Hardware Support for NVM
Programming

Outline

* Ordering
* Transactions
 Write endurance

Volatile Memory Ordering

* Write-back caching
— Improves performance
— Reorders writes to DRAM

STORE A
STORE B 0

CPU

Write-back

Cache DRAM

* Reordering to DRAM does not break correctness
* Memory consistency orders stores between CPUs

3

Persistent Memory (PM) Ordering

* Recovery depends on write ordering

STORE data[@] ©xFOOD
STORE data[1l] OXBEEF
STORE valid =1

v Jlv oo

CPU

Write-back

Persistent Memory (PM) Ordering

* Recovery depends on write ordering

STORE data[@] = ©xFOOD
STORE data[l] = OxBEEF
STORE valid =1

NVM

data GARBAGE
valid

CPU

Write-back

CPU

Reordering breaks recovery
Recovery incorrectly considers garbage as valid data

5

Simple Solutions

* Disable caching
* Write-through caching
* Flush entire cache at commit

Generalizing PM Ordering

1: STORE data[@] = OxFOOD
2: STORE data[1l] = OxBEEF
3: STORE valid =1

Generalizing PM Ordering

1: PERSIST data[9] Program order
2: PERSIST data[1l] 0 » 6 » e implies unnecessary
3: PERSIST valid constraints

Need interface to describe necessary constraints

Generalizing PM Ordering

1: PERSIST data[9] 0 o Need interface to
2: PERSIST data[1l] expose necessary

3: PERSIST valid Q" constraints

Expose persist concurrency; sounds like consistency!

Memory Persistency: [Pelley, ISCA14]
Memory Consistency for NVM

* Framework to reason about persist order while
maximizing concurrency

* Memory consistency

— Constrains order of loads and stores between CPUs

* Memory persistency
— Constrains order of writes with respect to failure

10

Memory Persistency =
Consistency + Recovery Observer

* Abstract failure as recovery observer

— Observer sees writes to NVM

* Memory persistency

— Constrains order of writes with respect to observer

CPU CPU & (Observer)
STORES . s
s
PERSISTS .

Memory Persistency

11

Ordering With Respect to

Recovery Observer

STORE data[9]
STORE data[1]
STORE valid =

STORES PERSISTS

of>
Write-back E & NVM

Cache

& Memory Persistency

OxFOOD
OXBEEF

12

Ordering With Respect to

Recovery Observer

STORE data[9]
STORE data[1]
STORE valid =

OxFOOD
OXBEEF

o | B |

NVM

data GARBAGE
valid

Write-back

Memory Persistency (view after crash

13

Persistency Design Space

Happens Before: T

 Strict persistency: single memory order

* Relaxed persistency: separate volatile and
(new) persistent memory orders

14

Outline

* Ordering
— Intel x86 ISA extensions [Intel14] Relax
— BPFS epochs barriers [Condit, SOS O%ersistency
— Strand persistency [Pelley, ISCA14

e Transactions
e Write endurance

15

Ordering with Existing Hardware

* Order writes by flushing cachelines via CLFLUSH

STORE data[@] = ©xFOOD
STORE data[l] = OxBEEF
CLFLUSH data[@]
CLFLUSH data[1]
STORE valid =1

* But CLFLUSH:
— Stalls the CPU pipeline and serializes execution

datae)
datal1] —

stall (~200ns) .
ST

valid :
twneg

Ordering with Existing Hardware

* Order writes by flushing cachelines via CLFLUSH

STORE data[@] OxFOOD
STORE data[1] = OxBEEF
CLFLUSH data[@]
CLFLUSH data[1]
STORE valid =1

* But CLFLUSH:
— Stalls the CPU pipeline and serializes execution

— Invalidates the cacheline

— Only sends data to the memory subsystem — does
not commit data to NVM

17

Fixing CLFLUSH: Intel x86 Extensions

* CLFLUSHOPT
 CLWB
* PCOMMIT

CLFLUSHOPT

 Provides unordered version of CLFLUSH

* Supports efficient cache flushing

STORE data[@] = ©xFOOD

STORE data[1] = OxXBEEF Implicit

CLFLUSHOPT data[9] orderings
CLFLUSHOPT data[1]

