
Hardware Support for NVM
Programming

1

• Ordering

• Transactions

• Write endurance

Outline

2

Volatile Memory Ordering

• Write-back caching

– Improves performance

– Reorders writes to DRAM

• Reordering to DRAM does not break correctness

• Memory consistency orders stores between CPUs

CPU

Write-back
Cache

DRAM

B A

B A

STORE A
STORE B

CPU

3

• Recovery depends on write ordering

CPU

Write-back
Cache

NVM

V D

V D

STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
STORE valid = 1

Crash

D

D

CPU

Persistent Memory (PM) Ordering

4

Persistent Memory (PM) Ordering

• Recovery depends on write ordering

GARBAGE

1

data

valid

NVM

Reordering breaks recovery
Recovery incorrectly considers garbage as valid data

STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
STORE valid = 1

Write-back
Cache

CPU

CPU

5

Simple Solutions

• Disable caching

• Write-through caching

• Flush entire cache at commit

6

Generalizing PM Ordering

1: STORE data[0] = 0xFOOD
2: STORE data[1] = 0xBEEF
3: STORE valid = 1

7

1 2

1: PERSIST data[0]
2: PERSIST data[1]
3: PERSIST valid

3
Program order
implies unnecessary
constraints

Need interface to describe necessary constraints

Generalizing PM Ordering

8

1

2

3

1: PERSIST data[0]
2: PERSIST data[1]
3: PERSIST valid

Need interface to
expose necessary
constraints

Expose persist concurrency; sounds like consistency!

Generalizing PM Ordering

9

Memory Persistency:
Memory Consistency for NVM

• Framework to reason about persist order while
maximizing concurrency

• Memory consistency

– Constrains order of loads and stores between CPUs

• Memory persistency

– Constrains order of writes with respect to failure

[Pelley, ISCA14]

10

Memory Persistency =
Consistency + Recovery Observer

• Abstract failure as recovery observer

– Observer sees writes to NVM

• Memory persistency

– Constrains order of writes with respect to observer

CPU CPU

Consistency

Memory Persistency

STORES

PERSISTS

(Observer)

11

Ordering With Respect to
Recovery Observer

CPU

Write-back
Cache

NVM

V D

V D

STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
STORE valid = 1

D

D

CPU

STORES PERSISTS

Memory Persistency

12

Ordering With Respect to
Recovery Observer

CPU

Write-back
Cache

STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
STORE valid = 1

CPU

GARBAGE

1

data

valid

NVM

Memory Persistency (view after crash)

13

Persistency Design Space

• Strict persistency: single memory order

• Relaxed persistency: separate volatile and
(new) persistent memory orders

Volatile Memory Order Happens Before: Persistent Memory Order

14

• Ordering

– Intel x86 ISA extensions [Intel14]

– BPFS epochs barriers [Condit, SOSP09]

– Strand persistency [Pelley, ISCA14]

• Transactions

• Write endurance

Outline

Relax
persistency

15

Ordering with Existing Hardware

• Order writes by flushing cachelines via CLFLUSH

• But CLFLUSH:

– Stalls the CPU pipeline and serializes execution

STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
CLFLUSH data[0]
CLFLUSH data[1]
STORE valid = 1

stall (~200ns)

time

data[1]

valid

ST CLFLUSH

ST

data[0] ST CLFLUSH

16

Ordering with Existing Hardware

• Order writes by flushing cachelines via CLFLUSH

• But CLFLUSH:

– Stalls the CPU pipeline and serializes execution

– Invalidates the cacheline

– Only sends data to the memory subsystem – does
not commit data to NVM

STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
CLFLUSH data[0]
CLFLUSH data[1]
STORE valid = 1

17

Fixing CLFLUSH: Intel x86 Extensions

• CLFLUSHOPT

• CLWB

• PCOMMIT

18

CLFLUSHOPT

• Provides unordered version of CLFLUSH

• Supports efficient cache flushing

STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
CLFLUSHOPT data[0]
CLFLUSHOPT data[1]
SFENCE // explicit ordering point
STORE valid = 1

Implicit
orderings

19

CLFLUSHOPT

• Provides unordered version of CLFLUSH

• Supports efficient cache flushing

data[1]

valid

ST CLFLUSHOPT

ST

data[0] ST CLFLUSHOPT
time

data[1]

valid

ST CLFLUSH

ST

data[0] ST CLFLUSH

time 20

CLWB

• Write backs modified data of a cacheline

• Does not invalidate the line from the cache

– Marks the line as non-modified

• Note: Following examples use CLWB

21

PCOMMIT

• Commits data writes queued in the memory
subsystem to NVM

 STORE data[0] = 0xFOOD
STORE data[1] = 0xBEEF
CLWB data[0]
CLWB data[1]
SFENCE // orders subsequent PCOMMIT
PCOMMIT // commits data[0], data[1]
SFENCE // orders subsequent stores
STORE valid = 1

