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Abstract 

Recently there has been a growing focus in the 
research community on join query evaluation for 
scenarios in which input characteristics may not be 
entirely known and inputs enter the system at 
highly variable and unpredictable rates. The 
proposed solutions to date rely upon some 
combination of streaming binary operators and 
“on-the-fly” query plan reorganization to deal with 
this unpredictability.  In this paper, we consider a 
different approach, and propose a multi-input 
streaming join algorithm we call MJoin. We show 
through experiments with a prototype 
implementation that in many instances the MJoin 
produces outputs sooner than any tree of binary 
operators, and that it adapts well to changing input 
parameters without query plan modification. This 
suggests that the MJoin operator may be a useful 
addition to systems that evaluate queries 
containing joins over streaming inputs. 

1 Introduction 

Join algorithms have been in the focus of the database 
research community for a long time. With the advent of the 
Internet, however, the assumptions underlying previous 
work have to be revisited. Though execution time 
minimization continues to be a key factor, two new aspects 
of the problem have come into focus: (i) the unpredictable 
streaming nature of the input sources, along with the lack of 
any information regarding their size and data distributions, 
and, (ii) the goal of producing results at the highest possible 
rate (rather than completing the computation as soon as 
possible). This paper addresses both of these issues by 
proposing a multi-input join algorithm that collapses 
multiple binary joins into a single multi-way join operation. 

Using this single multi-way join, an arrival from any input 
source can be used to generate and propagate results in a 
single step, without having to pass these results through a 
multi-stage binary execution pipeline. Furthermore, since 
the operator is completely symmetric with respect to all its 
inputs, there is no need to restructure a query plan in 
response to changing data rates in the inputs. The new 
multi-way join operator does require more memory than 
traditional binary hash-based join algorithms over disk-
resident data. However, its memory requirements are lower 
than those of previously proposed streaming binary join 
algorithms.  

Our operator is optimized for in-memory performance, 
so it is ideal if the inputs fit in memory, or if the join has 
accompanying “window” predicates that can be used to 
bound the memory required for each input. It is, however, 
designed in such a way that is able to flush overflowing 
inputs to disk and later process them, either whenever 
streaming inputs block, or whenever all streams finish. We 
have implemented a prototype of our algorithm and 
evaluated its performance for both the main memory and 
overflow scenarios. 

As we will see, the addition of such an algorithm to a 
system does not obviate the need for an optimizer. In fact, 
it introduces a new and interesting optimization problem, as 
there are cases in which a pipelined tree of several smaller 
(fewer input stream) MJoin operators performs better than a 
single larger MJoin operator. Thus, ideally, an optimizer 
must decide the number of MJoin operators to use, and 
allocate input streams to these operators. However, for 
smaller joins (e.g., less than five input streams in our 
experiments) plans with a single MJoin operator are 
dominant. 

2 Motivation 

Consider the case in which a process receives data from 
input streams, wishing to group tuples from all the streams 
by joining them on some common attribute. This type of 
join query naturally arises in queries over stream data; for 
example, the join attribute could be time if we want to group 
sensor readings that occurred at the same time; it could be 
traffic rate if we are tracking highway congestion, or, it could 
be pressure or temperature if we want to track weather fronts; 
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and so forth. Using traditional database techniques, the 
execution plan would be organized as a sequence of binary 
join operators as shown in Figure 1.  Each pair in the chain 
is joined by a binary join operator, which then feeds its 
output to a subsequent join operator, until all inputs are 
exhausted. If a hash join algorithm were chosen the system 
would build hash tables from the left and probe them from 
the right, while the optimiser would choose the inputs' 
order, according to their sizes and/or data distribution 
statistics. 

s1 s2

s3

sn-1

sn

s1.a = s2.b

s2.b = s3.c

sn-2.x = sn-1.y

sn-1.y = sn.z

Hash from the left

Probe from the right

 
Figure 1: A traditional binary join execution tree 

In a scenario where inputs are network streams, rather 
than disk-resident local files, however, the situation is 
different.  In Figure 1, if any of the streams s1 or s3 through 
sn is unbounded, the plan will never produce any results, 
because with standard blocking operators the build phase of 
the left inputs must complete before the probe phase of the 
right input starts. Symmetric binary operators, such as the 
symmetric hash join, address this problem, because they 
have the potential to produce an output whenever there is 
an arrival on either of their input streams. 

