

Paper title: Maximizing the Output Rate of Multi-Join Queries over

Streaming Information Sources
Paper ID #: 325
List of authors: Stratis D. Viglas, Jeffrey F. Naughton, Josef Burger
Contact author: Stratis D. Viglas
Contact author’s address: Department of Computer Sciences,

University of Wisconsin Madison,
1210 W Dayton st,
Madison, WI, 53706, USA

Contact author’s e-mail: stratis@cs.wisc.edu
Topic area: Core Database Technology
Category: Research
Relevant topics: Optimisation and Performance,

Databases and database services in new context - Internet and the WWW

mailto:stratis@cs.wisc.edu

Maximizing the Output Rate of Multi-Join Queries over
Streaming Information Sources

Stratis D. Viglas Jeffrey F. Naughton Josef Burger

University of Wisconsin-Madison
Department of Computer Sciences

1210 W Dayton St., Madison 53706, WI
e-mail:{stratis,naughton,bolo}@cs.wisc.edu

Abstract

Recently there has been a growing focus in the
research community on join query evaluation for
scenarios in which input characteristics may not be
entirely known and inputs enter the system at
highly variable and unpredictable rates. The
proposed solutions to date rely upon some
combination of streaming binary operators and
“on-the-fly” query plan reorganization to deal with
this unpredictability. In this paper, we consider a
different approach, and propose a multi-input
streaming join algorithm we call MJoin. We show
through experiments with a prototype
implementation that in many instances the MJoin
produces outputs sooner than any tree of binary
operators, and that it adapts well to changing input
parameters without query plan modification. This
suggests that the MJoin operator may be a useful
addition to systems that evaluate queries
containing joins over streaming inputs.

1 Introduction

Join algorithms have been in the focus of the database
research community for a long time. With the advent of the
Internet, however, the assumptions underlying previous
work have to be revisited. Though execution time
minimization continues to be a key factor, two new aspects
of the problem have come into focus: (i) the unpredictable
streaming nature of the input sources, along with the lack of
any information regarding their size and data distributions,
and, (ii) the goal of producing results at the highest possible
rate (rather than completing the computation as soon as
possible). This paper addresses both of these issues by
proposing a multi-input join algorithm that collapses
multiple binary joins into a single multi-way join operation.

Using this single multi-way join, an arrival from any input
source can be used to generate and propagate results in a
single step, without having to pass these results through a
multi-stage binary execution pipeline. Furthermore, since
the operator is completely symmetric with respect to all its
inputs, there is no need to restructure a query plan in
response to changing data rates in the inputs. The new
multi-way join operator does require more memory than
traditional binary hash-based join algorithms over disk-
resident data. However, its memory requirements are lower
than those of previously proposed streaming binary join
algorithms.

Our operator is optimized for in-memory performance,
so it is ideal if the inputs fit in memory, or if the join has
accompanying “window” predicates that can be used to
bound the memory required for each input. It is, however,
designed in such a way that is able to flush overflowing
inputs to disk and later process them, either whenever
streaming inputs block, or whenever all streams finish. We
have implemented a prototype of our algorithm and
evaluated its performance for both the main memory and
overflow scenarios.

As we will see, the addition of such an algorithm to a
system does not obviate the need for an optimizer. In fact,
it introduces a new and interesting optimization problem, as
there are cases in which a pipelined tree of several smaller
(fewer input stream) MJoin operators performs better than a
single larger MJoin operator. Thus, ideally, an optimizer
must decide the number of MJoin operators to use, and
allocate input streams to these operators. However, for
smaller joins (e.g., less than five input streams in our
experiments) plans with a single MJoin operator are
dominant.

2 Motivation

Consider the case in which a process receives data from
input streams, wishing to group tuples from all the streams
by joining them on some common attribute. This type of
join query naturally arises in queries over stream data; for
example, the join attribute could be time if we want to group
sensor readings that occurred at the same time; it could be
traffic rate if we are tracking highway congestion, or, it could
be pressure or temperature if we want to track weather fronts;

Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, the VLDB copyright
notice and the title of the publication and its date appear, and notice is given that copying
is by permission of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1

and so forth. Using traditional database techniques, the
execution plan would be organized as a sequence of binary
join operators as shown in Figure 1. Each pair in the chain
is joined by a binary join operator, which then feeds its
output to a subsequent join operator, until all inputs are
exhausted. If a hash join algorithm were chosen the system
would build hash tables from the left and probe them from
the right, while the optimiser would choose the inputs'
order, according to their sizes and/or data distribution
statistics.

s1 s2

s3

sn-1

sn

s1.a = s2.b

s2.b = s3.c

sn-2.x = sn-1.y

sn-1.y = sn.z

Hash from the left

Probe from the right

Figure 1: A traditional binary join execution tree

In a scenario where inputs are network streams, rather
than disk-resident local files, however, the situation is
different. In Figure 1, if any of the streams s1 or s3 through
sn is unbounded, the plan will never produce any results,
because with standard blocking operators the build phase of
the left inputs must complete before the probe phase of the
right input starts. Symmetric binary operators, such as the
symmetric hash join, address this problem, because they
have the potential to produce an output whenever there is
an arrival on either of their input streams.

Even with symmetric binary operators, problems may
arise. Assuming that all inputs of Figure 1 are streams and
each join is evaluated with a symmetric binary join
algorithm, consider the case in which an s1 arrival joins with
X1,2 already existing s2 tuples. These X1,2 tuples are
propagated up-stream and, if they contribute to the final
result, they have to go through each step of the execution
tree until they appear in the output. At each step, the
operator at that step handles them, inserting into one hash
table and probing the other. That creates a large number of
intermediate result tuples travelling through the system,
causing substantial additional storage and communication
overhead. This overhead can increase the system resources
required per output tuple, which in turn can slow the
effective rate of the output.

