
Form-Based Proxy Caching for  Database-Backed Web Sites 
 

Qiong Luo Jeffrey F. Naughton 

University of Wisconsin-Madison 
Computer Sciences Department 

1210 West Dayton Street 
Madison, WI 53715, USA 

{ qiongluo, naughton} @cs.wisc.edu 
 
 

Abstract 

We explore a new proxy-caching framework that 
exploits the query semantics of HTML forms. 
We identify a common class of form-based 
queries, and study two representative caching 
schemes for them within this framework: (i) 
traditional passive query caching, and (ii) active 
query caching, in which the proxy cache can 
service a request by evaluating a query over the 
contents of the cache. Results from our 
experimental implementation show that our 
form-based proxy is a general and flexible 
approach that efficiently enables active caching 
schemes for database-backed web sites.  
Furthermore, handling query containment at the 
proxy yields significant performance advantages 
over passive query caching, but extending the 
power of the active cache to do full semantic 
caching appears to be less generally effective. 

1 Introduction 

Many web sites managing significant amounts of data use 
a database system for storage.  When users access such a 
web site, clicking on a URL in the HTML page they are 
viewing causes an application at the web site to generate 
database queries.  After the DBMS executes these queries, 
the application at the web site takes the result of the 
queries, embeds it in an HTML page, and returns the page 
to the user.  Figure 1 illustrates such a configuration.  
Under heavy loads, the database system can become the 
bottleneck in this process.  Our goal in this paper is to 

explore proxy-caching techniques to alleviate this 
bottleneck.  

Throughout the Internet, proxy caches are used to 

improve performance and share server workload. There 
are two kinds of deployment for these proxies.  One is a 
traditional deployment, in which the proxies serve the 
content from the Internet to a group of users. In this case, 
the web sites being proxied may not even know of the 
existence of the proxies.  An example is a campus proxy 
for speeding up the Internet access of local users. The 
other is reverse proxy caching, in which the proxies serve 
a specified set of servers to general Internet users.  In this 
case the web sites and the proxies can collaborate. For 
example, web sites often set up their own reverse proxies 
or contract with the Content Delivery Network services to 
use theirs. 

In either deployment scheme, the function of these 
proxies is simple – if a proxy has seen a URL before, and 
has cached the page corresponding to that URL, it can 
return the cached page without accessing the web site that 
is the “home”  for that page.  When extending a proxy 
cache to handle access through a form-based interface, 
one needs to consider the relationship between the user, 
the form on the HTML page, and the queries that are 
generated at the database system at the web site. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Very Large Data Base Endowment.  To copy 
otherwise, or to republish, requires a fee and/or special permission from 
the Endowment 
Proceedings of the 27th VLDB Conference, 
Roma, I taly, 2001 

Figure 1: DB-Backed Web Site 
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If clicking on a given URL always generates the same 
database query (that is, the request generated by clicking 
on the URL embeds no information from the user), then 
the proxy can work as if the URL referred to a static page 
stored at the web server.  We call this scheme passive 
caching, because it caches a page and returns it on a hit 
without any extra processing on the page.  Unfortunately, 
in general things are not this simple, because instead of 
clicking on a URL, users are filling in forms.  The user 
input from these forms is incorporated in the queries that 
eventually get executed by the database system.  A 
common example of this might be in a book selling web 
site, where a user keyword search on the book title might 
generate a SQL query containing a “LIKE”  predicate with 
the keywords provided by the user.   

One can still use passive caching in such a scenario – 
the proxy cache associates cached pages with (URL, user 
input) rather than just with the URL.  However, this 
means that the proxy cache will only be able to service a 
request if it has cached a previous request for the same 
form with the exact same user input.  Our goal is to see i f 
we can do better than that – we want to extend the proxy 
cache so that it can not only service requests that exactly 
match previous requests, but it can also service requests 
that can be answered by processing results of previous 
requests.  We term this kind of caching active caching, 
because the proxy is actively functioning in a limited 
query processing role. 

Caching in this context poses a number of challenges 
not found in other database caching applications; many of 
these challenges arise because there is a high degree of 
independence between the database system and the proxy 
cache.  In our work, we characterize what can be done in 
terms of how closely the web site is willing to collaborate 
with the proxy cache.  For example, we show that if the 
web site will give no information at all, only passive 
caching is possible.  If the web site is willing to expose 
the text of the queries its applications generate from the 
forms, then containment-based active caching is possible.  
Finally, if the web site provides a facility whereby the 
proxy can submit modified queries to the server, the 
proxy can do semantic active caching, exploiting query 
overlap as well as containment. 

Also, if an active proxy scheme is to be widely useful, 
it must not require custom modifications to existing proxy 
servers, nor can it require programming effort on behalf 
of the individual web sites that are being served by the 
proxy.  In our implementation, the caching module is a 
Java servlet for the unmodified Apache Tomcat servlet 
engine [2], and there is no programming required of the 
represented web sites. 

In addition to defining and implementing this 
framework, we have performed experiments with our 
implementation using the TPC-W benchmark and 
modifications of that benchmark.  These experiments 
show that query containment active caching generally 
provides a substantial improvement over purely passive 

caching; however, extending this to full semantic caching 
was only effective in specially crafted workloads.  
Finally, we validated these synthetic workload results 
with an experiment in which we proxied a real online 
bookseller using real-world user traces. 

