1

Estimating the Selectivity of XML Path Expressions
for Internet Scale Applications

Ashraf Aboulnaga

Alaa R. Alameldeen

Jeffrey F. Naughton

University of Wisconsin - Madison

{ashraf,alaa,naughton

Abstract
Data on the Internet is increasingly presented in
XML format. This enables novel applications that
pose queries over “all the XML data on the Inter-
net.” Queries over XML data use path expressions
to navigate through the structure of the data, and
optimizing these queries requires estimating the
selectivity of these path expressions. In this pa-
per, we propose two techniques for estimating the
selectivity of simple XML path expressions over
complex large-scale XML data as would be han-
dled by Internet-scale applications: path trees and
Markov tables. Both techniques work by summa-
rizing the structure of the XML data in a small
amount of memory and using this summary for
selectivity estimation. We experimentally demon-
strate the accuracy of our proposed techniques,
and explore the different situations that would fa-
vor one technique over the other. We also demon-
strate that our proposed techniques are more accu-
rate than the best previously known alternative.

Introduction

Data on the Internet is increasingly presented in éke
tensible markup language (XMlfprmat. The standard-

t@cs.wisc.edu

As an example of the queries that can be handled by
an Internet-scale query processor, consider the following
guery expressed in the XQuery language [CPR]:

FOR $n_au IN document("*")//novel/author

$p_au IN document("*")//play/author
WHERE $n_au/text()=$p_au/text()
RETURN $n_au

This is a join query that asks for writers who have written
both a play and a noveldocument("*") means that
the query should be executed against all the known XML
data on the Internet. In Niagara, the search engine would
find all XML documents relevant to this query by finding
all documents that contain the patiovel/author or
play/author

Optimizing a query like this one requires estimating the
selectivities of the path expressions it contains. For ex-
ample, the query optimizer may need to estimate the se-
lectivities of the path expressiomovel/author and
play/author (i.e., the number ofauthor elements
reachable by each path) to choose the more selective path
expression as the outer data stream of the join. Path ex-
pressions are essential to querying XML, so estimating the
selectivity of these path expressions is essential to XML
guery optimization.

Estimating the selectivity of XML path expressions re-

ized, simple, self-describing nature of this format opens thguires having database statistics that contain information
door for novel Internet-scale applications that integrate andbout the structure of the XML data. These statistics must
query XML data from numerous sources all over the Interit in a small amount of memory because the query opti-
net. mizer may consult them many times in the course of opti-
An example of such an Internet-scale application is themizing a query. The goal here is not to conserve memory,
Niagara Internet query system [NDN01]. Niagara allows but rather to conservguery optimization timeThe statis-
a user to pose queries against “all the XML documentdics must be small enough to be processed efficiently in the
on the Internet,” using an integrated search engine to finghort time available for query optimization.
XML documents that are relevant to any query based onthe Ensuring that the statistics do not consume too much
path expressions that appear in it. Another Internet-scalerxemory is particularly important for the Internet-scale ap-
guery processor is Xyleme [Xyl], which aims to build an plications that we focus on in this paper. It may be safe to
indexed, queryable XML repository of all the information assume that the structure of a single typical XML document
on the World Wide Web. can be captured in a small amount of memory. However,
when considering Internet-scale applications that handle
Permission to copy without fee all or part of this material is granted pro- large amounts of XML data with widely varying structure,
vided that the copies are not made or distributed for direct commercialyye cannot assume that the overall structure of all the XML
e o s o bomicon o madlata handled can be captured in a small amount of memory.
Very Large Data Base Endowment. To copy otherwise, or to republish,I N€ statistics used for selectivity estimation therefore have
requires a fee and/or special permission from the Endowment. to besummarizedo that they fit in the available memory.
Proceedings of the 27th VLDB Conference, In this paper, we present techniques for building
Roma, Italy, 2001 database statistics that capture the structure of complex

XML data in a small amount of memory and for using these The techniques developed in [CIR1] are the best pre-
statistics to estimate the selectivity of XML path expres-viously known techniques that can be applied to the prob-
sions. The focus of this paperssnple path expressions lem of estimating the selectivity of XML path expressions,

A simple path expression is a sequenceagfsthat rep- even though they solve a more general problem. We re-
resents a navigation through the tree structure of the XMlstricted the data structures developed in [€0K] for twig
data starting anywhere in the tree (not necessarily at thqueries to the simpler problem of estimating the selectiv-
root). In abbreviated XPath syntax [CD99], which we useity of path expressions by storing the minimum amount of
throughout the paper, a simple path expression of lengtinformation needed for selectivity estimation and no infor-
n is expressed ag/t,/ta/ - -- /t,. This path expression mation about data values or path branching. We found that
specifies finding a tag, anywhere in the document, and our data structures were able to give more accurate selectiv-
nested in it finding a ta¢y, and so on until we find a tag ity estimates for this simpler but very common case. The
t,. In this paper, we try to estimate the numbertgfel- techniques developed in [C3®1] are described in more
ements reached by this navigation. Note that we assumdetail in Section 5.1.
an unordered model of XML and that we do not consider Estimating the selectivity of XML path expressions
navigations based on IDREF attributes or on predicates orequires summarizing the structure of the XML data.
the attribute values. This can be done usindataGuides [GW97] or T-

