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Abstract

In this paper, we design and evaluate alternative
selection placement strategies for optimizing a very large
number of continuous queries in an Internet environment.
Two grouping strategies, PushDown and PullUp, in
which selections are either pushed below, or pulled
above, joins are proposed and investigated. While our
earlier research has demonstrated that the incremental
group optimization can significantly outperform an
ungrouped approach, the results from this paper show
that different incremental group optimization strategies
can have significantly different performance
characteristics. Surprisingly, in our studies, PullUp, in
which selections are pulled above joins, is often better
and achieves an average 10-fold performance
improvement over PushDown (occasionally 100 times
faster). Furthermore, a revised algorithm of PullUp,
termed filtered PullUp is proposed that is able to further
reduce the cost of PullUp by 75% when the union of the
selection predicates is selective. Detailed cost models,
which consider several special parameters, including (1)
characteristics of queries to be grouped, and (2)
characteristics of data changes, are presented in this
paper. Preliminary experiments using an implementation
of both strategies show that our models are fairly
accurate in predicting the results obtained from the
implementation of these techniques in the Niagara system.
This work can serve as the basis for building a cost-based
incremental group query optimizer to choose a better
grouping strategy.

1. Introduction
Continuous queries [CDTW00][TGNO92][LPT99]

are persistent queries that allow users to receive new
results when they become available. While continuous
query systems can transform a passive web into an active
environment, such systems must be able to support a large
number of queries due to the scale of the Internet. In
[CDTW00], we addressed this problem by grouping
continuous queries based on the observation that many

web queries share similar structures. Grouped queries can
share the common computation, tend to fit in memory, and
can reduce I/O costs significantly. Furthermore, grouping
on selection predicates can eliminate a large number of
unnecessary query invocations.

Our grouping technique is distinguished from
previous multiple query optimization approaches [CM86]
[RC88] [Sel86] [RSSB00] in that we use an incremental
grouping strategy. These earlier strategies focused on
finding an optimal global plan for a small number of
queries submitted in advance. A naive approach for
grouping continuous queries would be to apply these
methods directly by re-optimizing all queries whenever a
new query is added.  We contend that such an approach is
not acceptable for large, dynamic environments, in which
queries are continuously added and removed, because of
the associated performance overhead. In our approach,
when a new query is submitted, the group optimizer
considers existing groups as potential optimization
choices by using either cost-based heuristics or a slightly-
modified cost-based query optimizer. The new query is
merged into those existing groups that match its
signatures. Existing queries are not, however, re-grouped.
Preliminary results [CDTW00] demonstrate that
incremental group optimization can significantly improve
the execution time when compared to an approach without
grouping. The experimental results also show that the
approach scales to support a large number of queries.
Other important advantages and some limitations of our
approach are detailed in our previous paper [CDTW00].

[CDTW00] proposed two strategies, pushing down
selections below joins or pulling up selections above joins
(termed PushDown or PullUp in this paper), for choosing
the order for grouping selection and join operators, but
only evaluated the performance of the PushDown
approach. In this paper, we investigate the two strategies
in detail and propose a revised version of the PullUp
algorithm. Our results show that different incremental
group optimization strategies can exhibit significantly
different performance characteristics under different
conditions. Surprisingly, in our studies, PullUp is often



better and achieves an average 10-fold performance
improvement over PushDown.

In this paper we propose a cost model for incremental
group optimization. We consider several special
parameters including (1) characteristics of the queries to
be grouped, e.g. the number of queries and the distribution
of distinct constant values; and (2) characteristics of the
data changes, e.g. the update frequency and update
distribution. Since intermediate query results are
materialized in our approach, the cost of maintaining
materialized views is also included in the cost models.
This work can serve as the basis for building a cost-based
incremental group query optimizer to choose a better
grouping strategy.

Section 2 presents a brief review of the main ideas of
incremental group optimization techniques described in
[CDTW00]. Section 3 discusses the PushDown and
PullUp strategies. An analytic analysis of these two
strategies is given in Section 4. Section 5 examines the
performance of the two strategies. Section 6 discusses
related work and Section 7 concludes the paper.

2. Review of Incremental Group
Optimization

To make this paper self-contained, in this section, we
give a brief review of the main ideas of incremental group
optimization [CDTW00].  For illustration purposes, we
use the two XML-QL queries in Figure 2.1 to illustrate the
main ideas of our incremental group optimization
techniques. The queries in Figure 2.1 retrieve stock quotes

and related company profiles for stocks with price greater
than 90 and 100, respectively.  The query plan for the
query on the left of
Figure 2.1 is shown in
Figure 2.2. The plan for
the query on the right
of Figure 2.1 is the
same as that in Figure
2.2 except that the
constant in the selection
predicate is 100 instead
of 90.

In general, a range-selection predicate on one
attribute can be either “<” or “>”. In our discussion, we
consider grouping queries that have the same operator,
either “<” or “>”, but not both. One simple way to obtain

this effect is to divide the selection predicates on an
attribute into two groups, where one group has only “<”
predicates and the other only “>” predicates.

2.1. Groups and Expression Signatures
Groups are created for existing queries according to

their expression signatures, which represent similar
structures among the queries. Groups allow the common
parts of two or more queries to be shared, with each
individual query in a query group sharing the results from
the execution of the group plan. In our approach, both
selection and join signatures are considered for grouping.

