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ABSTRACT

A system of n nonlinear ordinary differential equations is con-
sidered on the interval [a,b] with at least one of the n boundary con-
ditions specified at each end of the interval. In addition, any available
a priori bounds on the solution vector may be imposed. An iterative
method for solution is described which is essentially a Newton-Raphson
method with a linear programming solution at each iteration. Every
iterate is a minimax solution to a linearized finite difference approxi-
mation to the original system, and also satisfies the boundary conditions
and the a priori bounds. The method will always converge at least as
fast as Newton-Raphson, and may converge when Newton-Raphson fails.

A number of computational examples are described.



SOLUTION OF NONLINEAR TWO-POINT BOUNDARY VALUE
PROBLEMS BY LINEAR PROGRAMMING

J. B. Rosen & Robert Meyer

l. INTRODUCTION

The general problem considered here is that of a system of n non-
linear ordinary differential equations on the interval [a,b] , with at
least one of the n boundary conditions specified at each end of the
interval. In addition, any available a priori bounds on the solution
vector may be imposed. It is also useful to impose reasonable upper and
lower bounds on the unknown boundary values.

The computational solution to be described is an iterative method
in which all the boundary conditions and other imposed bounds are
satisfied at every iteration. This is accomplished by what is essentially
a Newton-Raphson method with a linear programming solution at each
iteration. The method reduces to a Newton-Raphson method if none of
the imposed bounds become active (satisfied as an equality) during the
process. If one or more of the imposed bounds do become active then
the new method may converge faster than the Newton-Raphson method or
it may succeed where the latter would fail.

This approach was suggested in a previous paper [11] dealing with
discrete optimal control problems. The fundamental recurrence relations

to be used here were developed in an earlier report on discrete optimal
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control [10]. These relations serve to decouple the system and to re-
duce the dimension of the linear programming problem solved at each
iteration.

In all but two cases tested, rapid convergence was obtained using
the basic linear programming method. It is possible under some con-
ditions, however, that cycling may occur. Two special cases were
constructed to illustrate this, and a special technique was devised to
prevent cycling and force convergence. The normal convergent cases
are illustrated by Examples 1, 2, and 3, and the special cases by

Examples 4 and 5.

2. PROBLEM STATEMENT
We will first consider a class of continuous problems of the

following kind: determine an n~dimensional function y(t) such that

y(t) = f(y,t) , O0=st= (2.1)
= i = <
vi(0=q,, i=1...,4 <n (2.2)
and
1) = =1, ..., n- )
v, (1) =q _ » i=1, n-{ (2.3)

where f is assumed to be a continuous vector function of y and t
with continuous first partial derivatives with respect to the components
v, 1=1, ..., n of y. The boundary conditions (2.3) are specified
for the first n-¢ components for the sake of notational simplicity
below; the method can be applied to any properly posed problem.

We approximate (2.1) by the finite difference scheme
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where At = _m , tj =jA t, and the Xj , =0, ...,m are to be determined

so that (2.4) and the boundary conditions are satisfied.

We will consider below problems in which (2.1) is replaced by an
equation in which a control term is added to the arguments of the function
on the right hand side, and (2.2) and (2.3) are replaced by equations
involving linear combinations of initial and terminal values. Linear
inequality constraints will also be imposed on the Xj and the control

terms.

3. ITERATIVE SOLUTION
In order to linearize the nonlinear system (2.4) we use the approxi-
mation

k 5 (3.1)

a4 k
flx,t)==£fx,t)+F [x -x
<J J) (J J) J[J ]

where the n X n matrix F,k is the Jacobian with respect to x of f(x,1t)
J

evaluated at (xjk, tj) and xjk is the k'th approximation to Xj . The

initial approximate trajectory (k = 0) is usually taken to be a constant

or linear function, and need not satisfy the boundary conditions. The

approximation (3.1) is used to transform (2.4) into the linear system of

mn equations in mn unknowns

N
1
o

o170 -1 K L ok

F X +35 F x
. 1 , X,
At i+l i+ i

+ [sj}:l + Sjk]
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k k k
where sjk = f(xj ,tj) - Fj ‘Xj , a constant vector. In order to generalize

the Newton-Raphson algorithm, we introduce a control term on the right

hand side of {3.2) to obtain

X - X
j+l j -1 k 1 ok 1 k 3
A sz-l—l 41 an x]+z[s,+l+sj]+ujs (3.3)
t
j=0,...,m-1
where the Mj’ ij=0,...,m-1, are scalars to be determined and s (the

sum vector) € En is a constant vector with every component equal to 1 .
If at any iteration there is no solution of the system (3.2) satisfying the
boundary conditions and the inequality constraints to be specified helow,
there may be such a solution of (3.3) with some LLJ, #0 . The scalars

