefore, we have a basic optimal but infeasible
solution. The customary rules of the dual simplex method ( see e.g. p. 247 in [6])
are applied and the vth variable is exchanged with one of the non-basic le

and y variables which enters the basis at zero level. This requires exactly

one pivot step when v is unique . Several pivot steps may be necessary to
obtain feasibility if v is not uﬁique. If no non-basic variable is eligible to
enter, i.e. row v of the last w simplex tableau has no negative cntries,

we conclude that there is no feasible solution to PLM, further implying that no

Rt

such solution to PLP exists.
e
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For ( 2) we assume that for \ = )xlfz we obtain from (5, 5) le 20 with

f
(xil)H =0 for at leastone j and . For A\ = >\u2+ €; £~ 0 we wish to restore

the non-negativity of the x,

Jl( A) . This may be accomplished by an exchange

(N) and x,_(\) wvariables; that is by updating the current

between the x, 2

jl

partitioning of the problem, or by appending an additional constraint to PLM
Lo

For a fixed value of \ = kiz and the corresponding optimal solution to the last

PLM, (3.1) gives the form:
SRy

x)1=pJ—ijj2 (i =1, , k)
where
p =B"l(b + \e )-B"lD y(\)
j il i I
-1
P. =B.. B,
j j2 Tia

At this point we treat two cases:
i) If there exists a column index v such that

(Pj)pv (sz)v #0
where (Pj)pv is the element in position (w,v) of Pj , then the variables

) and (x, are exchanged. The current partitioning is updated to

(le B 12)v

reflect this exchange, a revised PLM is defined and solved to optimality. The
e ad

computational effort required to solve this revised PLM may be drastically

| £

reduced by attempting to use as a starting basic set those column indices which

were in the optimal basic set of the previous PLM.
PP,
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i1) If { ) = 0 forall v, the above exchange is not

P X
J)uv { ja'v
b
Jl)u Y
generating and appending an "additional constraint" of the form (3.6)

possible, Nevertheless, we can secure the non-negativity of (x

expressing this restriction in terms of the x and y . An optimal solution

j2
to this enlarged w is then obtained by revising the optimal solution to the
current EE&/I by the well known rules (see e.g. pp. 384-3851in [6]).

The above two cases lead to the conslderation of a solution strategy
whereby one may keep applying (i) until either the number of additional
constraints becomes excessive, or case (1) is possible. That is (i) may be
used at will, whenever possible, to reduce the size of the w by elimi-
nating all of the accumulated "additional constraints". The number of
"additional constraints" may also be reduced while applying exclusively
case (ii), by omitting such constraints as soon as they become inactive.

If they become active at later stages the appropriate "additional constraint"
will be generated (case (ii) ), or alternately the non-negativity of the

corresponding x,, variable will be guaranteed by a revised partitioning

il

(case (i) ).
Finally, for (3), we would like to effect a basis change such that

the optimality conditions (5.11) - (5.12) are restored. For )\ = xil , (3.13)

guarantees the existence of at least one non-basic variable (z)v , among

the components of x..()) or y(x), with a reduced cost of zero. The rules

ja
of the simplex method could be applied to introduce (Z)v into the basis.

However, due to the provisional nature of this pivot step (see case b below),

b
we first examine the effect of such a step on the current levels le of the

variables le .
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For restoring feasibility in PLM, we must have, at the conclusion
(e a el

of the pivot step:

where zg and zaB are the basic optimal solution vectors before and
after the pivot step respectively and ps is the column corresponding to
the non-basic variable (zb)V in the current simplex tableau of PLM .

The effect of the pivot step would thus be to increase the level of (Z)v

from zero to:

a B’ i b
(z) = min = (p), 205 i=1...,9
v i ( p ) Vv 1
a Y a
and (Z-B)p = (0 for at least one component p ., If, upon substituting ZB into

(5.5) , the resulting X?l

with (p, v) as the pivot position, is carried out.

are strictly positive , then the contemplated pivot step,

Alternately, if (X?l)p =0 for at least one p and:

a) x?l ;xi, then the contemplated pivot step is performed.
b) x> < xb then the non-negativity of x,.(\) for X = N+
jl v g y i1 = AulT e

g > 0, is secured by the procedure outlined in 2(1i) -{ ii) above.