2 Form-Based Proxy Caching Framework 

The goal of this framework is to efficiently facilitate 
active caching mechanisms for database-backed web sites 
in a general way. Despite the large volume of user queries 
that these web sites must handle, those queries are not 
arbitrary SQL; instead, they are usually submitted through 
simple HTML forms. Our key observation is the 
following: form-based queries enable a useful variety of 
active caching schemes that would be impractical for 
arbitrary SQL queries. Inspired by this observation, we 
built a proxy-caching framework based on query 
templates, which are parameterized query definitions that 
are instantiated with the parameter values in user requests 
at run time. 

2.1 Forms and Query Templates 

We start with a running example in Figure 2. The HTML 
form shown is a simplified search request page for an on-
line bookstore as given in the TPC-W benchmark [20]. 
When a user types “Java Programming”  in the text box 
and clicks the “Submit”  button, an HTTP request 
containing the user input is sent to the server side. No 
matter what application program implementation the 
server side uses, be it a CGI script, a Java servlet, an 
Active Server Page, the HTTP request will result in a 
SQL query for the backend DBMS to execute. A 
corresponding SQL query from the example form is given 
in Figure 3. Notice that when the user input changes, only 
the string in the LIKE predicate changes in the SQL 
query. The form in Figure 2 can be abstracted into a query 
template as shown in Figure 4. 

Figure 2: Example HTML Form 
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We emphasize that these templates and queries are not 
executed at the proxy; rather, the proxy uses them for 
analysis purposes, so that it can exploit the semantics of 
the query for more sophisticated caching schemes than 
exact-match passive caching.  

2.2 Implementation 

We implemented a Java servlet on top of the Apache 
Tomcat servlet engine [2]; together they serve as a 
caching proxy. The cache servlet runs in the same process 
space as Tomcat, and a pool of multiple threads in the 
servlet engine handles simultaneous requests. We chose 
the Tomcat servlet engine for ease of development, 
portability, and performance, but the same approach can 
be applied to the Apache web server, the Squid proxy, or 
other enterprise application servers.  

Our proxy cache stores the results of queries and uses 
them to answer subsequent queries.  One question that 
must be addressed is how these query results should be 
represented in the cache.  Because XML is the emerging 
data transfer format on the Web, we chose to cache query 
results in XML format. This frees us from data 
representation issues and allows us to cache for web sites 
without any format translation as long as they provide 
their query results in XML. However, this is not a 
requirement for our approach; any storage scheme at the 
proxy cache will work as long as one provides translators 
from the form result format into this cache format, and 
then again from the cache format to the browser format. 

Each query template is a text file containing a 
parameterized query such as the one in Figure 4. In 
addition, associated with a query template, there is a 
query template information file in XML, which specifies 
the correspondence between the form parameters and the 
query template parameters. 

Figure 5 shows the query template information file for 
the form in Figure 2. The information file specifies that 
the query template is for the form queries sent to the URI 

“ /tpcwSearchRequest.xsql”  and the parameter 
“search_type”  in the requests should have the value 
“ i_title” . In addition, it specifies that the parameter 
“search_string”  in the HTTP requests from the form 
corresponds to the parameter “$search_string”  in the 
query template. By specifying query templates and their 
associated mapping information with forms in this 
declarative manner, we separate the proxy caching 
functionality from the implementation and data 
representation issues of the web sites.  

For passive query caching, the proxy just needs to 
map an incoming HTTP request to a file name according 
to the parameter descriptions in the query template 
information, and check if this file is cached on disk. If the 
file is not cached, the proxy forwards the request to the 
server, caches the result by that file name when the result 
comes back from the server, and returns the result to the 
user. Otherwise, the proxy reads the cached file and 
returns the content to the user. For active caching, the 
proxy goes through a similar process of checking the 
cache using query templates, although the proxy 
processing and server interaction is more complex. We 
discuss form-based active caching in detail in Section 4. 

2.3 Deployment Issues 

The only difference between deploying a regular proxy 
and deploying our form-based proxy is that for active 
caching our proxy needs to know the query semantics of 
the forms. This is necessary because the application at the 
web server can perform arbitrary computations based 
upon the user input.  Thus, to enable active caching, we 
require that the web site provide the text of the SQL query 
corresponding to each form.  It can do so through the use 
of query templates. 

Query templates are provided in the configuration 
step.  In the configuration step of a regular proxy, the 
proxy administrator specifies which URLs the proxy 
should cache by adding them into the configuration file.  
When configuring our form-based proxy, the 
administrator specifies which forms that the proxy should 
cache by adding the query template files and associated 

SELECT TOP 50 i_title, i_id, a_lname, a_fname 
FROM     item, author 
WHERE  a_id = i_a_id AND  
                 i_title LIKE ‘%$search_string%’ 
ORDER BY i_title 

Figure 4: Example Query Template in SQL 

Figure 5: Example Query Template Info File 

<queryTemplateInfo> 
  <URI>/tpcwSearchRequest.xsql</> 
     <paramPair> 

<paramName>search_type</> 
      <paramValue>i_title</> 
   </paramPair> 

<paramNameMapping> 
<requestParam>search_string</>

 <queryParam>$search_string</> 
</paramNameMapping> 

</queryTemplateInfo>  

SELECT TOP 50 i_title, i_id, a_lname, a_fname 
FROM     item, author 
WHERE  a_id = i_a_id AND  
                i_title LIKE ‘%Java Programming%’ 
ORDER BY i_title 

Figure 3: Example Form-based Query in SQL 



information files to the appropriate directories at the 
proxy.  