A tree of binary operators also introduces secondary,
subtler effects. The issue is that if different input streams
deliver their inputs at different rates, the eventual output
rate can differ as a function of which tree of binary
operators (e.g., deep or bushy, fast inputs high in the tree or

at the leaves) the optimiser chooses. This dependence is
exacerbated when some or all of the operators in the tree
overflow their memory quotas and spool some fraction of
their inputs to disk for later processing. Finding the tree that
optimises the output rate in such a scenario is challenging;
even worse, if the input rates vary over time, there may be
no single tree that is best, and the complexity of on-the-fly
query plan restructuring becomes necessary.

To alleviate this problem, we propose the use of a multi-
way symmetric join operator, which we call the MJoin, as
depicted in Figure 2. In this scenario, the same joining s1
arrival could be used to probe all s2, …, sn hash tables and
propagate its contribution to the result, rendering
unnecessary the need for intermediate storage and
additional communication. By being able to generate results
in a single step, this multi-way join maximizes the output
rate of the plan in terms of outputs produced per unit time,
and eliminates the difficult decision of which binary tree of
symmetric operators to use. In the rest of this paper we will
present such an operator, which we call MJoin.

s1 s2 s3 sn-1 sn...

s1.a = s2.b = s3.c = ... = sn-1.y = sn.z

Figure 2: A multiple input join operator

The rest of the paper is organized as follows: Section 3
presents the related literature in the area, while Section 4
presents the basic functionality of the algorithm. Section 5
presents a cost model of the proposed operator, in terms of
output rate and computational cost, while Section 6 deals
with our experimental study of the algorithm. Finally,
Section 7 presents our conclusions and identifies our future
directions.

3 Related Work

Optimising for the first tuple of the result was the objective
of the Britton-Lee optimiser [Sch83], while a similar notion
of optimising for a specific subset of the result, namely the
Top/Bottom-N results, was investigated in [CK971] and
[CK972]. These ideas are similar to ours in the sense that
they have as their goal generating a specific subset of the
result as soon as possible. We differ in that this previous
work did not consider the impact of streaming and
unpredictable input data.

Join algorithms have been extensively studied in the
context of relational database systems, with [Sha86] being
the seminal paper that classified and evaluated hash-based
join implementations. Join queries over distributed data
have been studied in [ML86] and in parallel databases
[DG+90]. The problem in distributed databases' context is
to efficiently decide where to ship relations in order to
perform the join, while, at the same time, perform a
significant amount of work locally [Bab79], [BG+81],

 2

[BC+81], [B70], [DG85]. Communication, synchronization
and resource allocation is mainly the issue in parallel
databases [DG+90], while [DN+92] presents an efficient way
of dealing with data skew. Also related to our work are hash
teams [GB+98] and generalized hash teams [KK+99], in which
the objective is to minimize the number of performed
operations in hash-based evaluation plans by sharing
computation and hash table storage space. Again, none of
this previous work considered the issue of maximizing the
output rate in the presence of varying and unpredictable
input rates.

Our previous work on rate-based optimisation [VN02]
addresses the issue of optimising queries over streaming
information sources. The main idea of that paper is to
switch from a cardinality-based cost model to a rate-based
cost model since, in a streaming environment, the objective
is to identify plans that, given the input rates of the streams,
will produce the desired number of results the fastest.
Unlike this paper, that paper considered only the
optimisation problem in the context of previously proposed
evaluation algorithms, and did not propose any new
operators.

The most relevant remaining work deals with symmetric
algorithms and adaptive query execution. The first
algorithm to explicitly take into account the streaming
nature of its inputs was the Symmetric Hash Join [WA91].
XJoin [UF00] extends this work by providing an efficient
way to spill overflowing inputs to disk and later join them to
produce the final output, while in [IF+99] the authors
present a way of adapting symmetric hash join into hybrid
hash join whenever inputs become too large to fit in
memory. To the best of our knowledge none of the
previous work on streaming join algorithms considers the
possibility of moving beyond binary operators to multi-way
join operators.

Streaming operation has been studied in the context of
query scrambling [UFA98] and adaptive query execution [AH00],
[IF+99]. In the former approach, an execution plan is
monitored so that whenever a blocked input is detected the
operator(s) using that input are pre-empted and other, non-
blocked, operators are run instead. Adaptive execution
frameworks employ similar performance monitoring as their
decision strategy but instead of giving precedence to certain
operators, they dynamically alter the plan in a way that is
believed to overcome any performance bottlenecks. Our
multi-way join operator addresses a similar problem, but
without requiring any explicit monitoring or dynamic plan
modification. Furthermore, as we show in Section 6.2, in
some instances our new multi-way join operator makes
more efficient use of resources than any tree of symmetric
binary join operators. Of course, we do not claim our
approach abolishes the need for adaptive execution, since
many queries cannot be reduced to a single multi-way join
operator; rather, we claim that the introduction of a multi-
input join operator minimizes the burden placed on an
adaptive framework.

Finally, work has been done in the context of
continuous queries over data streams. Two possible

directions have been identified: the first aims at
characterising the behaviour of these queries with respect to
their memory requirements [AB+01], [BJ01]. The second
aims at identifying and maintaining stream statistics for sliding
window queries [DG+02]. Our work is orthogonal to these
studies, since our algorithm is another place in which the
same issues of memory management and statistics’
maintenance arise.

