
Hardware Support for NVM 
Programming 
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• Ordering 

• Transactions 

• Write endurance 

Outline 
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Volatile Memory Ordering 

• Write-back caching  

– Improves performance 

– Reorders writes to DRAM 

 

 

 

 

• Reordering to DRAM does not break correctness 

• Memory consistency orders stores between CPUs 
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• Recovery depends on write ordering 
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Write-back 
Cache 

NVM 

V D 
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STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
STORE valid = 1 

Crash 

D 

D 

CPU 

Persistent Memory (PM) Ordering 
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Persistent Memory (PM) Ordering 

• Recovery depends on write ordering 

 

 

 

 

 

GARBAGE 

1 

data 

valid 

NVM 

Reordering breaks recovery  
Recovery incorrectly considers garbage as valid data  

STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
STORE valid = 1 

Write-back 
Cache 

CPU 

CPU 
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Simple Solutions 

• Disable caching 

• Write-through caching 

• Flush entire cache at commit 
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Generalizing PM Ordering 

1: STORE data[0] = 0xFOOD 
2: STORE data[1] = 0xBEEF 
3: STORE valid = 1 
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1 2 

1: PERSIST data[0] 
2: PERSIST data[1] 
3: PERSIST valid 

3 
Program order  
implies unnecessary  
constraints 

Need interface to describe necessary constraints 

Generalizing PM Ordering 
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1 

2 

3 

1: PERSIST data[0] 
2: PERSIST data[1] 
3: PERSIST valid 

Need interface to  
expose necessary  
constraints 

Expose persist concurrency; sounds like consistency! 

Generalizing PM Ordering 
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Memory Persistency:  
Memory Consistency for NVM 

• Framework to reason about persist order while 
maximizing concurrency 

 

• Memory consistency 

– Constrains order of loads and stores between CPUs 

• Memory persistency 

– Constrains order of writes with respect to failure 

[Pelley, ISCA14] 
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Memory Persistency =  
Consistency + Recovery Observer 

• Abstract failure as recovery observer 

– Observer sees writes to NVM 

• Memory persistency 

– Constrains order of writes with respect to observer 

CPU CPU 

Consistency 

Memory Persistency 

STORES 

PERSISTS 

(Observer) 
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Ordering With Respect to  
Recovery Observer 

CPU 

Write-back 
Cache 

NVM 

V D 

V D 

STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
STORE valid = 1 

D 

D 

CPU 

STORES PERSISTS 

Memory Persistency 
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Ordering With Respect to  
Recovery Observer 

CPU 

Write-back 
Cache 

STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
STORE valid = 1 

CPU 

GARBAGE 

1 

data 

valid 

NVM 

Memory Persistency (view after crash) 
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Persistency Design Space 

 

• Strict persistency: single memory order 

 

 

 

• Relaxed persistency: separate volatile and 
(new) persistent memory orders 

Volatile Memory Order Happens Before: Persistent Memory Order 
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• Ordering 

– Intel x86 ISA extensions [Intel14] 

– BPFS epochs barriers [Condit, SOSP09]  

– Strand persistency [Pelley, ISCA14] 

• Transactions 

• Write endurance 

Outline 

Relax  
persistency 
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Ordering with Existing Hardware 

• Order writes by flushing cachelines via CLFLUSH  

 

 

 

• But CLFLUSH: 

– Stalls the CPU pipeline and serializes execution 

STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
CLFLUSH data[0] 
CLFLUSH data[1] 
STORE valid = 1 

stall (~200ns) 

time 

data[1] 

valid  

ST CLFLUSH 

ST 

data[0] ST CLFLUSH 
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Ordering with Existing Hardware 

• Order writes by flushing cachelines via CLFLUSH  

 

 

 

• But CLFLUSH: 

– Stalls the CPU pipeline and serializes execution 

– Invalidates the cacheline 

– Only sends data to the memory subsystem – does 
not commit data to NVM 

STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
CLFLUSH data[0] 
CLFLUSH data[1] 
STORE valid = 1 
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Fixing CLFLUSH: Intel x86 Extensions 