Consistency is always an issue in caching.  We regard 
consistency as an interesting area for future work that is 
largely orthogonal to this paper.  The web currently works 
surprisingly well with a very relaxed attitude toward 
consistency.  It is possible that many applications will be 
well served by simply providing a facility for the web site 
to invalidate data and/or templates stored at a proxy. 

Finally, recent research in the web caching community 
has focused on adding application logic to the proxy from 
remote sites while the proxy is running.  For example, the 
Active Cache Protocol [4] allows small software modules 
to be shipped from the web servers to the proxy on 
demand, specifying application-specific caching policies, 
while the Dynamic Content Cache Protocol [19] supports 
application-specific headers specifying caching policies. 
Our caching modules could also be shipped on-demand if 
the Active Cache Protocol were supported, while the 
application-specific query template information for our 
framework could also be easily shipped from web sites i f 
either of the protocols were supported.  In this way 
proxies could dynamically implement our active caching 
schemes “on the fly”  without manual intervention. 

3 The Class of Queries Handled by the 
Cache 

3.1 Queries in the Web Site Application 

While our framework can be applied to forms containing 
arbitrary database queries, the efficiency of caching 
techniques is related to the characteristics of the queries. 
As a first step in applying this framework, we concentrate 
on a simple but common class of form-based web queries, 
which we call top-n conjunctive keyword queries 
(TCKQ). The class of web queries can be expressed in an 
SQL-like syntax (Figure 6). 

The characteristics of the form-based queries include: 

• Select-project-join (SPJ) 
• A parameterized search predicate  
• An order by clause 
• A top-n operation  
• The search-by and order-by fields appear in the 

selection list. 
As simple as it looks, this class of queries represents a 

large number of forms on the web, including those used in 

on-line catalog search forms and on-line bibliography 
search forms.  

Although keywords can be connected using “OR”  and 
“NOT” , users on the web seldom use them. We examined 
a 1-million entry Excite Search Engine log and found only 
361 entries used “NOT”  and 519 entries used “OR” . A 
report [18] on a 1-billion entry AltaVista search engine 
log also showed that 80% of the queries did not have any 
operators (+, -, AND, OR, NOT, and NEAR). Thus, we 
focus on conjunctive keyword predicates. 

3.2 Queries Executed in the Cache 

While our proxy handles query templates that look like 
the one in Figure 6 this does not mean our proxy executes 
joins. Rather, we treat all queries from a given form as 
simple top-n selection queries on a single table view with 
a keyword predicate. This is because under each query 
template, the only difference among the queries is the 
search strings in the search predicate.  This is one strength 
of our approach – we cache tuples that may have been 
generated by complex processing at the server, and avoid 
that complex processing in the proxy. 

In the remainder of this section we discuss queries 
from the same form. Whenever appropriate, we omit the 
n value of the top-n clause, the fields in the selection 
clause, the target relations in the from-clause, the search 
field in the search predicate, the other predicates in the 
where-clause, and the order-by fields. We use 
terminology from relational databases as well as from 
XML interchangeably. For example, fields correspond to 
elements, and tuples correspond to sets of elements. 
Because of order-by and top-n operations, we need to 
include list semantics as well as set semantics.  These 
definitions and facts are not new; we repeat them here to 
make this paper self-contained. 

3.2.1 Definitions 

A list is an ordered set. A list L1 is a sub-list of another 
list L2 if and only if the elements in L1 all appear in L2, 
and in the same order ignoring absent elements. L2 is then 
a super-list of L1. We also define a list intersection, 
union, and equivalence to be a set intersection, union, and 
equivalence with order correspondingly. We use the 
symbols ⊆, ⊄, =, ∩, ∪, to denote operators between sets 
as well as between lists.  

We extend the standard definitions of query 
containment and equivalence to lists. A query Q1 is 
contained in another query Q2, denoted Q1⊆Q2, if and 
only if for any database D, the result of the former, Q1(D), 
is always a subset (or sub-list, if order is required) of the 
latter, Q2(D). Q1 and Q2 are equivalent if and only if 
Q1⊆Q2 and Q2⊆Q1. Two queries Q1 and Q2 are disjoint 
if and only if for any databases D, Q1(D)∩Q2(D) = ∅. 
Q1 and Q2 overlap if and only if Q1⊄Q2, Q2⊄Q1, and 
Q1 and Q2 are not disjoint.  

SELECT TOP n selection_list 
FROM     target_relations 
WHERE  search_predicate(search_field, 

$search_string) AND other_predicates 
ORDER BY orderby_fields 

Figure 6: Class of Form-Based Queries 



Next, we explore conjunctive keyword queries.  
Definition 1. [Conj unctive keyword predicate] An n-
ary conjunctive keyword predicate is of the form 
contains(e,{k1,k2,…,kn} ), where e is a field name, and 
{ k1,k2,…,kn}  is a set of distinct words. The predicate 
contains(e,{k1,k2,…,kn} ) is true if and only i f all of the 
keywords k1,k2,..,kn (not necessarily in that order) appear 
in the field e. �  

In relational databases a conjunctive keyword 
predicate can be simulated using the string “LIKE”  
predicates. Also, our keyword predicate corresponds to a 
Boolean query in Information Retrieval with e being the 
top-level document. 
Definition 2. [SORT] A sort operation is of the form 
SORTo(T), where o is a list of fields, and T is a set of 
tuples whose fields are a superset of the fields in o. The 
operation returns a list of all tuples from T ordered by o. 
For simplicity, we will use SORT(T) when appropriate. �  