4 Algorithm Description

The basic idea of the MJoin algorithm is very simple:
generalize the symmetric binary hash join algorithm to work
for more than two inputs. However, it turns out that the
details are somewhat tricky. The issue is that the algorithm
must be ready to accept a new tuple on any input stream at
any time; upon such an arrival, it must probe the other hash
tables and generate a result as soon as possible; and finally,
it must ensure that each result tuple appears exactly once.
These goals are rendered even more complex when some of
the inputs overflow the space allocated for their hash tables
and tuples must be spooled to disk for later processing.

The “predecessor” of our proposal, XJoin, addresses
some of these issues, but in a smaller context since it only
deals with two input streams at a time. Building on the
principles of XJoin, we employ a similar three-step join
strategy:
� As long as there are input arrivals, the algorithm

performs in a memory-to-memory fashion, ensuring
each input generates the largest possible partial join
result it can.

� Once the inputs are blocked a disk-to-memory join
operation initiates, joining portions of the
algorithm's on-disk state to its current in-memory
state.

� Once all inputs have seen their end, a last disk-to-
disk operation takes over, generating the complete
result.

In this paper, we focus on joins of the form discussed in
Section 2 – that is, equijoins over an attribute common to
all of the input streams. The memory-to-memory phase of
our MJoin operator trivially extends to handle more general
joins. However, the disk-to-memory and disk-to-disk phases
are problematic if more than two input streams overflow to
disk. (The problem is simultaneously partitioning multiple
input streams in a consistent way when the overflowing
relations have join conditions on multiple attributes.) While
extending the MJoin operator to handle such cases provides
interesting material for future work, we think that the MJoin
operator as proposed in this paper is useful, because (a) as
discussed in Section 2, joining multiple streams on a
common attribute is a natural class of query, and (b) we
expect many streaming joins in practice will be “window-
joins” in which the window predicates ensure that the
computation can be expected to remain memory resident.

In Section 4.2 we will present the three stages in more
detail. Before doing so, however, we will focus on the key
data structures, and how the algorithm employs them.

 3

4.1 Data Structures

MJoin maintains a number of hash tables equal to its number
of input streams. Each hash table is partitioned in an equal
number of partitions, each having the ability to flush to disk
whenever it becomes too large to fit in memory. Whenever
a new tuple arrives, it is hashed into the corresponding
stream's table in two steps: first, to identify which partition
it belongs to and, second, into a slot of that particular
partition. In addition to the in-memory state, there is a
related on-disk state, referring to the portions of each hash
table that have been flushed to disk due to memory
overflow.

Figure 3 presents the operator's state, zooming in to one
hash table. It shows the state when a newly arrived tuple is
hashed into the corresponding hash table. A portion of each
partition has already been flushed to disk.

...

Hash Table 1 Hash Table n... ...Hash Table t

Hash Partition 1

Hash Partition m

Hash Partition p
...

partition(t)=p
hash(t)=h

Tuple t

Tuple t

...

... ...

Disk-based partition portions
Figure 3: State of the MJoin operator

4.2 The Three Stages of MJoin

Like its predecessor the XJoin, the MJoin operates in three
stages: an in-memory hash/probe operation that is active as
long as the input streams have arriving tuples; whenever the
inputs are blocked, a disk-to-memory thread takes over to
match disk-resident data with in-memory portions of the
input, while after all input has been read a disk-to-disk stage
produces the final output.

4.2.1 In-Memory Operation

The first stage of MJoin is the one that deals with newly
arrived tuples. Each new arrival triggers two operations:

1. A hashing of the new tuple into the corresponding
stream's hash table.

2. A probing sequence of the other streams' hash
tables for matches.

Not all hash tables will be probed by a single arrival,
however. In a way resembling pipelined execution, a
temporary result tuple is generated after each probe
operation and goes on to probe the next hash table only if
matches in the previous one exist1. Figure 4 depicts this
sequence, where each probe operation is annotated with the
probability of its taking place, which is equal to the previous
in the sequence predicate’s selectivity (the f* factors in the

Figure). For instance, for the second probe operation to
execute, the first one has to produce matches.

1 In fact, this entails the need for join ordering when optimising
the query; each input needs to know the sequence in which it will
probe the rest of the inputs' hash tables.

...

hash

S1 S2 S3 Sn

1

probe probe probe

f12 f123 f1..(n-1)

Figure 4: The probing sequence during MJoin.

Once all matches have been produced, and assuming all
join predicates are satisfied, the Cartesian product between
the new tuple and its matches is propagated to all
subsequent operators. Figure 5 depicts the first stage's
operation in which, for the sake of exposition and to avoid
cluttering the figure, we present the Cartesian product’s
generation as a separate step.

Stream 1's
Hash Table

Stream 2's
Hash Table

Stream n's
Hash Table

...

Tuple

hash

probe probe probe

x
matches

Cartesian Product
of arrival and matches

matches

Figure 5: In-memory operation of MJoin

4.2.2 Disk-to-Memory Operation

Whenever MJoin's input blocks a disk-to-memory thread takes
over, joining a disk-resident portion of one of the streams'
hash table partitions with the in-memory portions of the
other streams' hash tables. A salient problem in this stage is
making sure no already propagated partial join results are re-
created, which we will defer until Section 4.2.4. Figure 6
presents the second stage, again making the same
simplifying assumption of Cartesian product generation that
Figure 5 makes.