Even with symmetric binary operators, problems may 
arise. Assuming that all inputs of Figure 1 are streams and 
each join is evaluated with a symmetric binary join 
algorithm, consider the case in which an s1 arrival joins with 
X1,2 already existing s2 tuples. These X1,2 tuples are 
propagated up-stream and, if they contribute to the final 
result, they have to go through each step of the execution 
tree until they appear in the output. At each step, the 
operator at that step handles them, inserting into one hash 
table and probing the other. That creates a large number of 
intermediate result tuples travelling through the system, 
causing substantial additional storage and communication 
overhead.  This overhead can increase the system resources 
required per output tuple, which in turn can slow the 
effective rate of the output. 

A tree of binary operators also introduces secondary, 
subtler effects.  The issue is that if different input streams 
deliver their inputs at different rates, the eventual output 
rate can differ as a function of which tree of binary 
operators (e.g., deep or bushy, fast inputs high in the tree or 

at the leaves) the optimiser chooses.  This dependence is 
exacerbated when some or all of the operators in the tree 
overflow their memory quotas and spool some fraction of 
their inputs to disk for later processing. Finding the tree that 
optimises the output rate in such a scenario is challenging; 
even worse, if the input rates vary over time, there may be 
no single tree that is best, and the complexity of on-the-fly 
query plan restructuring becomes necessary. 

To alleviate this problem, we propose the use of a multi-
way symmetric join operator, which we call the MJoin, as 
depicted in Figure 2. In this scenario, the same joining s1 
arrival could be used to probe all s2, …, sn hash tables and 
propagate its contribution to the result, rendering 
unnecessary the need for intermediate storage and 
additional communication. By being able to generate results 
in a single step, this multi-way join maximizes the output 
rate of the plan in terms of outputs produced per unit time, 
and eliminates the difficult decision of which binary tree of 
symmetric operators to use.  In the rest of this paper we will 
present such an operator, which we call MJoin. 

s1 s2 s3 sn-1 sn...

s1.a = s2.b = s3.c = ... = sn-1.y = sn.z

 
Figure 2: A multiple input join operator 

The rest of the paper is organized as follows: Section 3 
presents the related literature in the area, while Section 4 
presents the basic functionality of the algorithm. Section  5 
presents a cost model of the proposed operator, in terms of 
output rate and computational cost, while Section 6 deals 
with our experimental study of the algorithm. Finally, 
Section 7 presents our conclusions and identifies our future 
directions. 

3 Related Work 

Optimising for the first tuple of the result was the objective 
of the Britton-Lee optimiser [Sch83], while a similar notion 
of optimising for a specific subset of the result, namely the 
Top/Bottom-N results, was investigated in [CK971] and 
[CK972]. These ideas are similar to ours in the sense that 
they have as their goal generating a specific subset of the 
result as soon as possible. We differ in that this previous 
work did not consider the impact of streaming and 
unpredictable input data. 

Join algorithms have been extensively studied in the 
context of relational database systems, with [Sha86] being 
the seminal paper that classified and evaluated hash-based 
join implementations. Join queries over distributed data 
have been studied in [ML86] and in parallel databases 
[DG+90]. The problem in distributed databases' context is 
to efficiently decide where to ship relations in order to 
perform the join, while, at the same time, perform a 
significant amount of work locally [Bab79], [BG+81], 
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[BC+81], [B70], [DG85]. Communication, synchronization 
and resource allocation is mainly the issue in parallel 
databases [DG+90], while [DN+92] presents an efficient way 
of dealing with data skew. Also related to our work are hash 
teams [GB+98] and generalized hash teams [KK+99], in which 
the objective is to minimize the number of performed 
operations in hash-based evaluation plans by sharing 
computation and hash table storage space.  Again, none of 
this previous work considered the issue of maximizing the 
output rate in the presence of varying and unpredictable 
input rates. 

Our previous work on rate-based optimisation [VN02] 
addresses the issue of optimising queries over streaming 
information sources. The main idea of that paper is to 
switch from a cardinality-based cost model to a rate-based 
cost model since, in a streaming environment, the objective 
is to identify plans that, given the input rates of the streams, 
will produce the desired number of results the fastest. 
Unlike this paper, that paper considered only the 
optimisation problem in the context of previously proposed 
evaluation algorithms, and did not propose any new 
operators. 

The most relevant remaining work deals with symmetric 
algorithms and adaptive query execution. The first 
algorithm to explicitly take into account the streaming 
nature of its inputs was the Symmetric Hash Join [WA91]. 
XJoin [UF00] extends this work by providing an efficient 
way to spill overflowing inputs to disk and later join them to 
produce the final output, while in [IF+99] the authors 
present a way of adapting symmetric hash join into hybrid 
hash join whenever inputs become too large to fit in 
memory. To the best of our knowledge none of the 
previous work on streaming join algorithms considers the 
possibility of moving beyond binary operators to multi-way 
join operators. 