Definition 3. [Top-n] A top-n operation is of the form 
TOPn(L), where n is a natural number, and L is a list of 
tuples. The operation returns a list of the first min(n, 
cardinality(L)) tuples from L. For simplicity, we will use 
TOP(L) when appropriate. �  

Definition 4. [CKQ] A conjunctive keyword query 
(CKQ) is of the form Qe({ k1,k2,…,kn} ) where Qe is a 
query with a keyword predicate 
contains(e,{k1,k2,…,kn} ). The query returns a set of 
tuples. For simplicity, we will use Q({ k1,k2,…,kn} ) when 
appropriate. �  

Definition 5. [OCKQ] An Order-by conjunctive 
keyword query (OCKQ), denoted OQ({ k1,k2,…,kn} ), is 
defined as SORT(Q{ k1,k2,…,kn} ) where Q is a CKQ. 
The query returns a list of tuples. �  

Definition 6. [TCKQ] A top-n conjunctive keyword 
query (TCKQ), denoted TQ({ k1,k2,…,kn} ), is defined as 
TOP(OQ{ k1,k2,…,kn} ). The query returns a list of 
tuples. �  

3.2.2 Proper ties of Quer ies 

From definitions in Section 3.2.1, we have the following 
simple but useful facts and properties about the queries 
that we are caching. 
Fact 1. Q({ k1,k2,…,kn}  ∪ { j1,j2,…,jm} ) = σ 
contains(e, { k1,k2,…,kn} )(Q({ j1,j2,…,jm} ))  �  

Fact 2. Q({ k1,k2,…,kn}  ∪ { j1,j2,…,jm} ) = 
Q({ k1,k2,…,kn} ) 

�
 Q({ j1,j2,…,jm} )   �  

These two facts tell us how to answer more restrictive 
conjunctive keyword queries from less restrictive CKQs, 
by selection or intersection. Similar facts hold for OCKQs 
except the set semantics is replaced by the list semantics. 
However, these facts do not hold for TCKQs.  

Fact 3. TQ({ k1,k2,…,kn}  ∪ { j1,j2,…,jm} ) ⊇ σ 
contains(e, { k1,k2,…,kn} )(TQ({ j1,j2,…,jm} )) �  

Fact 4. TQ({ k1,k2,…,kn}  ∪ { j1,j2,…,jm} ) ⊇ 
TQ({ k1,k2,…,kn} ) 

�
 TQ({ j1,j2,…,jm} ) �  

Next we show that CKQ and OCKQ have similar 
properties on containment and equivalence, but TCKQ do 
not. 
Proposition 1. A CKQ Q1 = Q({ k1,k2,…,kn} ) is 
contained in a CKQ Q2 = Q({ j1,j2,…,jm} ) if and only if 
{ k1,k2,..,kn}  is a superset of { j1,j2,..,jm} . This also holds 
for OCKQ. �  

Proposition 2. A TCKQ TQ1 = TQ({ k1,k2,…,kn} ) is 
contained in a TCKQ TQ2 = TQ({ j1,j2,…,jm}) implies 
{ k1,k2,..,kn}  is a superset of { j1,j2,..,jm} , but not vice 
versa. �  

For TCKQs the following stronger proposition holds.  
Proposition 3. A TCKQ TQ1 = TQ({ k1,k2,…,kn} ) is 
contained in a TCKQ TQ2 = TQ({ j1,j2,…,jm} ) if and 
only if { k1,k2,..,kn}  = { j1,j2,..,jm} . �  

For query equivalence, similar results hold for the 
family of conjunctive keyword queries. 
Proposition 4. A CKQ Q1 = Q({ k1,k2,…,kn} ) is 
equivalent to a CKQ Q2 = Q({ j1,j2,…,jm} ) if and only i f 
{ k1,k2,..,kn}  = { j1,j2,..,jm} . The same holds for OCKQs 
and TCKQs. �  

The following result says that if a CKQ is contained in 
a union of CKQs, it is contained in at least one of the 
CKQs in the union. Similar results hold for OCKQs.  
Proposition 5. A CKQ Q1 = Q({ k1,k2,…,kn} ) is 
contained in a union of other CKQ’s Q2∪Q3∪… ∪Qx, if 
and only if for some Qy, 2<=y<=x, Q1 is contained in Qy. 

�  

Finally, two CKQs are never disjoint because we can 
always find a database in which there is an answer to 
satisfy both of them: 
Proposition 6. For any two CKQs Q1 = 
Q({ k1,k2,…,kn} ), Q2 = Q({ j1,j2,…,jm} ), Q1 and Q2 are 
not disjoint. The same holds for OCKQs and TCKQs. �  

4 Form-Based Active Caching 

4.1 Design Decisions 

In this paper we consider active proxy caching in which 
the cache can execute top-n conjunctive keyword queries. 
Certainly other classes of queries are possible (range 
queries are one obvious alternative), but top-n conjunctive 
keyword queries are a useful class and general enough to 
illustrate the strengths and limitations of our approach. 

From the properties we studied in the previous section, 
we know that limiting the result size with top-n implies 
that one query contains another only when the two are 



equivalent (Proposition 3), which prohibits anything other 
than passive query caching. Therefore, we cache only 
order-by conjunctive queries at the proxy.  A cache of 
order-by conjunctive keyword queries is immediately 
useful if the form being cached issues such queries; it is 
also useful if the web site being proxied provides facilities 
by which the proxy can “strip off”  top-N operators.  In the 
latter case we cache order-by conjunctive queries without 
a top-N, applying the top-N predicate at the proxy before 
returning results to the user. 