Limitation: PCOMMITs execute serially
22

R

Z

X

Example: Copy on Write

23

Y

Example: Copy on Write

R

Z

X

Z’

R’ STORE Y’
STORE Z’
CLWB Y’
CLWB Z’
PCOMMIT
STORE R’
CLWB R’

24

Y Y’

Example: Copy on Write

R

Z

X

Z’

R’
STORE Y’
STORE Z’
CLWB Y’
CLWB Z’
PCOMMIT
STORE R’
CLWB R’
PCOMMIT
STORE X’
STORE Z’’
CLWB X’
CLWB Z’’
PCOMMIT
STORE R’
CLWB R’

25

Y

Z’’

R’’

X’

Y’

Example: Copy on Write – Timeline

R’ CLWB

Y’ CLWB

PCOMMIT

PCOMMIT

time

Z’

ST

ST

ST stall

PCOMMITs execute serially

26

R’’

X’

Z’’

CLWB

CLWB ST

ST CLWB

CLWB ST

stall PCOMMIT

stall

• Ordering

– Intel x86 ISA extensions [Intel14]

– BPFS epochs barriers [SOSP09]

– Strand persistency [ISCA14]

• Transactions

• Write endurance

Outline

Relax
persistency

27

BPFS Epochs Barriers

• Barriers separate execution into epochs:
sequence of writes to NVM from the same thread

STORE …
STORE …
EPOCH_BARRIER
STORE …
EPOCH_BARRIER
STORE …

Epoch

Epoch

Epoch

Writes within same epoch
are unordered

A younger write is issued to NVM only
after all previous epochs commit

[Condit, SOSP09]

28

Example: Copy on Write

R

Z

X

Z’

R’ STORE Y’
STORE Z’
EPOCH_BARRIER
STORE R’

29

Y Y’

Epoch

Epoch

Example: Copy on Write

R

Z

X

Z’

R’ STORE Y’
STORE Z’
EPOCH_BARRIER
STORE R’
EPOCH_BARRIER
STORE X’
STORE Z’’
EPOCH_BARRIER
STORE R’

30

Y

Z’’

R’’

X’

Y’

Example: Copy on Write - Failure

R

Z

Y Y’

Z’

R’ STORE Y’
STORE Z’
EPOCH_BARRIER
STORE R’

WRITEBACK X’
WRITEBACK Y’

WRITEBACK R’

L1/L2

NVM

R

Y

X X’

Y’

31

PCOMMIT/CLWB VS Epochs Barriers

time

R’

X’

WRITEBACK

WRITEBACK

X’ WRITEBACK

time

Z’ WRITEBACK

ST

ST

ST

ST

Commits happen asynchronously
Decouples ordering

from durability

Commits happen synchronously

32

R’ CLWB

Y’ CLWB

PCOMMIT

PCOMMIT

Z’

ST

ST

ST stall

X’

CLWB

CLWB ST

BPFS Epochs Barriers:
Ordering between threads

• Epochs also capture read-write dependencies
between threads

STORE …
STORE …
EPOCH_BARRIER
STORE R
EPOCH_BARRIER
STORE …

Epoch

Epoch

Epoch LOAD R

Thread 0 Thread 1

Memory Consistency
makes this dependency

visible to thread 1

STORE V

Recovery
Observer

PERSIST V

PERSIST R

Must make dependency visible to
NVM to ensure crash consistency

PERSIST …
PERSIST … Missing

persists

33

CPU0

Epoch Hardware Proposal

EpochID

EpochID P State/Tag/Data

Oldest in-flight EpochID

Oldest in-flight EpochID

CPU1
 EpochID

CPUn
 EpochID

…

Oldest in-flight EpochID

CPU0

CPU1 …

CPUn

NVM EpochID P State/Tag/Data

EpochID P Stage/Tag/Data

EpochID P State/Tag/Data

 C
o

n
tr

o
lle

r

• Per-processor epoch ID tags writes

• Cache line stores epoch ID when it is modified

• Cache tracks oldest in-flight epoch per CPU

C
ac

h
e

Li
n

es

Cache

34

Epoch HW: Ordering Within a Thread
Cascading Writebacks

CPU0
 EpochID

STORE Y’
STORE Z’
EPOCH_BARRIER
STORE R’
EPOCH_BARRIER
STORE X’

EVICT R’
 WRITEBACK Y’
 WRITEBACK Z’
 WRITEBACK R’