It should be noted however, that if f&;l\fi is solved by the product
form of the inverse revised simplex method, it is computationally expedient
to carry out the pivot step in advance and subsequently check its validity.

If (b) prevails, return to the pre-pivot status of w is achieved by simply

dropping the last elementary matrix in the produce form of the inverse.



26

§6. Verification of the Method

In this section the validity of the algorithm is outlined.
Suppose that in the tth cycle the problem M ((3.2) = (3.3)) has
s, "additional constraints" of the form (3.6). It follows from (3.1l) that

M is equivalent to the problem (2.1) - (2.3) and the constraints
[a ™)

6.1) and

i 2 =1 ° v @y
(gt 2 0 (= Lisy

where (Xivl)i z 0 corresponds to the vth constraint of the form (3.6).

Since canceling the restriction (Xj)v

1%

0 (J=1,...,k) in the

primal problem (P) results in the removal of the column corresponding to

Lav4

(w.). from the dual problem (2.6) - (2.8), it follows that in the second

Y
formulation of the dual (l.e. in B , (2.9) = (2.11) or for the linear case in
. th th ,
;[:/]\D’, (4.6) - (4.8)) the v inequality in the block is replaced by an
equation. Therefore, the dual problem of the problem stated by (2.1) = (2.3)

and (6.1) is given by:

Minimize
k
= - ‘ 1 - Vv . L
6.2)  @(y,%,u) F(ys X s eows X))t jZiO bj u, F(ys X s e X)) = (Vs %), x,)
subject to:
k
¢3 i H - v , e, S 0
(6.3) jfl D uy + DU y1ﬁ’(y X x) oz
: : Y B
le uj+Ajl UO - )chF(y’xl’ eao;Xk)

(-9 (J=1,cc0,k)
B'JZ uj +A;l 1'lO —VXJZF(Y’XL""’“’X]() z 0
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Similarly, the dual of the problem stated by (4.1), (2.2), (2.3) and (6.1),
i.e. the linear case, is glven by:
Minimize

k
(6 .2a) 5 bu

subject to

ko, '
(6.3a) 2 D,u + D _u
- 13 o o

(6-43) .‘ ‘ J=1,...,k)
szuj + Ajz U Cjz

Hv

e

where means that the constraints corresponding to the variables

(xj,1)i,, (v = L, ...,8,) are inequalities.
The following theorem states the optimality condition:

Theorem |

Let (y*, x’;fl,x’;fz) (J =1, ...,k) be the vector obtained after t

cycles. It is an optimal solution to P if and only if x’?l z 0 (J=1,...%).

Proof:

The condition is clearly necessary because otherwise (2.4) would not

3 £ *)

517 sz, Y is an

be satisfied. For sufficiency, we note from (3.1) that (x

1A%

optimal solution to the problem given by (2.1) - (2.3) and (6.1). If x;kl =z 0

(j =1,...,k) the condition (6.1) can be replaced by (2.4) without changing

the optimal solution. Thus, (x* x;"z, v*) 1is an optimal solution to P if

j1°
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P

jl _k_ Oa

X
In order to prove that an optimal solution to P 1is obtained after a
Fatd

finite number of cycles, we need the following two statements.

