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Abstract

In this paper, we design and evaluate an efficient
and dynamic regrouping approach to optimize a
large continuous query workload. The key idea
of our regrouping algorithm is to find a best
solution by removing redundant groups within
the existing solution from incremental group
optimization. Since the existing query groups
usualy congtitute a very small portion of the
entire search gpace, such a heuristic-based
approach is key to achieving an efficient
regrouping algorithm. In addition, timing of
regrouping is also critical to the efficiency of
regrouping. Overall, we believe that constant
incremental  grouping in conjunction with
occasional dynamic regrouping can achieve a
high-quality grouping at a fairly low cost for
optimizing a large, dynamic continuous query
workload.

1. Introduction

Continuous queries have attracted considerable attention
recently and have been studied in [TGNO92] [LPBZ96]
[CDTWOO][CDNO2]. In [CDTWO00], an incremental
grouping approach is proposed to efficiently group new
continuous queries without having to regroup existing
gueries. Even though such an approach is efficient and
scalable, it may result in a sub-optimal global plan, since
existing queries are not regrouped to exploit new
grouping opportunities introduced by subsequent queries.
Since queries are continuously being added and removed
from groups, over time the overall quality of the groupsis
very likely to deteriorate, leading to a reduction in the
overall performance of the system. In this case, existing
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groups may require “dynamic re-grouping” to re-establish
their effectiveness. We use a smple example for
motivating purposes.

Example 1.1 Let Q1 (A<B<C) and Q2 (Br<C) be two
continuous queries that are submitted to the system
sequentially. Assume that the incremental grouping

algorithm chooses a plan ((A<B)<C) for the first query,
and creates two join groups with join signatures (A>B)

and (ABC), respectively. When Q2 is submitted to
the system, neither of these groups can be used for Q2.

Thus, a separate join group (Bx<C) must be created.
However, a possible better global plan would have Q1

share the (B<C) group with Q2, removing the need for
group (A<B).

In addition, an existing continuous query can be removed
from the system, either because the query has expired or
has been explicitly deleted. Simply removing existing
groups used by the query can aso reduce the overall
quality. Thus, it may be beneficial to regroup existing
gueries periodically, as continuous queries are added and
removed continuously.

This paper focuses on an efficient and dynamic query
regrouping strategy for large, dynamic continuous query
workloads. Our regrouping method, when applied in
conjunction with the incremental grouping, can obtain a
reasonable improvement over the incremental grouping
method at a low extra overhead in regrouping time. Since
continuous queries can be executed very frequently and
they can aso be added to and removed from the system at
any time, the regrouping must be efficient enough so as
not to impose a significant burden on the system.

A naive regrouping-algorithm would periodically perform
a traditional global query optimization [RC88] [Sel86]
over al existing queries. Such a process would be
prohibitively expensive and no known algorithm can
handle a continuous query workload with potentially
hundreds of thousands of continuous queries.
Furthermore, such a strategy does a significant amount of
redundant work that has already been done by incremental
group optimizations when queries were initially installed.



The key idea of our regrouping algorithm isto find a good
solution by removing redundant groups within the
existing solution from incremental group optimization.
Since existing query groups usualy constitute a very
small portion of the entire search space, this heurigtic is
crucial to achieving an efficient regrouping algorithm. In
addition, our algorithm can also reuse previous
regroupings in order to avoid repetitive computations.
Furthermore, the timing of regrouping is aso very
important to the regrouping efficiency. In this paper, we
explore ways of determining a good regrouping interval
using both analytical and experimental methods. We also
propose an active regrouping approach in which
regrouping can be dynamically invoked.

The rest of the paper is organized as follows. In Section 2
we illustrate several related grouping problems using a
graph representation and present a formal definition of
those problems. Our incremental grouping and regrouping
algorithms are presented in Section 3. Section 4 examines
the performance of the regrouping algorithm. Related
work is described in Section 5. We conclude our paper
and suggest some important future research directionsin
Section 6.

2. Graph Representations and Problem
Definitions

This section presents the graph representation used by our
algorithms. Even though the model itself can be extended
to incorporate other operators, in this paper, we consider
queries composed of only join operators. Since joins are
among the most expensive operators in database systems,
dynamically regrouping joins can significantly improve
the entire system’'s performance. In addition, one
potentially useful heuristic for optimizing a large number
of continuous queries with similar join operatorsisto pull
up selections over joins, alowing queries to share
materialized join results [CDNO1]. Thus, efficiently
regrouping joinsisimportant.

We then use the model to define our problemsin aformal
manner. Since the search space for all these problems is
exponential in the size of queries in the workload, our
focus is to find good heuristic-based solutions in a
practical setting.

2.1 Graph Representations

Figure 2.1 shows a query graph of the grouped query plan

after the example query workload { A<BiC, Br«C} has
been incrementally grouped. The left diagram in Figure
2.1 shows the plan before the regrouping, and the right
one shows it after regrouping. Each query expression is
represented by a node in the query graph, e.g. node AB
represents the join Ar<B. In the following discussions we
use nodes and queries interchangeably to express the
same meaning, as long as doing so creates no confusion.