• CLFLUSHOPT 

• CLWB 

• PCOMMIT 
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CLFLUSHOPT 

• Provides unordered version of CLFLUSH 

• Supports efficient cache flushing 

STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
CLFLUSHOPT data[0] 
CLFLUSHOPT data[1] 
SFENCE // explicit ordering point 
STORE valid = 1 

Implicit  
orderings 
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CLFLUSHOPT 

• Provides unordered version of CLFLUSH 

• Supports efficient cache flushing 

data[1] 

valid  

ST CLFLUSHOPT 

ST 

data[0] ST CLFLUSHOPT 
time 

data[1] 

valid  

ST CLFLUSH 

ST 

data[0] ST CLFLUSH 

time 20 



CLWB 

• Write backs modified data of a cacheline 

• Does not invalidate the line from the cache 

– Marks the line as non-modified 

 

• Note: Following examples use CLWB 
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PCOMMIT 

• Commits data writes queued in the memory 
subsystem to NVM 

 STORE data[0] = 0xFOOD 
STORE data[1] = 0xBEEF 
CLWB data[0] 
CLWB data[1] 
SFENCE // orders subsequent PCOMMIT 
PCOMMIT // commits data[0], data[1] 
SFENCE // orders subsequent stores 
STORE valid = 1 
 

Limitation: PCOMMITs execute serially  
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R 

Z 

X 

Example: Copy on Write 
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Example: Copy on Write 

R 

Z 

X 

Z’ 

R’ STORE Y’ 
STORE Z’ 
CLWB Y’ 
CLWB Z’ 
PCOMMIT 
STORE R’ 
CLWB R’ 
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Example: Copy on Write 

R 

Z 

X 

Z’ 

R’ 
STORE Y’ 
STORE Z’ 
CLWB Y’ 
CLWB Z’ 
PCOMMIT 
STORE R’ 
CLWB R’ 
PCOMMIT 
STORE X’ 
STORE Z’’ 
CLWB X’ 
CLWB Z’’ 
PCOMMIT 
STORE R’ 
CLWB R’ 
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Example: Copy on Write – Timeline 

R’ CLWB 

Y’ CLWB 

PCOMMIT 

PCOMMIT 

time 

Z’ 

ST 

ST 

ST stall 

PCOMMITs execute serially 
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X’ 

Z’’ 

CLWB 

CLWB ST 

ST CLWB 

CLWB ST 

stall PCOMMIT 

stall 



• Ordering 

– Intel x86 ISA extensions [Intel14] 

– BPFS epochs barriers [SOSP09]  

– Strand persistency [ISCA14] 

• Transactions 

• Write endurance 

Outline 

Relax  
persistency 
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BPFS Epochs Barriers 

• Barriers separate execution into epochs:    
sequence of writes to NVM from the same thread 

 
STORE … 
STORE … 
EPOCH_BARRIER 
STORE … 
EPOCH_BARRIER 
STORE … 

Epoch 

Epoch 

Epoch 

Writes within same epoch 
are unordered 

A younger write is issued to NVM only 
after all previous epochs commit 

[Condit, SOSP09] 
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Example: Copy on Write 

R 

Z 

X 

Z’ 

R’ STORE Y’ 
STORE Z’ 
EPOCH_BARRIER 
STORE R’ 
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Example: Copy on Write 

R 

Z 

X 

Z’ 

R’ STORE Y’ 
STORE Z’ 
EPOCH_BARRIER 
STORE R’ 
EPOCH_BARRIER 
STORE X’ 
STORE Z’’ 
EPOCH_BARRIER 
STORE R’ 
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Example: Copy on Write - Failure 

R 

Z 

Y Y’ 

Z’ 

R’ STORE Y’ 
STORE Z’ 
EPOCH_BARRIER 
STORE R’ 
 
 
WRITEBACK X’ 
WRITEBACK Y’ 
 
 
 
WRITEBACK R’ 

L1/L2 

NVM 

R 

Y 

X X’ 

Y’ 
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PCOMMIT/CLWB VS Epochs Barriers 

time 

R’ 

X’ 

WRITEBACK 

WRITEBACK 

X’ WRITEBACK 

time 

Z’ WRITEBACK 

ST 

ST 

ST 

ST 

Commits happen asynchronously 
Decouples ordering 

from durability 

Commits happen synchronously 
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BPFS Epochs Barriers:  
Ordering between threads  