A selection expression signature (e.g. Figure 2.3)
represents the same syntax structure of a selection
predicate with many potentially different constant values
(e.g. 90 and 100 in this example). In general, a group
consists of three parts: a group signature, a group
constant table and a group plan. The group signature is
the common expression signature of all queries in the
group. The selection expression signature for the example
above is given in Figure 2.3. The group constant table
contains the distinct signature constants of all the queries

in the group (along with the names of corresponding
intermediate files) and is stored as an XML file. For the
example above, (90, file_i) and (100, file_j) are stored in
this table (Figure 2.5). The group plan is the query plan
shared by all queries in the group. Since the result of the
shared computation contains results for all the queries in
the group, the results must be filtered and sent to the
correct intermediate files for further processing.
NiagaraCQ performs filtering by combining a special Split
operator with a Join operator on the input of original
selection operator (e.g. “quotes.xml” in this example) and
the constant table to replace the evaluation of selections of
queries in this group. For the example above, the join
predicate in the group plan would be “price >
Constant_values” (Figure 2.5), where Constant_values is
an attribute in the constant table used for storing the

Where <Quotes><Quote><Symbol>$s</> <Price>$p</></>

      element_as $g </> in “quotes.xml”, $p > 90
<Companies><Company><Symbol>$s</></>

 element_as $t</> in “profiles.xml”    construct $g, $t

Figure 2.1: Two XML-QL queries with the same join and selection signatures

Where <Quotes><Quote><Symbol>$s</> <Price>$p</></>

      element_as $g </> in “quotes.xml”, $p > 100
<Companies><Company><Symbol>$s</></>

 element_as $t</> in “profiles.xml”    construct $g, $t

Figure 2.3: A range-selection
signature for the example
queries in Figure 2.1

               >
Quotes.Quote.price        Constant
 in  “quotes.xml”

Figure 2.4: A join signature
for the example queries in

Figure 2.1

Symbol = Symbol
quotes.xml                  profiles.xml

Figure 2.2: Query plan for the first
query in Figure 2.1

Select
Price >90

quotes.xml

profiles.xml

Join



distinct constant values. The Split operator distributes
each result tuple of the Join operator to its correct
intermediate file based on the intermediate file name in
the tuple (obtained from the Constant Table). Queries with
the same constant value also share the same intermediate
file. This feature can significantly reduce the number of
intermediate files.

A join signature represents a join operator on two
inputs. A join group is much simpler than a selection
group since a join group does not contain any constant
values. All queries in a join group have the same join
predicate and share the same computation. For the
example above, two join groups are created on each
intermediate file (file_i and file_j) from the selection
group and “profiles.xml’ (Figure 2.5).

2.2. Query-Split
Our incremental group optimization scheme employs

a query-split scheme. For illustration purpose, Figure 2.6
shows the query plan of another example query. This
query retrieves stock quotes and related company profiles
for stocks with prices greater than 90 and groups them by
the industry field.  Assuming the groups (shown in Figure
2.5) have been created for the queries in Figure 2.1 in the
system, when the query in Figure 2.6 is submitted, the
group optimizer traverses its query plan bottom up
attempting to match its expression signatures with the
signatures of existing groups. The selection signature of
the new query matches the signature of the selection group
in Figure 2.5. The group optimizer then breaks the query
plan (Figure 2.6) into two parts. The lower part of the
query is removed. The upper part of the query is added
onto the group plan. Since 90 is already in the constant
table, the associated intermediate file (file_i) is used as the
input of the upper part of the query. In the case that the

signature of the query
does not match any
group signature, a
new group will be
generated for this
signature. This
optimization process
continues with the
remainder of the
query tree until the
entire query has been
analyzed. For the
example above, the
remainder query plan
will match the join group 1 shown in Figure 2.5 and is
split into two parts again (Figure 2.6). The groupby
operator then becomes an independent query that takes the
file_m as its input.

2.3. Incremental Evaluation of Grouped Queries
An incremental evaluation approach is used to

evaluate grouped continuous queries. Continuous queries
are triggered for execution by update events on their data
sources. An update event may include multiple data
changes. Since frequently only a small portion of each file
gets updated, the incremental evaluation of continuous
queries can save a significant amount of computation.
Another advantage of incremental evaluation is that it
avoids repetitive evaluation and only new results are
returned to users. For each file (base data file or
intermediate file) on which continuous queries are
defined, NiagaraCQ maintains a “delta file” that contains
recent changes. NiagaraCQ calculates the changes to a
source XML file using two snapshots of the file, a stored
copy and a newly updated copy. For intermediate files, the
outputs from the split operators are directly written to the
delta files. Whenever possible, queries are run over the
delta files. Generally, delta files can be discarded
immediately after the queries that use them as inputs have
been executed. In some cases the complete files must be
used, e.g., incremental evaluation of join operators.
Intermediate files, whose complete contents are required
by some join operators, must be materialized and kept
consistent with respect to data changes on the base data
sources. The total query processing cost includes the costs
of both performing the necessary computations plus the
cost of maintaining the intermediate files as updates to the
base files are performed.

While Figure 2.5 illustrates the flow of data at query
optimization time, the scenario at query execution time is
slightly different. When “quotes.xml” is updated,
“∆quotes.xml” is actually used for evaluating the selection
group plan. The output from the split operator is written to
the delta intermediate files ∆file_i and ∆file_j. The

Figure 2.5: Groups created for queries in Figure 2.1 (PushDown)
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example query
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complete contents of file_i and file_j must be retained as
they must be joined with “∆profiles.xml” whenever
“profiles.xml” is modified. Thus, ∆file_i and ∆file_j must
be merged with file_i and file_j respectively.