Given a cache of the union of results from order-by 
conjunctive keyword queries, when a new query comes 
in, there are three possibilities: the result of the new query 
could be contained in the cache, it could intersect with the 
cache, or it could be disjoint from the cache.  

By Proposition 5, if an OCKQ is contained in a union 
of OCKQs, it is contained in at least one of them. Thus 
we do not need to consider combinations of cached 
queries, but only need to consider 1-1 relationships 
between the new query and the individual cached queries. 
Moreover, we can determine query containment for 
OCKQs by examining the keywords in the queries 
(Proposition 1). So for containment, we only need to 
compare the keywords in the new query and in the cached 
queries without examining the contents of the cache. 

The situation changes for query overlap.  If a new 
query is not contained in a cached query, by Proposition 
6, it could overlap with any previously cached query; 
furthermore, we cannot tell if the query indeed overlaps 
with previously cached queries without going through the 
contents of the cache.  If upon examining the contents of 
the cache we find that the query does overlap, we issue a 
query to the web server for the form to get the answers 
“missing”  from the cache.  Using the terminology from 
semantic caching [7], the query evaluated over the cache 
is the probing query, whereas the difference query sent to 
the DBMS is the remainder query.  In our context, the 
remainder query is easy to specify. 

Consider a new query Q, with keywords k1, k2, …, 
km. Furthermore, let Q1(c1), …, Qn(cn) be the queries 
that currently appear in the cache, where ci is the conjunct 
of keywords that appear in query Qi. Then the remainder 
query QR is just QR(k1,…, km, not c1, not c2, … not cn). 
We refer to the not ci as remainder predicates. 

Clearly, with a large cache QR will be enormous, and 
would cause severe problems if sent to the DBMS at the 
web site. Thus we need to pick out a few remainder 
predicates that can reduce the remainder result size 
effectively. Choosing a minimum number of remainder 
predicates from the cached queries to cover all the cached 
tuples is a computationally hard problem (it can be shown 
NP-complete by reduction from the vertex cover 
problem). Instead, we used simple heuristics to try to pick 
a fixed number of predicates that cover a large portion of 
the cache.  

Finally, another decision is whether redundancy in 
overlapping query results is allowed in the cache. We 

chose to eliminate duplicates when merging results of 
queries into the cache.  As we will see in the experiments, 
this choice causes some computational overhead but 
avoids filling the cache with duplicates. 

4.2 Implementation 

If a new query presented to the cache is contained in a 
previous query, we simply execute the conjunctive 
keyword query over the contents of the cache.  If the 
query is not contained in a previous query, then things are 
more complex.  Here the probing step is a selection query 
with the current search predicate on the cached query 
results. If we are using full semantic caching, we need to 
send a remainder predicate to the server.  When the web 
server responds with the result of the remainder query, 
our cache merges this result with the result of the probe 
query, and sends the combined result on to the user.  
Furthermore, our cache merges the result of the remainder 
query in with the existing cache contents, and adds the 
original query to the list of cached queries.  

An important special case occurs if we decide to 
handle only containment relationships and to ignore query 
overlap.  In this case, we never send a remainder query; 
rather, we always pass on the original query to the web 
server, and merge the result of that query in with the 
current cache contents.  This case is important because it 
does not require any special collaboration between the 
proxy cache and the web server (since no “new”  queries 
need to be sent to the web server, it only sees requests that 
it would see in the absence of our proxy cache.) 

When there is a top-N operator in the class of cached 
queries, we once again require closer collaboration with 
the web server, because we handle such queries by 
“stripping off”  the top-N operator before sending the 
queries on to the web server. To support this class of 
query we also have a top-N operator in the cache, so that 
the proxy can apply it to the full result before it is passed 
to the user. 

As we see from Figure 7, each cache consists of a row 
of cached queries from the same query template, a set of 
cached result tuples, and a lexicon of the words in the 
search field in the cached result tuples. The queries that 
exactly match or are contained in a previously cached 
query are not added to the cache, in order to keep the 
number of cached queries small. The cached tuples are the 
union of all the result tuples from previously cached 
queries. We used LRU for cache replacement. 

The list of cached queries is used to answer a new 
query if it is an exact match to a cached query, or is 
contained in a cached query. Both exact match and 
contained queries can be answered completely at the 
proxy. If a new query is neither an exact match nor a 
contained query, the cached tuples are examined through 
the lexicon indexes to pick out satisfying tuples (those in 
the overlap between the query and the cache) for the new 
query. 



5 Experiments 

In this section, we first exercise the proxy-caching 
framework using the TPC-W book title search query 
traces. We then use modified workloads to investigate 
properties of active caching not revealed by the simple 
TPC-W traces.  

5.1 Exper imental Setup 

There are four computers involved in the experiments. 
The four machines all have a Pentium III 800Mhz CPU 
and 256MB memory. The machine for the database server 
has 20GB disk space, while the other three machines each 
have a 9GB disk. All the machines are on a 
100Mbit/second Ethernet. 