• Epochs also capture read-write dependencies 
between threads 

 
STORE … 
STORE … 
EPOCH_BARRIER 
STORE R 
EPOCH_BARRIER 
STORE … 

Epoch 

Epoch 

Epoch LOAD R 

Thread 0 Thread 1 

Memory Consistency 
makes this dependency 

visible to thread 1 

STORE V 

Recovery 
Observer 

PERSIST V 

PERSIST R 

Must make dependency visible to 
NVM to ensure crash consistency   

PERSIST … 
PERSIST … Missing  

persists 

33 



CPU0 
 

Epoch Hardware Proposal 

EpochID 

EpochID P State/Tag/Data 

Oldest in-flight EpochID 

Oldest in-flight EpochID 

CPU1 
 EpochID 

CPUn 
 EpochID 

…
 

Oldest in-flight EpochID 

CPU0 

CPU1 …
 

CPUn 

NVM EpochID P State/Tag/Data 

EpochID P Stage/Tag/Data 

EpochID P State/Tag/Data 

 C
o

n
tr

o
lle

r 

• Per-processor epoch ID tags writes 

• Cache line stores epoch ID when it is modified 

• Cache tracks oldest in-flight epoch per CPU 

C
ac

h
e 

Li
n

es
 

Cache 
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Epoch HW: Ordering Within a Thread 
Cascading Writebacks 

CPU0 
 EpochID 

STORE Y’ 
STORE Z’ 
EPOCH_BARRIER 
STORE R’ 
EPOCH_BARRIER 
STORE X’ 
 
EVICT R’ 
  WRITEBACK Y’ 
  WRITEBACK Z’ 
  WRITEBACK R’ 

Epoch 0.0 Epoch 0.1 Epoch 0.2 

Epoch 0.1 is not oldest → evict all  
earlier epochs 

NVM 

EpochID P State/Tag/Data 

Oldest in-flight EpochID 

Oldest in-flight EpochID 

Oldest in-flight EpochID 

CPU0 

CPU1 …
 

CPUn 

EpochID P State/Tag/Data 

EpochID P Stage/Tag/Data 

EpochID P State/Tag/Data Epoch 0.0 1 Y’ 

Epoch 0.0 1 Z’ 

Epoch 0.1 1 R’ 

Epoch 0.2 1 X’ 

Epoch 0.0 

Cache 

…
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CPU0 
 EpochID 

STORE Y’ 
STORE Z’ 
EPOCH_BARRIER 
STORE R’ 
EPOCH_BARRIER 
STORE X’ 
 
STORE R’ 
  WRITEBACK Y’ 
  WRITEBACK Z’ 

Epoch 0 Epoch 1 Epoch 0.2 

Flush epoch 0.1 (containing Y)  
and older epochs 

Epoch HW: Ordering Within a Thread 
Overwrites 

NVM 

EpochID P State/Tag/Data 

Oldest in-flight EpochID 

Oldest in-flight EpochID 

Oldest in-flight EpochID 

CPU0 

CPU1 …
 

CPUn 

EpochID P State/Tag/Data 

EpochID P Stage/Tag/Data 

EpochID P State/Tag/Data Epoch 0.0 1 Y’ 

Epoch 0.1 1 R 

Epoch 0.2 1 X 

Epoch 0.0 

Cache 

…
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Epoch HW: Ordering Between Threads 

CPU0 
 EpochID 

STORE Y’ 
EPOCH_BARRIER 
STORE R’ 
 
 
 
 
LOAD R’ 
  WRITEBACK Y’ 
  WRITEBACK R’ 

Epoch 0 Epoch 0.1 

Read data tagged by CPU0 →  
flush all old epochs to capture  
dependency 

CPU1 
 EpochID Epoch 1.0 

NVM 

EpochID P State/Tag/Data 

Oldest in-flight EpochID 

Oldest in-flight EpochID 

Oldest in-flight EpochID 

CPU0 

CPU1 …
 

CPUn 

EpochID P State/Tag/Data 

EpochID P Stage/Tag/Data 

EpochID P State/Tag/Data Epoch 0.0 1 Y 

Epoch 0.1 1 R 

Epoch 0.0 

Epoch 1.0 

Cache 
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Summary 

Ordering primitive Persists Commits 

CLFLUSH Serial N/A 

PCOMMIT/CLWB Parallel Synchronous 

Epochs Parallel Asynchronous 
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Outline 