We propose two techniques for capturing the structuréndexegMS99]. These methods construct graphs that rep-
of XML data for estimating the selectivity of path expres- resent structural summaries of the data. For tree-structured
sions. The first technique is to construct a tree represenXML data, the graphs constructed by both methods are
ing the structure of the XML data, which we call thath identical, and they have the same structure as our unsum-
tree. We then summarize this tree to ensure that it fits in themarized path trees. However, the problem of summarizing
available memory by deleting low-frequency nodes and rethese graphs if they do not fit in the available memory is not
placing them with nodes representing the information conaddressed in [GW97] or [MS99]. On the other hand, the
tained in the deleted nodes at a coarser granularity. Thtechniques we develop in this paper can summarize path
second technique is to store all paths in the data up to &ees to fit in any amount of memory.
certain length and their frequency of occurrence in a ta- Summarizing DataGuides is addressed in [GW99]. In
ble of paths that we call thlarkov table We summarize that paper, a DataGuide is summarized by finding common
the Markov table by deleting low-frequency paths, and wdabels in the paths represented in it or similar sets of objects
combine the paths of limited length in the Markov table toreachable by these paths. This summary is not suitable for
estimate the selectivity of longer paths. selectivity estimation because the frequency of occurrence

The rest of this paper is organized as follows. Section 2f the paths does not play a role in summarization. Also, no
presents an overview of related work. Section 3 describesummarization is possible if all the labels are distinct, and
path trees. Section 4 describes Markov tables. Section Bo guarantees can be made on the size of the summarized
presents an experimental evaluation of the proposed tecleglata guide.

nigues. Section 6 contains concluding remarks. The query optimizer of the Lore semi-structured
database system estimates the selectivity of XML path ex-
2 Related Work pressions by storing selectivity information for all paths in

the database of length up k9 wherek is a tuning param-

Estimating the selectivity of XML path expressions is eter [MW99]. This approach is valid but not scalable be-
related to estimating the selectivity of substring predi-cause the memory required for storing all paths of length
cates, which has been addressed in several papers [KVI96p to & grows as the database grows. The Markov table
JNS99, JKNS99, CKKMOQ]. These papers all use variantapproach that we propose in this paper also builds a table
of the pruned suffix treelata structure. A suffix tree is a of all paths in the database up to a certain length, but this
trie that stores all the strings in a database and all their sutable is summarized if it overgrows the available memory.
fixes. A pruned suffix tree is a suffix tree in which nodesWe also provide a method of combining the paths of lim-
corresponding to low frequency strings are pruned so thaited length stored in the Markov table to obtain accurate
the tree fits in the available memory. selectivity estimates for longer path expressions.

The techniques in [JNS99] and [CKKMOOQ] are the ba- Path expressions are used in object-oriented databases.
sis for techniques developed in [CIR1] for estimating Some cost models for query optimization in object-oriented
the selectivity otwig queries Like path expressions, twig databases depend on the selectivity of path expressions, but
queries specify a navigation through the structure of XMLno methods for accurately estimating this selectivity have
documents or other tree-structured data. Twig queries areeen proposed. See, for example, [GGT96].
more general than the simple path expressions we con-
sider in this paper. They can specify navigations based o8 Path Trees
branchingpath expressions, and they can specify specifidn this section, we describgath treesthat represent the
data valueghat must be found at the ends of the path ex-structure of XML data and present techniques for summa-
pressions (rather than navigating based only on the strugizing these trees. We also describe using summarized path
ture of the XML data). trees for selectivity estimation.

<A> B> node for deletion does not reduce the size of the path tree.
However, when we mark a noda, for deletion, we check

<D> </D> its siblings to see if they contain a nod#,that is either a
:/CB: x-node or a regular node that has been marked for deletion.
<D> </D> If we find such a node, nodesandB are coalescednto
:Ez :;Ez onex-node, which reduces the size of the path tree.
<E> </E> Eachx*-node represents multiple sibling nodes deleted
</A<>/C> from the path tree. The parent ofsanode is the par-
ent of the deleted nodes it represents, and the children of
Figure 1: An XML document and its path tree these deleted nodes become children ofitim®de. When

)) anodeA, is coalesced with a-node, the children oA be-
A path tree is a tree representing the structure of aome children of the-node. Some of the children fmay
XML document. Every node in the path tree representsaye the same tag name as children of theode. Since
a path starting from the root of the XML document. The {hege children are now siblings, the children with common
root node of the path tree represents the root element of th@lg names are coalesced, further reducing the size of the

document. A path tree node has a child node for every dispath tree. Coalescing the children of coalesced nodes is
tinct tag name of an XML element directly nested in any repeated recursively if needed.

of the elements reachable by the path it represents. Every
path tree node is labeled with tkey nameof the elements

reachable by the path it represents and with the numberq
such elements, which we call tliquencyof the node.

Since both«-nodes and nodes with regular tags may be
oalesced during summarization, all path tree nodes store
e number of nodes in the original unsummarized path
X) tree that they represent and the total frequency of these
Figure 1 presents an XML documentand its path tree. odesx-nodes always represent multiple nodes in the orig-
. The path ree of an XML docu_ment can be constructe nal path tree that have been deleted, while nodes with reg-
in one scan of the document using an event-t_)ased XMlular tags can represent either single nodes in the original
parser [SAX] and a stack that grows to the maximum neStIoath tree or multiple nodes with the same tag name that

ing depth of the XML e'eme”ts in the document. To CON-pave been coalesced because their parents were coalesced.

struct a path tree for multiple XML documents, we create Duri tht it q i o

an artificial root node for all the XML data so that we can uring path tree summarization, we do not consier
nodes as candidates for deletion. Coalesced nodes with reg-

view it as a single tree. , ; ;
A path tree contains all the information required for se-UIar tag names are deleted only if thieital frequency is the
lowest frequency in the path tree.