U’j play the role of a scalar control (representing an error in the finite
difference equation), and are introduced to allow intermediate solutions
to be obtained even when the linear system from a Newton-Raphson
method might not have a solution. Denoting by X the set

{xj[j=0, ...,m}, by U the set {uj]j =0,...,m-1}, and by ||U| the
max ]LLJ,I , we will determine by linear programming the pair (X%, U¥)
which minimizes |U| over all pairs (X, U) which satisfy (3.3), the
boundary conditions, and the inequality constraints below,
The size of this linear programming problem is reduced by parti-

tioning it into smaller problems. This reduction is accomplished in two

stages. The first stage consists of solving (3.3) for Xj+l to obtain

x, . =Kx, +WLv, +s, 3.4
j+l i) 3 j ( )

-



where

1
K=l gn Bl e g E 5.5)
L L k.-l
vis T oo B los (3.6)
and
~JE S U k-1 k. k
;% 2m 17 Z2m Bl [spy +syl (3.7)

In the second stage, the recursion relation (3.4) is used to express

the terminal vector in terms of x_ and the Mj , giving

0
m-1
= 3.8
mn VOXO + ]EO Mjhj t9 ( )
where
m-1 _
= X V, . s, 3.9)
and
h.:v. V.: ‘:050--, m"'l 3.10
i Yy ( )
The matrices Vj, j =m-l, ..., 0 are determined by the recursion re-
lations
=I,V, =V, K, 3.11
Vm I j j+b ] ( )

We now specify upper and lower bounds on the unknown initial and
terminal conditions to obtain the inequality constraints cited above. (It
should be noted that all of these bounds are not necessary in order to
employ the method. However, whatever information on bounds is avail-
able should be used in setting up the problem, because it facilitates the

solution. Furthermore, upper or lower bounds on any components of any
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of the Xj can easlly be handled, as shown in Example 5 of section 5.
For notational simplicity we consider below only the case of upper and
lower bounds at the boundaries.)

We thus specify bounds %4 and c}io and require

< <q , i= 1, ..., .
4y S &i < Ao 1 L+ n (3.12)
where the éi denote the components of XO . If in addition we let
= q - i=1,..., .1
350 = %0 " 90 T £ (3.13)

then we can write (2.2) and (3.12) in vector notation as

g_osxosqo . (3.14)
Similarly, if we have bounds g—im and C—zim on the unknown terminal

values, we require

ngXms&m (3.15)

where the first (n-¢) components of (3.15) express the boundary
conditions (2.3).
We want to find X, 80 that the initial and terminal bounds are

satisfied, and so that p‘j =0, j=0,...,m-1 . If such a solution

exists, it will be found by solving the following linear programming

problem . A
Ay = X, = 9
min m-1 -
= Vx + 2 ph +gs=s L 3.16
Xo’“j’v <Y q., %0 =0 why+tg=ay ( )
-Ysu sY,3=0,. ., mel
7



If no solution with LLJ, = 0 for all j exists, then (3.16) finds a solution
for which max mjl = minimum , as noted above. The state vectors

J
1
xk+ , j=1,...,m are then immediately determined by (3.4). These

j
new values are the (k+1)st approximation to the solution.
If these new values differ from those obtained in the previous
iteration by less than a specified tolerance, we consider the solution to
have converged, and terminate the iterations. Otherwise, we use the

(k+1)st approximation to determine a new V_, g, and new hj , and re-

0
peat the process. Note that each approximation thus satisfies the
boundary conditions and the upper and lower bounds, but does not in
general satisfy (2.4) or (3.2). If the original set of equations (2. 4) has

a solution satisfying (3.14) and (3.15), we can expect, however, that

only the first few iterates will not satisfy (3.2).