3.  Incremental Group Optimization
Strategies

In this section, the examples from Figure 2.1 are used
to illustrate the main ideas of PushDown and PullUp
when incrementally grouping queries with both selection
and join operators.

3.1. PushDown
In this method, selection operators are pushed below

the join operator. Queries are first grouped by their
selection signatures with the output tuples of the selection
group stored into multiple intermediate files using our
query-split scheme. Multiple join groups are then created
on these intermediate files along with the second input to
the join operators. This method can be formally
represented as

The group plans generated by applying the
PushDown method for the two queries in Figure 2.1 are
shown in Figure 2.5. A selection group is first created for
the expression signature in Figure 2.3 and two
intermediate files — file_i and file_j — are allocated.
File_i and file_j will store tuples that have stock prices
above 90 and 100, respectively. Two join groups are then
created: one on file_i and “profiles.xml”; and the other
one on file_j and “profiles.xml”.

When the selection predicates overlap, the
intermediate query results of the selection group will
contain duplicates. Consequently, redundant join
operations may be performed between these overlapping
intermediate files and the other input file, wasting
additional I/O and CPU resources.  For example, if a large
number of stocks have prices greater than $100, then there
will be a significant amount of overlap between the
predicates price > $90 and price > $100. When
“quotes.xml” is modified, stocks with prices above $100
will be duplicated in both “∆file_i” and “∆file_j” and
joined with “profiles.xml”. In addition, the duplicate data
changes in “∆file_i” and “∆file_j” must be merged with
file_i and file_j respectively to keep file_i and file_j up-
to-date. Similarly, when “profiles.xml” is modified,
“∆profiles.xml” must be joined with overlapping
intermediate files file_i and file_j.  When grouping
queries with selection predicates that do not overlap (e.g.
stock_name=”INTC” and stock_name=”MSFT”), this
problem will not occur. However, PushDown still suffers

from the high overhead associated with computing many
joins.

The main advantage of this method is that when the
number of distinct constant values in the selection
signature is small, PushDown avoids computing the entire
join between quotes.xml and profiles.xml. Another very
important, but less obvious advantage, is that since the
data changes are usually confined to only a small portion
of the entire data file, the filtering step of the grouped
selection may avoid triggering most of the upper level join
groups for execution.

3.2. PullUp
An alternate solution is to pull up selections. In this

method, the common join operation will be computed
before evaluating the different selection predicates.
Different selection groups can then be created on the
single intermediate file of the join group. This approach
can be represented by

The group plan for the two queries in Figure 2.1 is
shown in Figure 3.1. A join group on “quotes.xml” and
“profiles.xml” is first created for the expression signature
shown in Figure 2.4 and the join result is stored in one
intermediate file (file_k). A selection group is then created
on this intermediate file (file_k). File_m and File_n will
store tuples with stock prices above 90 and 100,
respectively. At query execution time, when “quotes.xml”
is updated, “∆quotes.xml” is joined with “profiles.xml”.
The results of the join are written to the single delta
intermediate files ∆file_k. The complete contents of file_k
must be retained as they are required when a new entry is

(σ1R S)  U  (σ2R  S)  U … U (σn R�  S)

σ1 (R   S)  U  σ2 (R     S)  U … U σn (R    S)

….

….
90   file_m
100    file_n

Constant
values

Intermediate
file names

Figure 3.1: Join signature is grouped before selection signature
(PullUp)
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inserted into the constant table in the selection group. This
may happen when a new query with the same expression
signatures as those of our example queries (Figure 2.1)
but with a new constant in the selection predicate is
submitted. Thus, ∆file_k must be merged with file_k.

In the PullUp approach, only one join group and one
selection group is created, since the single intermediate
file of the materialized join results allows the remaining of
the example queries to have the same selection signature
after the queries are merged with the join group. This
approach avoids the problem of repetitive joins.
Furthermore, PullUp only needs to maintain a single
intermediate file, while PushDown generally must
maintain multiple overlapping intermediate files.

The main disadvantage of this approach is that since
no selection predicates are applied before the join, some
tuples that would have been eliminated by the selection
predicates end up being joined. If selection operators are
blindly pulled over all the join operators in a query with
multiple join operators, a very large intermediate file is
likely to be produced. In addition, the additional overhead
for maintaining the intermediate file (file_k) will be
incurred whenever “profiles.xml” is modified. With the
PushDown strategy, changes to “profiles.xml” do not
affect the intermediate files.

Note that both PushDown and PullUp produce
identical result files.

3.3. Filtered
PullUp

To overcome the
limitations of the
PullUp approach, a
selection predicate
with the union of the
selection predicates of
the selection group can
be inserted before the
join operator in the
join group plan. In the
previous example, a
selection operator with
the predicate price>90
would be inserted before the join operator in the join
group plan (Figure 3.2). This optimization can reduce the
size of the materialized join result, thus reducing both the
I/O cost and the CPU cost of the PullUp method. We call
this strategy “Filtered PullUp”. One complexity of this
strategy is that the union of the selection predicates may
need to be dynamically modified when a new query is
added (e.g. in the above example, a query similar to the
queries in Figure 2.1 but with price>70) or an existing
query is removed

4.  Analytical Models
In this selection, we present analytical cost models of

the PushDown and PullUp strategies, using the example
queries presented in Figure 2.1. We have also developed
models for queries with equality selection predicates
shown in Figure 4.1 but due to space limitations, we only
show the formulas for the range selection predicates,
while we will present results for both types of queries. For
simplicity, we use R and S to represent the names of XML
files, quotes.xml and profiles.xml respectively. Unless
specified explicitly, we assume that the join attribute has
no duplicate values in R and S.