lectivity estimation. To estimate the selectivity of a query ;)
path expression, we scan the tree looking for all nodes with When the size of the path tree is reduced enough so that
tags that match the first tag of the path expression. Fronf fits in the available memory, we traverse the tree and com-
every such node, we try to navigate down the tree follow-Pute for every-node the average frequency of the multiple
ing child pointers and matching tags in the path expressioﬁde"ed nodes thgt_ it rep.rese_nts. This is the frequency that
with tags in the path tree. This will lead us to a set of pathiS used for selectivity estimation.
tree nodes which all correspond to the query path expres- Nodes with regular tag names can represent multiple
sion. The selectivity of the query path expression is thehodes in the original path tree if they are coalesced when
total frequency of these nodes. This algorithmiién), their parents are coalesced. For such nodes, weotlal-
wheren is the number of nodes in the path tree. ways use the average frequency for selectivity estimation.

The problem with a path tree is that it may be largerWe use the average frequency in some cases, but we use
than the available memory, so we need to summarize it. Téhe total frequency in other cases. Thus, both the total fre-
summarize a path tree, we delete the nodes with the lowegiuency and the number of nodes represented have to be re-
frequencies from anywhere in the tree. We try to preservédained so that the average frequency can be computed when
some of the information represented in the deleted nodegeeded. Details are presented in the next section.
at a coarser granularity by adding nodes to the path tree Figures 2 and 3 present a path tree of 12 nodes and its
that represent groups of deleted nodes. These nodes thgibling-« summarization to 9 nodes. The nodes of this tree
we add have the special tag name,“which stands for are marked for deletion in the ordés |, J, E, H, D, C,
“any tag name”, so we call themnodes(“star nodes”). G Sibling nodes that can be coalesced are identified when
Next, we present four methods of summarizing path treesnarkingJ, D, andG. CoalescingsandH allows us to coa-
that differ in the amount of information they try to preservelesce the twd nodes, saving us an extra node. The sum-
in the x-nodes. marized path tree retains both the total frequency okthe

- node and the number of nodes it represents.
3.1 Sibling- L o
) . . The x-nodes in siblings summarization try to preserve

In the first method for summarizing path trees, which Wey,o o4 0t position of the deleted nodes in the original path

call sibling-+, we repeatedly chopse the path tree npde Wiﬂ\ree. The cost of preserving this exact information is that
the lowest frequency and mark it for delettorMarking a we may need to delete up 2. nodes to reduce the size of

1This can be done it (n log n) using a priority queue. the tree byn nodes.

Figure 4: The levek summarization of Figure 2

unsummarized path tree, the match would have taken us
through only one of the nodes represented bystmede

and ended at only one of the nodes represented by Apode
so nodeA contributes its average frequency. On the other
hand, if the match in the summarized path tree did not take
us through a-node, then the match in the unsummarized
path tree would have taken usab the nodes represented
by nodeA, so nodeA contributes théotal frequency of the
nodes it represents to the estimated selectivity. This ex-

Figure 3: The siblings summarization of Figure 2 plains why nodes with regular tags that represent multiple
o o coalesced nodes of the original path tree need to retain both
3.2 Selectivity Estimation the total frequency and the number of nodes they represent.

To estimate the selectivity of a query path expression usin‘%_3 Level

a summarized path tree, we try to match the tags in the pa he second method for summarizing path trees, which we
expression with tags in the path tree to find all path tree gp X

nodes to which the path expression leads. The es:timate(fl""II level, has a+-node for every level of the path tree

selectivity is the total frequency of all these nodes. Whenrepresentlng all deleted nodes at this level. As befare, we
%elete the lowest frequency path tree nodes. All nodes

we cannot match a tag in the path expression to a path trg eleted at any given level of the path tree are coalesced
node with a regular tag, we try to match it te-anode that . y given P
into the x-node for this level. The parents of these nodes

can take its place. become parents of the-node and the children of these

Tags in any position of the query path expression €@ 5des become children of thenode. This means that the

be matched te-nodes. For example, the path expressionpa,[h tree can becom .
edag However, we can still us the
/IA/B/C would match all of /A/x/C, [IA/x/x, and [k/B/x. To same selectivity estimation algorithm as for siblingAs

find all the matches for a query path expression, we tray, sibling-«, when the children of a deleted node are added

43 the children of the correspondingnode, any nodes that

in any position of the path expression and start naVi‘\g":ltm%ecome siblings that have the same tag must be coalesced.
from these nodes, m_atchlng withnodes when necessary. Figure 4 shows the level-summarization of the path tree
We allow matches with any number efnodes as long as in Figure 2 to 9 nodes

they include at least one node with a regular tag name. We Thes-nodes in levek summarization preserve only the

do notﬂ?llow_ mattches cznsstg:jg ent|rely @*;TOdeStbﬁ' level in the path tree of the deleted nodes, not their exact po-
cause there IS not enough confidence in such a match. — g 55 jn siblingx. Hence, level usually deletes fewer

When we match a tag from the query path expressionqges than sibling-to reduce the size of the tree by the
with a x-node, we are making the assumption that this tadsme amount. To reduce the size of a path tree bgdes

was present in the original path tree but was deleted and r§ay/q|-+« needs to delete fewer than+ [nodes, wheré is
placed with the-node. We are essentially assuming that alliye number of levels in the tree. ’

query path expressions ask for paths that exist in the data,
so we aggressively try to match them in the summarize®.4 Global-«
path tree. The third method for summarizing path trees is gihebal-

If a match of the query path expression in the path treex method, in which a single-node represents all low-
ends at a nodéA, with a regular tag that represents mul- frequency nodes deleted from anywhere in the path tree.
tiple coalesced nodes of the original path tree, we checKRhe parents of the deleted nodes become parents ef the
whether or not this match took us through-aode. If the node and their children become children of thaode, so
match took us through one or morenodes, nodé con- the path tree can becomeyclic graphwith cycles involv-
tributes theaveragefrequency of the nodes it represents toing the globalx-node. Nevertheless, we can still use the
the estimated selectivity. A-node encountered during the same selectivity estimation algorithm as for siblingnd
match represents multiple deleted nodes from the origindkevel-«. Figure 5 shows the globalsummarization of the
path tree. We assume that if we were using the originapath tree in Figure 2 to 9 nodes.