4, SOLUTION OF THE LINEAR PROGRAMMING PROBLEM
To put (3.16) into the format of a standard dual linear programming
problem, let u € Em be the vector with components uj , let V= Vo’ ,

and let H be the (m X n) matrix whose jth row is hj’ . Define a

2
vector c € E m+4n and a (m+n+1i) X (2m+4n) matrix A as follows
¢’ =(q,” | -d,° [ q.  -9° | g7 —Ein'l[o ... 0[0...0)
I -1 \Y% -V 0 0
n n
A= 0 0 H -H I -1
m m
0 0 0 0 1 1 1 1




m-+n+1

Also let w, beE be given by
« 0
0 .
W o= u s b = 0
Y 1

The problem (3.15) is in the form of an (unsymmetric) dual linear

programming problem [4] , and can now be written as

min {b"w|A“w 2 c} . (4.1)
w

Computationally, it is convenient to actually solve the corres-
ponding primal problem

max {c’z|Az =b, z2 0] (4.2)
z

2m+4
where z € E n . With the problem in this form a standard linear

programming code (such as CDM4) can be used to obtain the dual solution
w as the shadow price vector when the optimal z is obtained. That is,
if B is the optimal basis and c is the vector of cost coefficients associ-
ated with the elements in the basis, then the solution of (4.1) is given by
w = (B_l)’ C , where the matrix B_l is obtained from the simplex tableau.
As indicated above, the remaining xj are then computed from the relations
(3.4), allowing a check to be made on round-off error, since the terminal
vector thus obtained should satisfy the boundary conditions.

In the Appendix we show that an initial feasible basis for the pri-
mal problem can always be constructed. For certain types of problems,

as discussed in the Appendix, it is possible to show that the dual problem

has a solution, which means that both the primal and dual problems have
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optimal solutions. If the primal problem has an infinite solution, then
there is no feasible solution to the dual, and a different linearization
must be tried. In this case, the Newton-Raphson algorithm would also
have to be restarted. On the other hand, in the next section we present
some examples for which the Newton-Raphson method failed, but the

linear programming approach succeeded.




5. COMPUTATIONAL RESULTS

Example 1

Conslider the equation

3

¥ =2y, 0sts 1 (5.1)
with boundary conditions

y(0) = 1, y(1) = 3 (5.2)

The unique sclution is y{t) = (t+l)— , a@s may be readily verified.

In system form, (5.1) becomes

v = Y, (5.3)

v, 2Y13
with the corresponding boundary conditions

y (0 =1, y()=3 . (5.4)

The linearized discrete system obtained by using formula (3.3) is

X, . =X,
e S . 0 . 21 . . 0 . Zl
=2 X, 2 X
At 6(Xl,j+l) 0 j+1 6(Xl,j) 0 j
0 3 0
1 1
+ 3 k + 3 k + .8 (5.5)
..4_ —
(Xl,j+) 4("1,3‘ )
J = O: ’m'—l
< ,
1 1 2
where x, = Il ¢ E° and s = ¢ E
X, J, |
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i =0,...,m, which constitute the k'th

Note that the values x2 § ]

approximation to the derivative of y(t) at the grid points, do not appear
in the system (5.5). Hence, every inltlal choice for the values of the

derivative at the grid points leads to the same linearized problem on the
first iteration. In this example, the constraints on the initial conditions

were
1 1

1A
]
IA

(5.6)
-5 0

The length of the time interval At was 0.l (m=10), and the initial

approximate trajectory (IAT) was glven by

1= -
X0= - at/2 , J=0,..., 10 (5.7)

0
The procedure was to be halted when two successive iterates satisfied

the following convergence test

5 |x, <t —xi]§[< 0.01 . (5.8)
Because of the quadratic convergence of Newton's method, the conver-
gence criterion (5.8) can be expected to imply that further iterations
would not change the first four decimal places.

With the linear IAT (5.7), the convergence test (5.8) was satisfied
after only three iterations. Neither of the derivative constraints con-
tained in (5.6) was ever active, and thus we had LLJ, =0, j=0,...,m-1
for each iteration. Thus, for this example the iterates were the same as

those that would have been obtained if the ordinary Newton-Raphson
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algorithm had been used. The maximum relative error between the true
and computed solutions at the grid points was approximately 0.2% ,
indicating an accurate approximation in spite of the small value of m

used.

