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Abstract 
We investigate algorithms for evaluating moving 
window joins over pairs of unbounded streams. 
We introduce a unit-time-basis cost model to 
analyze the expected performance of these 
algorithms. Using this cost model, we propose 
strategies for maximizing the efficiency of 
processing joins in three scenarios. First, we 
consider the case where one stream is much 
faster than the other. We show that an 
asymmetric combination of hash join and nested 
loops join (hash join on one input, nested loops 
join on the other) can outperform both the 
symmetric hash join and the symmetric nested 
loops join. Second, we investigate the case where 
system resources are insufficient to keep up with 
the input streams. We show that we can 
maximize the number of join result tuples 
produced in this case by properly allocating 
computing resources across the two inputs 
streams. Finally, we investigate strategies for 
maximizing the number of result tuples produced 
when memory is limited. We revisit the first two 
cases in this context, and show that proper 
memory allocation across the two input streams 
can result in significantly lower resource usage 
and/or more result tuples produced. 

1. Introduction 
Recently the database research community has begun 
focusing its attention on query processing over unbounded 

continuous input streams rather than fixed-size stored data 
sets.  In such environments, many assumptions made in 
traditional query processing are no longer valid, and new 
problems arise. One of the fundamental questions that 
naturally arises is how to process joins over unbounded 
streams.  

In the limit, processing a join over unbounded input 
streams requires unbounded memory, since every tuple in 
one infinite stream must be compared with every tuple in 
the other. Clearly this is not practical.  In view of this, we 
expect that in practice most join queries over unbounded 
input streams will contain �window predicates� that 
restrict the number of tuples that must be stored for each 
stream.  For example, in a join of two streams R and S, we 
might specify that we are only interested in R tuples that 
have arrived in the last t1 seconds, and S tuples that have 
arrived in the last t2 seconds. We call a join with such 
timing constraints a moving window join. Moving window 
joins are continuously running queries that produce new 
results as new input tuples arrive.  

Figure 1 illustrates a moving window join. There are 
two input streams, A and B, each with its respective 
moving window size. Assuming an arrival rate of aλ  and 
a window size of aT  for input stream A ( λb  and bT  
respectively for input stream B), the moving window size 
is a aTλ  ( b bTλ , respectively).   For the join to correctly 
compute the answer, it must at all times maintain one 
window�s worth of input tuples for each input stream.  
Tuples enter and leave this window of stored tuples as 
time progresses. 

To illustrate a simple algorithm for evaluating a 
moving window join, assume we perform a nested loops 
join (NLJ) over the two windows, A and B. By this we 
mean that upon each arrival of a new tuple from stream A, 
three tasks must be performed: 

1. Scan stream B�s window to find any matching 
tuples and propagate them to the result. 

2. Insert the new tuple into stream A�s window. 
Since we are using NLJ, this insertion can be a 
simple append from the stream�s input buffer to 
the end of the allotted window buffer. 
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Figure 1. Moving window join 

3. Invalidate all expired tuples in stream A�s window 
(this is just those tuples whose timestamp is now 
outside the current time window.) We can naïvely 
perform this invalidation by a simple scan of the 
window buffer, marking as expired all tuples 
violating the window�s constraints.  

Even with this simple example, some interesting 
questions arise: 

! How can we measure the efficiency of a moving 
window join evaluation strategy, since the 
traditional metric of execution time to completion 
does not apply?  

! Can an algorithm for a moving window join take 
advantage of asymmetries in the rates of the input 
streams? 

! How can we deal with cases in which an input 
stream is so fast that the system cannot keep up? 

! If memory is the bottleneck, how should we 
allocate  memory between the two windows for 
the two inputs?  

We seek to address these questions in the rest of this 
paper. Turning to our first question above, we introduce a 
unit-time-basis cost model to analyze the expected 
performance of moving window joins evaluation 
algorithms.  Using this cost model, we propose strategies 
for evaluating window joins in three scenarios.  

In the first scenario one stream is much faster than the 
other. We investigate whether this difference between 
speeds plays any role in join algorithm performance and, 
if so, how we can take advantage of this role. We show 
that this issue can be addressed by further refining our 
cost model so that it models the contribution to the join 
evaluation cost by each join input stream separately. 
Using this refined cost model, we show that, perhaps 
surprisingly, asymmetric streaming join algorithms can 
perform better than their symmetric counterparts the 
symmetric hash join and symmetric nested loops join.  
(By �asymmetric� we mean that, for example, the join 
operator might use nested loops for one input stream and 
hash join for the other.) 

In the second scenario we assume that system 
resources are insufficient to keep up with the speed of the 
input streams. Such a scenario can arise either when the 

query to be evaluated contains expensive predicates or the 
input stream�s arrival rate is faster than the join operator�s 
service rate.  We address the questions of optimal 
resource allocation in such a scenario by introducing an 
analytical model that allows us to maximize the number 
of result tuples generated by properly allocating 
computing resources across the two input streams.   

In our third and final scenario memory is the 
constraining resource.  In more detail, the problem is the 
following: given a fixed amount of memory and flexible 
time windows for the join, how can we adjust the window 
sizes in a way that the total number of tuples produced is 
maximized?  We show that the proper allocation of 
memory to the streams in such a case can have a strong 
effect on the performance of the join algorithm. As we 
will see, there is a strong correlation between memory 
allocation techniques, resource utilization and the number 
of answer tuples generated.  