Path |Freq| Path |[Freq
A 1 AC |6

B 11 |AD (4
C 15 |BC (9
D 19 |BD |7
AB |11 |CD |8

Figure 5: The globak summarization of Figure 2 Figure 6: A path tree and the corresponding Markov table

: : For example, ifn = 3 and the query path expression is
Global- preserves less information about the deleted .
nodes than sibling- or level=, so it has to delete fewer /INBICID, the formula used would be:

nodes. To reduce the size of a path treenodes, global- B/C/D
+ deletess + 1 nodes. f(A/BICID) = f(A/B/C)f}(T/C))
3.5 No=

, o . The fractionf (B/C/D)/ f (BIC) can be interpreted as the av-
The final path tree summarization method, which we Ca”erage number db elements contained in dC paths.

Egjésdﬁﬁihgoéé_ege?& '(;‘?gvev‘f’ffg "’L‘II(L:‘% ri%rdeesseg:edglriteld In this approach, we are assuming that a tag in any path
deleted and not replacea wiuhno?jes %/he path tree any n the XML Qata depends or_lly on the - 1 tags preceding
become dorestwith many roots. To .reduce the size of a it. We are, in effect, modeling the paths in the XML data

' - -~ as aMarkov process of order — 1, so we call the table of
path tree by: nodes, nox deletes exactly. nodes. This is paths that we use tHdarkov table The “short memory”

onl%/hoenfeu Egg;fs; rg?#e?é?]kzl_between aand the meth- assumption made in this approach is very intuitive, and we
expect it to hold for most XML data, even far = 2 or

ggss:ar}zz;tl:\?i?yr;c;iji?nszal'[sigzeve\/izcr: g;?;%%tg‘ﬁ?;%ﬁﬁ ex—.3' This assumption is also l_Jsed for selectivity estimation
pression in a path tree shmmarized with-nafany tag in n [‘].NSQQ] and [C‘.]le]' Figure 6 presents a path tree
the path expression is not found, we assume that the er‘?‘-nd its corresponding Markov table for = 2,

! Markov tables represent an accurate approximation of

tire path expression does not eXi$t- Nconservative!y 45" 1he structure of the XML data based on the short memory
sumes that nodes that do not exist in the summarized pa Ssumption, but they may not fit in the available memory.

tree did not exist in the original path tree. Methods thatAS we did for path trees, we summarize Markov tables by

usex-nodes, on the other hand, aggressively assume when-, ..)
ever possible that nodes that do not exist in the summa?-‘eIfgngiggugﬁguigctﬁspitfh%ngm or 2 that are deleted
rized path trealid exist in the original path tree but were from the Markovytable are replaced with speciapaths
deleted and replaced wmhr_mdes._ The characteristics of (“star paths”) that preserve some of the information lost by
the query workload determine which of these two assuUMPjeetion. These-paths are very similar to thenodes used
tions s more accurate. in path tree summarization. Low-frequency paths of length
greater thar2 (for m > 2) are discarded and not replaced
4 Markov Tables with x-paths. If estimating the selectivity of a query path
In this section, we describe a different method of representexpression usi_ng Equation.l involves looking up a pqth of
ing the structure of XML data for selectivity estimation. length> 2 that is not found in the Markov table, we switch
We construct a table of all the distinct paths in the data oto using Equation 1 with paths of lengtrand2 (i.e., with
length up tom and their frequency, where is a parameter m = 2). This corresponds to using a Markov process of
> 2. The table provides selectivity estimates for all pathorderl.
expressions of length up te. To estimate the selectivity Next, we describe three methods of summarizing
of longer path expressions, we combine several paths dflarkov tables that differ in the way they usepaths to

lengthm using the formula handle deleted paths of lengttand2. For all these meth-
ods, deleted paths of length greater thame discarded and
ftfta) - [ta) = fF(t1/t2] -+ [tm) X not replaced with-paths.
T fi/tai/ - Jtmts)
1 .
Z];[f(t1+i/t2+i/ . /tm,-}-q',—l) () 4.1 Suffix-+

] The first method for summarizing Markov tables, which
where f(t1/tz/--- /tn) is the frequency of the path \ye callsuffix«, has two speciat-paths: a paths, repre-
tifta) - [tn. f(t1/t2/--- [ti) foranyk < misobtained genting all deleted paths of lengthand a pathy/x, rep-
by a lookup in the table of paths resenting all deleted paths of length When deleting a

2This can be done i®(1) by using a hash table. low-frequency path of length, it is added to the path.