• Ordering 

– Intel x86 ISA extensions 

– BPFS epochs barriers [Condit, SOSP09]  

– Strand persistency [Pelley, ISCA14] 

• Transactions 

• Write endurance 
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seek (fd, 1024, SEEK_SET); 
write (fd, data, 128); 
 
 
 
 
 
seek (fd, 2048, SEEK_SET); 
write (fd, data, 128); 

…
 Non conflicting  

writes 

Limitation of Epochs 
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Limitation of Epochs 

X 

B 

Y 

D 

seek (fd, 1024, …); 
write (fd, data, 128); 
 
seek (fd, 2048, …); 
write (fd, data, 128); 
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Limitation of Epochs 

STORE B 
EPOCH_BARRIER 
STORE X 
 
EPOCH_BARRIER 
STORE D 
EPOCH_BARRIER 
STORE Y 

X 

B 

Y 

D 
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Can we expose more persist concurrency? 

Limitation of Epochs 

1 

2 

3 

4 

Epoch order  
implies  

unnecessary 
constraint 

1:PERSIST B 
2:PERSIST X 
3:PERSIST D 
4:PERSIST Y 
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Strand Persistency 

• Divide execution into strands 

• Each strand is an independent set of persists 

– All strands initially unordered 

– Conflicting accesses establish persist order 

• NewStrand instruction begins each strand 

• Barriers continue to order persists within each 
strand as in epoch persistency 
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Strand Persistency: Example 

A 

C 

B 
A 
BARRIER 
B 
C 

A 
B 
BARRIER 
C 

or 

Epoch 

NEWSTRAND 
A 
BARRIER 
C 
NEWSTRAND 
B 

Strand 

Strands remove unnecessary ordering constraints 
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NEW_STRAND 
STORE B 
EPOCH_BARRIER 
STORE X 
 
NEW_STRAND 
STORE D 
EPOCH_BARRIER 
STORE Y 

seek (fd, 1024, …); 
write (fd, data, 128); 
 
 
 
 
seek (fd, 2048, …); 
write (fd, data, 128); 

Strands Expose More Persist 
Concurrency 
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1 2 

3 

4 5 

6 

1:PERSIST B[0] 
2:PERSIST B[1] 
3:PERSIST X 
4:PERSIST D[0] 
5:PERSIST D[1] 
6:PERSIST Y 

Strands Expose More Persist 
Concurrency 
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Persistency Spectrum 

Strict Relaxed 

No caching 

PCOMMIT/CLWB 

Epoch persistency (BPFS like) 

Strand persistency 
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Summary 

Ordering primitive Persists Commits 

CLFLUSH Serial N/A 

PCOMMIT/CLWB Parallel Synchronous 

Epochs Parallel Asynchronous 

Strands Parallel Asynchronous + Parallel 
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Outline 

• Ordering 

• Transactions 

– Restricted transactional memory [Dulloor, EuroSys14] 

– Multiversioned memory hierarchy [Zhao, MICRO13] 

• Write endurance 
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Software-based Atomicity is Costly 

• Atomicity relies on multiple data copies (versions) 
for recovery 

– Write-ahead logging: write intended updates to a log 

– Copy on write: write updates to new locations 

 

• Software cost 

– Mem-copying for creating multiple data versions 

– Bookkeeping information for maintaining versions 
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Restricted Transactional Memory (RTM) 

• Intel’s RTM supports failure-atomic 64-byte 
cache line writes 

 

Existence proof that PM can leverage hardware TM 

XBEGIN 
STORE A 
STORE B 
XEND 

Cache 

NVM 

` 

B A 

RTM prevents A 
from leaving cache 
before commit 
(for isolation) 

, B 

A, B can be now 
written back to 
NVM atomically 
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Multiversioning: Leveraging Caching 
for In-place Updates 