The rest of the paper is organized as follows: Section 
2 presents related work. Section 3 describes our proposed 
cost model framework for moving window joins. Section 
4 presents techniques for maximizing join efficiency in 
terms of the resource consumption and/or the number of 
result tuples produced. Finally, Section 5 gives our 
conclusions and identifies future work. 

2. Related Work 
As the Internet computing infrastructure matures, the data 
access paradigm considered by DBMS researchers is 
expanding from the traditional disk-oriented paradigm to 
include network stream-oriented applications.   A large 
and growing body of research exists addressing the new 
problems that arise in such situations.  

One thrust in this body of research addresses problems 
arising when processing continuous queries [1][2].   The 
NiagaraCQ system addresses scalability in terms of the 
number of queries by introducing predicate grouping and 
group optimization techniques. This system was built in 
the context of the Niagara Internet query system [3], 
which proposes a combining XML Internet searching and 
query processing. Such continuous query systems can 

Tb stream B time window size 
λb stream B arrival rate 
B number of tuples in window B - Tbλb 
|B| number of hash buckets in window B 
B/|B| number of tuples in a B hash bucket  
NKey(B) number of unique keys in window B 
M number of tuples that fit in memory 
Cn cost of accessing one tuple in NLJ 
Ch cost of accessing one tuple in HJ 
σb window B selectivity factor - 1/NKey(B) 
σ join selectivity factor - min(σa, σb) 

Table 1. Definition of terms used in cost model 



utilize the analytical framework proposed in this paper to 
extend their domain to include window join queries.  

Another relevant research area deals with adaptive 
query processing [4][5] and query scrambling [6]. In 
adaptive query processing, the goal is to identify at run 
time when sub-optimal performance arises because of 
differences between the estimated and measured 
selectivity factors in the query. When such a case is 
detected, the plan is dynamically altered in a way that is 
believed to enhance the overall performance.  In query 
scrambling, the focus is on identifying and exploiting 
periods during which some input streams are blocked. 
Whenever an operator blocks, the execution frameworks 
pre-empts the operator, allowing other, non-blocked 
operators to execute. Both research directions are 
compatible with ours, as they can take advantage of our 
cost models and asymmetric window join processing 
algorithms. 

Streaming algorithms for join evaluation is another 
relevant research area.  The first such algorithm was the 
Symmetric Hash Join [7], which was optimised for in-
memory performance, leading into thrashing on larger 
inputs. To rectify the situation XJoin was introduced [8]. 
Similar techniques are presented in [4] as well. A 
symmetric nested loops join was proposed in the context 
of online aggregation [9].  None of this work addressed 
the issues of performing window joins over unbounded 
input streams.  

Some research exists on single input stream moving 
window or temporal aggregates [11][12]. Datar et al. 
presented a technique to maintain moving window 
statistics [13].  None of these considers moving window 
joins.  The closest work to our problem domain is the 
Diag-Join proposed by Helmer et al. [10]. Diag-Join was 
developed for data warehouse environment in which large 
relations are being joined. It takes advantage of append-
heavy nature of warehouse relations by exploiting the fact 
that most of the warehouse join performed on foreign 
keys, and matching tuples are likely to be found in the 
physically close time frame of their creation. This work 
did not consider streaming output, nor did it consider 
asymmetric  join algorithms or the resource allocation 
issues we raise here. 

A good deal of research has been conducted on the 
general architecture of stream processing systems. 
Seshadri et al. developed a sequence data base system, 
SEQ [17][18].  In [14], Babu and Widom proposed an 
architecture for a general purpose stream data 
management system and identified research problems in 
continuous query processing over streams. Tribeca is an 
example of special purpose stream database 
implementations [19]. Other general stream-oriented 
database architecture work appears in the sensor network 
domain [20][21].  Examples of this work include 
Berkeley�s Telegraph project [15] and Cornell�s Cougar 
database project [16] is also extended to support sensor 

data. None of these papers considers window join 
evaluation. 

Finally, Viglas and Naughton proposed a rate based 
streaming query optimization framework [22]. Integrating 
the rate based optimization model with our unit time cost 
model is an interesting area for future research.   

3. Estimating the Cost of Moving Window 
Joins 

Conceptually, a join operator must ensure that every 
tuple in one of its inputs is compared with every tuple in 
the other.  When these input sets are unbounded, as is the 
case for infinite streams and continuous queries, this of 
course is problematic � to compare two infinite inputs 
would require infinite storage.  We think that in view of 
this, most practical joins over streaming inputs will limit 
the storage required for each input by imposing a 
temporal constraint on each streaming input. That is, 
instead of saying we want to join all tuples of R and S, we 
say we want to join all tuples that have arrived on R in the 
last t1 seconds with all the tuples that have arrived on S in 
the last t2 seconds.  With the addition of such moving 
window predicates, even a join over infinite inputs is a 
bounded memory operation. 

A window join query consumes unbounded input 
streams and produces outputs as long as the input 
continues to stream in. A traditional, cardinality-based, 
cost model for an evaluation algorithm is incapable of 
producing cost estimates in such a scenario since it 
estimates the time needed for a query to be run to 
completion, and the algorithm may never complete. 
Estimating the cost of a continuous window-join query, 
therefore, requires a new metric; we propose a unit-time-
basis cost model as such a metric. 