SFENCE // explicit ordering point

STORE valid =1

19

CLFLUSHOPT

 Provides unordered version of CLFLUSH
* Supports efficient cache flushing

datalo]
datal 1]

valid

- >
datae) time
data 1]

valid

time 20

CLWB

e Write backs modified data of a cacheline
e Does not invalidate the line from the cache

— Marks the line as non-modified

* Note: Following examples use CLWB

PCOMMIT

e Commits data writes queued in the memory
subsystem to NVM

STORE data[@] = ©xFOOD

STORE data[1l] = OXBEEF

CLWB data[@]

CLWB data[1]

SFENCE // orders subsequent PCOMMIT
PCOMMIT // commits data[@], data[1l]
SFENCE // orders subsequent stores

STORE valid =1

Limitation: PCOMMITs execute serially

22

Example: Copy on Write

Example: Copy on Write

STORE Y’
STORE Z°
CLWB Y’
CLWB Z’
PCOMMIT
STORE R’
CLWB R’

24

Example: Copy on Write

STORE Y’
STORE 27’
CLWB Y’
CLWB Z’
PCOMMIT
STORE R’
CLWB R’
PCOMMIT
STORE X’
STORE Z°°
CLWB X’
CLWB Zz°°
PCOMMIT
STORE R’
CLWB R’

25

Example: Copy on Write — Timeline

Y’ CLWB
PCOMMIT

I CLWB

R Sta” I ctwB | pcommiT

X stall l PCOMMIT
ZEm.
R’ / staII I

PCOMMITs execute serlally

- >
time

26

Outline

— BPFS epochs barriers [SOSP09]
— Strand persistency [ISCA14]

e Transactions
e Write endurance

Relax
persistency

27

BPFS Epochs Barriers

[Condit, SOSP09]

* Barriers separate execution into epochs:
sequence of writes to NVM from the same thread

/ Writes within same epoch
EpochI STORE .. are unordered
STORE ..
EPOCH_BARRIER
Epoch | STORE ..
EPOCH_BARRIER

Epoch | sTORE B

A younger write is issued to NVM only
after all previous epochs commit

28

Example: Copy on Write

STORE V* T .
STORE Z’ P
EPOCH_BARRIER

STORE R’ T Epoch

29

Example: Copy on Write

STORE Y’
STORE Z°
EPOCH_BARRIER
STORE R’
EPOCH_BARRIER
STORE X’
STORE Z°°
EPOCH_BARRIER
STORE R’

30

Example: Copy on Write - Failure

STORE Y’
STORE Z°
EPOCH_BARRIER
STORE R’

L1/L2
WRITEBACK X’

WRITEBACK Y’

T

NVM 31

PCOMMIT/CLWB VS Epochs Barriers

Commits happen synchronously

Y’ I CLWB

Z.’
R)
XJ

o
”
R
o

I CLWB

/\

ol
time
- |
Commits happen asynchronously
«
: /

ST

>

time

BPFS Epochs Barriers:
Ordering between threads

* Epochs also capture read-write dependencies
between threads

Recovery
Thread 0 Thread 1 Observer
EpOChI STORE .. Memory Cohsistercy
STORE .. mykEEStREdep=nrdercy
EPOCH_BARRIER / ndsibletto thread 1

Epoch | STORE R
EPOCH BARRIER\
Epoch T sTORE .. / “HLOAD R

STORE V PERSIST V
Must make dependency visible to

NVM to ensure crash consistency \

33

Epoch Hardware Proposal

4 N C \
CPUO | o 4 Cache ™
EpochID (,,/ EpochID | P h
. J GCJ
- ~ ﬁ EpochID | P
CPU1 “ < EpochID |P
©
EpochID o EpochID | P NVM
(LR, L |
E EJ/ CPUO | Oldest in-flight EpochID A
CPUn g CP.Ul Oldest in-flight EpochID
cC S
o . o
EpochID “ ku _ CPUn | Oldest in-flight EpochID //

* Per-processor epoch ID tags writes
* Cache line stores epoch ID when it is modified
e Cache tracks oldest in-flight epoch per CPU

Epoch HW: Ordering Within a Thread
Cascading Writebacks

[CPUO J / Cache \]