The total cost of each strategy includes the cost of
query evaluation and the cost of maintaining the persistent
intermediate files. For simplicity, we keep the size of R
and S constant by assuming half the changes are insert
operations and the other half are deletes. An update
operation can be treated as a delete operation followed by
an insert operation. Assuming the ratio of updates to S
versus R is F, we estimate a weighted value of the costs of
query processing when either R or S is modified.

Our cost formulas model both I/O and CPU costs.
Assuming there is enough memory to be able to hold both
inputs to the join, processing a join requires only one scan
of its input files. We also assume that data files can be
cached in memory and shared by multiple queries. This
assumption significantly reduces the I/O cost for both the
PushDown and the ungrouped approaches, since a large
number of queries may need to scan the same data inputs
simultaneously in these two methods. We use the number
of predicate evaluations as the metric for CPU cost since
this number is more or less independent of the actual
implementation and reflects the CPU cost relatively well.
Two physical join methods, symmetric hash join (SH)
[WA91] and symmetric nested loop (NL) join, are
assumed in our formulas. SH and NL are used for
equijoins and non-equijoins respectively in our models.
The reason that these two algorithms are used is that these
two algorithms have been implemented in Niagara and we
want to be able to validate the cost formulas developed in
this section with experimental results to be presented in
next section.

The parameters used in the cost models presented
below are tabulated in Table 4.1 along with their default
values measured from our system.

Figure 4.1: An XML-QL query that retrieves stocks in Retail
industry and related company information

Where  <Quotes><Quote><Symbol>$s</><Industry>$i</></>

element_as $g </>   in “quotes.xml”, $i = “Retail”
<Companies><Company><Symbol>$s</></>

  element_as $t</> in “profiles.xml”  construct $g, $t

Figure 3.2: Revised Join group plan
in filtered PullUp. (Note that the top
selection group plan is the same as
in Figure 3.1 and is not shown here)
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Symbol

Names

Description Dflt.

Values

R,S XML files

∆R, ∆S delta files for R, S

|R|, |S| number of pages in R, S, assuming |R| = |S| 300

||R||, ||S|| number of tuples in R, S (=
|R|*PageSize/TupleSize)

5000

PageSize size of a page in bytes 4000

TupleSize size of a tuple in bytes 240

CtblEntry
Size

Size of a constant table entry in bytes 20

IO Cost in milliseconds(ms) of a disk I/O 2ms

Hc CPU cost of calculating a hash value and
constructing a hash table entry for a tuple

0.01ms

Cc CPU cost of  evaluating a predicate (ms) 0.36ms

N total number of queries 1000

M distinct constant values in a selection
predicate

100

F ratio of update event frequency on S/
update event frequency on R

1

K percentage of upper level join groups
triggered for execution in PushDown

100%

γi the selectivity of a selection predicate

γu selectivity of the union of all selection
predicates in a selection signature

0.8

γ sum of selectivities of M distinct
predicates in a selection signature, domain
[0,M]

δr join selectivity of ∆R join S (number of
tuples in  ∆R  join S/ ||∆R ||*||S||)

0.0002

δs join selectivity of R join ∆S (number of
tuples in R join ∆S / ||R||*||∆S||)

0.0002

4.1. PushDown
For each update event on R, let the data changes

contain |∆R| pages. Assume there are M intermediate files
corresponding to M distinct selection predicates in the
selection group, each with selectivity γi, where i ranges
from 1 to M. The constant table in the selection group
thus has M entries. The results from the join of ∆R and the
constant table are written into the corresponding M delta
intermediate files, each of which contain γi*|∆R| pages.
The total size of delta intermediate files is γ*|∆R| pages,

where ∑
=

=
M

i
i

1
γγ .

Next, the M delta intermediate files are separately
joined with S and the join results are written to disk. For
simplicity, we assume the join selectivities of these joins

are the same and equal the join selectivity of ∆R join S
(δr). Let the number of tuples in ∆R and S be ||∆R || and
||S|| respectively, the final results thus contain δr

*γ*||∆R||*||S|| tuples. If each page can hold
PageSize/TupleSize tuples, the final result files would
occupy δr *γ*|∆R|*|S|*PageSize/TupleSize pages. Note
that for simplicity, in this paper, we assume a constant
tuple size. Since from our results expressed in the
following sections, I/O cost is only a small portion
(around 10%) of the entire cost, such an assumption has
little impact on our conclusions.

For clarity, let |ConstTbl| represent the number of
pages occupied by the constant table. |ConstTbl| equals
M*CtblEntrySize / PageSize. Assuming that the joins only
require one scan of both input files, the I/O cost of
evaluating these queries is

 *|)||(| IOConstTblR +∆        //read ∆R and the constant

table in the selection group

IOR *||* ∆+γ        //write results from the join of ∆R and

the constant table into M delta intermediate files

IOSR *|)|||*( +∆+ γ          //read M delta intermediate

files and S, assuming one in-memory copy of S can
be shared by the M joins!

IOTupleSizePageSizeSRr *)/*(||*||** ∆+ γδ   //write final

results of the joins of delta intermediate files and S

Assuming the number of tuples in R is ||R||, the
intermediate files each contain γi*||R|| tuples. A
corresponding delta intermediate file contains 0.5*γi*||∆R||
inserts and 0.5*γi*||∆R|| deletes. Changes in the delta
intermediate files must be merged with their
corresponding intermediate files. The inserts in a delta
intermediate file can be directly appended to the end of its
associated intermediate file. In order to delete tuples, the
pages that contain the deletes, however, must be fetched
into memory and written back to disk1.