4.2.3 Disk-to-Disk Operation

Once an end-of-stream message from all inputs has been
received, the last stage of MJoin, which joins all disk
resident portions of the hash tables, takes over. This is
achieved by performing the equivalent of the second phase
of a multi-input hybrid hash join. Assuming there are n hash
tables and p partitions in each hash table, memory is
redistributed in n-1 hash tables so that the smallest partition
fits in memory (if it does not, multiple passes for that
partition must be employed). A scan of the largest partition
is then initiated, probing the hash tables, producing

 4

matches, detecting duplicates and outputting join tuples.
This procedure is carried out for all p partitions. Figure 7
presents the redistribution of memory during the third stage
and a sketch of the probing process.

Memory

Disk

Partition being
scanned

probe

probe

x Cartesian product and
duplicate detection

...

matches matches

probe

Figure 6: Disk-to-memory operation of MJoin

... ...

... ...
Partition i

Stream n
Partition i... ...

... ...
Partition i

... ...

... ...
Partition i. .

.

. .
.

. .
.

. .
.

Memory distribution during
first and second stages

n hash tables

p partitions

. .
.
n-1 hash tables

probe

Memory distribution during
the third stage

Figure 7: Disk-to-Disk memory redistribution and operation
of MJoin

4.2.4 Duplicate Detection

MJoin uses a duplicate detection mechanism so that no
duplicates are ever produced during the second and third
stages. There are only two ways in which a tuple and all its
matches render a result a duplicate:

1. If they were present in the memory-resident
portions of the hash tables at the same time.

2. The tuple was flushed to disk and used to probe the
memory-resident hash table portions while its
matches were still in memory.

Notice, however, the universal qualification of the above
clause: a tuple and all its matches. Even if a single pair of
matches breaches a condition, the partial join result is a new
one and should be propagated.

The way MJoin eliminates duplicates is based on time-
stamps. Each tuple is assigned two time-stamps: an arrival
into the system and a departure from main memory.
Additionally, a separate log is kept for each partition of each
table, keeping track of when a partition was used for the
second stage as well as the latest disk-resident tuple time-

stamp for that partition. Deciding whether a candidate
result has already been propagated or not then is a matter of
evaluating two conditions. Assuming a tuple Ti from input i
being scanned and a match Tj being tested, then Ti ⋈Tj has
been propagated in the following cases:

1. Ti.arrival() > Tj.arrival() and Ti.arrival() <
Tj.departure(), which means that Ti arrived while Tj
was in memory.

2. latest(partition(Ti)) > Tj.arrival() and probe(partition(Ti))
> Tj.arrival() and probe (partition(Ti)) < Tj.departure ()
which entails that Tj has already been probed by a
previous disk-to-memory join of Ti's partition.

This test is performed in a single direction during the
second stage, while it is carried out in both directions during
the third stage. Moreover, for an overall join result (i.e.,
⋈i=1…n(Ti)) to be propagated, the test has to be passed by all
possible pairs of constituent tuples. At first glance this may
seem as an expensive operation, however, after careful
consideration it becomes obvious that the number of
checks is equal to the number used in a binary execution
tree employing XJoin as the evaluation algorithm.

4.3 Implementation Abstractions

The way the algorithm has been implemented leaves a
number of parameters to the programmer for definition and
tuning. In particular, these abstractions are:
� Partition picking policy during the second stage: A number

of possibilities exist here; one could pick the one
with the most tuples, or the one with the smallest
partition, or something in the middle.

� Blocking strategy: The input can be considered
blocked whenever all inputs block, one of them
blocks, or a given number of them blocks.

� Aggressiveness of second stage: A small timeout after
which the input is considered blocked denotes an
aggressive strategy. So does the ability to execute
the second stage as an additional thread executing
concurrently with the other threads, allowing the in-
memory join process of the operator to handle any
new arrivals, instead of waiting for a disk-to-
memory stage to finish before the operator moves
on to handle all (buffered) new arrivals.

5 Cost Expressions for MJoin

In this section we present a cost model for MJoin operators.
Such a cost model is essential if optimisers are to be able to
make good decisions about when and how to employ MJoin
operators; it is also useful in explaining some of our
experimental results in Section 6.7. However, this section is
not essential to the understanding of the bulk of this paper,
and the reader who wishes to avoid getting bogged down in
its details can safely skip it.

The purpose of this section is to extract specific cost
expressions for MJoin in terms of a rate-based cost model.
Our cost expressions will make use of the cost variables and
notation in Table 1.

 5

Notation Description
hash Cost of hashing a key
move Cost of moving an object in memory
comp Cost of comparing two keys in memory

ri The input rate of the ith stream
fk Selectivity f of join predicate k

Table 1: Cost variables and notation used for modelling

5.1 Rate-based Cost Expressions

When dealing with streaming sources it is useful to consider
a rate-based optimization framework (instead of a
cardinality-based framework). In such a framework the
decision basis is the predicted output rate of an operator
when there is some prior knowledge of its input rates. The
purpose of this section is to extract an output rate estimator
for MJoin. Again, we will focus on the first stage of the
algorithm, since this is the one in which MJoin exhibits
streaming behavior.

The output rate of any process is the number of
transmitted entities over the time needed to make the
transmission [BG91], i.e.:

ontransmissi the make to needed Time
dtransmitte ouputs of Numberrate Output = Equation 1

In our approach, we assume the n inputs have rates

equal to r1, r2, …, rn tuples/second respectively. As a first
step we will concentrate on the numerator in Equation 1
and we will first make a discrete time approximation of the
output rate, before generalizing to continuous time.

Over the first second, the operator will receive r1 tuples
from the first stream, r2 from the second one, and so on.
The Cartesian product of these tuples and, hence, the total
size of the input that the operator will filter, will then be

equal to C(1)=∏ . Assuming k join predicates in the
query with each join predicate having a selectivity of f

=
n
i ir1

∏= n
i

n2

k the
total number of tuples transmitted for arrivals during the

first second will be T(1)= . During the

next second of execution each stream i will have received an
additional r

∏∏ ==
⋅ n

i i
k
j j rf

11

∏ =
k
j kf1

i tuples, a total of 2⋅ri for each stream. The size
of the Cartesian product is therefore

C(2)=∏ and the contribution of this

input to the output will be T(2)= .