All four machines use the RedHat Linux 6.2 operating 
system. The RBE program (Remote Browser Emulator) 
and proxy servlet are homegrown. The servlet engine is 
the Apache Tomcat Servlet Engine version 3.1, which 
supports the Java Servlet API v2.2. The database server in 
our experiments is Oracle 8.1.6 Enterprise Edition with 
the InterMedia Text 8.1.6 index server. We use Oracle 
XSQL servlet version 1.0.1.0 at the server side to process 
form-based queries and generate query results in XML. 
Table 1 summarizes the configuration. 

 
Computer  RBE Proxy  Server Database 
Software  RBE  Tomcat + 

servlet 
Tomcat + 
XSQL 

Oracle8i  

5.2 On TPC-W Query Traces 

To measure the effects of proxy caching on response 
times, we set up the TPC-W databases [20] at three scales: 
10K, 100K, and 1M (in terms of the cardinality of the 
item table) in Oracle. The cardinality of the author table is 
¼ of that of the item table. The ASCII data files of the two 
tables are of a total size of about 5MB, 50MB, and 
500MB respectively. We used the default buffer pool size 

of 16MB in Oracle. We used the TPC-W search-by-title 
workload (form in Figure 2 and queries as in Figure 4). 

The i_title field of the item table was generated using 
the TPC-W WGEN utility. In this dataset each title gets 
one “signature word” , and each signature word is inserted 
into an average of five titles.  The search string in a TPC-
W query is a signature word. This causes each query to 
return an average of five books, and two queries in the 
trace are either identical (if they have the same search 
string) or have disjoint results (otherwise). This is the 
worst case for active caching because there is no query 
containment or overlap.  

We ran a ten thousand query trace to the three scales 
of the TPC-W databases. This query trace contains two 
thousand distinct queries, and the caches reach a hit ratio 
of 80%. At the end of the experiment, both caches 
contained nearly 10K items. No cache replacement was 
triggered. 

We compare timings in four cases: RBE directly to the 
server (Direct), RBE through the proxy without any cache 
(NC), RBE through the proxy with a passive query cache 
(PQ), and RBE through the proxy with an active query 
cache sending no remainder predicates (AQ0). The 
response times were measured in the RBE.  Because the 
timings in the non-cache proxy case were almost identical 
to those of a miss in the PQ setting, we only show the 
three cases in Table 2. 

 
Database scale 10K 100K 1M 
Direct  Overall 74 384 4144 

On hit 11 11 12 
On miss 110 442 4215 

 
PQ 

Overall 31 98 853 
On hit 11 13 12 
On miss 262 539 4499 

 
AQ0 

Overall 61 118 905 

From Table 2, we see that the database web server 
processing time dominates (comparing PQ cache misses 
with the direct-to-server case) and this gets worse when 
the scale of the database increases. Passive query caching 
achieves an overall average response time ¼ of that of the 
direct-to-server case. On a miss, passive query caching 
adds less than 70 milliseconds of overhead when 
compared to the direct-to-server case. The active cache 
adds another 100-280 milliseconds overhead on miss 
because of its more sophisticated query cache 
management. As the scale of the database increases, this 
overhead is dominated by the server time. 

5.3 Adding Overlap in Quer ies  

Since the TPC-W query trace generates queries with only 
disjoint small results, we generated another set of traces, 
which we term NounPhrase traces, from the TPC-W 

Table 1: Software Deployment in the Experiments 

Table 2: TPC-W Average Response Times (in ms) 

Figure 7: Example Cache Organization 
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vocabulary. NounPhrase traces explore how well the 
active cache performs when a new query is contained in a 
cached query or intersects with some data in the cache.  

 
Trace Noun100 Noun80 Noun60 Noun40 
1-noun 20% 20% 20% 20% 
2-noun 20% 20% 20% 20% 
3-noun 20% 20% 20% 0 
4-noun 20% 20% 0 0 
5-noun 20% 0 0 0 
Dummy 0 20% 40% 60% 

The four NounPhrase traces we experimented with 
were Noun40, Noun60, Noun80, and Noun100. Each 
trace contains two thousand queries; which can be queries 
with one noun, two nouns, ... five nouns, or a dummy 
word as the search string (their percentages in the traces 
are shown in Table 3). Each noun was chosen 
independently from one another with a Zipfian 
distribution from the 100 most popular nouns in the TPC-
W vocabulary. The dummy words in each trace were 
distinct and returned no answers. The different 
percentages of noun queries in the traces were designed to 
yield similar exact match ratios but different containment 
ratios across the traces. As a result, the exact match ratios 
of the four traces were all around 20%, and the ratios of 
contained queries were 12%, 33%, 52%, and 71%. 

Figure 8 shows the average response times of the four 
NounPhrase traces on the 100K-scale TPC-W database 
running directly to the server (Direct), through a passive 
query caching proxy (PQ), or through an active caching 
proxy with no remainder predicates (AQ0). Recall that 
this (AQ0) is the case that does not require close 
collaboration between the web server and the proxy 
cache.  We see that: (1) When the number of noun queries 
on the fixed vocabulary increases, the ratio of exact 
matches does not change much and passive query caching 

has a limited performance. (2) When the number of noun 
queries on the fixed vocabulary increases, the ratio of 
contained queries increases and benefits active caching to 
a larger extent.  

Next we examine in detail the time spent by individual 
queries at the proxy. 

We compare four cases at the active cache: an exact 
match (MATCH), a containment (CONT), an overlap 
(INTER), and a miss (MISS). For the passive query 
cache, this is simply MISS or HIT. Because the response 
time of a query depends on many factors, such as the 
current contents of the cache, the result size, and the 
database web server status, we ran the Noun40 trace three 
times, chose four representative queries in the trace, and 
show their times averaged from the three runs. 