When deleting a low-frequency path of len@ttwe donot the appropriate-path. Selectivity estimation is the same as
add it to the pathk/« right away. for suffix-x. Global« does not preserve as much informa-
We keep a set of deleted paths of length5,. When tion about deleted paths as suffixbut it may delete fewer

we delete a path of length sayA/B, we look for any path paths to summarize the Markov table.
in the setSp that starts with the same tag as the path being
deleted, in this cas. If no such path is found, we remove 43 No=
the path being deletedyB, from the Markov table and add
itto Sp. If we find such a path it5p, sayA/C, we remove The final method for summarizing Markov tables, which
A/B from the Markov table, remow/Cfrom Sp, andadda Wwe callno-«, does not use-paths. Low-frequency paths
new pathA/x that represents these two paths to the Markoware simply discarded.
table. When using Equation 1 for selectivity estimation using a
Alx represents all deleted paths that start with theftag Markov table summarized with neif any of the required
We call the pathVx a “suffix-+” path. When we delete a paths form = 2 is not found, we estimate a selectivity of
path of length2, before we check the sét, we check the zero. Nox for Markov tables is similar to ne-for path
Markov table to see if there is a suffixpath that has the trees. It conservatively assumes that paths that do not exist
same starting tag as the path being deleted. If we find such the summarized Markov table did not exist in the original
a path, the path being deleted is combined with it. In ourMarkov table.
example, if we deletd/D, we would combine it withA/x.
Suffix-« paths in the Markov table are considered for5 Experimental Evaluation
deletion based on thtetal frequency of the deleted paths

that they represent. When a suffixpath is deleted, it is In this section, we present an experimental evaluation of
added to the path/x. our proposed techniques using real and synthetic data sets.

In our example, path&/B and A/C individually qual- ~We determine the best summarization methods for path
ify for deletion because of their low frequency. Their total trees and Markov tables and the conditions under which
frequency when they are combined ink« may be high €ach technique wins over the other. We also compare our
enough to prevent them from being deleted. If at somaProposed techniques to the best known alternative: the
point during summarization the total frequencyAffi is pruned suffix trees of [CIKO1].
the lowest frequency in the Markov table, it is deleted and
added to the path/x. 5.1 Estimation Using Pruned Suffix Trees

This summarization algorithm is a greedy algorithm that . . .
may miss opportunities for combining paths. However, it To estimate the selectivity of path expressions and the more

is simple and practical, and it achieves good results. general twig queries, [CJKD1] proposes building a trie

At the end of summarization, paths still remainingip that represents all th_e path expressions in the d_ata. F(_)r ev-
are added to the pattts, and the average frequencies of all ery root-to—_leaf pat_h in the data, t_he path and all |ts. sufflxes
«-paths are computed. When selectivity estimation uses §'€ Stored in the trie. Every possible path expression in the
«path, it uses the average frequency of all deleted path atais therefore represented b_y atrie node. Every_trle node
represented by this-path. contains the total number of times that the path it repre-

To estimate the selectivity of a query path expressionsents appears in the data. To prune the trie so that it fits in
we try to use Equation 1 with the maximum in the the available memory, the low-frequency nodes are deleted.
Markov table. If any of the required paths is not found To avoid deleting internal trie nodes without deleting their
in the table We switch to using Equation 1 with— 2 for descendants, pruning is done based on the total frequency
the entire path expression. In this case, if a required path ocff the ”0‘?'9 and all its despgndants. .
length1 is not found, we use the frequency of the patf To estimate the selectivity of a query path expression,
a required path of length, sayA/B, is not found, we look themaximal (i.e., longest) sub-patbéthis path expression
for a pathAV. If we find it, we use its frequency. Otherwise that appear in the trie are determined, and their frequencies
we use the frequency of the path. If all the paths used &' combined in a way that is very similar to the way we
for estimation are-paths, we estimate the selectivity of the COMPIne frfquenmes in our Markov table technique.
query path expression to be zero, because we consider that In [CJKT01], every node of the trie stores a hash signa-

there is not enough confidence in the result of Equation fure of the set of nodes that the path expression it represents
in this case. is rooted at. These hash signatures are used to combine the

selectivities of multiple paths to estimate the selectivity of
4.2 Global- branching path expressions, twig queries Since we do

' not consider branching path expressions, we do not store
The second method for summarizing Markov tables, whichhash signatures in the nodes of the trie that we use in our
we call global-«, has only twox-paths: a pathx, repre- experiments. The trie with set hash signatures is referred
senting all deleted paths of lengthand a paths/*, repre- to in [CIKT01] as acorrelated suffix treeln this paper, we
senting all deleted paths of lengthWhen deleting a low- refer to the trie that does not include set hash signatures as
frequency path of length or 2, it is immediately added to thepruned suffix tree

Note that Markov tables bear some similarity to pruned5.4 Performance Evaluation Method
suffix trees. A key difference between these two technique

is that Markov tables only store paths of length upnto timation techniques in terms of theaverage absolute er-

while pruned suffix trees ;tore paths that may be of a¥or for all queries in the workload. The conclusions from
length and that may contain tags that are not needed dL{

0 the “short memory” property. Furthermore, the summa-ﬁe relative error are the same, but the relative error is not
" y® property. ' defined for many queries in the random tags workloads be-
rization methods for Markov tables are very different from

the summarization method for pruned suffix trees cause their actual result size is 0.
P ' For a given data set and query workload, we vary the

available memory for the different selectivity estimation
5.2 Data Sets techniques from 5KB to 50KB and present the average ab-

We present the results of experiments on one synthetic angP!Ute error for the 1000 queries in the workload for each

one real data set. The synthetic data set has 1,000,000 XMECTNIque at each memory setting.