Streaming operation has been studied in the context of 
query scrambling [UFA98] and adaptive query execution [AH00], 
[IF+99]. In the former approach, an execution plan is 
monitored so that whenever a blocked input is detected the 
operator(s) using that input are pre-empted and other, non-
blocked, operators are run instead. Adaptive execution 
frameworks employ similar performance monitoring as their 
decision strategy but instead of giving precedence to certain 
operators, they dynamically alter the plan in a way that is 
believed to overcome any performance bottlenecks. Our 
multi-way join operator addresses a similar problem, but 
without requiring any explicit monitoring or dynamic plan 
modification.  Furthermore, as we show in Section 6.2, in 
some instances our new multi-way join operator makes 
more efficient use of resources than any tree of symmetric 
binary join operators. Of course, we do not claim our 
approach abolishes the need for adaptive execution, since 
many queries cannot be reduced to a single multi-way join 
operator; rather, we claim that the introduction of a multi-
input join operator minimizes the burden placed on an 
adaptive framework. 

Finally, work has been done in the context of 
continuous queries over data streams. Two possible 

directions have been identified: the first aims at 
characterising the behaviour of these queries with respect to 
their memory requirements [AB+01], [BJ01]. The second 
aims at identifying and maintaining stream statistics for sliding 
window queries [DG+02]. Our work is orthogonal to these 
studies, since our algorithm is another place in which the 
same issues of memory management and statistics’ 
maintenance arise. 

4 Algorithm Description 

The basic idea of the MJoin algorithm is very simple: 
generalize the symmetric binary hash join algorithm to work 
for more than two inputs.  However, it turns out that the 
details are somewhat tricky.  The issue is that the algorithm 
must be ready to accept a new tuple on any input stream at 
any time; upon such an arrival, it must probe the other hash 
tables and generate a result as soon as possible; and finally, 
it must ensure that each result tuple appears exactly once.  
These goals are rendered even more complex when some of 
the inputs overflow the space allocated for their hash tables 
and tuples must be spooled to disk for later processing.   

The “predecessor” of our proposal, XJoin, addresses 
some of these issues, but in a smaller context since it only 
deals with two input streams at a time. Building on the 
principles of XJoin, we employ a similar three-step join 
strategy: 
� As long as there are input arrivals, the algorithm 

performs in a memory-to-memory fashion, ensuring 
each input generates the largest possible partial join 
result it can. 

� Once the inputs are blocked a disk-to-memory join 
operation initiates, joining portions of the 
algorithm's on-disk state to its current in-memory 
state. 

� Once all inputs have seen their end, a last disk-to-
disk operation takes over, generating the complete 
result. 

In this paper, we focus on joins of the form discussed in 
Section 2 – that is, equijoins over an attribute common to 
all of the input streams.  The memory-to-memory phase of 
our MJoin operator trivially extends to handle more general 
joins. However, the disk-to-memory and disk-to-disk phases 
are problematic if more than two input streams overflow to 
disk.  (The problem is simultaneously partitioning multiple 
input streams in a consistent way when the overflowing 
relations have join conditions on multiple attributes.)  While 
extending the MJoin operator to handle such cases provides 
interesting material for future work, we think that the MJoin 
operator as proposed in this paper is useful, because (a) as 
discussed in Section 2, joining multiple streams on a 
common attribute is a natural class of query, and (b) we 
expect many streaming joins in practice will be “window-
joins” in which the window predicates ensure that the 
computation can be expected to remain memory resident.    

In Section 4.2 we will present the three stages in more 
detail. Before doing so, however, we will focus on the key 
data structures, and how the algorithm employs them. 
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4.1 Data Structures 

MJoin maintains a number of hash tables equal to its number 
of input streams. Each hash table is partitioned in an equal 
number of partitions, each having the ability to flush to disk 
whenever it becomes too large to fit in memory. Whenever 
a new tuple arrives, it is hashed into the corresponding 
stream's table in two steps: first, to identify which partition 
it belongs to and, second, into a slot of that particular 
partition.  In addition to the in-memory state, there is a 
related on-disk state, referring to the portions of each hash 
table that have been flushed to disk due to memory 
overflow. 

Figure 3 presents the operator's state, zooming in to one 
hash table.  It shows the state when a newly arrived tuple is 
hashed into the corresponding hash table. A portion of each 
partition has already been flushed to disk. 