From this size, however, we have to discard the inputs
handled during the first second of execution since these
have been already propagated. The contribution of the
second second to the output becomes

== i
n
i i rr

11
2

∏ =
⋅ n

i i
n r

1
2

()12

)1(2)2(

11

11

−⋅⋅

==−⋅=

∏∏
∏∏

=−

=−

nn
i i

k
j k

n
i i

nk
j k

rf

TrfT …

By induction, we can prove that the number of
transmitted outputs for any time point t will be given by the
following expression:

()()









−⋅⋅

=−−−−−⋅⋅=

∑∏∏

∏∏
−

===

==

1

111

11
121)(

n

t

nn
n

i
i

k

j
k

nnn
n

i
i

k

j
k

ttrf

ttrftT …

The next step in extracting the operator’s output rate is
calculating the denominator of Equation 1. For an arrival in
any given stream the following operations have to be
performed: (i) hash the tuple, (ii) move it into its
corresponding hash table, and (iii) probe the rest of the hash
tables for matches. Notice, however, that not every tuple
probes all hash tables. In a way resembling pipelined
execution, it goes to a next hash table only if matches in the
previous one exist, as Figure 4 depicts

In total, the cost per arrival will be equal to hash + move

+ comp⋅(1+∏), where is the cost induced

if all probes have to be performed

−
=
1
1

k
j kf

−
=

k
j

∏ −
=
1
1

k
j kf

2. Since there will be

 arrivals for a given second, that makes the time

needed to make the transmission equal to ⋅(hash +

move + comp⋅(1+∏)). Substituting this last expression

and T(t) into Equation 1 yields MJoin’s output rate
(Equation 2), which, as was the case in [VN02], is time-
dependent. In Section 6.7 we will see how Equation 2’s
output prediction rate can in fact identify cases where
MJoin’s performance might degrade.

∑ =
n
i ir1

∑ =
n
i ir1

1
1 kf

()
∑ 


















∏+⋅++⋅

∏ 







∑−⋅⋅∏
=

=

−

=

=

−

==

n

i

k

j
ki

n

i

n

t

nn
i

k

j
k

o

fcompmovehashr

ttrf
tr

1

1

1

1

1

11

1
Equation 2

6 Experiments

In this section we will present our experimental results for a
prototype implementation of MJoin.

6.1 Experimental Setup

Our goal was to measure the performance improvement we
would obtain in comparison to other algorithms designed to
work over streaming sources. To do so, we developed a
stand-alone prototype of the algorithm in Java. The queries
we used were variants of the Wisconsin Benchmark's
[BT88] JoinABPrime query, extended to handle multiple
sources. All joins were performed on the unique1
attribute of the relations ensuring the size of the result set
was equal to the size of the smallest participating relation.

2 The product’s limit is set to k-1 instead of k since one probe will
always take place.

 6

For instance, considering three streams R, S and T the where-
clause of the query would be:

where R.unique1 = S.unique1 and

S.unique1 = T.unique1

IBM's jikes compiler was used for byte-code generation,

which was executed using SUN's HotSpot virtual machine.
All presented experiments were conducted on a 1GHz Intel
Pentium Processor with 1GB of physical memory, running
RedHat Linux 7.2. To simulate streaming sources, we
assigned an arrival rate to each input and then inserted,
between arrivals, random delays following a Poisson
distribution [BG91] with the given arrival rate as its mean.
As a rule, we used the slowest streams inter-arrival rate as
the operator’s blocking threshold3.

6.2 In-Memory Performance

The first set of experiments we performed deals with
MJoin's performance when data fit entirely in memory.
These experiments highlight the fact that MJoin performs
fewer CPU-bound operations (hashes, moves, comparisons)
than a pipelined XJoin plan over the same inputs. We used a
simple three-way join query that we modeled in five
possible ways. Figure 8 depicts the plans while Table 2
presents the streams’ parameters. In the first plan, all
sources have the same arrival rate; in the top-right plan one
of the sources is rendered considerably faster than the rest
and it is put at the top of the execution plan, while in the
bottom-left plan the fast source is kept at the bottom of the
plan. For comparison, and regardless whether streams have
the same or different input rates, we employ the same
MJoin plan, the one on the bottom-right of Figure 8.

S1 S2

S3
f = 10-4

f = 10-3

 S1 S2

S3
f = 10-4

f = 10-3

Same rates Fast high

S3 S2

S1
f = 10-3

f = 10-4

S1 S3

f = 10-7

S2

Fast low MJoin same/differing

Figure 8: Plans used for in-memory experiments

We executed the five plans, keeping track of when each
tuple appeared in the output, which is essentially an
indication of a plan’s output rate. The results are plotted in

Figure 9 and Figure 10. To verify our claim that MJoin’s
superiority stems from performing fewer operations, we
instrumented the code to count each operation as it took
place. The results were in accordance with our intuition and
the algorithm’s cost model and are presented in Table 3. We
see that although in total MJoin performs more
comparisons (a side-effect from its symmetric nature) it also
performs 10,000 fewer hash and move operations.

3 A Poisson arrival process entails that the inter-arrival process
follows an exponential distribution with a mean equal to the
reverse of the Poisson process's mean.