• How does a write-back cache work? 
– A processor writes a value 

– Old values remain in lower levels 

– Until the new value gets evicted 

 Memory 

Cache 

A 

A’ New Ver 

Old Ver 
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Multiversioning: Leveraging Caching 
for In-place Updates 

• How does a write-back cache work? 
– A processor writes a value 

– Old values remain in lower levels 

– Until the new value gets evicted 

• Insight: multiversioned system        
by nature 
– Allow in-place updates to            

directly overwrite original data 

– No need for logging or                     
copy-on-write 

NVM 

NV-LLC 

A B C 

A’ B’ Ver N 

Ver N-1 

C’ 

A Multiversioned  
Persistent Memory 

Hierarchy 
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Preserving Write Ordering: 
Out-of-order Writes + In-order Commits 
• Out-of-order writes to NV-LLC 

– NV-LLC remembers the committing 
state of each cache line 

• In-order commits of transactions 
– Example: TA before TB 

– TB will not commit until A2’ arrives 
in NV-LLC 

• Committing a transaction 
– Flush higher-level caches (very fast)  

– Change cache line states in NV-LLC 
NVM 

NV-LLC 

Higher-Level Caches 

TA = {A1, A2, A3} 
TB = {B1, B2} 

Flu
sh

 

Out-of-order 
A’3, B’2, A’1, 
B’1, A’2 
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A Hardware Memory Barrier 

• Why 

– Prevents early eviction of                         
uncommitted transactions 

– Avoids violating atomicity 

 

• How 

– Extend replacement policy with transaction-commit 
info to keep uncommitted transactions in NV-LLC 

– Handle NV-LLC overflows using OS supported CoW 

NVM 

NV-LLC 

A B C 

A’ B’ C’ 

TA = {A1, A2, A3} 

A’1 Crash 

A 
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Outline 

• Ordering 

• Transactions 

• Write endurance 

– Start-gap wear leveling [Qureshi, MICRO09] 

– Dynamically replicated memory [Ipek, ASPLOS10] 

Note: Mechanisms target NVM-based main memory 
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• Table-based wear leveling is too costly for NVM 

– Storage overheads and indirection latency 

• Instead, use algebraic mapping between logical 
and physical addresses 

– Periodically remap a line to its neighbor 

 

 

 

Start-Gap Wear Leveling 
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• Table-based wear leveling is too costly for NVM 

– Storage overheads and indirection latency 

• Instead, use algebraic mapping between logical 
and physical addresses 

– Periodically remap a line to its neighbor 

 

 
B 

Start-Gap Wear Leveling 

C 

D 

START 

GAP 

A 

Memory lines 

Gap line 
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D 

• Table-based wear leveling is too costly for NVM 

– Storage overheads and indirection latency 

• Instead, use algebraic mapping between logical 
and physical addresses 

– Periodically remap a line to its neighbor 

 

 

 

A 

A B 

Start-Gap Wear Leveling 

C 

D 

START 

GAP 

Wear-leveling: 
Move gap every  
100 memory writes 

C 

B 

A 

GAP 
GAP 
GAP 
GAP D 

START 
Move start every  
one gap rotation 

NVMAddr = (Start+Addr);  if (PhysAddr >= Gap) NVMAddr++ 60 



Dynamically Replicated Memory 

• Reuse faulty pages with non-overlapping  faults 

 

 

 

• Record pairings in a new level of indirection 

FAULT 

FAULT 

FAULT 
FAULT 

FAULT 

FAULT 

Compatible pages Incompatible pages 

Virtual  
Address Space 

PhysicalAddress Space 

Real 
Address Space 

Recorded in Real Table  

Recorded in Page Tables  
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Summary 

• Ordering support 

– Reduces unnecessary ordering constraints 

– Exposes persist concurrency 

• Transaction support  

– Removes versioning software overheads 

• Endurance support further increases lifetime  

Questions? 
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Backup Slides 
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Randomized Start Gap 

• Start gap may move spatially-close hot lines to 
other hot lines 

• Randomize address space to spread hot regions 
uniformly 

 
Line Addr  Static 

Randomizer 
Start-Gap 
Mapping 

Physical Address Randomized Address NVM Address 

Hot lines 

NVM 

X Y
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