 Consider the scenario in Figure 1. Each arrival in 
stream A�s window (hereafter we will use simply A to 
refer to this window when this is clear in context) triggers 
three tasks: checking window B for joining tuples, 
inserting the tuple in window A and invalidating any 
expired tuples from that window. A cost formula for that 
operation is shown below.  

 
( ( ) ( ) ( ))

( ( ) ( ) ( ))
A B a

b

C probe b insert a invalidate a
probe a insert b invalidate b

λ
λ

= + +
+ + +
*

     

 
The first half of the formula captures the cost of 

operation for stream A arrivals, while the second half does 
the same for stream B arrivals. In the formula, each 
component (probe, insert, invalidate) is multiplied by the 
expected number of arrivals per unit time.  

Notice that this model captures the invalidation cost. 
Expired tuples must be invalidated to ensure that the 
window predicates are correctly evaluated and to avoid 
wasting memory.  In the formula, we assume that active 
invalidation is used, i.e., every time a new tuple is 



inserted, expired tuples get checked and removed. 
Alternatively, a lazy invalidation could be used, in which 
the invalidation would be postponed until the window is 
probed.  

There are space-time tradeoffs involved in the choice 
of the invalidation scheme. Lazy invalidation may 
improve the overall join processing cost, but it requires 
more memory.  While lazy vs. active invalidation is an 
interesting area for future work, it is not central to the 
contributions of this paper, so for the most part we will 
use the active invalidation cost model in the remainder of 
this paper. 

Another interesting point is that the cost of a single 
join operation can be divided into two independent 
components, one for each input stream. For example, the 
following is the unit cost of joining A tuples to B tuples, 
plus the invalidation and insertion cost for tuples into B.  
 

( ( )) ( ( ) ( ))A B a bC probe b insert b invalidate bλ λ= + +)       (1) 
 
This formula captures  the aggregate cost of accessing 

window B in a single time unit. Suppose we perform NLJ 
from A to B, and we estimate the cost based on the 
number of tuples each algorithm touches. Then the cost of 
probe(b) equals the size of window B (since the whole 
window must be scanned) and the insert(b) and 
invalidate(b) components are both equal to one (since one 
tuple will be inserted and one tuple invalidated.) Notice 
that the all three terms are determined without knowing 
the join algorithm chosen for the B join A direction. We 
denote the cost of each join direction as CA)B and CA(B, 
for joins A to B and B to A, respectively. 

3.1 Cost of Nested Loops Join A to B 

The cost formula for a nested loops join from A to B is 
shown below (the terms used in cost model are described 
in Table 1): 

 

( ) ( 2 ) ( 2 )A B α b n α b b b nC NLJ B C T Cλ λ λ λ λ= + × = + ×)      (2) 
 
The cost of nested loops join is equal to the number of 

tuples accessed in a time unit during the join operation, 
multiplied by the cost of accessing a single tuple.   The 
term aBλ  represents the number of tuples accessed to 
search for matches in window B. It is the NLJ-specific 
equivalent of ( ( ))a probe bλ  in equation (1). The number 
of tuples in window B is b bT λ  because in each time unit, 

bλ  arriving tuples will enter the window and stay there 
for bT  time units.  

The invalidation and insertion costs are 
straightforward for the NLJ case. The insertion cost is the 
cost of handling one tuple, multiplied by stream B�s 
arrival rate. This is because a tuple insertion requires no 
extra tuple accesses except for the inserted tuple itself. 
For invalidation, the average number of expired tuples for 
each new tuple arrival is similarly equal to one. Although 
the actual number of invalidated tuples may differ for 
each time unit, depending on stream B�s  distribution, 
with a fixed time window and a constant arrival rate, the 
average number of invalidated tuples is one. Hence, the 
cost of insert and invalidation for NLJ becomes 2 bλ , 
multiplied by the single tuple access cost, nC . 

We briefly mentioned earlier that there are tradeoffs 
between time and space when using lazy invalidation. The 
cost formula for lazy invalidation is shown below: 

 
2( ) ( log ( / ) 1 )A B α b b b a n b nLAZYC NLJ T C Cλ λ λ λ λ= + + +      )

 
The number of expired tuples, piled up between A 

tuple arrivals, is equal to the product of B�s arrival rate 
and A�s inter-arrival time, i.e., /b aλ λ . We assume the 
simple optimization of performing binary search to reduce 
the invalidation cost. 
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Figure 2. Cost of moving window joins (Ta=60, λa=10, 
Tb=60, σa=0.1, σb=0.1, Cn=0.5, Ch=0.65) 

Figure 3. Cost of moving window joins (Ta=60, λa=10, 
Tb=60, σa=0.05, σb=0.05, Cn=0.5, Ch=0.65) 



3.2 Cost of Hash Join A to B 

In the case of a hash join HJ, the cost of probe(b) and 
invalidate(b) in equation (1) is a function of the hash 
bucket size in window B. A typical probe action requires 
one key hashing and key comparisons for each tuple in 
the retrieved bucket. The invalidation task also performs 
similar actions. The HJ cost formula becomes: 

 

( ) ( ( 1))
| | | |

b b b b
A B α b h

T TC HJ C
B B
λ λλ λ= + + ×)                 (3) 

 
As shown in Table 1, b bT Bλ  represents the number 

of tuples in a hash bucket in window B. A typical in-
memory hash table implementation can ensure the number 
of buckets is close to the number of unique keys in the 
window. Throughout the paper, unless specified otherwise, 
we will use the terms NKey(B), |B|, and 1/ bσ  
interchangeably. The following equation is equivalent to 
the one given above. 