...

Hash Table 1 Hash Table n... ...Hash Table t

Hash Partition 1

Hash Partition m

Hash Partition p
...

partition(t)=p
hash(t)=h

Tuple t

Tuple t

...

... ...

Disk-based partition portions  
Figure 3: State of the MJoin operator 

4.2 The Three Stages of MJoin 

Like its predecessor the XJoin, the MJoin operates in three 
stages: an in-memory hash/probe operation that is active as 
long as the input streams have arriving tuples; whenever the 
inputs are blocked, a disk-to-memory thread takes over to 
match disk-resident data with in-memory portions of the 
input, while after all input has been read a disk-to-disk stage 
produces the final output.  

4.2.1 In-Memory Operation 

The first stage of MJoin is the one that deals with newly 
arrived tuples. Each new arrival triggers two operations:  

1. A hashing of the new tuple into the corresponding 
stream's hash table. 

2. A probing sequence of the other streams' hash 
tables for matches. 

Not all hash tables will be probed by a single arrival, 
however. In a way resembling pipelined execution, a 
temporary result tuple is generated after each probe 
operation and goes on to probe the next hash table only if 
matches in the previous one exist1. Figure 4 depicts this 
sequence, where each probe operation is annotated with the 
probability of its taking place, which is equal to the previous 
in the sequence predicate’s selectivity (the f* factors in the 

Figure). For instance, for the second probe operation to 
execute, the first one has to produce matches.  

                                                           
1 In fact, this entails the need for join ordering when optimising 
the query; each input needs to know the sequence in which it will 
probe the rest of the inputs' hash tables. 

...

hash

S1 S2 S3 Sn

1

probe probe probe

f12 f123 f1..(n-1)

 
Figure 4: The probing sequence during MJoin. 

Once all matches have been produced, and assuming all 
join predicates are satisfied, the Cartesian product between 
the new tuple and its matches is propagated to all 
subsequent operators. Figure 5 depicts the first stage's 
operation in which, for the sake of exposition and to avoid 
cluttering the figure, we present the Cartesian product’s 
generation as a separate step.  

Stream 1's
Hash Table

Stream 2's
Hash Table

Stream n's
Hash Table

...

Tuple

hash

probe probe probe

x
matches

Cartesian Product
of arrival and matches

matches

 
Figure 5: In-memory operation of MJoin 

4.2.2 Disk-to-Memory Operation 

Whenever MJoin's input blocks a disk-to-memory thread takes 
over, joining a disk-resident portion of one of the streams' 
hash table partitions with the in-memory portions of the 
other streams' hash tables. A salient problem in this stage is 
making sure no already propagated partial join results are re-
created, which we will defer until Section 4.2.4. Figure 6 
presents the second stage, again making the same 
simplifying assumption of Cartesian product generation that 
Figure 5 makes. 

4.2.3 Disk-to-Disk Operation 

Once an end-of-stream message from all inputs has been 
received, the last stage of MJoin, which joins all disk 
resident portions of the hash tables, takes over. This is 
achieved by performing the equivalent of the second phase 
of a multi-input hybrid hash join. Assuming there are n hash 
tables and p partitions in each hash table, memory is 
redistributed in n-1 hash tables so that the smallest partition 
fits in memory (if it does not, multiple passes for that 
partition must be employed). A scan of the largest partition 
is then initiated, probing the hash tables, producing 
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matches, detecting duplicates and outputting join tuples. 
This procedure is carried out for all p partitions. Figure 7 
presents the redistribution of memory during the third stage 
and a sketch of the probing process. 

 

Memory

Disk

Partition being
scanned

probe

probe

x Cartesian product and
duplicate detection

...

matches matches

probe

 
Figure 6: Disk-to-memory operation of MJoin 

... ...

... ...
Partition i

Stream n
Partition i... ...

... ...
Partition i

... ...

... ...
Partition i. . 

.

. . 
.

. . 
.

. . 
.

Memory distribution during
first and second stages

n hash tables

p partitions

. . 
.
n-1 hash tables

probe

Memory distribution during
the third stage  

Figure 7: Disk-to-Disk memory redistribution and operation 
of MJoin 

4.2.4 Duplicate Detection 

MJoin uses a duplicate detection mechanism so that no 
duplicates are ever produced during the second and third 
stages. There are only two ways in which a tuple and all its 
matches render a result a duplicate: 

1. If they were present in the memory-resident 
portions of the hash tables at the same time. 

2. The tuple was flushed to disk and used to probe the 
memory-resident hash table portions while its 
matches were still in memory. 