Example 2
We use the same differential equation as In the previous example

" 3
v :Zy (5-9)

but modify the boundary conditions to

y(0) +y7(0) =0, y(1) = 3 . (5.10)

The same solution as above, y(t) = (t+1) satisfies these
boundary conditions also.

0
If the IAT is X J.=O, j=0,...,m, then the system (5.5) has no

solution satisfying (5.10) with all “‘j = 0 . Note that for this IAT, (5.5)

implies that x is a constant independent of j if we require that

2,1

uj=0, j=0,...,m-1 . Hence if x2j=c, j=0,...,m, we see from

(5.5) that

X ,=X +jrcAt, j=0,...,m. (5.11)

However, from the first equation of (5.10), x = -c, so that (5.11) may

1,0

be written

xlj=c(—l+j-At), j=0,...,m . (5.12)

This means that X = 0 , violating the second boundary condition
of (5.10). Geometrically, the above is equivalent to trying to connect the

points (0, -c) and (I, %) with a straight line of slope ¢ . Such a line
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must pass through 0 at t=1 . Thus, the Newton-Raphson algorithm
would fail in this case, and the process would have to be restarted with
a different IAT.

Since the generalization of the Newton-Raphson method that we
are considering allows for p‘j # 0, it succeeds with the given IAT. The
boundary condition represented by the first equation of (5.10) is of a
different sort than those considered in (2.2), but is easily handled. The
equality is converted into two lnequalities which are added to the set of
inequalities in (3.15); and the vectors 90 and ao then represent lower

and upper bounds on both of the components of x In this example we

0

a, = [?5] and g = [3]

Clearly, boundary conditions involving linear combinations of any of the

chose

boundary components may be similarly handled.

The convergence test was satisfied in eight iterations, and the
final iterate differed from the solution obtained in Example | by at most
one digit in the third place. The maximum error (max luj |) in the first
iteration was 0.166 , and the errors were zero in all later iterations.

By specifying better bounds on the initial conditions, it is possible
to accelerate convergence. For lower bounds of -5, -2, -1.5, and -l
on the initial derivative and analogous upper bounds on the initial state,
the number of iterations required were respectively 8, 6, 5, and 3.

Plots of the results for lower bounds of -1.5 and -1 are presented in
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Figs. | and 2. The final computed value of the initial derivative in all

cases was -0.9990 .

Example 3.

We consider the equation

-3y

&

i
®
=

.13)

with boundary conditions

y(0) = y(1) =0 . (5.14)
This problem has exactly two solutions:
(t) = é‘[lo cosh [g (t - L)] - log cosh é] (5.15)
yith = 4lio9 2 2 g 4 .
where a 1is either of the two solutions of

a

= 6 (5. 16)

a
cosh 4

For the sake of brevity, the two solutions of (5.15) will be referred to
below as the upper and lower (due to their relative positions in the (t,y)
plane) solutions.

Case 1

If the method is applied using the IAT

0 0
= ] = col,m =2 !
Xj (0) , =0, m 0 (5.17)
and the constraint
-5SX2,OS 0 (5.18)

the iterates converge to an approximation of the upper solution with the

—-14~



convergence test (5.8) being satisfied after four iterations. All of the
error terms are 0 in each iteration, so the same iterates could have
been obtained using the ordinary Newton-Raphson approach. The iterates
are shown in Figure 3.
Case 2

With the IAT

X, = , 3 =0,...,m=20 (5.19)
0

and the same constraint (5.18), the iterates converge to an approximation
of the lower solution with the convergence test satisfied after five iterations
as shown in Fig. 4. Again, the error terms were all 0 in every iteration.
Case 3

Now consider the case in which the IAT (5.19) is again used, but

the constraint (5.18) is replaced by

“lsx, (<0 (5.20)

This constraint excludes the solution obtained in Case 2 (lower solution)

since the final computed value for X5 0 in that case was -2.09 . It

does not, however, exclude the upper solution obtained in Case 1.