Lemma |

To each vector (y*, x’}‘ly x?z) (j =1, ...,k), obtained in the tth

cycle, there exists a corresponding vector (y™, :x:ﬂ;, u”z), u’;‘) (j =1,...,k) which is

a feasible point of E and has the property:

5 £ % sk * % sk e sk
° 5 3 3 ®» o o . = 3 o ¢ o3 [ P 9 o 0 03
(6.5) Fly , x, %y ) Oy s %, Xps Uy U u)
0 e
where x¥ = (x*, x ).
—— j ( it 32)
Proof:
(v*, x*, x) (=1,...,k) is an optimal solution to the

jrTje
problem given by (2.1) - (2.3) and (6.1). Since (6.2) - (6.4) define the

dual of this problem, it follows from the duality theorem for non-linear
programming [19] that there exists a point (v*, x’;‘, u%, u’;,‘) G=1,...,k)
satisfying (6 .3) - (6.4) such that the objective functions (2.1) and (6.2)
have equal values, immediately establishing the property (6.5). Comparison
of (6.3) - (6.4) with (2.10) - (2.11) shows that each feasible point of (6.3) -

(6.4) is also a feasible point of (2.10) = (2.11) (but not conversely).,
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Corrolary 1, For a linear objective function (6.5) implies:

k ] k 1
(6.6) s ' x¥ +cy¥= 3 bu¥
- 7 o §=0 o

Lemma 2

% ok 3K L

Let (y*, le, XTZ) and (v le, sz) ( =1,...,k) be the vectors

th ) th

obtained at the t and (t + L cycle, respectively. Then

3 o* *

sk ok )
s Fly X ...,xk)

ok
)

(6.7) F(y

e
,Xl,coopx

Proof:

In the tth cycle we have solved a problem given by (2.1) - (2.3)
and (6.1). Denote the feasible region of this problem by Rl . This domain
is subsequently altered, according to the procedure described in Section 3,
as follows:

1y If M contains "additional constraints" of the form (3.6) we
cancel those which are not active in the optimal solution (case 1)y. Each
remaining "additional constraint" is either left unchanged (case 3) or

rewritten (case 2) while one of the constraints (sz)i > 0 (which is not

%

jz)i > 0) 1is disregarded.

active in the optimal solution since (x

3
2) Suppose x;l

If case I applies, one of the constraints (x;;)i z 0 (which is inactive

has at least one negative component, say (x?l)v .

since (x;‘z)i > 0) is canceled and replaced by (X;kl)v 2 0., If casell

applies, an additional constraint of the form (3.6), equivalent to (xj l)v = 0,

is added to the problem.
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Thus, upon completion of a cycle, say the tth, only inactive
constraints are canceled while the new "addiilonal constraints" of the
form (3.6) which are added to M are not satisfied by (y*, X;kl’ x"j‘z ).

For a maximization problem this implies (6,7).

Corrolary 2, For a linear objective function (6.7) implies:
k k
X ' sk ;
(6.8) s KXy e y*s s x4 c v*.
oy 1 1] o

]

Remark 1:

The above proof shows that the feasible domain Rl is altered in
two steps. First, by canceling some constraints, we obtain a larger domain
R. in which the objective function remains at its optimal solution value.

2

Then, new constraints (l.e. non-negativity restrictions on the sz
variables) which are not satisfied by the current optimal solution are added.
This results in a smaller feasible domain, say R3. It follows, therefore,
that strict inequality holds in (6.7) and (6.8), except in the case of an
alternate optimal solution in R3 . In this case, a possibility of cycling
exists. Nevertheless, it can easily be prevented by a small perturbation
in the coefficients of (2.1) or (4.1). Clearly, cycling will not occur for

strictly concave objective functions since in such cases the optimal solution

is unique.
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Remark 2;

In Section 3 we assumed that if a feasible solution to ’li exists,
then M attains an optimal solution for a finite point (v, xiz, ce ey sz)'
Now, suppose that the latter is not true, i.e. M does not attain an
finite optimum. In order to prevent such occurences, we propose the
following procedure,

Let T be a sufficlently large positive number, and oj, qj vectors,
which have as

conformal to the current partitioning of Xj = (x 1 X,

j JZ)’

their components all zeroes and ones respectively. Then, the addition

of the condition

6.9)

n M
<
%
+
el
<
WA
3

j=1

to the existing constraints of M , Insures that this enlarged M has
an optimal solution provided that M has a feaslble solution. Clearly,
‘this is equivalent to the addition of:

6.10 : ' le>+ ' _T:7 > 0

(6.10) JE‘]_ (oj, )\ x ), q v+tT=T;7 2

to the constraints of B . If in the optimal solution to this enlarged ’13 we
have = 0 for arbitrary large T, then the original problem has an
unbounded solution.