Notice, however, the universal qualification of the above 
clause: a tuple and all its matches. Even if a single pair of 
matches breaches a condition, the partial join result is a new 
one and should be propagated. 

The way MJoin eliminates duplicates is based on time-
stamps. Each tuple is assigned two time-stamps: an arrival 
into the system and a departure from main memory. 
Additionally, a separate log is kept for each partition of each 
table, keeping track of when a partition was used for the 
second stage as well as the latest disk-resident tuple time-

stamp for that partition. Deciding whether a candidate 
result has already been propagated or not then is a matter of 
evaluating two conditions. Assuming a tuple Ti from input i 
being scanned and a match Tj being tested, then Ti ⋈Tj has 
been propagated in the following cases: 

1. Ti.arrival() > Tj.arrival() and Ti.arrival() < 
Tj.departure(), which means that Ti arrived while Tj 
was in memory. 

2. latest(partition(Ti)) > Tj.arrival() and probe(partition(Ti)) 
> Tj.arrival() and probe (partition(Ti)) < Tj.departure () 
which entails that Tj has already been probed by a 
previous disk-to-memory join of Ti's  partition. 

This test is performed in a single direction during the 
second stage, while it is carried out in both directions during 
the third stage. Moreover, for an overall join result (i.e., 
⋈i=1…n(Ti)) to be propagated, the test has to be passed by all 
possible pairs of constituent tuples. At first glance this may 
seem as an expensive operation, however, after careful 
consideration it becomes obvious that the number of 
checks is equal to the number used in a binary execution 
tree employing XJoin as the evaluation algorithm. 

4.3 Implementation Abstractions 

The way the algorithm has been implemented leaves a 
number of parameters to the programmer for definition and 
tuning. In particular, these abstractions are: 
� Partition picking policy during the second stage: A number 

of possibilities exist here; one could pick the one 
with the most tuples, or the one with the smallest 
partition, or something in the middle. 

� Blocking strategy: The input can be considered 
blocked whenever all inputs block, one of them 
blocks, or a given number of them blocks. 

� Aggressiveness of second stage: A small timeout after 
which the input is considered blocked denotes an 
aggressive strategy. So does the ability to execute 
the second stage as an additional thread executing 
concurrently with the other threads, allowing the in-
memory join process of the operator to handle any 
new arrivals, instead of waiting for a disk-to-
memory stage to finish before the operator moves 
on to handle all (buffered) new arrivals. 

5 Cost Expressions for MJoin 

In this section we present a cost model for MJoin operators.  
Such a cost model is essential if optimisers are to be able to 
make good decisions about when and how to employ MJoin 
operators; it is also useful in explaining some of our 
experimental results in Section 6.7.  However, this section is 
not essential to the understanding of the bulk of this paper, 
and the reader who wishes to avoid getting bogged down in 
its details can safely skip it. 

The purpose of this section is to extract specific cost 
expressions for MJoin in terms of a rate-based cost model. 
Our cost expressions will make use of the cost variables and 
notation in Table 1. 
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Notation Description 
hash Cost of hashing a key  
move Cost of moving an object in memory 
comp Cost of comparing two keys in memory 

ri The input rate of the ith stream 
fk Selectivity f of join predicate k 

Table 1: Cost variables and notation used for modelling 

5.1 Rate-based Cost Expressions 

When dealing with streaming sources it is useful to consider 
a rate-based optimization framework (instead of a 
cardinality-based framework). In such a framework the 
decision basis is the predicted output rate of an operator 
when there is some prior knowledge of its input rates. The 
purpose of this section is to extract an output rate estimator 
for MJoin. Again, we will focus on the first stage of the 
algorithm, since this is the one in which MJoin exhibits 
streaming behavior. 

The output rate of any process is the number of 
transmitted entities over the time needed to make the 
transmission [BG91], i.e.: 

 

ontransmissi the make to needed Time
dtransmitte ouputs of Numberrate Output =  Equation 1

 
In our approach, we assume the n inputs have rates 

equal to r1, r2, …, rn tuples/second respectively. As a first 
step we will concentrate on the numerator in Equation 1 
and we will first make a discrete time approximation of the 
output rate, before generalizing to continuous time.  