elements. Its unsummarized path tree has 3197 nodes and In all the data structures usgd for estimation, tag names
6 levels, requiring 38KB. The unsummarized Markov ta- are not stored as character strings. Instead, we hash the tag
bles for’m — 92 and3 req.uire 60KB and 110KB, respec- names and store their hash values. This conserves memory

tively. The frequencies of the path tree nodes follow a Zip_because a tag requires one integer of storage regardless of

fian distribution with skew parameter= 1. The Zipfian its length.
frequencies are assigned in ascending order to the path trges Summarizing Path Trees

nodes in breadth first order (i.e., the root node has the lowp, yhis section, we illustrate the best summarization meth-
est frequency and the rightmost leaf node has the highegfy tor path trees. Figures 7(a) and (b) present the aver-

frequency). 50% of the internal nodes of this path tree have, ;e gpsolute error in selectivity estimation using path trees
repeated tag names, which introduces *Markovian memg;mmarized in differentways for the random paths and ran-
ory”in the data. For example, if two internal nodes of the 44 345 workloads on the synthetic data set, respectively.
path tree have tag nande and only one of these nodes has g re 7(a) shows that, for the random paths workload,
a child nodeB, then if we are at a nod®, whether or not o symmarization methods that usenodes have similar
this node has a chilB will depend onwhichA node this is, performance, and they are all better than the-moethod.
which in turn depends on how we got to this node from thep,o methodé using-nodes are better than robecause
root node. More details about our synthetic data generatiog, o query path expressions ask for paths that exist in the

process can be found in [ANZO1]. data, so the aggressive assumption that these methods make
The real data set is the DBLP bibliography databasespoyt nodes not in the summarized path tree are mostly
which has 1,399,765 XML elements. Its unsummarizedajig and result in higher accuracy. Since all methods us-
path tree has 5883 nodes and 6 levels, requiring 69KBin g ,_nodes have similar performance, we conclude that the
The unsummarized Markov tables fior = 2 and3 require more detailed information maintained by the more com-

We present the performance of the different selectivity es-

20KB and 98KB, respectively. plex sibling= and levelx methods does not translate into
higher estimation accuracy. Hence, for workloads that ask
5.3 Query Workloads for paths that exist in the data, globals the best path tree

summarization method.
We present results for two workloads for every data set. The situation is different for the random tags workload

Eac_h worklogld consist,)ts O; thOObqtuery pfth S)(prressionﬁ] Figure 7(b). Since query path expressions in the random
aving a random nhumber ot tags between 2 and 4. . tags workload ask for paths that mostly do not exist in the
The query path expressions in the first workload, whichyat, “the correct thing to do when we are unable to match

we call therandom pathswvorkload, consist of paths that s entire query path expression with nodes in the path tree

are chosen at random from the path tree of the data Sk (g estimate a selectivity of zero. This is what ndees.
Thus, all queries have non-zero result sizes. This workloagha methods that usenodes are misleading in this case
models a user who knows the structure of the data well, an ecause they allow us to match tags in the query path ex-

so asks for paths that exist in the data. pression with«-nodes in the path tree even when the query
The query path expressions in the second Workloadpath expression does not exist in the data. This results in
which we call therandom tagsworkload, consist of ran- gjgnificantly less accuracy than roHence, for workloads
dom concatenations of the tags that appear in the data sgfat ask for paths that do not exist in the data,sis-the
In this workload, most query path expressions of length 2t path tree summarization method.
or more have a result size of zero. This workload models a
user who knows very little about the structure of the data. 5.6 Summarizing Markov Tables
The average result sizes of the random paths and random this section, we illustrate the best summarization meth-
tags workloads on the synthetic data set are 491 and 7bds for Markov tables. For all data sets and query work-
respectively. For the DBLP data set, the average result sizdeads, we observe that unsummarized Markov tables with
of the random paths and random tags workloads are 36,06@ = 3 are very accurate, so we only evaluate the perfor-
and 343, respectively. mance of summarized Markov tables with = 2 and 3,

500 S 300 ——
Sibling-* 2 Sibling-* 2
450 | oo Level-* - 1] Level-* -
400 | Globa-* —e— | 250 Global-* —e— 1
No-* - ©----) NO-* P
5 350 1 5 200 r S
o 300 r \@\ il b
g 20} — 2 150 |
B 200 | } 2
< 150 < 100
100 | 50 |
50 t
ol T — ol oo o N
0O 5 10 15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35 40 45 50
Available Memory (KB) Available Memory (KB)
(a) (b)
Figure 7: Path tree summarization, synthetic data set, (a) random paths and (b) random tags
but not withm > 3. In general, the practical values of For the synthetic data set, path trees are the most ac-
are2 and3. curate technique, and both path trees and Markov tables

Figures 8(a) and (b) present the estimation accuracy ugire more accurate than pruned suffix trees. For the DBLP
ing Markov tables summarized in different ways for the data set, Markov tables are the most accurate technique,
random paths and random tags workloads on the synthetignd they are much more accurate than pruned suffix trees.
data set, respectively. Path trees, on the other hand, are the least accurate tech-

Figure 8(a) shows that, for the random paths workloadhique for the DBLP data set. Their estimation error, which
suffix-+ summarization is best. Unlike for path trees, theis too highto show in Figure 10, is usually greater than 100.
summarization method that preserves the most information The DBLP data set represents bibliography information
about deleted paths works best for Markov tables= 2 for many different conferences and journals. Each confer-
andm = 3 have similar performance, so the conclusion€nce or journal is a different sub-tree of the path tree, but
is to use the simplem = 2. Thus, the best Markov table the structure of the data within each of these sub-trees is the
approach for workloads that ask for paths that exist in théame for any conference or journal. Path tree summariza-
datais to usen = 2 and suffix« summarization. tion cannot compactly represent the common structure of