The I/O cost for intermediate file maintenance is
given by

IOR *||**5.0 ∆γ  //append “inserts” to the end of

intermediate files

IO
M

i
RiRiRiYao *

1
||)||**5.0|,|*||,||*(*2 ∑

=
∆+ γγγ

                                                
1 The formula Yao(n, m, k) [Yao77] is used to estimate the number of
pages visited when accessing k tuples from n tuples of a file that
occupies m pages. When the number of tuples in a page is large (e.g.
PageSize/TupleSize>10), a good approximation is m*(1-(1-1/m)k)
[Car75]. Note that in our formula, parameters in Yao(n,m,k) are set as
follows: n is γi*||R||, m is γi*|R| and k is 0.5*γi*||∆R||.

Table 4.1: Parameters of cost models



         //read and write pages, which contain “deletes” of
intermediate files

The total I/O cost is the sum of the cost of query
evaluation plus the cost of keeping the intermediate files
consistent.

The CPU cost includes the cost of processing the
non-equijoin between ∆R and the constant table in the
selection group and the cost of processing the equijoins of
intermediate files and S in each of the M join groups.
Assume that the nested loop join algorithm (NL) is used
for the non-equijoin in the selection group, that ∆R
contains ||∆R|| tuples, and that the constant table contains
M entries. ||∆R|| *M comparisons are performed for
processing the non-equijoin. Furthermore, assume
symmetric hash join (SH) is used for the equijoin in the
join groups. For each tuple from either input, the
symmetric hash join algorithm first computes the hash
value of the join attribute in the tuple and then it inserts
the tuple into the hash table on its side; the join algorithm
then probes the other-side hash table for possible matches.
For each input tuple, let the cost for the first step
processing be Hc. We assume the cost of the probing
phase is the cost for one comparison (Cc) times the
number of matches performed. Since we assume that join
attribute values are unique in both R and S, only one
comparison is performed in our models. The cost for
processing a tuple in a symmetric hash join (SH) thus is
Hc+Cc. From previous discussions, we know that each
delta intermediate file contains γi*||∆R|| tuples. Thus, the
cost of joining S with M delta intermediate files is

∑
=

++∆
M

i
CcHcSRi

1
)(*||)||||||*(γ , which can be easily

transformed to a simpler format

)(*||)||||||( CcHcSMR ++∆γ , where ∑
=

=
M

i
i

1
γγ .

The CPU cost thus consists of

 **|||| CcMR∆  //process the NL join between ∆R and

the constant table

 )(*||)||||||( CcHcSMR ++∆+ γ            //process the SH

joins between S and M delta intermediate files

For each update event on S, ∆S is joined with the M
materialized intermediate files and the join results are
written to disk. There are no changes to the materialized
intermediate files in this case. The I/O cost and the CPU
cost can both be derived similarly as the case when R is
modified.  The I/O cost is

|∆S|+ γ* |R |+δs* γ* |R |*|∆S|*(PageSize/TupleSize).

The CPU cost is: )(*||)||*||||( CcHcSMR +∆+γ .

Finally, we calculate a weighted value of the I/O cost
for one update event on R and the I/O cost for F update
events on S. A weighted-CPU cost can be obtained
similarly.

In the analysis above, we assume that all M
intermediate files are modified and thus all M upper-level
join groups are triggered for execution. In reality, since
only a small amount of data is modified at a time,
generally only a subset of the M intermediate files will be
affected by each update event. Consequently only a subset
of the upper level queries will be executed. This filtering
feature is very important to the PushDown method since it
could reduce the overall cost of PushDown significantly.
We use a parameter K to represent the percentage of
upper-level join groups that are triggered for execution.
Thus, the new cost formula with respect to K is to adjust
the cost of the upper level join processing with a factor K.

4.2. PullUp

For each update event on R, ∆R is first joined with S
and the results are written to the single delta intermediate
file, whose size is δr* |∆R |*|S|* (PageSize/TupleSize)
pages. The delta intermediate file is then joined with the
constant table in the selection group and the final results
are written to disk. Since the final results are the same
whatever PushDown or PullUp is used, the total size of
the final results thus is δr* γ* |∆R |*|S|*
(PageSize/TupleSize) pages (obtained from Section 4.1).

If |ConstTbl|, the size of the constant table in pages,
equals M*(CtblEntrySize / PageSize), then the I/O cost
for query evaluation is given by:

 *|)||(| IOSR +∆       //read ∆R and S in the join group

IOTupleSizePageSizeSRr *)/*(||*||* ∆+δ
//write join results of ∆R and S into a single delta
intermediate file

IOConstTblTupleSizePageSizeSRr *|)|)/*(||*||*( +∆+ δ
//read the delta intermediate file and the constant
table in the selection group

IOTupleSizePageSizeSRr *)/*(||*||** ∆+ γδ
//write the results of the join of the delta
intermediate file and the constant table

Assume the join selectivity of R join S is δr, and let
the number of tuples in R and S be ||R|| and ||S||,
respectively. The single intermediate file contains δr

*||R||*||S|| tuples. Its corresponding delta intermediate file
contains δr *||∆R||*||S|| tuples, including 0.5*δr *||∆R||*||S||
inserts and 0.5*δr *||∆R||*||S|| deletes. Changes in the delta
intermediate file must be merged with the intermediate file
and the cost can be derived similarly as that in the
previous section.