Over the first second, the operator will receive r1 tuples 
from the first stream, r2 from the second one, and so on. 
The Cartesian product of these tuples and, hence, the total 
size of the input that the operator will filter, will then be 

equal to C(1)=∏ . Assuming k join predicates in the 
query with each join predicate having a selectivity of f

=
n
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By induction, we can prove that the number of 
transmitted outputs for any time point t will be given by the 
following expression: 
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The next step in extracting the operator’s output rate is 
calculating the denominator of Equation 1. For an arrival in 
any given stream the following operations have to be 
performed: (i) hash the tuple, (ii) move it into its 
corresponding hash table, and (iii) probe the rest of the hash 
tables for matches. Notice, however, that not every tuple 
probes all hash tables. In a way resembling pipelined 
execution, it goes to a next hash table only if matches in the 
previous one exist, as Figure 4 depicts 

In total, the cost per arrival will be equal to hash + move 

+ comp⋅(1+∏ ), where  is the cost induced 

if all probes have to be performed

−
=
1
1

k
j kf

−
=

k
j

∏ −
=
1
1

k
j kf

2. Since there will be 

 arrivals for a given second, that makes the time 

needed to make the transmission equal to ⋅(hash + 

move + comp⋅(1+∏ )). Substituting this last expression 

and T(t) into Equation 1 yields MJoin’s output rate 
(Equation 2), which, as was the case in [VN02], is time-
dependent. In Section 6.7 we will see how Equation 2’s 
output prediction rate can in fact identify cases where 
MJoin’s performance might degrade.  
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Equation 2

6 Experiments 

In this section we will present our experimental results for a 
prototype implementation of MJoin.  

6.1 Experimental Setup 

Our goal was to measure the performance improvement we 
would obtain in comparison to other algorithms designed to 
work over streaming sources. To do so, we developed a 
stand-alone prototype of the algorithm in Java. The queries 
we used were variants of the Wisconsin Benchmark's 
[BT88] JoinABPrime query, extended to handle multiple 
sources.  All joins were performed on the unique1 
attribute of the relations ensuring the size of the result set 
was equal to the size of the smallest participating relation.  

                                                           
2 The product’s limit is set to k-1 instead of k since one probe will 
always take place. 
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For instance, considering three streams R, S and T the where-
clause of the query would be: 
 
where R.unique1 = S.unique1 and 

S.unique1 = T.unique1  
 
IBM's jikes compiler was used for byte-code generation, 

which was executed using SUN's HotSpot virtual machine. 
All presented experiments were conducted on a 1GHz Intel 
Pentium Processor with 1GB of physical memory, running 
RedHat Linux 7.2. To simulate streaming sources, we 
assigned an arrival rate to each input and then inserted, 
between arrivals, random delays following a Poisson 
distribution [BG91] with the given arrival rate as its mean. 
As a rule, we used the slowest streams inter-arrival rate as 
the operator’s blocking threshold3. 

6.2 In-Memory Performance 

The first set of experiments we performed deals with 
MJoin's performance when data fit entirely in memory. 
These experiments highlight the fact that MJoin performs 
fewer CPU-bound operations (hashes, moves, comparisons) 
than a pipelined XJoin plan over the same inputs. We used a 
simple three-way join query that we modeled in five 
possible ways. Figure 8 depicts the plans while Table 2 
presents the streams’ parameters. In the first plan, all 
sources have the same arrival rate; in the top-right plan one 
of the sources is rendered considerably faster than the rest 
and it is put at the top of the execution plan, while in the 
bottom-left plan the fast source is kept at the bottom of the 
plan. For comparison, and regardless whether streams have 
the same or different input rates, we employ the same 
MJoin plan, the one on the bottom-right of Figure 8. 

S1 S2

S3
f = 10-4

f = 10-3

 S1 S2

S3
f = 10-4

f = 10-3

 
Same rates Fast high 

S3 S2

S1
f = 10-3

f = 10-4

 

S1 S3

f = 10-7

S2  

Fast low MJoin same/differing 

Figure 8: Plans used for in-memory experiments 

We executed the five plans, keeping track of when each 
tuple appeared in the output, which is essentially an 
indication of a plan’s output rate. The results are plotted in 

Figure 9 and Figure 10. To verify our claim that MJoin’s 
superiority stems from performing fewer operations, we 
instrumented the code to count each operation as it took 
place. The results were in accordance with our intuition and 
the algorithm’s cost model and are presented in Table 3. We 
see that although in total MJoin performs more 
comparisons (a side-effect from its symmetric nature) it also 
performs 10,000 fewer hash and move operations. 

                                                           
3 A Poisson arrival process entails that the inter-arrival process 
follows an exponential distribution with a mean equal to the 
reverse of the Poisson process's mean. 