A node is termed a final node if it represents a user-
defined query, eg. node ABC and BC in the above
example (shown shaded in Figure 2.1). Fina nodes
correspond to user queries and must always be retained.
Non-final nodes (e.g. node AB, shown non-shaded),
however, are just intermediate computations for
computing the final nodes and they can be removed when
better alternatives arise.

ABC

Figure 2.1: The query graphs after query workload

{ABIIC, B<iC} have been incrementally grouped. The
left graph shows the group plan before regrouping. The
right graph shows it after regrouping.

ABC

We now provide a brief description of the terminology
used in this paper. A query X is termed a sub-query of
another query y if x is defined over a subset of input files
of y. We also say y contains x. In this discussion, we
ignore the join predicates and thus, each join can be
uniquely determined by its input files. Our model can be
extended without difficulty to handle join predicates by
creating multiple nodes for joins with the same input files
but different join predicates. For the purpose of
simplicity, we omit the join symbolsin a query, eg. AB
for AxaB. When referring to a query graph, we use
terminology that is commonly used in graph theory. If
guery X is a sub-query of query y, node x istermed a child
of nodey and nodey istermed a parent of node x. All the
children under the same parent are called siblings. An
edge from node AB to node ABC represents a possible

access method to compute A<iBe<C from Ap<B. In our
discussions, we only consider left-deep plans for each
guery. With this assumption, children of a node with n
joins can only be nodes with n-1 joins or input files.
Hence, our graph ignores input files, and each edge now
uniquely identifies a join. The weight of an edge is the
cost of corresponding operations, i.e. the cost of join

between Ar<B and C.

One important point to observe from the left diagram in
Figure 2.1 is that there is no edge between node BC and
node ABC before regrouping occurs. Thisis because node
BC is created after the first query ABC isingtalled. Thus,
a group optimizer that only optimizes incrementally will
miss potential grouping opportunitieswith groups that get
generated for subsequent queries. However, our
regrouping algorithms are able to solve this problem, and
the expected group plan after regrouping is presented in
the right graph of Figure 2.1.



2.2 Execution Costs of Nodes

In our system [CDTWOO][CDNO02], queries are triggered
for execution by data changes on the input files.
Intermediate query results are materialized and stored in
intermediate files. Queries are evaluated against data
changes and intermediate files are incrementally
maintained. Thus, the total execution cost of each node
includes the cost of query evaluation and the cost of
maintaining the persistent intermediate files.

In this paper, for the smplicity purpose, we use the
update frequency of a node as the metric of the cost for
computing that node. Let U{AB) represent the total
update frequency over node AB, the cost of computing
node AB will be proportional to Uf(AB). In our approach,
simultaneous updates to both join inputs will cause the
join to be evaluated twice, each time with changes to one
input only. Thus, a reasonable approximation to the total
possible update frequency of a node is the sum of update
frequencies of each child node. In the above example,
Ui(AB)= Ut(A) + Uy(B).

2.3 Problem Definitions

Using the graph model presented in Section 2.1, we
provide a formal definition of three problems related to
our study, namely global optimization, incremental group
optimization, and dynamic regrouping. Such a formal
definition can provide useful insightsinto these problems.
Definition 2.1 (A) Given a set of “input files’ S={s,, ...,
S}, and given a set of “queries’ Q={Qq, ..., Q«}, where
QO S aglobal plan Aisaset {Ay, Ay, ..., Ay} St

(Dforl<i<K,QUA;forl<j<n,{s}OA

(2 OA, dthe AiOS, or DA;0A and OAO S,

Ai: Aj O Ak(Aj N Ak: D)

(B) The global optimization problem is the problem of
finding an optimal global plan A st. A isaglobal plan
and |A| is minimal, where |A| represents the sum of the
cost of each nodein A.
Definition 2.2 Given <S, Q, A¥, Q1 >, where Sisa set of
“input files’” {sy, ..., &}, Qisaset of “queries’ {Qq, ...,
QdJ, where QOS, A¥ isaglobal plan of Q, and Q1 is
another query  the incremental group optimization
problem is the problem of finding a set B= {Bj, B,
...,Bp} st

(1) Q1O B,
(2) OB; either B0 S, or OB; J A0 B and [B,J S,
Bi=B; O B«(B; n B=10),
(3) |B| is minimal
Due to the dynamic nature of this problem definition, let

A¥! = A¥OB. It is not hard to prove that A*** isa global
plan of {Qq, ..., Qx+1}-

The definition shows that incremental group optimization
aims to find an optimal solution (i.e. B) for a new query
(i.e. Q1) with respect to a current global plan A* for
existing queries. Solution A*' for the K+1 queries,
however, may not be an optimal global plan.