The I/O cost of intermediate file maintenance is given
by

IOTupleSizePageSizeSRr *)/*(||*||**5.0 ∆δ
//append “inserts” to the end of the intermediate file

IOSRrTupleSizePageSize

SRrSRrYao

*||)||*||||*5.0),/(

*||*||*||,||*||||*(*2

∆
+

δ
δδ

//read and write pages of the intermediate file that
contain “deletes”

The CPU cost consists of:

 )(*||)||||(| CcHcSR ++∆   //process the SH join of ∆R

and S in the join group

 CcMSRr **||||*||||* ∆+ δ    //process the NL joins of the

delta intermediate file and the constant table in the
selection group

For an update event on S, the I/O cost and the CPU
cost can be derived very similarly to the case that R is
modified and we omit the derivations and the formulas in
the paper. Since the single upper level join is always
triggered for execution no matter what data changes occur
in PullUp, we do not consider K in PullUp.

4.3. Filtered PullUp
In this method, a selection operator with a selectivity

of the union of all selection predicates in the selection
group (γu) is placed before the join of R and S in the join
group in PullUp (Figure 3.2). The I/O and CPU cost
formulas in this method are similar to those derived in
PullUp, except that the number of tuples from R or ∆R
involved in the join is reduced by a factor γu.  Thus, the
size of the intermediate result file is also reduced.  One
observation is that PullUp can be treated as a special case
of filtered PullUp with γu set to 1.

Note that additional CPU operations are required to
evaluate this selection predicate compared with PullUp.
For range-selection predicates, because each group
consists of only ‘>’ or ‘<’ operator, it is easy to see that
the union of the selection predicates is the weakest
predicate in the group, which can be evaluated using a
single comparison for each input tuple. Since this
additional cost is negligible compared to the CPU time
spent doing the join, it is not included in our cost formula.
For equality predicates, checking the union of selection
predicates may consume more time than evaluating a
single predicate. However, efficient methods can be
designed to bridge the gap (e.g. using a bitmap or a hash
index to represent all the constants in the equal
predicates).

4.4. Ungrouped Case
Since Niagara allows documents to be shared by

queries running simultaneously, the I/O cost in the

ungrouped case is a single scan of both data inputs for
update events on either R or S plus the cost of writing out
the final results. The cost of writing out the final results is
N/M times the cost of the grouped cases, since each query
writes its output file independently. We omit the formulas
in this paper.

For each update event on R, tuples in ∆R are first
evaluated against the selection predicate. The CPU cost
for processing the selection is ||∆R||*Cc. Tuples satisfying
the selection predicate are then joined with S. Assuming
the selection selectivity of a query is γi, the number of
tuples involved in the join with S is γi*||∆R||.  The cost of
processing the join using symmetric hash join (SH) is (γi

*||∆R||+||S||)*(Hc+Cc). The sum of these two costs is the
total CPU cost for processing the query. Since N queries
run independently, the total CPU cost is the sum of CPU
costs of the N queries and is given by

CcRN *||||* ∆                 //process selections of N queries

)||)(||||||*/( CcHcSRMN ++∆+ γ     //process joins

of N queries using SH algorithms

Note that ∑
=

=
N

i
iMN

1
/ γγ , assuming the constants in the

selection predicates in the N queries are uniformly
distributed among M distinct values. For update events on
S, the CPU cost can be derived similarly.

4.5. Strategy Comparisons
This section examines the performance of the two

grouping methods, PushDown and PullUp, by varying
several important parameters. The results from the models
are shown in Figure 4.2 through Figure 4.9. Our results
demonstrate that the performance of the ungrouped
method is always tens or hundreds of times worse than the
worst case of the grouped strategies, so we do not present
the ungrouped results here.

Results of range selection (e.g. price>90) queries
(Figure 4.2-Figure 4.7)

Assume that there are M distinct selection predicates
in the selection group, let the selectivity of the union of all
selection predicates be γu, and let the sum of the
selectivities be γ.  In the experiments, unless specified
otherwise, the default values for the three parameters are
100, 0.8 and 20. Under such settings, we simulate an
environment in which a fairly large number of queries
shown in Figure 2.1 with a high degree of overlap
(average selectivity of a selection predicate is 20%).
Unless specified, F, the update frequency to S versus R, is
1, and K, the percentage of upper level join groups
triggered for execution in PushDown, is 100%.

We investigate the effectiveness of the optimization,
which places a selection operator with the union of all



selection predicates in the selection group before the join
of R and S (Figure 3.2), in the filtered PullUp method. γ,
the sum of selectivities of M distinct selection predicates
is held constant and  γu , the  selectivity of the union of all
selection predicates, is varied from 0.1 to 1. Figure 4.2
shows the relative performance of the two strategies.
Since the execution time of the PullUp method equals that
of filtered PullUp with γu =1, filtered PullUp is always
better than PullUp. γu has no influence on the PushDown
as long as γ is kept constant. Since we want to compare
the performance of PullUp with PushDown regardless of
γu, in the following study we use PullUp instead.