As shown in Fig. 5, the upper solution was obtained in seven

iterations. The values for the maximum errors (ek = max “le on kth

]

l 2 ‘
iteration) were e =0.620, e = 0,380, e3 =0.181, e4= =e7 =0,

Therefore, when confronted with a problem in which the existence

of two or more solutions is suspected, it is possible with this method to
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search for the suspected solutions with the assurance that convergence
to a solution already obtained cannot occur if the constraints are chosen
properly. Alternatively, if a particular solution is desired, the con-
straints may be chosen to prevent convergence to any other solution.
Case 4

The last case for this example illustrates that some care must be
used in excluding one solution of a multiple solution problem. In this

case the lower solution was (just barely) excluded by the constraint

- <0 . 21
ZSXZ,O (5.21)

Instead of converging to the upper solution it convergzad (in 4 iterations)
to a trajectory close to the lower solution but with some “’j #0 . Thus
it was prevented by the bound (5.21), from reaching the global minimum
and was caught in a constrained local minimum. This fact was immedi-

ately obvious since all the |, were not zero when the convergence

]

criterion (5.8) was satisfied. This case is shown in Fig. 6.

Example 4

The equation

-3.6
G =e 0¥ (5.22)

has no solution satisfying the boundary conditions
y(0) = y(L) =0 . (5.23)
When applied to the discretized version of this problem with m = 10,

the Newton-Raphson algorithm gave no indication of convergence after

-16-



15 iterations, as may be seen in Fig. 7. (It should be noted that one
can construct examples in which the continuous problem has no solution,
but the discretized problem for a fixed At does have a solution to which
the Newton-Raphson method converges.)

The basic linear programming approach did not yileld a convergent
sequence of approximations to this problem either. Therefore, the
following inequalities were introduced on the approximations to the initial
derivative

max {-1l.3, xz(i) - n(i)} < XZ(HL)(O) < min {-1, xz(i) + n(i)} (5.24)
where 1 1s an iteration index and n(i) is a parameter to be chosen auto-
matically before the start of each iteration in a manner to be described
below. This new type of constraint forces each initial derivative to lie

(1)

in the intersection of a neighborhood of radius 7 about the previous
initial derivative with the interval [-1.3, -1] . The same idea 1is used
in the MAP method of Griffith and Stewart [ 3].

The basic principles involved in choosing the n(i) are analogous
to those of the bisection method for determining the roots of an equation.
The derivative is allowed to take steps of a given size until there is an
indication (in this case, cycling) that we are near our goal, and then the
size of the step allowed is decreased by a factor of 4 and the process is
repeated. The fundamental difference between the procedure employed

here and the bisection-type scheme is the use of the gradient to guide

the process.
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(0)

5 (0) = -1.15 and

The starting values used in (5.24) were x
M (0) = 0.075 . The convergence test was satisfied in 15 iterations, and

the final iterate had a minimax error of 0.0106 . The iterates are shown

in Fig. 8.

Example 5

In order to illustrate how a linear inequality constraint along the
whole time interval may be handled, we will consider a true optimal con-
trol problem. The basic technique remains unchanged, since the boundary
value problems were treated as problems in optimal control. The example
below also deals with the problem of cycling.

Consider the constrained brachistochrone problem:

maximize XL(T) subject to

% = fZ_ng + ¢ cos ult) (5.25)
%, /27;32;7? sin u(t) (5.26)
x,(0) = x,(0) = 0 (5.27)
axl(t) +b = xz(t) 0<t=s T (5.28)

where a, b, ¢, g, and T are given constants, and u(t) is constrained
to the interval [0, m/2] . (In the scaling used, a =1/2, b = 1/6,
c = (0.07195)2, g=1, and T=1,720.)

The constraint (5.28) is shown in Fig. 10. The state variable X,

represents horizontal distance and X, vertical distance. The control
variable in this problem corresponds to the slope of the trajectory rather

than the error it represented in the boundary value problems.
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The analytic solution to the problem may be obtained by the intro-
duction of multiplier functions, the Euler-Lagrange equations (suitably
modified along the boundary (5.28)), and the maximum principle as out-

lined in Bryson, et al [1]. If we let [tl, t denote the time interval

5]

during which the solution lies on the constraint, then the optimal control

Y*t) is given by the formulae

-

56 _
Y*(0) ot o, te [0, tl]
VE() = { tan—la =6, te [tl, tz] (5.29)
w,(T-t) te [tz, T]

where wl is determined by computing the value of T from the non-

linear equations

2
6 in 26 in 27
cos L&, 8 -y 430 _sin 27g b =0 (5.30)
2 2g 2 0 2 2
2gr 2gr
1 1]
L
— 2
cos 'YO =T c (5.31)

and using the relation

d)l:-—g]:‘l : (5.32)
w, is then determined by the equations
Yo = °
t, = — (5.33)
1 w
1
2
b oot 4 ctn 6
f 1 Wy c
L =g —(b+E")ctn9 (5. 34)
2(ctn 6 + 6) g