Figure 8(b) shows that, for the random tags workload,these sub-trees. On the other hand, Markov t_ables, and to
m = 2 and globalx or no+ summarization are the best & lesser extent pruned suffix trees, can effectively capture
methods. No«works well for the same reason that it works thiS common structure. For example, note that each bibli-
well in path tree summarization for the random tags work-09raphy entry in every conference or journal in the DBLP
load. Global is similar in performance to ne-because data set has one or moeaithor elements. In the path
many of the query path expressions that ask for paths thdf€€, there will be amuthor node in the sub-tree corre-
do not exist in the data get matched entirely with the paths SPonding to every conference or journal. Some of these
ands/+, so they have an estimated selectivity of zero, whichnodes will have to be deleted during tree summarization
is correct. The best Markov table approach for workloadd®sulting in a loss of accuracy. In the Markov table, on the

that ask for paths that do not exist in the data is, thereforedther hand, there will only be oraithor path for all the

to usem = 2 and the simpler ne-summarization. author nodes in the path tree.
Thus, if the data has many common sub-structures,

o Markov tables should be used. If the data does not have
5.7 Estimation Accuracy many common sub-structures, path trees should be used.
Iglihoosing the appropriate selectivity estimation technique

In this section, we compare the best techniques for pat I its in hiah h . d suffi
trees and Markov tables as identified in the previous sec2Ways results in igher accuracy than using pruned sufhix

tions. We also compare these techniques to the pruned SLH-eeS'
fix tree approach. 6 C lusi

Figure 9(a) presents the selectivity estimation errors for onclusions
the random paths workload on the synthetic data set uskhe proliferation of XML on the Internet will enable novel
ing path trees summarized with globgl-Markov tables applications that query “all the data on the Internet.” The
with m = 2 summarized with suffix-, and pruned suf- queries posed by these applications will involve path ex-
fix trees. Figure 9(b) presents the selectivity estimatiorpressions, and optimizing these queries will require esti-
errors for the random tags workload on the synthetic datanating the selectivity of these path expressions. In this
set using path trees summarized with-ndvarkov tables paper, we presented two techniques for summarizing the
with m = 2 summarized with ne and pruned suffix trees. structure of large-scale XML data in a small amount of
Figures 10(a) and (b) present the same information for thenemory for estimating the selectivity of XML path expres-
DBLP data set. sions: path trees and Markov tables.

350 : : : : : : : : : 40 : e :
m=2 Suffix-* - Beees
|] m=2 Global-* —— 1
300 M=2 NO-* -
S . 20t m=3 Suffix-* -
s 20 o2 S e 5 o5l 4 mEs Gl L
d 200 | m=2 Global-* —»— | &
g m=2 No-* ~-a-- g 20}
5 150 ¢ m=3 Suffix-* . s
o A‘*x\& . m=3 Global-* ---+- o 15
< 100 | S Gy, .— m=3 No-* i < o
i R S & 10 ¢ S
50 b T 5 i :Ték
0 0 \ ,
0O 5 10 15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35 40 45 50
Available Memory (KB) Available Memory (KB)
(a) (b)
Figure 8: Markov table summarization, synthetic data set, (a) random paths and (b) random tags
160 : . . . ; . : . . 70 »
pa— Path Tree Global-* —e— Path Tree No-* e
140+ a. a Markov m=2 Suffix-* - Beees J 60 & Markov m=2 No-* -4
o Pruned Suffix Tree ---= Pruned Suffix Tree =
120 ¢ e .]
. _ . 5 50 [
o L e S A] o [2 -
5 100 o . 5 a0l
o) e = . o) - »
§ 80 A § ol] - .
2w 2o, -
40 20 | O Ta
o,
20 10 + g A
“O'““*»en,;"' A,
0 L 0 I A
0O 5 10 15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35 40 45 50
Available Memory (KB) Available Memory (KB)
(@) (b)

Figure 9: Estimation accuracy, synthetic data set, (a) random paths and (b) random tags

The correct selectivity estimation technique to use de- At this time, we cannot conclusively determine the typ-
pends on the XML data whose structure is being summaical characteristics of XML data that will be available on
rized. If the data has a lot of common structures, Markovthe Internet, so we cannot recommend an overall best tech-
tables withm = 2 should be used. If the data does not havenique for selectivity estimation. However, if we were to
such common structures, path trees should be used. make an educated guess, we would say that things like stan-

The best way to summarize path trees and Markov tablegard DTDs and schema libraries will result in a lot of com-
hanon sub-structures. We would also guess that users typi-

depends on the characteristics of the query workload. If t & v K h about th ties of the ¢
query path expressions ask for paths that exist in the dat&dy Know enougn about the semantics ot the tag names to

then the aggressive globaknd suffixs« techniques should ask lfgr paths thatdgl\(jlne;allyi dtﬁ exisjcti;n_th;a da(;a. If_hus, we
be used for summarizing path trees and Markov tables, relyou re_cort'nmer:f th'ar oviables wi ¢ _b and sufhixx
spectively. If the query path expressions ask for paths thatommarization. IS guess proves to be wrong, we Sim-

do not exist in the data, then the conservativesnech- ply need to choose another one of our proposed techniques.

nigue should be used for both path trees and Markov table%r.1 any case, devglc_)pmg a ge_neral frar_newc_)rk fo_r choos_mg
he correct selectivity estimation technique is an interesting