Figure 4.3 illustrates that the execution time of
PushDown increases from 75 seconds to 430 seconds as
M, the number of distinct selection predicates, grows from
25 to 300. In this study, γ, the sum of selectivities of M
distinct selection predicates is held constant (20). Thus,
the size of the intermediate and final query results remains
constant. The increase in the execution time is due to the
increase of the CPU cost, since the number of joins
performed in the PushDown approach is M plus 1. In
addition, the CPU cost of performing the join between R
and the constant table also increases, since the constant
table contains M entries. The execution time of the PullUp
method is very low (ranging from 15 to 114 seconds). The
increase of its execution time is mainly from the CPU cost
of joining the single intermediate file with the constant
table. Due to the fact that γ/M, representing the average
selectivity of a selection predicate, can not be less than 1,
we can not show the case when M is less than 20.

Assume that M, the distinct predicates in the selection
group, is held constant, Figure 4.4 shows that the

execution time of PushDown increases from 180 to 281
seconds as γ, the sum of the predicate selectivities
increases. A large γ implies that a large number of tuples
are duplicated in the intermediate query results, incurring
high I/O and CPU costs for query processing and
intermediate file maintenance. The execution time of
PullUp method is very low (ranging from 42 to 48
seconds) and only increases slightly as γ increases. This is
due to the fact that no duplicated joins are performed with
PullUp.

Let the number of data changes for each update event
on R or S be represented as ||∆R|| and ||∆S||, respectively.
Assuming ||∆R|| equals ||∆S||, we vary  ||∆R|| from 100
tuples (about 2% of the original data) to 4000 tuples
(about 80% of the original data) in this study. Figure 4.5
shows that the execution time of the PullUp strategy
remains low (between 7 seconds and 160 seconds). The
execution time of PushDown increases from 124 seconds
to 310 seconds, since the overlapping intermediate query
results incur high I/O and CPU costs.

In Figure 4.6, we vary F, the update frequency to S
versus R, to see the effects of different update
characteristics on R and S.  Recall that in our example
queries, one selection is defined over R while no selection
is defined over S.  One interesting observation is that the
execution time of PushDown drops from 240 to 104
seconds, as F increases from 0.1 to 10, because the query
processing cost for each update event on S is less than the
cost for each update event on R in PushDown. The reason
is that in PushDown, the changes on S can be directly
joined with the materialized selection results in the
intermediate files. Thus, the PushDown method favors the
situation that updates on S occur very frequently while R
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is modified very infrequently. The cost of PullUp is
however, constant since the roles of R and S are
symmetric in the formulas of the PullUp method. Another
reason is that we assume the size of R and ∆R is the same
as S and ∆S, respectively.

Figure 4.7 shows the execution time of PushDown
drops from 172 to 61 seconds as K, the percentage of
upper level join groups triggered for execution in
PushDown, decreases from 100% to 0%. The execution
time of PullUp remains relatively constant since the single
upper level join is always triggered for execution no
matter what data changes occur. Even when K equals 0,
the execution time of PushDown is still longer than
PullUp. This is because the execution time plotted in the
figure is an average of execution time when either R or S
is updated. Since there are 100 groups in this case and
data changes on S must be joined with all of them, the
average cost is still higher than PullUp. In Figure 4.7, we
also show the execution time of PushDown, when only R
is modified.  We can see the total execution time of
PushDown is less than PullUp when less than 2% of the
upper level join groups are triggered for execution. Two
interesting observations can be drawn from this figure.
First, PushDown can be better than PullUp, even in an
environment where a large number of highly overlapped
continuous queries exist. Second, PushDown favors the
situation that R, on which selection groups are created, is
modified more frequently than S when only a small
percentage of upper level join groups are triggered for
execution. This result complements the observation from
Figure 4.6 that the PushDown method favors frequent
changes on S, on which no selection groups are defined, if
all upper level queries are triggered for execution.

In addition, varying the total number of installed
continuous queries, N, has no direct effect on the grouped
cases, since the performance of these approaches is
controlled by the number of groups created, M, and not N.
However, as N increases, the cost of non-grouped
approaches will increase proportionally.

Results of equality selection (e.g. industry=”Retail”)
queries (Figure 4.8-Figure 4.9)

We also developed cost models for example queries
in Figure 4.1 and conducted a similar performance study
(Figure 4.8- Figure 4.9). These queries contain an equality
selection predicate on the Industry attribute, which has
500 distinct values, yielding a selectivity factor of 1/500.
Thus as M, the number of distinct selection predicates
increases, the sum of the selectivities, γ, which is M/500,
will increase linearly.

Figure 4.8 shows as M increases from 1 to 50, the
execution time of PushDown increases from 1.7 to 56
seconds because the number of joins performed is M+1.
The execution time of PullUp is around 4 seconds, since

the CPU cost of joining the single intermediate file with
the constant table increases very slightly.  The execution
time of PushDown when only S is updated is lower than
the average time of PushDown when both R and S are
updated. This implies that PushDown favors more
frequent changes to S, on which no selection groups are
created, than R, on which selection groups are created, if
all upper level join groups are triggered for execution. On
the other hand, Figure 4.9 shows that when K, the
percentage of upper level join groups triggered for
execution, is small, frequent changes over R are favored
in PushDown (M=50 in this experiment).

5. Experimental Evaluation
In the following experiments, we experimentally

evaluate PushDown, PullUp and filtered PullUp using the
settings for Section 4 and compare the performance results
with the results derived in Section 4. The experiments
were conducted on a Pentium III 800MHz PC with 256M
of RAM, 9GB of Hard Disk, running Linux4.2.