 
( ) ( )A B α b b b b b b b b hC HJ T T Cλ λ σ λ λ σ λ= + + ×)                  

 
The constant weight factor, hC , represents the cost of 

accessing a single tuple in a specific hash table 
implementation. Later, we will show how to determine 
these weight factors for both HJ and NLJ.    

The cost formula above reflects active invalidation. 
For lazy invalidation, invalidation takes place only when a 
new tuple probes a bucket and it is performed one bucket 
at a time. As a result, expired tuples in other buckets 
survive until the next probe hits the bucket. Unlike the 
NLJ case, HJ lazy invalidation requires even more extra 
memory because the invalidation is performed only on 
one bucket after each probe.  

3.3 Cost of Full Joins 

In this section, we present three cost formulas including 
two symmetric join implementations (HJ, NLJ) and an 
asymmetric combination of HJ and NLJ. We denote these 
by HHJ, NNJ, and HNJ, respectively. We named each 
combination by concatenating the initials of two join 
algorithms. For instance, HNJ means that the left window 
(A) contains hash data structure for hash join and the right 
window (B) contains a data structure for nested loops join.  
The cost formulas for the three full joins are given below, 
while the cost formula from NHJ is omitted, as it is 
obvious from HNJ. 

 
( ) ( ) ( )

                 ( )( 1)
| | | |

A B A B A B

b b a a
α b h

C HHJ C HJ C HJ
T T C

B A
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                 (4) 
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                ( 2) ( 2)
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α b b n h h b h n

C HNJ C NLJ C HJ
T TT C C C C C

A A
λ λλ λ λ
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= + + + +
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Figure 2 and 3 illustrates example cost curves for each 

join algorithm combination for various assumed input 
rates. The difference between the two graphs is that 
Figure 2 is plotted using the join selectivity of 0.1 and 
Figure 3 is plotted using 0.05. We only show the half of 
the graph for the case where bλ  is greater than aλ . The 
remaining half can be generated from this graph by 
changing the x-axis label to aλ  and switching the two 
series, HNJ and NHJ. Other than that, everything is 
identical to the presented case.  

As expected, the HJ outperforms every other 
combinations in the beginning where the input streams� 
speed difference is minimal. However, as the speed gap 
between the two gets wider, the cost of HJ increases faster 
than that of HNJ and finally exceeds that of HNJ at 
around 70 tuples/sec (Figure 2) and 140 tuples/sec (Figure 
3) in each graphs. The performance crossover point in 
Figure 3 is about twice as that in Figure 2, which is equal 
to the ratio of Nkey values used in each graph. In the 
following section, we will discuss issues regarding how to 
estimate weight factors, Cn and Ch, and how to determine 
the crossover  points. 

3.4 Estimating the Weight Factors 

So far, we have been using Cn and Ch to represent 
implementation effects and/or system dependent costs. In 
this section, we focus on estimating the ratio between 
them rather than their absolute values, because that is 
what is required for the cost model.  In the following we 
illustrate measuring this ratio in our implementation. 

We implemented a moving window hash join and a 
moving window nested loops join algorithm, and a 
moving window join operator that can accommodate 
asymmetric combinations of the two. The operators were 
implemented in Java and run on Sun Microsystems� Java 
HotSpot Client VM 1.3.1. Experiments were performed 
on an Intel PIII 600Mhz machine with 128MB of memory, 
running Windows 2000.  

To validate our cost model, we first need to find the 
correct weight factors. Figure 4 illustrates system time vs. 
cost model curves for one-way joins from A to B. CPU 
time is measured by processing 60 second�s worth of 
tuples without intermittent delays. For instance, to 
measure the CPU time for bλ  equal to 100 tuples/sec, we 
process 6000 tuples in one batch and measure the total 
running time. We chose this way instead of measuring 
individual tuple handling costs for two reasons. First, in 
this way, we can measure the CPU time even for an input 
load that exceeds the system capacity. For instance, at the 
arrival rate 120 tuples/sec, HJ crosses the 60 seconds line. 
This means that the HJ requires full computing power of 
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the system to process the input rate, bλ , of 120 tuples/sec 
and above. Second, processing single tuples takes too 
little time to be measured accurately given the granularity 
of our system timers.  

To plot the graph in Figure 4, we chose 0.5 and 0.65 
for Cn and Ch, but  what is important here is not the actual 
values for each, but the ratio between the two. The weight 
factor ratio between the two implementations, HJ and NLJ, 
is 1.3 in our implementation. The values 0.5 and 0.65 are 
chosen only for the purpose of aligning the model cost 
with the actual CPU time.  

Notice that both system time and model cost curves 
have a crossover point where NLJ starts to outperform HJ. 
The turnover point was close to 70 tuples/sec for arrival 
rate B. In other words, the performance crossover happens 
roughly when input stream B becomes more than 7 times 
faster than stream A. 

It is much more important to ensure that the cost 
model accurately predicts the crossover points than the 
actual system time. That is because the point of estimating 
cost is to compare alternative algorithms, and to choose 
the right algorithm for a given scenario.  