(T
Epoch 0.0 1 Y’
STORE Y’ Epoch 0.0 1 Z'

g Epoch 0.2 1 X’ NVM
STORE Z N) |«

EPOCH_BARRIER -

STORE R’ cruo RN
EPOCH BARRIER CPEJl Oldest in-flight EpochID
STORE_X’ CPUn | Oldest in-flight EpochID
. - ; j/ —_
EVICT R’
WRITEBACK Y’ . Epoch 0.1 is not oldest = evict all
WRITEBACK Z° earlier epochs
WRITEBACK R’ _ 35

Epoch HW: Ordering Within a Thread

Overwrites
CPUO a Cache I
(CECTE
STORE Y
store 22 | ERXER R
EPOCH_BARRIER - ~
STORE R’ S Epocho0
CPU1 .
EPOCH_BAR ER Oldest in-flight EpochID
STORE X’ L CPUn | Oldest in-flight EpochID //
STORE R’

WRITEBACK Y’
WRITEBACK Z’°

NVM

Flush epoch 0.1 (containing Y)

and older epochs

36

Epoch HW: Ordering Between Threads

CPUO Cache \
(T
) S
STORE Y EpochID | P
EPOCH BARRIER
— EpochID | P NVM
STORE R’ - |
T oo I
CPU1 CP%Jl Epoch 1.0
Epoch 1.0 L CPUn | Oldest in-flight EpochID //
Read data tagged by CPUO -
WRITEBACK Y’ &8 Y
WRITEBACK R’ - flush all old epochs to capture
dependency

37

Summary

CLFLUSH Serial

PCOMMIT/CLWB Parallel Synchronous

Epochs Parallel Asynchronous

38

Outline

— Strand persistency [Pelley, ISCA14]
* Transactions
e Write endurance

39

Limitation of Epochs

seek (fd, 1024, SEEK SET);
write (fd, data, 128); N

. Non conflicting
writes

seek (fd, 2048, SEEK_SET);J
write (fd, data, 128);

40

Limitation of Epochs

seek (fd, 1024, ..);
write (fd, data, 128);

seek (fd, 2048, ..);
write (fd, data, 128);

41

Limitation of Epochs

STORE B
EPOCH_BARRIER
STORE X }
EPOCH_BARRIER
STORE D

EPOCH_BARRIER
STORE Y

42

Limitation of Epochs

2 :PERSIST X ol

3:PERSIST D _~~ implies

4:PERSIST Y unnecessary
9 constraint

'}
Can we expose more persist concurrency?

43

Strand Persistency

Divide execution into strands
Each strand is an independent set of persists

— All strands initially unordered
— Conflicting accesses establish persist order

NewsStrand instruction begins each strand

Barriers continue to order persists within each

strand as in epoch persistency

44

Strand Persistency: Example

Epoch Strand

A NEWSTRAND
“ BARRI ER or B A

BARRIER BARRIER
C C

. NEWSTRAND
B

Strands remove unnecessary ordering constraints

45

Strands Expose More Persist
Concurrency

seek (fd, 1024, ..);
write (fd, data, 128);

seek (fd, 2048, ..);
write (fd, data, 128);

NEW_STRAND
STORE B
EPOCH_BARRIER
STORE X

NEW_STRAND
STORE D
EPOCH_BARRIER
STORE Y

46

aounnphWNER

Strands Expose More Persist
Concurrency

$
:PERSIST B[0]

:PERSIST B[1] 0 0 0 9
Yy ¢ Y ¢

:PERSIST X
:PERSIST D[0]

:PERSIST D[1] e G
:PERSIST Y s

Persistency Spectrum

Strict Relaxed

No caching

PCOMMIT/CLWB

Strand persistency

Epoch persistency (BPFS like)

48

Summary

CLFLUSH Serial

PCOMMIT/CLWB Parallel Synchronous
Epochs Parallel Asynchronous

Strands Parallel Asynchronous + Parallel

49

Outline

* Transactions
— Restricted transactional memory [Dulloor, EuroSys14]
— Multiversioned memory hierarchy [Zhao, MICRO13]

e Write endurance

Software-based Atomicity is Costly

e Atomicity relies on multiple data copies (versions)
for recovery

— Write-ahead logging: write intended updates to a log
— Copy on write: write updates to new locations

e Software cost
— Mem-copying for creating multiple data versions
— Bookkeeping information for maintaining versions

51

Restricted Transactional Memory (RTM)

* |Intel’s RTM supports failure-atomic 64-byte
cache line writes

XBEGIN Cache RTM prevents A, B
STORE A from leaving cache
STORE B before commit
XEND s (for isolation)

A, B can be now
written back to
NVM atomically

Existence proof that PM can leverage hardware TM

52

NVM

Multiversioning: Leveraging Caching
for In-place Updates

e How does a write-back cache work?