Since the optimal value of the current M is an upper bound to

the objective function values of all subsequent M problems (Lemma 2),
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and due to the way in which the feasible domain of M is altered from
one cycle to the next, it follows that all subsequent M problems have

optimal solutions, provided they have a feasible solution.

Definition

The constraints of D are said to satisfy a constraint qualification

at the point (yo, x?, ug, u;)) (i =1,...,k) if there exists a differentiable
mapping
(v, Xisonns xk) = G(uo, Ups oo uk),

such that the point (8(u Ups Ups vees uk), where

the u, € Euj] [uj - uz)[ <€} (j=0,1,...,k), for some € > 0, satisfies
the constraints of 2 .
This constraint qualification is satisfied if F(y, Kpseeen Xk) is a
strictly concave function or if the Hessian matrix vyfx.F is non-singular
J

o

at the point (yU, xo s xk) .

l’ LY
Theorem 2

Suppose that D satisfies the constraint gualification. Then, if 3

has an optimal solution it is obtained in a finite number of cycles.

Proof:

R ¢ sk sle P 354 st sk sesk skl .
Let s X4 u, d :X... , U u . 31,...,}( be the
(v XU J) and (y i oY ) (] )

e <

feasible points of D associated with the vectors (y*, X;t’ x;:z) and

s ol sk 3 B . , th
# ", x;l'(, sz Yy (j =1,...,k) obtained in the tth and (t 4+ 1) cycle
respectively (Lemma ). Considering (6.5) in conjunction with Lemma 2 we sc

that:
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T
] j = l; v ey
i1 sz, U uj.) (J k)

Mok AR skeske sese ek %

6.11 <
( ) &(y .le,sz,uo,uj)f Oy , x

B > e

We observe that (y™, x;, u:), uj) (j =1,...,k) is an optimal
solution to the dual problem (6.2) - (6.4) and that it satisfies as equalities
at least those constraints in (6.3) - (6.4) which correspond to cancellation

of the non-negativity restrictions on the .le in M . Denote the set of equations

in (6.3) ~ (6.4) for the tth and (t + l)th cycle by s* and s** respectively.
If (6.11) is an equality for several consequtive cycles, appropriate methods
to prevent cycling can be employed to insure that S™ reoccurs at most a
finite number of times.

If R has an unbounded solution, it follows that a problem (6.2) -
(6.4) with an unbounded solution is obtained after‘ a finite number of cycles.
Since the corresponding primal problem l\i is assumed to be bounded and
Gly, ij) is differentiable, by the duality. theory for non-linear programming [19],
this implies that M has no feasible solution. The latter then implies that E
has no feasible solution.

If R has an optimal solution, then it follows from the preceding
discussion that it is obtained in a finite number of cycles. At each cycle we

t

, t t t
obtain a finite point (v, le, sz, u

0’ u?) (j =1,...,k) and in a finite

number of cycles we have a finite number of such points which must be in a
bounded set. Since ¢ is differentiable, it must be bounded. If D satisfies
a constraint qualification (which is also satisfied if I-‘(y,x].) is strictly concavcey,

the converse duality theorem [8] asserts that the optimal solution of the
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corresponding M vyields the optimal solution to P . Alternately, for cases
where the constraint qualifidation is not satisfied, the optimal solution to the

corresponding M need not be feasible for P .