-19-




I
|~

2
" ___(g_) 6+ ctn 6

c (5.35)
(b+ Eg) ctn 6+

The linearization of (5.25) and (5.26) about XZ(O)(t) and uo(t)

is (suppressing for notational simplicity the dependence on t)

0 0. .-z 0
>'<l =[g cos u (ng2 +c) z]xz - [(ngZ +c)

[T

0
sin u Ju (5. 36)

-
wj

0 0 0 -5 0 0 0
-gcosu x, (ngZ + ) ?‘+(2gx20+c) (u sinu” + cosu’)

0 0 -3 0 .3 0
. _ 2 2
XZ-[gsinu (ng2 +c) ]x2+[(2gx2 +c)® cos u Ju (5.37)
0 0 0, .-z 0. 3 0 0
-gsinu x, (2gx, +0) 2 +(2gx, +c)? (uocosu +sinu )

These linear equations are then discretized using the finite differ-
ence approximation previously described by (2.4) with At = T/20=0.086 .

These vyield recurrence relations of the form (3.4), and from those re-

lations we obtain
k

= a =1,2 .
xi(tk) jéo ijkuj + Bik, i , (5.38)
where the aijk and 6ik are constants determined by uo(tj) and

xzo(tj), ij=0,...,k, and uj represents the control at time tj . Note

that since XI(O) and XZ(O) are known, only the control variables appear

as unknowns on the right hand side of (5. 38).

By means of (5. 38), the constraint (5.28) may be expressed at the

grid points by the inequality

-20 =



ij) uj > —aBlk + BZk -b (5.39)

At each lteration therefore, we solve a linear programming problem of the

following form:

m
minimize - 2 Q u, (5.40)
subject to the inequalities (5.39) and

Osujsv'r/z, j=0,...,m . (5.41)

Note that the only variables in the linear programming problem are the

m + 1 values of the uj . Since there are 3m + 2 inequality constraints,
the problem in the primal form thus involves an (m+1) X (3m+2) matrix.
If the linear programming problem has a solution, we solve for the state

variables by means of (5.38), compute new values for @ and Bik ,

ijk
and repeat the process until the convergence criterion is satisfied or the
iteration limit is reached.

If the solution is attempted with the problem in the above form, the
iterates begin to cycle after a few iterations, and the convergence criterion
is never satisfied. In addition, by the theory of linear programming, at
least (m+1) of the 3m+2 inequalities must be satisfied as equalities
by an optimal solution to the linear programming problem. The physical
situation dictates that any reasonable trajectory will lie on the constraint

(5.39) for only a short time, since the optimal trajectory in the continuous

case lies on the constraint (5.28) for only a brief interval of time. This
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means that most of the values for the control will be 0 or m/2,
satisfying some of the remaining inequalities (5.41). However, the

actual optimal control is definitely not of a bang-bang type. Therefore

we could not expect the above procedure to yield a good approximation to
the optimal control even if it converged. Both of these problems are solved

by replacing the constraints (5.41) by

(1) iy oy

max {0, uJ_ - ; < min {u (1) + n(i),'n/z] (5.42)

3

j:oy ...,m

In a typical run, the initial approximate trajectory used was x (O)E 0,

1
x 0 _ 0.75 (t/T), u(o) (©)

> = 0.9 radians and 7

= 0,3 radians. Cycling
was detected by the program after the fifth iteration, and it defined

n(S) = n(4)/4 = 0.075 radians, and XZ(S) and u(S) to be the average of
their previous two values. Cycling was detected again after the eighth
and eleventh lterations, and operations analogous to those following the
fifth iteration were performed. After the fourteenth iteration, the pro-
cedure was automatically halted when the convergence test was satisfied.
At that point the computed values of XI(T) had begun to cycle between

0.99931 and 0.99932 . The optimal value for the given continuous

problem is x_ (T) =1 .