Stream Size (tuples) Inter-arrival delay (msec)

S1 10,000 20 (5 for same rates)
S2 15,000 20 (5 for same rates)
S3 10,000 5

Table 2: Parameters for in-memory experiments

Plan shape Hashes Moves Comparisons

Deep 45,000 45,000 45,000
MJoin 35,000 35,000 50,189

Table 3: Number of operations during in-memory
experiments

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

Time (seconds)

Tu
pl

es

MJoin same

Same rates

Figure 9: In-memory performance when input rates are the
same

6.3 Scaling the Input Size

To investigate MJoin’s performance as input sizes grow, we
scaled the input sizes some (but not considerably – for that
see Section 6.5) and allocated a memory buffer less than the
inputs’ sizes so that parts of the hash-tables would be
flushed. Table 4 shows the parameters we used, while
Figure 11 shows the results. Again, MJoin was significantly
better than the other two plans, between which, the one
keeping the fastest stream at the top of the execution plan
exhibits a better performance in terms of output production
rate. Seeing that placement of a fast (or slow) stream has a
significant impact on plan performance, we decided to
experiment with streams of varying rates, i.e., not having a
steady mean arrival rate.

 7

0

2000

4000

6000

8000

10000

0 50 100 150 200 250 300 350

Time (seconds)

Tu
pl

es

MJoin differing

Fast low

Fast high

Figure 10: In-memory performance for varying input rates

Stream Size (tuples) Inter-arrival delay (msec)

S1 100,000 10
S2 100,000 5
S3 200,000 1

Table 4: Parameters for scaled input sizes

6.4 Resilience to Fluctuations

In the experiments of this section, we used the same plans
as in the previous section, but we did not keep a constant
mean arrival rate for all inputs; in particular, we varied the
input rate of S3 so that it started off fast, slowed down
towards the middle of the query and gained speed again in
the last third of execution. The objective of this experiment
was to verify MJoin's resilience to input rate fluctuations.
Figure 12 presents the results.

As expected from the findings of the previous section,
MJoin had a higher output rate in comparison to the other
two plans. An equally interesting point, however, is the
switching between performances of the two non-MJoin
plans. While the fluctuating stream was fast, the plan that
kept it at the top of the execution plan was faster than the
one keeping it at the bottom. Once the stream slowed
down, the output rates were reversed, and when the stream
returned to its initial rate, the original relative performance
again appeared. This validates our intuition that while it is
impossible to pick a single tree of binary operators that is
always optimal when input rates vary, MJoin is stable and
dominates throughout.

6.5 Window Joins

When dealing with join evaluation over streaming sources, it
makes sense to consider window-based joins, i.e., joins that
only pair tuples within a bounded time interval of each
other. This is because without some sort of window on
which tuples can join, in the limit infinite streams will
require infinite joins. In such a scenario, the inputs’ hash
tables are invalidated whenever the window expires. To
simulate a window-based join scenario, we created a three-
way join query, over three relations, each relation containing
one million tuples. Moreover, we imposed two window-

based predicates over the query, with each predicate having
a horizon of ten thousand tuples, i.e., the inputs’ hash tables
were to be invalidated whenever ten thousand tuples from a
stream were read. The three plans we used were similar to
the Fast High, Fast Low and MJoin plans of Figure 8 while the
inputs’ parameters are presented in Table 5. Figure 13
depicts the experimental results.

0

20000

40000

60000

80000

100000

0 100 200 300 400

Time (seconds)

Tu
pl

es

MJoin

Fast high

Fast low

Figure 11: Scaled input size performance

0

20000

40000

60000

80000

100000

0 100 200 300 400 500

Time (secs)

Tu
pl

es

MJoin

Fluctuating
stream high
Fluctuating
stream low

Figure 12: Performance for fluctuating input rate

As in all previous experiments, in the case of window-
based predicates the MJoin plan exhibits better
performance. This was expected for one simple reason: by
choosing an MJoin evaluation plan for a window of 10,000
tuples, we are able to keep all computation within memory
limits, and MJoin has been optimised for in-memory,
streaming behaviour.

Stream Size (tuples) Inter-arrival delay (msec)
S1 1,000,000 3
S2 1,000,000 3
S3 1,000,000 1

Table 5: Stream parameters for window joins

 8

0

200000

400000

600000

800000

1000000

0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

Tu
pl

es

MJoin

Fast High

Fast Low

Figure 13: Window join performance

6.6 Scaling the Number of Joins

The next set of experiments deals with MJoin's ability to
scale with respect to the number of joins in the execution
plan. To test this, we generated five way join queries and we
organized their plans using (i) a deep pipelined plan, (ii) a
bushy pipelined plan (both of the above employing binary
XJoin operators), or (iii) a plan having all join operations
handled by a single MJoin operator. Figure 14 presents the
plans and the sources' input parameters, while Figure 15
depicts the experimental results.

Again, MJoin performed better in terms of output rate
and was able to generate the final result sooner than the
other two plans. The point of interest in this experiment,
however, is that as time progressed MJoin’s performance
advantage over the other plans degraded, until by the end
the bushy plan had almost caught up. The next section
explains this phenomenon, which indicates that MJoin is
not always the algorithm of choice, and suggests that an
optimiser is needed to determine when the MJoin should be
used.

6.7 On the Need for Optimisation

The final set of experiments we conducted has to do with
investigating and proving that even with an operator like
MJoin, the need for optimisation of join trees still exists.
What triggered this part of our research, were the
experimental results of Section 6.6, where we saw MJoin’s
performance starting to degrade. Suspecting that the
problem was MJoin’s inherent complexity on a per-input
basis (as the cost model of Section 5.1 shows) we added an
additional input and one more join predicate to the query,
thus having to perform a six-way join. Again, we generated
three arbitrary plans, one organized as a pipelined plan, one
organized as a bushy plan, and finally a single-operator six-
way plan using MJoin. Figure 16 presents the two non-
MJoin plans, where each input is annotated with its size in
tuples and its inter-arrival delay. Execution of these plans,
along with the single MJoin plan, yields the performance
observed in Figure 17. Though MJoin behaves better in the
initial execution stages, the bushy plan overtakes it as time
goes by.