Epoch 0.0 Epoch 0.1 Epoch 0.2

Epoch 0.1 is not oldest → evict all
earlier epochs

NVM

EpochID P State/Tag/Data

Oldest in-flight EpochID

Oldest in-flight EpochID

Oldest in-flight EpochID

CPU0

CPU1 …

CPUn

EpochID P State/Tag/Data

EpochID P Stage/Tag/Data

EpochID P State/Tag/Data Epoch 0.0 1 Y’

Epoch 0.0 1 Z’

Epoch 0.1 1 R’

Epoch 0.2 1 X’

Epoch 0.0

Cache

…

35

CPU0
 EpochID

STORE Y’
STORE Z’
EPOCH_BARRIER
STORE R’
EPOCH_BARRIER
STORE X’

STORE R’
 WRITEBACK Y’
 WRITEBACK Z’

Epoch 0 Epoch 1 Epoch 0.2

Flush epoch 0.1 (containing Y)
and older epochs

Epoch HW: Ordering Within a Thread
Overwrites

NVM

EpochID P State/Tag/Data

Oldest in-flight EpochID

Oldest in-flight EpochID

Oldest in-flight EpochID

CPU0

CPU1 …

CPUn

EpochID P State/Tag/Data

EpochID P Stage/Tag/Data

EpochID P State/Tag/Data Epoch 0.0 1 Y’

Epoch 0.1 1 R

Epoch 0.2 1 X

Epoch 0.0

Cache

…

36

Epoch 0.0 1 Z’

Epoch HW: Ordering Between Threads

CPU0
 EpochID

STORE Y’
EPOCH_BARRIER
STORE R’

LOAD R’
 WRITEBACK Y’
 WRITEBACK R’

Epoch 0 Epoch 0.1

Read data tagged by CPU0 →
flush all old epochs to capture
dependency

CPU1
 EpochID Epoch 1.0

NVM

EpochID P State/Tag/Data

Oldest in-flight EpochID

Oldest in-flight EpochID

Oldest in-flight EpochID

CPU0

CPU1 …

CPUn

EpochID P State/Tag/Data

EpochID P Stage/Tag/Data

EpochID P State/Tag/Data Epoch 0.0 1 Y

Epoch 0.1 1 R

Epoch 0.0

Epoch 1.0

Cache

37

Summary

Ordering primitive Persists Commits

CLFLUSH Serial N/A

PCOMMIT/CLWB Parallel Synchronous

Epochs Parallel Asynchronous

38

Outline

• Ordering

– Intel x86 ISA extensions

– BPFS epochs barriers [Condit, SOSP09]

– Strand persistency [Pelley, ISCA14]

• Transactions

• Write endurance

39

seek (fd, 1024, SEEK_SET);
write (fd, data, 128);

seek (fd, 2048, SEEK_SET);
write (fd, data, 128);

…
 Non conflicting

writes

Limitation of Epochs

40

Limitation of Epochs

X

B

Y

D

seek (fd, 1024, …);
write (fd, data, 128);

seek (fd, 2048, …);
write (fd, data, 128);

41

Limitation of Epochs

STORE B
EPOCH_BARRIER
STORE X

EPOCH_BARRIER
STORE D
EPOCH_BARRIER
STORE Y

X

B

Y

D

42

Can we expose more persist concurrency?

Limitation of Epochs

1

2

3

4

Epoch order
implies

unnecessary
constraint

1:PERSIST B
2:PERSIST X
3:PERSIST D
4:PERSIST Y

43

Strand Persistency

• Divide execution into strands

• Each strand is an independent set of persists

– All strands initially unordered

– Conflicting accesses establish persist order

• NewStrand instruction begins each strand

• Barriers continue to order persists within each
strand as in epoch persistency

44

Strand Persistency: Example

A

C

B
A
BARRIER
B
C

A
B
BARRIER
C

or

Epoch

NEWSTRAND
A
BARRIER
C
NEWSTRAND
B

Strand

Strands remove unnecessary ordering constraints

45

NEW_STRAND
STORE B
EPOCH_BARRIER
STORE X

NEW_STRAND
STORE D
EPOCH_BARRIER
STORE Y

seek (fd, 1024, …);
write (fd, data, 128);

seek (fd, 2048, …);
write (fd, data, 128);

Strands Expose More Persist
Concurrency

46

1 2

3

4 5

6

1:PERSIST B[0]
2:PERSIST B[1]
3:PERSIST X
4:PERSIST D[0]
5:PERSIST D[1]
6:PERSIST Y

Strands Expose More Persist
Concurrency

47

Persistency Spectrum

Strict Relaxed

No caching

PCOMMIT/CLWB

Epoch persistency (BPFS like)

Strand persistency

48

Summary

Ordering primitive Persists Commits

CLFLUSH Serial N/A

PCOMMIT/CLWB Parallel Synchronous

Epochs Parallel Asynchronous

Strands Parallel Asynchronous + Parallel

49

Outline

• Ordering

• Transactions

– Restricted transactional memory [Dulloor, EuroSys14]