1

The first 4 iterations are shown in Fig. 9. Iterations 5 and 6 are
shown in Fig. 10. The remaining iterations cannot be distinguished

]

graphically from the th iteration. The computed average value 3 [uj—i-u”l
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for the interval t =t = t, is shown in Fig. 11 together with the

j j+1
continuous optimal control obtai ned by an exact solution to the problem.
The maximum error in the discrete optimal trajectory, as compared to the

continuous solution, for both the horizontal and vertical state variables

was of the order of one unit in the third decimal place.
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6. COMPUTATIONAL EFFICIENCY

Trials were run, using instead of the balanced scheme (3. 3), the

simple Eulerian approximation

i+l i
- = F,kx,+s.k+ I, s (6.1)
At J ] J )
j =0, ., m-1

On the basis of limited testing it appears that this approach is less
efficient in obtaining a solution of given accuracy. The increased number
of grid points necessary more than offset the smaller amount of calculation
per grid point. However, for large systems of differential equations
(large n), the fact that the matrix inversions in (3.5) are not necessary
when (6.1) is used, may improve the relative efficiency of (6.1).

The use of a vector control term in (3. 3) rather than the scalar
control multiplying the sum vector was also tested. That is, for any fixed
j, the n equations represented by (3. 3) were allowed to have different
values for thelr error term. Clearly, this includes as a special case the
scalar control method. However, for the small values of n and large
values of m wused in typical applications, this almost doubles the size
of the linear programming problem to be solved at each iteration, and
results so far have indicated that it does not reduce the number of
iterations required. In a typical trial, using the equation (5.13) with the

constraints (5.21), the average time per iteration with the vector control
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with m = 20 was slightly over | minute, whereas the scalar control re-
quired less than 15 seconds per iteration. Since the number of iterations
required was the same and the final approximations were equally good,
the scalar control method was more than four times as efficient in this
case.

If one wishes to solve a boundary value problem using a large
number of grid points, results have shown that a significant amount of
time can be saved by first solving with a much smaller number of grid
points and using the solution thus obtained to provide starting values for
the original problem. The additional starting values needed are obtained
by linear interpolation between the grid points. The computational
efficiency of this successive increase in the number m of grid points
follows directly from its effect on the number of rows in the primal LP
problem (4,2). As given by the definition of the matrix A , this is (m+n+l).
The computation time for solving an LP problem is proportional to the qth
power of the number of rows where 2 < gq < 3. Thus any scheme which
reduces the number of iterations required with large m will certainly
reduce thé computation time,

For example, in a trial run with equation (5.13), the convergence
test was satisfied after four iterations with m = 10, but only two itera-
tions were required with m = 40 using the interpolated solution for start-
ing values. Since the time required for the four iterations with m = 10
was only about 1/3 of the time required for one iteration with m = 40,

computing time was almost cut in half by this device,
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It should not be difficult to implement an automatic grid-size
halving procedure of this type which would improve efficiency and also
glve additional information on accuracy.

Another improvement in efficiency can probably be obtained by
storing information on the current optimal LP basis, for use in the next
iteration. The LP solution for each iteration could then be started using
the previous optimal basis. This should significantly reduce the computing

time per iteration.

-26 -



7. CONVERGENCE AND DISCRETIZATION ERROR

In order to discuss convergence and to give error estimates, it is
necessary that there exist solutions to the given problem and the approxi-
mating linear problems. For boundary value problems, existence theorems
have been constructed only for certain special classes of problems.
McGill and Kenneth [8, 9] show that if the length of the time interval

[a,b] is "sufficiently small, " the continuous nonlinear problem has a
unique solution, and that the Newton-Raphson method converges qua-
dratically to that solution provided the initial guess lies in a certain
region containing the line connecting the boundary values. Lees [7]
obtains a convergence theorem for second order equations of the following

form (which we will call Class L problems)

¥ =iy, t), y(@) =A, y(b) =B (7.1)

where a, A, b, and B are finite but otherwise arbitrary constants, and
f(y, t) is a continuous real-valued function on

R = {(y,t) [ as<tsb, - »<y<+wx} that has a continuous partial
derivative with respect to y satisfying

2
-1

fz%yi = -1 >

vy 2

(b-a)