— A processor writes a value
— Old values remain in lower levels
— Until the new value gets evicted

Cache
AI

s

Memory

|New Ver

| Old Ver

53

Multiversioning: Leveraging Caching
for In-place Updates

e How does a write-back cache work?

— A processor writes a value

— Old values remain in lower levels

— Until the new value gets evicted
* |Insight: multiversioned system

by nature

— Allow in-place updates to
directly overwrite original data

— No need for logging or
copy-on-write

NV-LLC

AI

BI

C’

|VerN

NVM

s

A Multiversioned
Persistent Memory

Hierarchy

54

Preserving Write Ordering:
Out-of-order Writes + In-order Commits

e Qut-of-order writes to NV-LLC

— NV-LLC remembers the committing
state of each cache line

* |[n-order commits of transactions

TA = {All Az; A3}
TB = {Bl, Bz}

Higher-Level Caches

— Example: T, before T, Out-of-order - o
. . .) . A 37 B 27 A 12 ﬂ&
— Tz will not commit until A,” arrives B, A, >
in NV-LLC
o _ NV-LLC
* Committing a transaction %
— Flush higher-level caches (very fast)
NVM

— Change cache line states in NV-LLC

55

A Hardware Memory Barrier

) Why TA = {A1; A2’ A3}
— Prevents early eviction of ras C'\"V-LLC
uncommitted transactions ,
— Avoids violating atomicity A & Crash

NVM

* How

— Extend replacement policy with transaction-commit
info to keep uncommitted transactions in NV-LLC

— Handle NV-LLC overflows using OS supported CoW

56

Outline

* Write endurance
— Start-gap wear leveling [Qureshi, MICRO09]
— Dynamically replicated memory [Ipek, ASPLOS10]
Note: Mechanisms target NVM-based main memory

Start-Gap Wear Leveling

* Table-based wear leveling is too costly for NVM

— Storage overheads and indirection latency

* |nstead, use algebraic mapping between logical
and physical addresses

— Periodically remap a line to its neighbor

58

Start-Gap Wear Leveling

* Table-based wear leveling is too costly for NVM

— Storage overheads and indirection latency

* |nstead, use algebraic mapping between logical

and physical addresses

— Periodically remap a line to its neighbor

START ®

GAP D)

B
C
D

Memory lines

Gap line

59

Start-Gap Wear Leveling

* Table-based wear leveling is too costly for NVM

— Storage overheads and indirection latency

* |nstead, use algebraic mapping between logical
and physical addresses

— Periodically remap a line to its neighbor

Move start every START &) [RBDE (1 GAP

one gap rotation START) [A] {0 GAP
{1 GAP Wear-leveling:
[_] {1 GAP Move gap every

{3 GAP 100 memory writes

NVMAddr = (Start+Addr); if (PhysAddr >= Gap) NVMAddr++

Dynamically Replicated Memory

* Reuse faulty pages with non-overlapping faults

FAULT FAULT
FAULT FAULT FAULT
FAULT
Compatible pages Incompatible pages

* Record pairings in a new level of indirection
Recorded in Real Table

/

Virtual >< Real

Address Space Address Space
P , — /

PhysicaIAddres's Space

\
Recorded in Page Tables '

61

Summary

* Ordering support
— Reduces unnecessary ordering constraints
— Exposes persist concurrency

* Transaction support

— Removes versioning software overheads

 Endurance support further increases lifetime

Questions?

62

Backup Slides

Randomized Start Gap

» Start gap may move spatially-close hot lines to
other hot lines

 Randomize address space to spread hot regions
uniformly

Physical Address Randomized Address NVM Address
Line Addr —— Static L | StartGap L, \y\
Randomizer Mapping

Hot lines

64