The crossover points can be calculated by equating the 
two cost formulas CA)B(HJ) and CA)B(NLJ).  
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Constant terms are ignored in the denominator of the 
third equation, as their effects are small when compared 
to the other terms; this makes the formula simpler and 
more intuitive. The ratio Ch/Cn represents the tuple access 
overhead of a hash join when compared to that of a nested 
loops join.  

The overhead ratio can differ from system to system 
and from implementation to implementation. To measure 
it, we ran a simple test on our particular implementation. 
We compared actual CPU time of each join operation 
with a varying input arrival rate for B, and then found the 
system�s crossover point. Next, we replaced the arrival 
rates in the last equation with the measured values and 
solved the equation to get the overhead ratio. In our 
system, the overhead ratio was equal to 1.3.  

Figure 5 illustrates two curves representing the 
measured and predicted crossover points. We plot the 
graph with varying |B|, which happens to be the only 
variable that actually determines the crossover points, as 
illustrated in equation (7) above. It shows that the cost 
model with an overhead ratio of 1.3 closely approximates 
the crossover points measured using the real system 
implementation.  

To illustrate the implication of this, suppose we are 
joining two streams, A and B, with rates of 10 tuples/sec 
and 100 tuples/sec respectively and suppose there are 10 
unique keys in stream B. We assume the number of hash 
buckets is roughly equivalent to the number of unique 
keys in the target stream. Given this, we can tell using the 
cost model that NLJ will outperform HJ for join direction 
A to B. since the turnover point is calculated to be 
approximately equal to 6.7 and the ratio between the input 
stream arrival rates ( b aλ λ =10) is greater than the 
calculated crossover point.  
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Figure 7. Join output rates with varying λb 

(Ta=60, Tb=60, λa=10, σa=0.1, σb=0.1) 

0
2
4
6
8

10
12
14
16
18
20

10 30 50 70 90 110 130 150 170 190
λb (tuples/sec)

O
ut

pu
t R

at
e 

(1
00

0 
tu

pl
es

/s
ec

)

HJ  one-way
NLJ  one-way
HHJ
HNJ

4. On Maximizing the Efficiency of 
Processing Joins  

In this section, we investigate strategies for maximizing 
the efficiency of processing moving window joins in three 
scenarios: (i) one stream is much faster than the other, (ii) 
computing resources are insufficient to keep up with the 
speed of the input streams, and (iii) memory resources are 
limited.  

We divided the problem of maximizing join efficiency 
into four categories of sub-problems:  

• Constant time window and Constant arrival rate 
(CTCA)  

• Constant time window and Variable arrival rate 
(CTVA) 

• Variable time window and Constant arrival rate 
(VTCA) 

• Variable time window and Variable arrival rate 
(VTVA)  

We consider CTCA in Section 4.1, CTVA in Section 
4.2, and both VTCA and VTVA in Section 4.3.  

4.1 Exploiting Asymmetry in Input Streams Speed 

In this section, we consider the case where the two time 
windows are fixed and the aggregate speed of two streams 
is less than the system�s service rate µ (i.e., a bλ λ µ+ < ). 
We evaluated both NLJ and HJ in this context. NLJ is 
potentially the worst join algorithm and HJ is often the 
best join algorithm in traditional DBMS settings. We 
show, however, that with asymmetry in the arrival rates of 
input streams, the asymmetric combination of HJ and NLJ 
can outperform both previously proposed  symmetric HJ 
and symmetric NLJ. 

From the equation (7) in Section 3.4, we get an 
algorithm determinant, shown below.  
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For given parameters, we can predict the likely winner 

using this formula. If this inequality holds, we can predict 
NLJ will outperform HJ; otherwise, HJ will outperform 
NLJ. By choosing the cheaper algorithm, we can 
accommodate faster input rates without thrashing and in 
turn generate more results. 

Figure 6 illustrates the CPU time curves for four full 
join combinations. For the same reasons discussed in 
connection with Figure 4, we measured CPU time by 
processing 60 second�s worth of tuples without 
intermittent delays. The graph shows that HHJ 
outperforms any other algorithm until the input rate 
reaches about 70 tuples/sec; then, HNJ takes over for the 
rest of the graph. In other words, either HHJ or HNJ is the 
winner over other combinations for join direction A to B, 
in the range where stream B is faster than or equal to the 
speed of stream A. For the sake of presentation, we 
ignored the losing combinations, NHJ and NNJ, in Figure 
7. 

Figure 7 illustrates the output rates of two one-way 
joins, HJ and NLJ, and two full joins, HHJ and HNJ. One-
way HJ reaches its thrashing point at 120 tuples/sec and 
symmetric HJ reaches the point a little earlier, at 110 
tuples/sec. This seems reasonable since the cost of a full 
join should be greater than that of a one-way join. Both 
hash join output rates decrease drastically after each 
passes its thrashing point. On the other hand, HNJ output 
rates continue to increase until bλ  hits 190 tuples/sec. It 
produces 18939 tuples per second at its peak right before 
entering the thrashing point. Meanwhile, HHJ produces 
11844 tuples per second at its peak, when bλ  hits 110 
tuples/sec. Interestingly, both one-way HJ�s and HHJ�s 
thrashing points are closely predicted in the CPU time 
curve shown in Figure 4 and Figure 6, respectively.  
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Figure 6. CPU Time of four full joins     
(Ta=60, Tb=60, λa=10, σa=0.1, σb=0.1) 
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For HNJ, however, the prediction is less accurate than 
for HHJ. The CPU time curve of HNJ crosses the 
boundary between 160 and 170 tuples/sec, but the output 
rate graph in Figure 7 shows thrashing occurring at 
around 190 tuples/sec. This discrepancy is largely due 
implementation details. The stream feeder we 
implemented emulates the streams� arrival rate by putting 
inter-arrival delays (1/arrival rate) between transmissions. 
The actual inter-arrival time that join operator observes, 
however, is slightly longer than that, because the stream 
feeder�s stream handling overhead is added to each tuple 
delivery. As a consequence, the join operator processes 
the streams at a slightly slower speed than intended. On 
the other hand, the CPU time measurement did not rely on 
the stream feeder. Instead, it generated the exact number 
of tuples for each arrival rate. As a result, it processes 
more tuples than the actual join operator does for each 
arrival rate.  