100K
3ms

300K
1ms

100K
5ms

100K
10ms

200K
2ms

f = 3.3*10-6

f = 10-6

f = 10-6

f = 5*10-6

5-Way-Pipeline

200K
2ms

100K
10ms

100K
5ms

100K
3ms

300K
1ms

f = 3.3*10-6f=10-6

f = 10-6

f = 5*10-6

5-Way-Bushy

Figure 14: Plans used when scaling the number of joins

0

20000

40000

60000

80000

100000

0 100 200 300 400

Time (seconds)

Tu
pl

es

MJoin

5-Way-Bushy

5-Way-Pipeline

Figure 15: Experimental results after scaling the number of
joins

Our initial explanation of MJoin’s performance
degradation had to do with its per-input cost, as this is
modelled in Section 5.1’s cost model. To further follow our
intuition, we measured the actual cost in clock ticks of the
various parameters appearing in MJoin’s cost expression, by
accessing the processor’s hardware counters. Table 6
presents these measurements.

 9

200K
2ms

100K
5ms

100K
5ms

100K
3ms

300K
1ms

100K
10ms

f = 10-6

f = 5*10-6

f = 10-6

f = 10-6

f = 3.3*10-6

6-Way-Pipeline

100K
3ms

300K
1ms

100K
5ms

100K
10ms

100K
5ms

200K
2ms

f = 10-6f = 3.3*10-6

f = 10-6 f = 5*10-6

f = 10-6

6-Way-Bushy

Figure 16: Six-way join execution plans

We then focused on the denominator of Equation 2,
which is the operator’s per-time-unit cost. Performing the
computation yields that, roughly, the per-time-unit cost is
1.52⋅10-3 seconds. Looking at the streams’ input rates, as
shown inFigure 16, it is easy to see that this time is greater
than the fastest stream’s inter-arrival rate (10-3 seconds for
the three-hundred tuple stream). This translates into a
backlog of tuples being created for that particular stream; as
far as the stream is concerned the CPU is too slow to
handle its rate. As time goes by, this backlog starts to
dominate the stream’s input rate, degrading MJoin’s
performance. This problem does not occur in the case of
the bushy plan, which uses multiple binary operators hence
is not sensitive to the total number of input streams in the
join.

0

20000

40000

60000

80000

100000

0 100 200 300 400 500

Time (seconds)

Tu
pl

es

6-Way-Bushy

MJoin

6-Way-Pipeline

c

Figure 17: Six-way join performance

Operation Average cost (clock ticks) Average cost (seconds)4

hash 175.008 1.75⋅10-7
move 426.518 4.27⋅10-7
Comp 49.133 4.91⋅10-8

Table 6: Cost of various operations as measured by the
processor’s hardware counters

Since our earlier experiments that MJoin is superior for
smaller numbers of joins, we experimented with plans that
use two smaller MJoin operators instead of one large one.
Figure 18 shows the plans we tested, while Figure 19
presents the measured performance of these plans, along
with that of the bushy plan and the single MJoin plan.

100K
5ms

300K
1ms

100K
10ms

200K
2ms

100K
3ms

100K
5ms

f=3.3*10-11 f=5*10-11

f=10-6

MJoin-Balanced

100K
5ms

300K
1ms

100K
10ms

200K
2ms

100K
3ms

100K
5ms

f=5*10-16f=3.3*10-6

f=10-6

MJoin-Unbalanced

Figure 18: The two extra six-way join plans

0

20000

40000

60000

80000

100000

0 100 200 300 400

Time (seconds)

Tu
pl

es

MJoin-Balanced

MJoin-Unbalanced

6-Way-Bushy

MJoin

Figure 19: Revised six-way join plan performance

Figure 19 shows that the plans with multiple small
MJoin operators can outperform both the single large

4 We were using a 1GHz processor; one clock tick is equal to
10-9 seconds.

 10

MJoin operator and the plans built up with only binary
operators. It is interesting to note that the single MJoin
operator, while not the best plan overall, dominates in the
first stages of the query execution.

Clearly, this presents a great opportunity (or challenge,
depending upon your perspective!) for query optimisation:
ideally, the optimiser needs to know how many result tuples
it should optimise for, then it needs to choose a plan that
distributes the join over the optimal number of MJoin
operators of with the right number of inputs. Cost formulas
like the ones presented in Section 5 can assist the optimiser
in this task.

7 Conclusions and Future Work

In the previous sections we proposed and evaluated a new
join algorithm that addresses issues that arise with multi-way
join queries over streaming inputs. In particular, our claim is
that by using a multi-input symmetric join operator instead
of a pipelined execution plan of symmetric binary operators,
we obtain better performance. To support our claim, we
validated our intuition by conducting a series of
experiments over multi-way join queries using the
Wisconsin Benchmark data set. In future work we plan to
extend the MJoin operator to handle more classes of join
queries and investigate the optimisation problems it
introduces.

Bibliography – References

[AB+01] A. Arasu, B. Babcock, S. Babu, J. McAlister and
J. Widom, Characterizing Memory Requirements for
Queries over Continuous Data Streams, Stanford
Technical Report, November 2001,
http://dbpubs.stanford.edu/pub/2001-49.