From Table 4 we see that both caches have similar 
response times on an exact match query (Query 515). A 
contained query (Query 511) also has similar response 
time to an exact match (Query 515) in the active cache, 
which is much better than a miss in the passive query 
cache. Query 514 is a dummy query returning no answers, 
and an active cache miss on it is 27% more expensive 
than a passive cache miss. Query 510 is a 2-noun query 
returning 50 tuples (top 50), and an active cache 
intersection is three times slower than a passive cache 
miss. This is because in the passive query cache case, 
only the top 50 tuples are obtained from the server, 
returned to the user, and saved into the cache while in the 
active cache case the active cache gets 62 result tuples 
from the cache, gets 510 result tuples (the whole answer 
set) from the server, merges these two parts of answers to 
eliminate duplicates, returns the top 50 to the user, and 
caches the un-cached answers. 
 

We conducted further experiments on the Noun40 
trace and found that increasing the number of remainder 
predicates had a very limited effect on reducing the 
number of remainder tuples (as an example, we show this 
for Query 510 in Table 5).  This was because in the TPC-
W database there is very little overlap among titles. 

5.4 Adding Overlap in Datasets 

Because the TPC-W dataset had so little overlap, we 
generated a dataset with the same TPC-W item schema 

Table 3 : Composition of NounPhrase Traces 

Table 5: Response Times of Four Cases (in ms)  

Query ID 510 511 514 515 
Status INTER CONT MISS MATCH AQ0 
Time 2683 18 472 17 
Status MISS MISS MISS HIT PQ 
Time 664 361 376 18 

Table 4: Numbers of Remainder Tuples of Query 510 

#Remainder predicates 0 10 20 30 40 
#Remainder tuples 510 502 491 484 480 

Figure 8: NounPhrase Average. Response Times 
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but used a 10-word vocabulary { w0,w1,w2,…,w9}  for the 
title field. This data set was tailor-made to benefit 
remainder processing. 

In this dataset, each title field had three words: the id, 
wi, and wj, where 0=<i, j <9. There were 100 distinct 
combinations of the (wi,wj) pairs, but the id field was 
unique so that each title was unique. We generated 1000 
tuples with each combination of (wi,wj) appearing in 10 
titles and appended these 1000 tuples to the 100K TPC-W 
database.  We then ran then ten queries w0, w1, …, w9, 
and compared the performance of the 10th query with 
varying numbers of remainder predicates.  Note that here 
the selection heuristic used for remainder predicates is not 
important, because in this scenario all remainder 
predicates are equivalent. Table 6 shows the number of 
remainder tuples of Query 10 and Figure 9 shows the 
timing breakdown, averaged over three runs. 

 
#Remainder predicates 0 5 10 
#Remainder tuples 190 90 10 

The legends from left to right in Figure 9 correspond 
to the portions bottom up in the bars. The time spent on 
probing the cache and sending the remainder query to the 
server (reqToServer) was small. The time taken waiting 
for the server response (getResponse) and merging the 
probe results and the remainder results (mergeResult) 
were comparable. Both the server response time and the 
proxy result-merging time decreased when the number of 
remainder predicates increased. We also experimented 
with a dataset one magnitude larger than this one (10,000 
special tuples inserted into the 1M TPC-W database) and 
observed the same pattern. 

5.5 Exper iments Omitted  

Due to space limitations, in this paper we omit 
experiments investigating the effect of  “combinatorial 

blowup”  on caching schemes that do not eliminate 
duplicates.  Similarly, we omit experiments that tested our 
cache as an accelerator for real-world online book selling 
web sites.  The interested reader can find details in [13]. 

6 Related Work 

To our knowledge, this paper is the first that explores an 
active proxy-caching framework for database-backed web 
sites explicitly based on query templates. Caching and 
materialization for databases on the Web has received a 
lot of attention recently ([3], [5], [9]). These studies all 
consider passive caching of the HTML or XML pages 
generated from DBMS-resident data. In contrast, our main 
focus is active caching.  

Research in web caching that is most closely related to 
ours includes [4], [14], [15], and [19].  Studies [4], [15], 
and [19] did not consider database queries. Our previous 
work [14] focused on how a custom proxy caching 
protocol could be used to distribute caching code for 
select-project-join queries to proxies on the fly. However, 
it did not study the main issues we focus on here, 
including how forms can be used in the definition and 
deployment of caching schemes, and how well these 
schemes perform for keyword-based queries over the 
web.  

There has been a large body of work ([1], [6], [8], 
[10], [11], [12], [17]) in data caching, query caching, and 
answering queries using views. Some of them ([6], [8], 
[10], [12], [17]) dealt with relational queries while others 
([1], [6], [11]) focused on caching for heterogeneous 
sources. Our work builds on semantic caching as 
presented in [6], and is closely related to [6] and [11]. [11] 
focused on algorithms for choosing the best matching 
query in the context of semantic caching for range 
queries. While [6] studied semantic caching for keyword 
queries over search engines, we focus on using query 
templates to enable active caching for database-backed 
web sites.  Also,  [6] did not present a performance study.  