Moreover, it is not the case that the prediction for HHJ 
is correct and the one for HNJ prediction is not, because 
the HHJ�s boundary crossing range, which is between 110 
and 120 tuples/sec, is roughly equivalent to the HNJ range 
of 160 to 190 tuples/sec in terms of CPU time, due to the 
differences in steepness of two curves.  

The graph in Figure 7 did not show much of the data 
after the HNJ�s thrashing point, but the experiment result 
indicates that the thrashing effect is not as severe as in the 
HHJ case; its performance degradation was much more 
graceful than HHJ�s one. We can explain this in the cost 
formula as well. The increase of B�s arrival rate hurts the 
overall cost of HJ more than the cost of NLJ. That is 
because HJ�s invalidation task is much heavier than that 
of NLJ, and invalidation occurs after each arrival of a B 
tuple.  

 Both join algorithms produce almost the same 
number of result tuples per unit time, until HHJ reaches 
its thrashing point. However, the CPU time or actual cost 

for running the algorithm is different, even during the 
time where both algorithms produce almost the same 
number of results. The effect of the higher cost of HHJ is 
unobservable in Figure 7, until it reaches a thrashing point. 
It is hidden while system is under-loaded but as the load 
increases close to the thrashing points, the cost difference 
can affects overall system throughput significantly. The 
cost difference is clearly illustrated in Figure 4 and Figure 
6.  

The performance difference of the two algorithms can 
be explained by comparing the two cost formulas given in 
Section 3. Invalidation is relatively costly in HJ, and that 
makes it less favorable when invalidation happens high 
frequencies compared to probe operation, which is the 
case where b aλ λ> .  

4.2 Maximizing the Number of Result Tuples with 
Limited Computing Resources 

In this section we investigate the case where computing 
resources are insufficient to keep up with the input 
streams. As briefly introduced in Section 1, this scenario 
can arise at least in two cases: 1) when system evaluates 
very expensive predicates 2) or the input stream�s speed is 
faster than the join operator�s service rate.   Both cases 
require a careful allocation of computing resources across 
the input streams.   

Note that since the input rate exceeds the service rate, 
in such a scenario we cannot generate all answer tuples 
(the system must drop some or fall hopelessly behind.)  
Thus the question that naturally arises is how to regulate 
the input streams in order to maximize the number of 
result tuples. Here we �regulate the streams� by dropping 
some of their constituent tuples, so that the system sees an 
effective input rate that it can support.  But should we 
drop tuples from input streams in proportion to input 
stream rates? Should we do so proportionally to the size 
of each time window?  

Interestingly, the answer is neither of the above. 
Figure 8 shows performance curves for five different 
stream regulation strategies. The first strategy regulates 
the streams proportionally to the original streams� speeds. 
In this experiment, we assume 80 and 20 tuples/sec for 
A�s and B�s arrival rates, respectively. With this resource 
allocation the regulated streams� arrival rate becomes 8 
and 2 tuples/sec for A and B since the stream processor�s 
service rate, µ, is set to 10 tuples/sec, and the sum of two 
regulated streams� speed must match µ. The second 
strategy is to allocate resources inversely proportional to 
the speed of the original streams. Hence, we effectively 
see 2 and 8 tuples/sec for A and B, respectively.  We also 
considered allocations proportional or inverse 
proportional to the two time window sizes. Finally, we 
added the equal distribution strategy. 

As shown in Figure 8, the winner is the equal 
distribution strategy. We distributed computing resources 
equally across the two streams so that the regulated speed 

Figure 8. Performance of computing resource 
allocation strategies (λa=80, λb=20, Ta=9, Tb=1, 
σa=0.02, σb=0.08, µ=10) 



Figure 9. Performance of memory allocation strategies 
w/ fixed arrival rates (λa=10, λb=50, M=1000, 
σa=0.005, σb=0.01) 

becomes 5 and 5 tuples/second. Note that the proportional 
and inverse proportional strategies did not show much 
difference in performance.  