[AH00] R. Avnur and J. M. Hellerstein, Eddies:
Continuously Adaptive Query Processing,
Proceedings of the 2000 ACM SIGMOD
International Conference on Management of
Data, Dallas, Texas, USA, May 2000, pp. 261-
272.

[B70] B. H. Bloom, Space/Time Trade-offs in Hash
Coding with Allowable Errors, CACM, 1970, (13)
7:422-426.

[BT88] Bitton, D. and C. Turbyfill, A Retrospective on the
Wisconsin Benchmark, in Readings in Database
Systems, edited by Michael Stonebraker,
Morgan Kaufman, 1988.

[Bab79] E. Babb, Implementing a Relational Database by
Means of Specialized Hardware, TODS, 1979, (4)
1:1-29.

[BC+81] P. A. Bernstein and D.-M. W. Chiu, Using Semi-
Joins to Solve Relational Queries, JACM, 1981, (28)
1:25-40.

[BG+81] P. A. Bernstein, N. Goodman, E. Wong, C. L.
Reeve and J. B. Rothnie Jr., Query Processing in a
System for Distributed Databases (SDD-1), TODS,
1981, (6) 4:602-625.

[BG91] D. Bertsekas and R. Gallager. Data Networks,
Prentice Hall, 2nd edition, 1991.

[BJ01] S. Babu, and J. Widom, Continuous Queries over
Data Streams, SIGMOD Record, Sept. 2001.

[CD+00] J. Chen, D. J. DeWitt, F. Tian and Y. Wang.
Niagara-CQ: A Scalable Continuous Query System
for Internet Databases, Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, USA, May
2000, pp. 379-390.

[CK971] M. J. Carey and D. Kossmann, Processing Top N
and Bottom N Queries, Data Engineering Bulletin,
1997, (20) 3:12-19.

[CK972] M. J. Carey and D. Kossmann, On Saying
"Enough Already!" in SQL, Proceedings ACM
SIGMOD International Conference on
Management of Data, May 13-15, 1997, pp.
219-230.

[DG+02] M. Datar, A. Gionis, P. Indyk and R. Motwani,
Maintaining Stream Statistics over Sliding Windows,
2002 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2002).

[DG+90] D. J. DeWitt, S. Ghandeharizadeh, D. A.
Schneider, A. Bricker, H-I Hsiao and R.
Rasmussen. The Gamma Database Machine Project.
TKDE, 1990, (2) 1:44-62.

[DG85] D. J. DeWitt and R. H. Gerber, Multiprocessor
Hash-Based Join Algorithms. Proceedings of 11th
International Conference on Very Large Data
Bases, August 21-23, 1985, Stockholm, Sweden,
pp 151-164.

[DN+92] D. J. DeWitt, J. F. Naughton, D. A. Schneider
and S. Seshadri. Practical Skew Handling in Parallel
Joins, 18th International Conference on Very
Large Data Bases, August 23-27, 1992,
Vancouver, Canada, pp 27-40.

[GB+98] G. Graefe, R. Bunker and S. Cooper, Hash Joins
and Hash Teams in Microsoft SQL Server,
Proceedings of the 24th VLDB Conference,
New York, USA, 1998, pp. 86-97

[IF+99] Z. G. Ives, D. Florescu, M. Friedman, A. Levy
and D. S. Weld. An Adaptive Query Execution
System for Data Integration, Proceedings of the
1999 ACM SIGMOD International Conference
on Management of Data, Philadelphia,
Pennsylvania, June 1999.

[KK+99] A. Kemper, D. Kossmann and C. Wiesner,
Generalized Hash Teams or Join and Group-by,
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

[ML86] L. F. Mackert and G. M. Lohman. R*
Optimizer Validation and Performance
Evaluation for Distributed Queries, VLDB'86
Proceedings of the 12th International
Conference on Very Large Data Bases, August
25-28, 1986, Kyoto, Japan, pp 149-159.

[Sch83] G. Schumacher. GEI’s Experience with Britton-
Lee’s IDM, IWDM, 1983, pp. 233-241.

 11

http://dbpubs.stanford.edu/pub/2001-49

[Sha86] L. D. Shapiro. Join Processing in Database Systems
with Large Main Memories, TODS, 1986, (11)
3:239-264.

[UF00] T. Urhan and M. J. Franklin. XJoin: A Reactively-
Scheduled Pipelined Join Operator, IEEE Data
Engineering Bulletin, June 2000, (23) 2:27-33.

[UFA98] T. Urhan, M. J. Franklin and L. Amsaleg. Cost
Based Query Scrambling for Initial Delays,
Proceedings of the 1998 ACM SIGMOD
International Conference on Management of
Data, Seattle, Washington, USA, June 1998, pp.
130-141.

[VN02] S. Viglas and J. F. Naughton. Rate-based
Optimization for Streaming Information Sources, to
appear in SIGMOD 2002.

[WA91] A. N. Wilschut and P. M. G. Apers. Pipelining in
Query Execution, Conference on Databases,
Parallel Architectures and their Applications,
Miami, 1991.

 12

	Abstract
	Introduction
	Motivation
	Related Work
	Algorithm Description
	Data Structures
	The Three Stages of MJoin
	In-Memory Operation
	Disk-to-Memory Operation
	Disk-to-Disk Operation
	Duplicate Detection

	Implementation Abstractions

	Cost Expressions for MJoin
	Rate-based Cost Expressions

	Experiments
	Experimental Setup
	In-Memory Performance
	Scaling the Input Size
	Resilience to Fluctuations
	Window Joins
	Scaling the Number of Joins
	On the Need for Optimisation

	Conclusions and Future Work
	Bibliography – References