The correct choice from our techniques always resultsopic for future work.
in higher selectivity estimation accuracy than pruned suf-
fix trees [CIK"01], the best previously known alternative.
The techniques in [CJKO1] solve a more general prob- Acknowledgements
lem, so their full power is not evident in the comparisonWe thank Zhiyuan Chen and Divesh Srivastava for pro-
with our proposed techniques that solve a simpler probviding us with the code for pruned suffix trees and help-
lem. It is still an open question whether XML query op- ing us with this code, and for providing us with a real
timizers will require selectivity information about simple XML data set that we used in some of our experiments.
path expressions, in which case our proposed techniquesshraf Aboulnaga and Jeff Naughton were funded by NSF
would be better, or about more complex path expressionthrough grants CDA-9623632 and ITR 0086002, and by
involving branches and values, in which case the techbARPA through NAVY/SPAWAR Contract No. N66001-
niques in [CIJK 01] would be better. Answering this ques- 99-1-8908. Alaa Alameldeen was funded by NSF through
tion is a possible area for future work. grant EIA-9971256.

100

Absolute Error

4

35+
3L
25|
20
15
1t
05

0

"Path Tree No-* o —
Markov m=2 No-* -4
Pruned Suffix Tree —=

A
7 S

0O 5 10 15 20 25 30 35 40 45 50

Available Memory (KB)

(b)

Figure 10: Estimation accuracy, DBLP data set, (a) random paths and (b) random tags

" Path Tree Global-* —e —
. Markov m=2 Suffix-* -
80 I Pruned Suffix Tree =
§ []
5 60 .
1]
8 awf e
< N s
20r
0 L L n n n L L L n
0O 5 10 15 20 25 30 35 40 45 50
Available Memory (KB)
(a)
References
[ANZO1] Ashraf Aboulnaga, Jeffrey F. Naughton, and
Chun Zhang. Generating synthetic complex-
structured XML data. IrProc. 4th Int. Work-
shop on the Web and Databases (WebDB’2001)
Santa Barbara, California, May 2001.
[CD99] James Clark and Steve DeRose (eds.).

[CFRT01] Don Chamberlin, Daniela Florescu, Jonathan

[CIKT01] Zhiyuan Chen, H.V. Jagadish, Flip Korn, Nick

[CKKMOOQ] Zhiyuan Chen, Flip Korn, Nick Koudas, and [MS99]

[GGT96]

[GW97]

XML path language (XPath) version
1.0. W3C Recommendation available at
http://lwww.w3.0rg/TR/xpath, November 1999.

Robie, &dme Singon, and Mugur Stefanescu
(eds.). XQuery: A query language for
XML. W3C Working Draft available at
http://mww.w3.org/TR/xquery, February 2001.

Koudas, S. Muthukrishnan, Raymond Ng, and
Divesh Srivastava. Counting twig matches in a
tree. InProc. IEEE Int. Conf. on Data Engi-
neering pages 595-604, Heidelberg, Germany,
April 2001.

S. Muthukrishnan. Selectivity estimation for
boolean queries. IrProc. ACM SIGACT-
SIGMOD-SIGART Symposium on Principles
of Database Systems (POD®$ages 216-225,
Dallas, Texas, May 2000.

Georges Gardarin, Jean-Robert Gruser, and
Zhao-Hui Tang. Cost-based selection of path

[GW99]

[INS99]

[KVI96]

[MW99]

Roy Goldman and Jennifer Widom. Approxi-
mate DataGuides. IRroc. Workshop on Query
Processing for Semistructured Data and Non-
standard Data Formatslerusalem, Israel, Jan-
uary 1999.

[JKNS99] H.V. Jagadish, Olga Kapitskaia, Raymond T.

Ng, and Divesh Srivastava. Multi-dimensional
substring selectivity estimation. IRroc. Int.
Conf. on Very Large Data Basepages 387—
398, Edinburgh, Scotland, September 1999.

H.V. Jagadish, Raymond T. Ng, and Divesh Sri-

vastava. Substring selectivity estimation. In
Proc. ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems
(PODS) pages 249-260, Philadelphia, Penn-
sylvania, May 1999.

P. Krishnan, Jeffrey Scott Vitter, and Bala lyer.
Estimating alphanumeric selectivity in the pres-
ence of wildcards. IfProc. ACM SIGMOD Int.
Conf. on Management of Datpages 282—-293,
Montreal, Canada, June 1996.

Tova Milo and Dan Suciu. Index structures for
path expressions. IRroc. 7th Int. Conf. on
Database Theorypages 277-295, Jerusalem,
Israel, January 1999.

Jason McHugh and Jennifer Widom. Query op-
timization for XML. In Proc. Int. Conf. on Very
Large Data Basespages 315—-326, Edinburgh,
Scotland, September 1999.

expression processing algorithms in object-|[NDM+01] Jeffrey Naughton, David DeWitt, David

oriented databases. Rroc. Int. Conf. on Very
Large Data Basespages 390-401, Mumbai
(Bombay), India, September 1996.

Roy Goldman and Jennifer
DataGuides: Enabling query formulation
and optimization in semistructured databases.

Widom. [SAX]

In Proc. Int. Conf. on Very Large Data Bases [Xyl]

pages 436-445, Athens, Greece, August 1997.

Maier, et al. The Niagara Internet query sys-
tem. IEEE Data Engineering Bulletin24(2),
June 2001.

SAX 2.0: The simple API for XML.
http://www.megginson.com/SAX/index.html.

Xyleme home page. http://www.xyleme.com.