Remark 3;

For the case of a linear objective function the above proof may
be stated in a concise manner as follows:

The relation (6.11) implies:

k k
6.1 ' sk L ok ! **_ %
( 2) Z,: (cjl le + cjZ sz) + c, Y b §_3 (¢, x,, +c,.B x

=1 J

Therefore, with appropriate methods to prevent cycling, the optimal solution
of LD, if it exists, will be reached in a finite number of cycles, say after
ol .
r cycles. By the duality theorem for linear programming,the vector
T r r th .
(le, XjZ’ v) (J=1,...,k) obtained in the r cycle is an optimal

solution to LP . If LD has no optimal solution, it follows again for the

duality theorem that LP also has no optimal solution.

e
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§7. Computational Aspects and Results

The computational efficiency of the algorithm presented in section 3
depends on several faqtors. First, the distinction between linear and non-
linear objective function is an essential one. Itis generally known that for
most of the available methods, the solution efficiency for nonlinear problems
depends almost entirely on the number of variables. This is particularly evident
when one uses a method in the dual space such as Gradient Projection [ L3].
Consequently, the reduction in the total number of variables involved in each
M solution should be viewed as a much more important development than the
obvious reduction in j:he number of constraints. This reduction can be impressive
for many problems arising in practical applications. Then, little attention is
paid to the increase in "additional constraints" of the form (3.6) during the
course of the algorithm. Their accumulation is tolerated and their elimination
may be deferred until convenient.

The situation may be markedly different for the linear case depending
on the method of solving M Its solution may be accomplished either by the
primal or the dual simplex method. The choice will depend on the size of }\I\ﬁ
which is related to the size of the original problem }E . If this problem is speci-
fied with subproblem matrices BJ. for which mj << nj, then the number of
variables in Ij\l\’/{ will still be substantial, thus dictating the use of the primal
simplex method for its solution. The accumulation of additional constraints

will then be checked by effective pivoting procedures. As mentioned earlier,
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however, the existence of non-vanishing pivots cannot be guaranteed for all
the variables corresponding to existing "additional constraints". Therefore,
even with the emphasis on pivoting, the possibility of a modest accumulation
of these constraints remains. On the other hand, if mj = nj With m, =~ nj,

the number of x,

2 variables in LM will be relatively small. In such instances,

use of the dual simplex method should prove more efficient. 'l‘h_e’number of
additional constraints may then be allowed to increase more freely, with pivoting
assuming a secondary role.

The choice of initial bases le for the subproblem matrices Bj is an
obvious parameter which affects solution efficiency. Clearly, the optimal
solution to the complete problem ﬁP} would be obtained in one cycle if this
choice were made to coincide with the optimal basis. In most industrial problems
an initial point (yo, x?), j=1,...,k (not necessarily feasible) will be known
from the physical characteristics of the model or from é" previous solution to a
s lightly modified problem. The columns of Bj which correspond to the positive
components of the X;D specify the partial initial basis which may then be used,
whenever linear independence holds, to construct the inverse B;ll by appending,
if necessary, some linearly independent non-basic columns. Other methods
of obtaining an initial subproblem basis may be more advantageous. However,
computational evidence will be required tq e:stablish their relative merits.

The solution efficiency will also be influenced by the method of variabl«
exchanges, referred to as “pivoting". Such exchanges are required under both

steps A and B of the algorithm. Complete lack of non-zero pivots at the
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required positions will cause the generation of at least one "additional
constraint" for the next cycle. Since generation of an excessive number of
such constraints is undesirable, at least when LM is solved by the primal
simplex method, intuition suggests that more than one pivot step should be
performed for the non-optimal blocks at each cycle. One way of performing
this operation is to apply the simplex method to a modified subproblem as
follows. Let the current basis for the ;ith subproblem be Bj L and let the
submatrix of Bj containing the non-basic columns be BjZ . Suppose that the

solution of M and the subsequent application of (3.1) gives the following

partition of the variables x}_1 and sz:
X
I X
) 1 . I4
X1 XIz ’ 2| ox
« 5
1
with
I, = (i (le)i < 0
I, = (i (Xﬂ)i = 0; iel)
— 3 >
I, = (i (le)fL = 0}
= i 0
I, {i] (XJ.Z).i > 0}

where Ia represents the set of column indices i for which "additional
constraints" of the form (3.6) were present in M. An effective pivoting
strategy would then be to exchange as many of the variables in Il and 14
as possible, and to retain the variables 13 as basic. This is accomplished

by considering the linear program:



38

Maximize
(7.1.1) -T g x. -T,q x. +7T, g, x
1
Il Il 2 I2 I2 4 14 14
subject to
(7.1.2) B. x. +B. x +B. x. +B  x. =0

where q_, qI s qI are vectors having all ones in their components and the

1 2 4
T4 > 0 are specified weighing constants. This problem

I

scalars Tl’ TZ’

is solved by the primal simplex method. In order to retain Xy in the basis,

3
the usual pivot selection rules of the simplex method are revised to avoid

pivoting XI out of the basis. .In our program, an initial inverse for the
3

above problem is obtained by reinverting the subproblem basis of the previous
decomposition cycle. It would certainly be more efficient to maintain each
inverse Bj_ll in the product form which can then be revised, if the block is
non-optimal, by the simplex algorithm. If Tl << T2 = T4, then the solution
to (7.1.1) = (7.1.3) will obtain the revised subproblem basis le and its
inverse by following the best pivoting sequence with preference given to

reducing the infeasibility caused by Xp o Thus, the exchanging will take
. 1
place primarily between X and X and only to a limited degree between
1 4
xI and xI . If the weighing constants are chosen so that T2 << T1 = T4
2 4 '

then exchanging will favor the elimination of the existing additional constraints

over the reduction in the existing infeasibility. It is reasonable to assume then
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that the choice of these constants will also influence the overall efficiency.
However, limited computational experience in comparing the two extreme
choices stated above, indicated no appreciable differences in the number

of cycles.

Finally, the choice of an initial starting point for each M is the key
to the overall efficiency. Starting each M from the solution to the previous
M seems to be a plausible way. Although such a point will be infeasible
for the M of the current decomposition cycle, the method outlined in [13]
may be applied to obtain a feasible starting point. It is expected that this
choice will be a good one, particularly in the later decomposition cycles.,
Similarly, for the linear case, the optimal basis to the previous ;l\’_/l will
provide a partial basis for starting the solution to the current Iﬂ . Our
experience has shown that the optimal bases of successive E‘\M problems
differ from each other only by a few basic columns. This observation leads
us to expect that the use of the previous basis columns, which are still present
in the new ILM’ as a partial starting basis, will result in considerable
computational savings.

A small experimental computer program for solving the linear problem
&E has been written in FORTRAN for the CDC 3600 and has been tested on a
number of randomly generated problems.

The program,which is completely core resident,is divided into a

number of subroutines which essentially perform the following functions:
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a) Problem data input or generation of input data, b) Construction of

initial bases Bj ;j=1,...,k and their inverses,c) Generation of the

1
}\I\’/E matrices, d) Solution of @,e) Extraction of solution values, computation
of le and optimality tests , f) Variable exchanges for the subproblems and

g) Output and solution check.

The input phase reads in the matrices Aj, Bj’ DO, Dj’ the vectors

b, b, c

o b o’ and Cj (j =1,...,k). Optionally, these matrices and vectors

are generated randomly with the necessary precautions insuring feasibility
and boundedness. This part of the program also generates the input data

for the complete problem ELP in a form acceptable by the CDM4 LP system
for the 3600, Subsequently this data is used to obtain solutions for each ’I:E
as an ordinary linear program. The initial bases, for this early version of the
program, are taken as unit matrices representing slack and artificial vectors.
The bulk of the computational work is done in (c) above, where the matrices,
cost and right hand side vectors of I:vl\ﬁl' are computed and are stored in packed
form for later use by the linear programming code CDM4 [20]. CDM4 is
then called to solve I;I\é starting from a completely artificial basis. This
undesirable manner of starting the solution of 'I:E/I“ was chosen in the interest
of simplicity since 1t was found that CDM4 could not effectively handle a
given partial starting basis. The solution values, basis, etc. obtained by
the CDM4 are extracted by unpacking. Thenthe current value of the objective