– Multiversioned memory hierarchy [Zhao, MICRO13]

• Write endurance

50

Software-based Atomicity is Costly

• Atomicity relies on multiple data copies (versions)
for recovery

– Write-ahead logging: write intended updates to a log

– Copy on write: write updates to new locations

• Software cost

– Mem-copying for creating multiple data versions

– Bookkeeping information for maintaining versions

51

Restricted Transactional Memory (RTM)

• Intel’s RTM supports failure-atomic 64-byte
cache line writes

Existence proof that PM can leverage hardware TM

XBEGIN
STORE A
STORE B
XEND

Cache

NVM

`

B A

RTM prevents A
from leaving cache
before commit
(for isolation)

, B

A, B can be now
written back to
NVM atomically

52

Multiversioning: Leveraging Caching
for In-place Updates

• How does a write-back cache work?
– A processor writes a value

– Old values remain in lower levels

– Until the new value gets evicted

 Memory

Cache

A

A’ New Ver

Old Ver

53

Multiversioning: Leveraging Caching
for In-place Updates

• How does a write-back cache work?
– A processor writes a value

– Old values remain in lower levels

– Until the new value gets evicted

• Insight: multiversioned system
by nature
– Allow in-place updates to

directly overwrite original data

– No need for logging or
copy-on-write

NVM

NV-LLC

A B C

A’ B’ Ver N

Ver N-1

C’

A Multiversioned
Persistent Memory

Hierarchy

54

Preserving Write Ordering:
Out-of-order Writes + In-order Commits
• Out-of-order writes to NV-LLC

– NV-LLC remembers the committing
state of each cache line

• In-order commits of transactions
– Example: TA before TB

– TB will not commit until A2’ arrives
in NV-LLC

• Committing a transaction
– Flush higher-level caches (very fast)

– Change cache line states in NV-LLC
NVM

NV-LLC

Higher-Level Caches

TA = {A1, A2, A3}
TB = {B1, B2}

Flu
sh

Out-of-order
A’3, B’2, A’1,
B’1, A’2

55

A Hardware Memory Barrier

• Why

– Prevents early eviction of
uncommitted transactions

– Avoids violating atomicity

• How

– Extend replacement policy with transaction-commit
info to keep uncommitted transactions in NV-LLC

– Handle NV-LLC overflows using OS supported CoW

NVM

NV-LLC

A B C

A’ B’ C’

TA = {A1, A2, A3}

A’1 Crash

A

56

Outline

• Ordering

• Transactions

• Write endurance

– Start-gap wear leveling [Qureshi, MICRO09]

– Dynamically replicated memory [Ipek, ASPLOS10]

Note: Mechanisms target NVM-based main memory

57

• Table-based wear leveling is too costly for NVM

– Storage overheads and indirection latency

• Instead, use algebraic mapping between logical
and physical addresses

– Periodically remap a line to its neighbor

Start-Gap Wear Leveling

58

• Table-based wear leveling is too costly for NVM

– Storage overheads and indirection latency

• Instead, use algebraic mapping between logical
and physical addresses

– Periodically remap a line to its neighbor

B

Start-Gap Wear Leveling

C

D

START

GAP

A

Memory lines

Gap line

59

D

• Table-based wear leveling is too costly for NVM

– Storage overheads and indirection latency

• Instead, use algebraic mapping between logical
and physical addresses

– Periodically remap a line to its neighbor

A

A B

Start-Gap Wear Leveling

C

D

START

GAP

Wear-leveling:
Move gap every
100 memory writes

C

B

A

GAP
GAP
GAP
GAP D

START
Move start every
one gap rotation

NVMAddr = (Start+Addr); if (PhysAddr >= Gap) NVMAddr++ 60

Dynamically Replicated Memory

• Reuse faulty pages with non-overlapping faults

• Record pairings in a new level of indirection

FAULT

FAULT

FAULT
FAULT

FAULT

FAULT

Compatible pages Incompatible pages

Virtual
Address Space

PhysicalAddress Space

Real
Address Space

Recorded in Real Table

Recorded in Page Tables
61

Summary

• Ordering support

– Reduces unnecessary ordering constraints

– Exposes persist concurrency

• Transaction support

– Removes versioning software overheads

• Endurance support further increases lifetime

Questions?

62

Backup Slides

63

Randomized Start Gap

• Start gap may move spatially-close hot lines to
other hot lines

• Randomize address space to spread hot regions
uniformly

Line Addr Static

Randomizer
Start-Gap
Mapping

Physical Address Randomized Address NVM Address

Hot lines

NVM

X Y

64