We begin our explanation of this effect by introducing 
a moving window join output rate equation. In the 
following equation, the selectivity factors of window A 
and B are denoted as aσ  and bσ , respectively. To 
approximate join selectivity, we take the smaller value 
between the two and denote it as σ . 

 
min( , )( ) ( )o a b a b b b a a a b a br T T T Tσ σ λ λ λ λ σλ λ= + = +       (9) 

 
In this scenario, however, unlike the previous case in 

Section 4.1, the two incoming streams� arrival rates 
become variables. The join output rate in this scenario 
becomes the following:  

  
( ) ( ) ( )

    where  ,  ,  
o a a b b b a a b a b

a b a a b b

r T T T Tσ λ λ σ λ λ σλ λ
λ λ µ λ λ λ λ
′ ′ ′ ′ ′ ′

′ ′ ′ ′

= + = +
+ = ≤ ≤

        (10) 

 
Given that the two time window sizes are fixed in the 

query, we need to maximize the product of two regulated 
streams� arrival rates, a bλ λ′ ′ , in order to maximize the 
output rate ro. We will investigate the case where the two 
time window sizes become variables in the following 
section.  

By taking the first derivation of the product, we find 
the ideal allocation ratio for maximizing the output size.  

 
2( )

2 0

2

a b a a aa

a
a

a

f
f

λ λ λ µ λ µλλ
δ λ µ
δλ

λ µ

′ ′ ′ ′ ′′

′
′

′

= = − = − +

= − + =

∴ =

                   (11) 

 
As shown above, the ideal ratio for regulated streams� 

rates is equal to one. In other words, we get the best 

results, by allocating half of the resources to each stream, 
regardless of time window sizes and window selectivity 
factors.  In case one input stream�s input rate, say aλ , is 
less than the ideal rate, 2µ , the best we can do is to 
allow aλ  flowing in at its original rate and allocate 

aµ λ−  to bλ ′ .  
On determining a join algorithm, the ratio of regulated 

streams� rates must be taken into account instead of the 
streams� original rates. In the ideal case where equal 
distribution is possible, the join algorithm selection 
becomes straightforward. The ratio b aλ λ′ ′  equals one, 
and it suggests that the hash join needs to be used for both 
directions, unless the NKey value for each window is 
unusually small.  

For instance, if we have two streams with aλ  = 5 and 
bλ  = 100 tuples/sec, and the system service rate is 50 

tuples/sec, the regulated rates become 5,  45a bλ λ′ ′= = . 
For the case where |B| = 10 or σb = 0.1, the algorithm 
determiner will suggest NLJ for join direction A to B. On 
the other hand, for |B| = 20 or σb = 0.05, HJ becomes the 
algorithm of choice.  

4.3 Maximizing the Number of Result Tuples with 
Limited Memory 

In this subsection, we investigate strategies for 
maximizing the number of results in the case where 
memory resources are limited. We assume that the two 
time window size can be adjusted to fully utilize available 
memory.  That is, rather than viewing the time windows 
as being specified in the query, we regard them as tunable 
parameters controlled by the system in order to maximize 
performance.  In the previous two subsections, we 
considered cases where the time window size is fixed and 
memory was sufficient to hold both moving windows. 
The problem we address here has one more degree of 
freedom, choosing the two time window sizes, and this 
increases the complexity of problem significantly.  

 
Case of variable time window / constant arrival rate  

 
In this scenario, we investigate memory allocation 
strategies for maximizing the size of query result. To 
motivate the discussion, we present an experiment result 
that shows the performance of five sample memory 
allocation strategies. Figure 9 illustrates the test result.  

The first strategy, Max A, represents a strategy that 
allocates all available memory to the slower stream. On 
the other hand, the second strategy, Max B, allocates all 
memory to the faster stream. The third strategy, λ Prop, 
allocates memory proportional to the speed of the two 
input streams. The fourth strategy, λ Inverse, allocates 
memory inverse proportionally to the two input streams� 
speed. Lastly, Eq Dist, distributes equal amounts of 
memory resources to both input streams.  
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Figure 10. Performance of memory allocation 
strategies w/ variable arrival rates (µ=10, M=100, 
σ=0.01) 

As shown in Figure 9, the best performance is 
obtained by Max A and the worst by its opposite strategy 
Max B. Now the question to answer is whether Max A, 
which allocates all memory to the slower stream, is the 
winner in all cases or if this is just an artifact of the 
specific parameters used in our experiment.  

To address the issue, we introduce the following 
equations. The first equation below represents the 
relations between the available memory and two 
adjustable time window sizes.  

 

,         where 
a a b b

a a b b

M A B T T
T T T T

λ λ′ ′
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= + = +
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                                     (12) 

 
We can rewrite bT ′  as ( )a a bM Tλ λ′−  and by 

replacing bT  in equation (9) with this one, we get: 
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                             (13) 

 
Now, aT ′  becomes the only variable in this equation, 

and we can see that to maximize the output rate, aT ′  must 
be set to either its maximum or its minimum within the 
range, depending on the sign of coefficient, which is 
determined by ( )b aλ λ− .  

aT ′  can take any value in [0,  ]aM λ . It must be set to 
its max value, aM λ (i.e. 0bT = ), when the input stream 
B is faster than the input stream A, otherwise it must be 
set to zero. Simply put, if bλ  is greater than aλ , the input 
stream A should take up all memory available and the 
input stream B should just probe against A and pass by 
without build or invalidation.  

Interestingly, this means that the cost of the join in this 
class becomes one of the two one-way joins depending on 
the relative speed of the input streams. In other words, the 
cost becomes A BC (  in case the input stream B is faster 
than the A, and A BC )  otherwise.  