function and the levels of le; j=1,...,k are computed. For each non-

optimal block, the necessary variable exchanges are performed by direct pivoting,
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or optionally, by solving the modified subproblem (7.1.1) - (7.1.3) by
CDM4. The data for these problems are packed and set-up for use by the
CDM4 using the subroutines of (c¢) above. Each problem (7.1.1) - (7.1.3)
is solved by first reinverting to the previous {feasible) le and then by
carrying Phase II iterations. Each block is handled in succession and requires
the original data of Bj only. The output phase is negligible since the (Xj*l’
x;kz , ¥) (=1,...,k) are available from the last E\é solution and the
computation (3.!) which was necessary for the optimality test. Finally, a
solution check is made by substituting the optimal variable levels into (2 .2) -
(2.4) to obtain a computed right hand side vector and by comparing it to the
given bj (j =0,1,...,k).

A number of test cases were solved successfully by our experimental
program. The data for these problems are randomly generated as follows.
The matrices Bj and Aj’ Dj are 50% and 100% dense respectively with the
non-zero elements of Bj arranged in a checkerboard pattern. Each element is
a pseudo-random number in the range [0, 10]. In addition, unit matrices of
appropriate dimensions are appended to Aj and B], (j =1,...,k) representing
non-negative slack variables. The vectors Cj’ bj (j = 0,1,...,k) are generated
by first constructing a known optimal solution to the cofnplete problem. The
desired optimal levels of the variables X’j and y are chosen so that:
a) a specified number of the coupling constraints are active b) a specified
number of the coupling variables y are at a positive level and c¢) a specified

number of the block variables Xj are at a positive level. Within these



42

restrict ions, randomly selected subsets of the xj and y variables are then
declared basic by assigning random levels in the range [0, 1] and random

cost elements which are appropriately ‘magnified to insure that these variables
will remain basic in the optimal solution. The right hand sides are then
obtained by multiplying the constraint matrix by the generated values of Xj
and y . The problem thus generated is insured to require a reasonable amount!
of work for its solution. The computed answers, however, may be slightly
different from the generated ones for obvious reasons.

No claims will be made regarding the resemblance of these test cases
to actual industrial problems. In fact, our test cases are too small to allow
any inference for problems of giant sizes for which this method is primarily
intended. Thus, the results of the 26 test cases presented in Figure 7 .1
should be regarded only as an indication that our method should not be abandoned.
Tests of large problems of practical importance, a sophisticated computer program
with the flexibility for introducing the various solution strategies discussed
in the previous paragraphs and a large amount of computing time, will be
needed before the efficiency of this method, or any other method previously
proposed by others, may be accepted on firm ground. Plans for designing such
a system and performing extensive large scale testing are reported under
consideration [18].

The information given in Figure 7.1 is arranged as follows:

Columns | = 6:

Test case identification and problem sizes
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Column 7:
The number of decomposition cycles to optimality, which also
corresponds to the number of _.I;\l\il's solved
Column 8:

Subproblem pivoting strategy used:

(1): Select one component of x, ., corresponding to one active "additional

il

constraint” for a particular block and exchange it with a positive component

of sz for the same block. If no non-zero pivot is found, this exchange

is abandoned and this "additional constraint" is left in ‘I;I\il_ . Select one
negative component of 'Xj |1 83y (Xj l)v , for the same block and exchange it
with a positive component of sz for the same block. If no non-zero pivot
is found, an "additional constraint" for (Xj l)v is generated for inclusion in
the next M .