 
Stream Size (tuples) Inter-arrival delay (msec) 

S1 10,000 20 (5 for same rates) 
S2 15,000 20 (5 for same rates) 
S3 10,000 5 

Table 2: Parameters for in-memory experiments 

 
Plan shape Hashes Moves Comparisons 

Deep 45,000 45,000 45,000 
MJoin 35,000 35,000 50,189 

Table 3: Number of operations during in-memory 
experiments 
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Figure 9: In-memory performance when input rates are the 
same 

6.3 Scaling the Input Size 

To investigate MJoin’s performance as input sizes grow, we 
scaled the input sizes some (but not considerably – for that 
see Section 6.5) and allocated a memory buffer less than the 
inputs’ sizes so that parts of the hash-tables would be 
flushed. Table 4 shows the parameters we used, while 
Figure 11 shows the results. Again, MJoin was significantly 
better than the other two plans, between which, the one 
keeping the fastest stream at the top of the execution plan 
exhibits a better performance in terms of output production 
rate. Seeing that placement of a fast (or slow) stream has a 
significant impact on plan performance, we decided to 
experiment with streams of varying rates, i.e., not having a 
steady mean arrival rate. 

 7



0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300 350

Time (seconds)

Tu
pl

es

MJoin differing

Fast low

Fast high

 
Figure 10: In-memory performance for varying input rates 

 
Stream Size (tuples) Inter-arrival delay (msec) 

S1 100,000 10 
S2 100,000 5 
S3 200,000 1 

Table 4: Parameters for scaled input sizes 

6.4 Resilience to Fluctuations 

In the experiments of this section, we used the same plans 
as in the previous section, but we did not keep a constant 
mean arrival rate for all inputs; in particular, we varied the 
input rate of S3 so that it started off fast, slowed down 
towards the middle of the query and gained speed again in 
the last third of execution. The objective of this experiment 
was to verify MJoin's resilience to input rate fluctuations. 
Figure 12 presents the results. 

As expected from the findings of the previous section, 
MJoin had a higher output rate in comparison to the other 
two plans. An equally interesting point, however, is the 
switching between performances of the two non-MJoin 
plans. While the fluctuating stream was fast, the plan that 
kept it at the top of the execution plan was faster than the 
one keeping it at the bottom. Once the stream slowed 
down, the output rates were reversed, and when the stream 
returned to its initial rate, the original relative performance 
again appeared. This validates our intuition that while it is 
impossible to pick a single tree of binary operators that is 
always optimal when input rates vary, MJoin is stable and 
dominates throughout.  

6.5 Window Joins 

When dealing with join evaluation over streaming sources, it 
makes sense to consider window-based joins, i.e., joins that 
only pair tuples within a bounded time interval of each 
other. This is because without some sort of window on 
which tuples can join, in the limit infinite streams will 
require infinite joins. In such a scenario, the inputs’ hash 
tables are invalidated whenever the window expires. To 
simulate a window-based join scenario, we created a three-
way join query, over three relations, each relation containing 
one million tuples. Moreover, we imposed two window-

based predicates over the query, with each predicate having 
a horizon of ten thousand tuples, i.e., the inputs’ hash tables 
were to be invalidated whenever ten thousand tuples from a 
stream were read. The three plans we used were similar to 
the Fast High, Fast Low and MJoin plans of Figure 8 while the 
inputs’ parameters are presented in Table 5. Figure 13 
depicts the experimental results.  
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Figure 11: Scaled input size performance 
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Figure 12: Performance for fluctuating input rate 

As in all previous experiments, in the case of window-
based predicates the MJoin plan exhibits better 
performance. This was expected for one simple reason: by 
choosing an MJoin evaluation plan for a window of 10,000 
tuples, we are able to keep all computation within memory 
limits, and MJoin has been optimised for in-memory, 
streaming behaviour. 
 

Stream Size (tuples) Inter-arrival delay (msec) 
S1 1,000,000 3 
S2 1,000,000 3 
S3 1,000,000 1 

Table 5: Stream parameters for window joins 
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Figure 13: Window join performance 

6.6 Scaling the Number of Joins 

The next set of experiments deals with MJoin's ability to 
scale with respect to the number of joins in the execution 
plan. To test this, we generated five way join queries and we 
organized their plans using (i) a deep pipelined plan, (ii) a 
bushy pipelined plan (both of the above employing binary 
XJoin operators), or (iii) a plan having all join operations 
handled by a single MJoin operator. Figure 14 presents the 
plans and the sources' input parameters, while Figure 15 
depicts the experimental results. 