Intuitively, we can see that it would be beneficial to 
keep the slower stream in memory and let the faster one 
just probe against it and pass by. At the other end of the 
spectrum, we can think of an opposite strategy that 
allocates all memory to the faster one and lets the slower 
one probe it, i.e., Max B, in our experiment. It is 
straightforward that the first scenario is going to 
outperform second one, because the number of probe is 
greater in the first case while the size of the target window 
being probed is identical, and equal to the memory size, 
for both cases. Other options in the middle of the 
spectrum are expected to be worse than the first case and 
better than the opposite, as is illustrated in Figure 9. 

In the case where both input streams� speeds are equal, 
the value of aT ′  and bT ′  becomes irrelevant to the output 
rate. In this case the output rate becomes a constant, equal 
to aMσλ .  

Meanwhile, the join algorithm selection should be 
performed depending on the decision made here for 
memory allocation. For instance, suppose the input stream 
A is faster than B. In this case, the join process becomes 
an A to B one-way join, and the algorithm determinant in 
equation (8) fails given that the |B| is in reasonable range, 
indicating that the HJ must be used. In other words, when 
considering join from a faster to slower stream it would 
be safe to assume that HJ always should be the choice of 
algorithm. Hence the final cost of join becomes 

( )A BC HJ) . 
 
Case of variable time window / variable arrival rate 

 
Unlike the previous case in Subsection 4.2, we assume 
here the two time window sizes can be adjusted to fully 
utilize given limited chunk of memory. Hence we have 
four free variables in the equation (10) shown in Section 
4.2. We revisit the equation here for reference. 
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In above equation, we have one more constraint that 

describes the relations between the four free variables and 
the memory size (i.e. number of total tuples that fits in 
memory). To maximize the output rate, ro, we need to find 
the winning combination of four free variables. To make 
the task little simpler, we reduce the number of variables 
into two using the two constraints given in the equation 
above. 

The arrival rates aλ ′  and bλ ′  can be rewritten in terms 
of µ  by applying distribution factor x , which is a 
fraction between 0 and 1. The window size B is also 
represented in terms of A and M. 

   
,   (1 ) ,   a bx x B M Aλ µ λ µ′ ′= = − = −  
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By replacing the variables in output rate equation, we 

get: 
 

( ( ) (1 ) )
( (2 1) )

or x M A x A
x M x A
σ µ µ

σ µ µ
= − + −

= − −
                              (14) 

 
Now the output rate becomes a function of the two 

variables x  and A . Before we start analyzing the above 
equation, we present an experiment result on the 
performance of various resource allocation strategies. 
Figure 10 shows the test result. It evaluates five different 
strategies: (i) Max A / Max λa which maximizes both 
window A and stream A�s arrival rate, similarly, (ii) Max 
A / Max λb, (iii) Max B / Max λa, (iv) Max B / Max λb, and 
(v) Equal Distribution.  

In the experiment, the best performing group is the 
combinations of maximizing the time window size in one 
window and maximizing the arrival rate in the other 
window. These include Max A / Max λb, and Max B / Max 
λa. The next higher performer, Equal Dist, is a strategy 
that distributes equal amount of resources to each stream. 
The worst performer was a group of combination that 
maxed out the time window size and arrival rate of the 
same window.  

Figure 11 is a 3-dimensional depiction of the output 
rate given in the equation (14). The graph shows there are 
two maxima and two minima as we observed in the 
experiment in Figure 10. The valid range for distribution 
factor, x, is (0, 1), because either 0 or 1 forces one of the 
two streams completely stop. On the other hand, the valid 
range for A is [0, M]. Either 0 or M means to perform 
one-way join, which is similar case to what we saw in the 
VTCA scenario. 

In summary, to maximize the output rate of the VTVA, 
we can either maximize stream A�s time window in 
conjunction with maximizing B�s arrival rate, or we can 
maximize B�s time window and A�s arrival rate 
alternatively. 

We can understand the situation by examining 
equation (14). The output rate is a function of two 
variable, x and A. In case x > ½, the second term in the 
subtraction, (2 1)x Aµ− , becomes greater than zero. To 
maximize ro, this term must be minimized, thus indicating 
to minimize A. If A gets minimized to zero, the term 

x Mσ µ  remains. To maximize it, we need to take the 
maximum x value, then ro converges to Mσµ . 

As we can see in Figure 11, Mσµ  is the maximum 
possible output rate we can get. It is intuitive to see 
because µ  is the maximum number of tuples that join 
will process in a time unit. It would be beneficial to use 
all µ  tuples to probe against entire memory rather than 
sharing memory resources between the two windows, 
because the memory sharing effectively limits the target 
table size for each tuple being probed. 

5. Conclusion 
In this paper we investigated strategies for evaluating 
moving window joins over pairs of unbounded streams. 
We introduced a unit-time basis cost model to analyze the 
expected performance of these strategies. One of the 
notable aspects of the proposed cost model is that it 
divides the join cost into two independent terms, each 
corresponding to one of the two join directions. This 
property allows it to estimate the cost of each join 
direction separately.  

A good deal of room for future work exists. One 
interesting extension of our work would be to extend the 
cost model beyond single joins to full query plans.  
Another potentially interesting direction would be to 
incorporate the findings in this paper into the previously 
proposed adaptive query optimization frameworks, so as 
to extend that work to handle moving window joins. 
Finally, it would be interesting to model and evaluate 
other algorithms besides the NLJ and HJ algorithms. 
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