(2): Multiple pivoting by defining and solving, for each non-optimal block,

the subproblem (7.1.1) - (7.1.3) with Tl =1, T2 = T4 = 100,
Column 9:
Average number of "additional constraints” which are present in ’1:3/’[
at each decomposition cycle.
Columns 10, 11:
The average and total number of simplex iterations required to solve

LM by the CDM4 LP System. Each LM solution is started "from scratch"
PG Ll

i.e. from a full artificial or slack basis.
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Columns 12, 13:

The average and total number of variable exchanges performed in the
subproblems. For strategy (2) the reported numbers represent the number of
simplex iterations after the completion of the reinversion to the current basis
Bj L For each non-optimal block, reinversion generally requires an additional
mj pivot steps.

Column 14:

The average number of optimal blocks in each cycle. This number is
appreciably greater for problems with a large number of blocks. When a block
is optimal, the corresponding matrices of &M remain the same for the next
cycle. Our program, however, takes little advantage of this and thus some
recomputation occurs.

Column 15;

Net computation time required to solve the number of M problems
(given in Column 7), starting each time from a full artificial or slack basis and
using the primal simplex method as programmed in the CDM4 LP System.
Column 16:

The total solution time required to solve H by the decomposition
method starting from a full slack basis. This result includes: Preparation of
&lyl_ matrices and vectors, packing of these for use by CDM4, solution (from
scratch) of I;\_I\f{, unpacking of answers, computation of Xj L optimality
checks, subproblem pivoting (in case of strategy (2) preparation of the data

for (7.1.1) = (7.1.3) in packed form, reinversion, solution by CDM4, un-

packing of answers, etc.), generation of "additional constraints", etc.
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Columns 17, 18:

Number of primal simplex iterations and net compuiation time required
to solve the complete problefn }iﬁ (column 6) by the CDM4 LP System
which, for the purpose of this test, was arranged so that both data and program

resided in core.

The running times reported for the decomposition method, in some
instances, exceed those for the direct 'If_ solution of the same problem.
This disconcerting fact may be explained through consideration of several
practical factors. First, we note that our experimental program was written
with no regard for programming efficiency, for the sole purpose of solving a
limited number of small test cases and investigating some of the computational
aspects of the method. Consequently, the timing results should not be compar~d
too closely with those obtained by CDM4, which is an efficient production tool.
Second, an appreciable part of our program performs operations which allow the
use of CDM4 as a subroutine. Most of this work would not be necessary if a more
flexible and versatile linear programming code could be used as a subroutine
for the decomposition program. Third, a substantial part of the total solution
times consists of the optimization of the sequence of M problems, each one
starting from scratch. Comparing columns 15 and 16, we find that for the test
cases treated here, an average of 57% of the total computation time has been
expended for solving the M problems. In some casesa this percentage
exceeds 70%. It is evident, therefore, that considerable savings would

result if good starting bases for these LM problems were used. In addition,

P W
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the total computation times for solutions by strategy (b) include the time
required for reinversion of the non-optimal subproblem bases in every
cycle. Such reinversions may, of course, be avoided by maintaining the
current subproblem inverses in product form, which will result in further
savings. The recomputation of the I,:,I\\/I, matrices for optimal blocks, is
another expensive operation which may be avoided. Finally, the results
reported herein are, in a sense, the worst possible, since solutions to
these problems were initiated from an all slack basis and the problem data
were generated so that only a small number of these slacks would be con-

tained in the optimal basis. Thus a good starting basis for the complete

problem should be expected to improve matters considerably.
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Figure 7.1 - Test results
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FOOTNOTES

1
The case of linearly dependent constraints (2.2) - (2. 3) may
cause a larger number of non-negativity restrictions to be active which

may in turn result in a larger number of constraints in M (See Section

L d

3, Case 3).

ZIf g = 0, proceed as if Case II holds.

Rk

3
Since (le )v = 0, this procedure changes only the partitioning of

38
Xj into (le, sz) but not the actual value of Xj . In the new partitioning

(x belongs to the variables which are restricted to non-negative values.

jl)v

4Assuming (for notational purposes) that the B are formed by the

il
first m, columns of B, for j=1,...,k, "all VJ," refers tos

J J

VO:]‘,°°‘)p; Vj=n1j+l;-0a’nj; j:‘-,-.c’ku

$
|
|
|