Finally, there is an increasing commercial interest in 
caching for database web servers. The Oracle 9i 
Application Server [16] includes the Oracle Database 
Cache and the Oracle Web Cache.  The Oracle Web 
Cache does passive caching. The Oracle Database Cache 
currently caches full tables; caching selected rows and 
columns, and caching query results may be available in 
the future release.  To be used in a proxy cache scenario, 
the table level caching approach requires the DBMS data 
to be replicated to the proxy and an SQL query processor 
at the cache. This shifts the entire query computation from 
the DBMS to the proxy.  Our approach, on the other hand, 
caches query results, thereby avoiding re-computation and 
requiring much simpler computation at the cache.  
Furthermore, unlike our approach, full table caching 
cannot take advantage of caching only “hot regions”  of 
the result space.  However, also unlike our approach, full 
table caching with a SQL processor can answer arbitrary 

Table 6: Numbers of Remainder Tuples of Query 10 

Figure 9: Time Breakdown of Query 10 
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queries on those tables.  A detailed comparison of the two 
approaches is an interesting area for future work. 

7 Conclusions and Future Work 

We have described a form-based proxy-caching 
framework for database-backed web servers. We studied 
two representative caching schemes for web queries using 
a full system implementation and evaluation. We show 
that while passive query caching is sufficient for the TPC-
W workloads, active caching is more promising for other 
generated traces and real workloads. More specifically, 
answering contained queries results in a significant 
performance gain, but answering cache-intersecting 
queries is probably not worthwhile for the top-n 
conjunctive keyword queries. Finally, different caching 
schemes rely on different degrees of collaboration from 
servers.  Passive query caching does not need query 
semantics information from the server, handling top-n 
queries needs some facility for getting the full answers 
from the server, and full semantic caching needs the 
server to handle remainder queries. 

 
Acknowledgements 

Thanks to our database group for valuable feedback, and 
Hongfei Guo for the TPC-W data generator. Funding for 
this work was provided by NSF through CCR-9734437, 
CDA-9623632 and ITR 0086002, and DARPA through 
NAVY/SPAWAR Contract No. N66001-99-1-8908. 

 
References 

[1] Sibel Adali, K. Selçuk Candan, Yannis 
Papakonstantinou, and V. S. Subrahmanian. Query 
Caching and Optimization in Distributed Mediator 
Systems. SIGMOD Conference 1996: 137-148.  

[2] The Apache Tomcat Servlet Engine. 
http://jakarta.apache.org/tomcat/index.html 

[3] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, 
Wang-Pin Hsiung, and Divyakant Agrawal. 
Enabling Dynamic Content Caching for Database-
Driven Web Sites. SIGMOD Conference 2001. 

[4] Pei Cao, Jin Zhang, and Kevin Beach. Active 
Cache: Caching Dynamic Contents on the Web. 
Middleware '98. 

[5] Jim Challenger, Arun Iyengar, and Paul Dantzig. 
A Scalable System for Consistently Caching 
Dynamic Web Data. IEEE INFOCOM 99. 

[6] Boris Chidlovskii, Claudia Roncancio, and Marie-
Luise Schneider. Cache Mechanism for 
Heterogeneous Web Querying. Proc. 8th World 
Wide Web Conference (WWW8), 1999.  

[7] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, 
and Divesh Srivastava, Michael Tan. Semantic 
Data Caching and Replacement. VLDB 1996. 

[8] Arthur M. Keller, Julie Basu. A Predicate-based 
Caching Scheme for Client-Server Database 
Architectures. VLDB Journal 5(1): 35-47 (1996).  

[9] Alexandros Labrinidis and Nick Roussopoulos. 
WebView Materialization. SIGMOD Conference 
2000: 367-378. 

[10] Per-Åke Larson and H. Z. Yang. Computing 
Queries from Derived Relations. VLDB85: 259-
269. 

[11] Dongwon Lee and Wesley W. Chu. Caching via 
Query Matching for Web Sources. CIKM99: 77-
85. 

[12] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua 
Sagiv, and Divesh Srivastava. Answering Queries 
Using Views. PODS, 1995: 95-104. 

[13] Qiong Luo and Jeffrey F. Naughton. Form-based 
Proxy Caching for Database-backed Web Sites 
(Full version). Available at 
http://www.cs.wisc.edu/niagara/papers/formProxy
Full.pdf. 

[14] Qiong Luo, Jeffrey F. Naughton, Rajasekar 
Krishnamurthy, Pei Cao, and Yunrui Li. Active 
Query Caching for Database Web Servers. WebDB 
2000: 29-34.  

[15] Evangelos P. Markatos. On Caching Search 
Engine Query Results. In the Proceedings of the 
5th International Web Caching and Content 
Delivery Workshop, May 2000. 

[16] Oracle Corporation. Oracle Internet Application 
Server Documentation Library. 
http://technet.oracle.com/docs/products/ias/doc_in
dex.htm 

[17] Timos K. Sellis. Intelligent caching and indexing 
techniques for relational database systems. 
Information Systems 13(2): 175-185 (1988). 

[18] Craig Silverstein, Monika Henzinger, Hannes 
Marais, and Michael Moicz. Analysis of a Very 
Large AltaVista Query Log. SRC Technical Note 
1998-014. Compaq, October 1998. 

[19] Ben Smith, Anurag Acharya, Tao Yang, and 
Huican Zhu. Caching Equivalent and Partial 
Results for Dynamic Web Content. Proc. of 1999 
USENIX Symp. on Internet Technologies and 
Systems.  

[20] Transaction Processing Performance Council 
(TPC). TPC Benchmark™ W (Web Commerce) 
Specification Version 1.1. June 27, 2000.  