Our experiments were run against a database of stock
information consisting of two XML files, “quotes.xml”
and “profiles.xml”. “Quotes.xml” contains stock
information on about 5000 companies. The size of
“quotes.xml” is about 1.4 MB. Related company
information is stored in “profiles.xml”, whose size is
about 1.3MB. Data changes on “quotes.xml” and
“profiles.xml” are generated artificially to simulate the
real stock market and continuous queries are triggered by
these changes. We measured the total execution time for
each update event on quotes.xml or profiles.xml and
calculated a weighted-average of them. We give a brief
description of the assumptions that we made to generate
“quotes.xml”. Each stock has a unique Symbol value. The
Industry attribute takes a value randomly from a set with
about 500 values. The Price represents the current price
of a stock and uniformly distributed among 0 to $500.
Unless specified, for each update event the number of
stocks modified in “quotes.xml” is 1000, which is about
280K bytes. Since the time spent calculating changes in
two source files is the same for both the grouped and non-
grouped approaches, we run our experiments directly
against the data changes.

We use two types of queries as shown in Figure 2.1
and Figure 4.1 in our experiments. The equality selection
predicate queries are generated using different constants
following a uniform distribution over the 500 distinct
values on industry.  However, given an average selectivity

of all selection predicates, γ , range selection queries

follow a uniform distribution over the values with

selectivities that range either from 0 to 2*γ  when γ  is

less than 0.5, or from 1*2 −γ  to 1 when γ  is equal to or

greater than 0.5.



We conducted similar experiments to those presented
in Section 4. Figures 5.1 through 5.8 show very similar
performance results corresponding to the results presented
in Figures 4.2 through 4.9.

5.1. Summary and Discussion
Overall, the following observations can be drawn

consistently from both the analytical models and the
experimental studies illustrated by using the simple query
examples. PullUp is often much better than PushDown,
especially when the number of distinct selection
predicates is large and these predicates are highly
overlapping. In addition, PullUp is usually much less
sensitive to the variance of individual parameters, thus
more scalable, than PushDown. PushDown may be
favored when the number of distinct selection predicates
is small, especially for non-overlapped selection
predicates, or under favorable data change workload
reflected by parameter K, the number of upper level join
groups triggered for execution and F, the ratio of data
change frequency on different input.

In general, PullUp could be much more efficient than
PushDown for grouping queries containing any number of
selections and joins. This is because pushing down
selections of queries with multiple joins could result in
creating many more intermediate files and thus more join
groups than our simple example queries with only one
selection and one join operator.

Our results also have some practical applications. In
[CDTW00], pushing down selection are used when groups
are initially created using incremental group optimization,
since at that time, the future workload is not known. If
dynamic regrouping is not performed on existing groups,
from our findings in this paper, we know that PullUp

could be a better choice for creating initial groups, since
the potential performance loss of using PushDown could
be much greater than the possible gain obtainable using
PullUp. One observation that favors PullUp is that in
general, we expect most continuous queries to contain
only a few joins (e.g. less than 5). Thus the danger of
generating very big join results after pulling up all
selections is relatively small. On the other hand, if the best
performance is desired for any possible workload, our
results show that the group optimizer must dynamically
regroup existing queries by considering pulling up
selections as the workload changes. Our cost models plus
the consideration of pulling up selections can be used by a
general purpose multiple query optimizer to perform
regrouping.

6. Related Work
Our work is closely related to the work of production

rule systems (a.k.a. discrimination networks)
[For82][Mir87][WH92][NGR88]. RETE [For82] and
TREAT [Mir87] are two well-known algorithms used in
production rule systems for matching input tokens against
installed rules. Our incremental group optimizer generates
a RETE-like discrimination network for a group of
queries.

Our work is closely related to query optimizations
involving materialized views [RSS96][Vis98] [MRSR01].
The intermediate files in our approach are analogous to
the additional views in [RSS96]. In addition, we consider
incrementally grouping a large number of queries, an idea
not considered in [RSS96]. Another related work [Vis98]
studied the problem of finding a good plan from among
the various alternatives for incremental view maintenance.
[MRSR01] applies the multiple-query optimization
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techniques in [RSSB00] to materialized views selection
and maintenance. Our work is also related to materialized
view maintenance [BLT86][GMS93] [Han87] [SR88]. In
our method, intermediate files are updated incrementally.

Hellerstein [HS93][Hel94][Hel98] proposed a
method called Predicate Migration to produce an optimal
plan for queries with expensive methods. Our work is
related to this work in that we also try to find an optimal
plan for queries by considering pulling up selections
above joins. However, we focus on optimizing multiple
queries with common selection operators in a continuous
query environment while his work is on single query
optimization with expensive selection predicates.

7. Conclusion
In this paper, we design and evaluate alternative

selection placement strategies in optimizing a very large
number of continuous queries. Two grouping strategies,
PushDown and PullUp, in which selections are either
pushed below, or pulled above, joins are proposed and
investigated. Our study demonstrates that incremental
group optimization outperforms the ungrouped approach
by factors of up to 350. More interestingly, the results
from this paper show that different incremental group
optimization strategies can have significantly different
performance characteristics. Surprisingly, in our studies,
PullUp is often better and achieves an average 10-fold
performance improvement over PushDown (occasionally
100 times faster). Furthermore, a revised algorithm of
PullUp, termed filtered PullUp is proposed, which is able
to further reduce the cost of PullUp by 75% when the
union of the selection predicates is selective. In addition,
detailed cost models, which consider several special
parameters, including (1) characteristics of queries to be
grouped, and (2) characteristics of data changes, are
presented in this paper. Preliminary experiments using an
implementation of both strategies show that our models
are fairly accurate in predicting the experimental results.
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