Class L problems, as Lees shows, have unique solutions, and under
some additional hypotheses concerning the existence of high order de-
rivatives of the solution, the Newton-Raphson method may be shown to

converge to the solution of the discretized nonlinear problem provided
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the step size is sufficiently small and the initial guess sufficiently good.
Lees also gives a bound for the discretization error. Kalaba [6] gives
results on differential inequalities which may be used to prove the
following theorem:

If a problem is of Class L and if f is a convex function of y for
each fixed t e [a,b] , then the Newton-Raphson method applied to the

continuous problem vyields a sequence of linear problems

Yy =ty _p )+l -y )y g0 0) (7.3)
v (@) =4, v, (b) =B

each of which has a solution, provided yo(t) is a continuous function
satisfying the boundary conditions. The sequence of functions so gener-
ated converges monotonically from above (Yl(t) = yz(t) z - 2z y(t)) to
the solution y(t) . (Note that we do not assume yo(t) = y(t) .)

It should be emphasized that all of these results are concerned
with sufficient conditions for convergence, and that convergence will
often take place even when the conditions are not satisfied. Rather
crude initial guesses such as linear or constant functions which do not
satisfy the sufficient conditions will often be satisfactory. Problems
with multiple solutions are not considered in the theoretical investigations
mentioned above. Nevertheless, Example 3 of Section 5 demonstrates
that the Newton-Raphson method worked well in a problem with two

solutions. Not only did we have quadratic convergence in that example,
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but as shown in Figure 12, the discretization error was O0((A t)z) , just
as it would have been if the problem were of Class L.

Finally, as noted above, the method developed in this report will
converge whenever the Newton-Raphson method converges (provided the
constraints are properly chosen), and it may converge even when Newton-

Raphson fails.
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APPENDIX

We will first consider three methods of constructing a primal
feasible solution for the problem (4.2).

(1) Let the (2n+1l)st column of A be denoted by ar . We will
put ar into the basis at level z, > 0 to be determined. Choose n
columns from In and -In to match the first n elements of a . Choose
m columns from Im and ~Im to match the next m elements of a. - If
the sum, ¢, of these last m activities is not zero, we let zr = i;, and
multiply all other activities by this factor to obtain a basic feasible
solution.

(2) Alternatively, an initial feasible basic solution may be con-
structed by putting the first n columns of A and the first (m-1) columns
corresponding to Im into the basis at 0 level, and putting the mth
column corresponding to Im and the last column of A into the basis at
level 1/2 . Note that this method leads to a degenerate solution, so that
method (1)} is preferable when it can be used.

(3) Finally, instead of one of the explicit constructions above,
one may prefer to let the linear programming code do the work by means of
a Phase I procedure. Method (2) demonstrates that a primal feasible
solution always exists, and method (1) shows that we can generally ex-
pect a non-degenerate basic solution to exist, so we can expect good
results from a Phase I.

If we were working with a vector control of the same dimension as

the system of differential equations, the dual problem (4.1) would always
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have a feasible solution. In fact, refering back to equation (3. 3), if we
replace the term p,js by an arbitrary (error) vector Vj , we can always
choose the Vj so as to satisfy (3. 3) for any trajectory Xj’ j=0,...,m .
However, we wish to use a scalar control because of efficiency consider-
ations discussed above, and in this situation it is not clear that (4. 1)
will always have a solution. If we consider the problem in the form
(3.16), we see that a sufficient condition for the existence of a solution
to the dual problem is that m = n and that n of the hj’ j=0, ...,m=-1,

be linearly independent. In the case n =2, if hm and hm are

-1 -2

well defined (i.e., the required matrix inverses exist) and if the

differential equation is given by

£ e x5)
x=fx) =\, ,
fz(xl,xz)
Bfl Gfl éfz sz
where f(x) satisfies % ' 5% S 0 and S 5% 2 0, with
1 i) %1 2

and hm are linearly

-1

at least one inequality being strict, then hm -2

independent. For n = 3, we can again conclude that hm and hm

-1 -2

are linearly independent if a similar condition holds, so that if we only
place constraints on only 2 components of the terminal vector, we would
be guaranteed a dual solution. It appears likely that similar results can

be obtained for n > 3.
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Constrained Brachistochrone Problem Solutions for
First 4 Iterations
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