Again, MJoin performed better in terms of output rate 
and was able to generate the final result sooner than the 
other two plans. The point of interest in this experiment, 
however, is that as time progressed MJoin’s performance 
advantage over the other plans degraded, until by the end 
the bushy plan had almost caught up. The next section 
explains this phenomenon, which indicates that MJoin is 
not always the algorithm of choice, and suggests that an 
optimiser is needed to determine when the MJoin should be 
used. 

6.7 On the Need for Optimisation 

The final set of experiments we conducted has to do with 
investigating and proving that even with an operator like 
MJoin, the need for optimisation of join trees still exists. 
What triggered this part of our research, were the 
experimental results of Section 6.6, where we saw MJoin’s 
performance starting to degrade. Suspecting that the 
problem was MJoin’s inherent complexity on a per-input 
basis (as the cost model of Section 5.1 shows) we added an 
additional input and one more join predicate to the query, 
thus having to perform a six-way join. Again, we generated 
three arbitrary plans, one organized as a pipelined plan, one 
organized as a bushy plan, and finally a single-operator six-
way plan using MJoin. Figure 16 presents the two non-
MJoin plans, where each input is annotated with its size in 
tuples and its inter-arrival delay. Execution of these plans, 
along with the single MJoin plan, yields the performance 
observed in Figure 17. Though MJoin behaves better in the 
initial execution stages, the bushy plan overtakes it as time 
goes by. 
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Figure 14: Plans used when scaling the number of joins 
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Figure 15: Experimental results after scaling the number of 
joins 

Our initial explanation of MJoin’s performance 
degradation had to do with its per-input cost, as this is 
modelled in Section 5.1’s cost model. To further follow our 
intuition, we measured the actual cost in clock ticks of the 
various parameters appearing in MJoin’s cost expression, by 
accessing the processor’s hardware counters. Table 6 
presents these measurements. 
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Figure 16: Six-way join execution plans 

We then focused on the denominator of Equation 2, 
which is the operator’s per-time-unit cost. Performing the 
computation yields that, roughly, the per-time-unit cost is 
1.52⋅10-3 seconds. Looking at the streams’ input rates, as 
shown inFigure 16, it is easy to see that this time is greater 
than the fastest stream’s inter-arrival rate (10-3 seconds for 
the three-hundred tuple stream). This translates into a 
backlog of tuples being created for that particular stream; as 
far as the stream is concerned the CPU is too slow to 
handle its rate. As time goes by, this backlog starts to 
dominate the stream’s input rate, degrading MJoin’s 
performance. This problem does not occur in the case of 
the bushy plan, which uses multiple binary operators hence 
is not sensitive to the total number of input streams in the 
join. 
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Figure 17: Six-way join performance 

Operation Average cost (clock ticks) Average cost (seconds)4

hash 175.008 1.75⋅10-7 
move 426.518 4.27⋅10-7 
Comp 49.133 4.91⋅10-8 

Table 6: Cost of various operations as measured by the 
processor’s hardware counters 

Since our earlier experiments that MJoin is superior for 
smaller numbers of joins, we experimented with plans that 
use two smaller MJoin operators instead of one large one. 
Figure 18 shows the plans we tested, while Figure 19 
presents the measured performance of these plans, along 
with that of the bushy plan and the single MJoin plan. 
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Figure 18: The two extra six-way join plans 
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Figure 19: Revised six-way join plan performance 

Figure 19 shows that the plans with multiple small 
MJoin operators can outperform both the single large 

                                                           
4 We were using a 1GHz processor; one clock tick is equal to 
10-9 seconds. 
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MJoin operator and the plans built up with only binary 
operators. It is interesting to note that the single MJoin 
operator, while not the best plan overall, dominates in the 
first stages of the query execution. 

Clearly, this presents a great opportunity (or challenge, 
depending upon your perspective!) for query optimisation: 
ideally, the optimiser needs to know how many result tuples 
it should optimise for, then it needs to choose a plan that 
distributes the join over the optimal number of MJoin 
operators of with the right number of inputs. Cost formulas 
like the ones presented in Section 5 can assist the optimiser 
in this task. 

7 Conclusions and Future Work 

In the previous sections we proposed and evaluated a new 
join algorithm that addresses issues that arise with multi-way 
join queries over streaming inputs. In particular, our claim is 
that by using a multi-input symmetric join operator instead 
of a pipelined execution plan of symmetric binary operators, 
we obtain better performance.  To support our claim, we 
validated our intuition by conducting a series of 
experiments over multi-way join queries using the 
Wisconsin Benchmark data set. In future work we plan to 
extend the MJoin operator to handle more classes of join 
queries and investigate the optimisation problems it 
introduces. 
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