Definition 2.3 Given a set of “input files’ S={s,, ..., S},
aset of “queries’ Q={Qq, ..., Q}, where QIS, and given
aglobal plan A of Q, the dynamic regrouping problem
isaproblem of finding an optimal global plan B st. || B -
A|| minimal, where | B - A|| represents a measure of
differences between these two global plans.

Dynamic regrouping seeks to find an optimal global plan
(B) that is “closest” to a given global plan (A). If B can
be any optimal global plan, dynamic regrouping becomes
the same problem of global optimization. The intuition
behind the “closest” constraint is an attempt to reuse part
of an existing global plan. This approach has two
potential advantages. First, it may reduce time spent
regrouping. This is especially desirable when we are
confident of the quality of existing plans and don’t want
to re-optimize all queries from scratch. Second, it can
reuse existing computation results. In our system, since
join results of nodes are materialized, reusing existing
plans allows materialized results to be used thereafter.
While there can be many possible measures of the
differences between the two solutions before and after
regrouping, one reasonable difference measure would be
the total cost of nodes in the set of nodes that arein B but
notinA.

Finding a global optimal plan has an exponential search
space over entire sub-trees of al queries in the query
workload. To make things worse, the extra constraint of
seeking a specific optimal solution that is“closest” to the
existing solution makes the problem even more difficult.
We hence modify the dynamic regrouping definition to
finding a plan B that is a subset (generaly, a proper
subset) of A with a minimum weight. Such a definition
can be thought of as an approximation of two very
difficult goals: that B is an optimal global plan and that B
is “closest” to A, in the Definition 2.3. Thus, B can be
computed by removing redundant nodesin A. A problem
definition of this new approach is given as follows.

Definition 2.4 Given a set of “input files” S={s,, ..., s},
and given a set of “queries’ Q={Qq, ..., Q}, where Q0S,
and given aglobal plan A of Q, the dynamic regrouping
problem is a problem of finding a global plan B sit. B [
A and |B| is minimum.

Since query nodes in the existing global plan usually
congtitute a very small portion of the entire search space
required to find a globally optimal solution, the heuristic
used in Definition 2.4 is critical to achieving an efficient
regrouping algorithm. However, the global plan B in
Definition 2.4 is not necessary an optimal global plan.



3. Algorithms

This section presents details of our dynamic regrouping
algorithms.

3.1 Important Data Structures

In our algorithms, three main data structures are used.

(1) A query graph isadirected acyclic graph, with each
node representing an existing join expression in the group
plan. The structure of anodeis shown in Figure 3.1. Each
node contains a list of parent edges and a list of child
edges. The weight of a child edge represents the cost of a
join using that child to compute the parent. A weighted
child edge corresponds to an AND node in an AND-OR
DAG representation [Rou82][GM93]. Each node contains
the ASCII representation of the query and a hash-based
signature computed from the query string. In addition,
each node also contains data structures specific for
regrouping. The usage of query signatures and data
structures for regrouping is discussed when we describe
the algorithms.

Node {
char* query; /IASCII query plan
SIG_TYPE sig; /Isignature of the query string

int final_node_count;  //number of users that require
this query. 0: non-final node;
>0: final node
/[children of this node, where
Child ={ Node*, weight }
/Iparents of this node
/lupdate frequency of this node
/Ithe cost for computing this node

list<Child*> children;

list<Node* > parents;
float updateFreq;
float cost;

//Following data structures used only for dynamic regrouping

int reference_count; /Ireference count

bool visited; /laflag that records whether
purgeSibling has performed onthisnodg

}

Figure 3.1: Data structure of a query node.

(2) A group table is an array of hash-tables. In the
following discussion, we refer to the number of joinsin a
query as the length of the query. All queries with the
query length i are stored in the i-th hash table. Each hash
table entry consists of a mapping from a query string to a
pointer to the corresponding query node in the query
graph.

(3) A query log is an array of vectors that are used to
store new nodes that have been added to the query graph
since the last regrouping. Similar to a group table, new
gueries with the same length are stored in the same vector
in the query log. After each regrouping, the content of a
query log is cleared.

3.2 Incremental Grouping Algorithms

Given a new query, incremental group optimization
[CDTWOOQ] attempts to find the optimal solution to this
new query from all possible solutions, with or without
using existing nodes. Since existing nodes must be
computed regardless of this new node, the overall cost for
the new query is the sum of the costs of all new nodes
added.

We designed an algorithm, termed top-down local
exhaustive search, to find an optimal incremental plan for
a new query. This algorithm exhaustively enumerates all
possible sub-query in a top-down manner and probes the
group table to check whether a sub-query node exists. For
each exigting sub-query node, we compute the minimal
cost of using this sub-query node to compute the new
query. The minimal cost of a path without using any
existing nodes can be computed similarly. The least-
costly plan will be chosen ultimately.

This algorithm is very simple and has a fixed cost for
searching entire space of a new query. Since the length of
most queriesis usually not long (e.g. less than 10 joins),
the cost is not generaly high. One special, but not
uncommon case is that the new query itself existsin the
query graph. In this case, we just increase the final node
count (Figure 3.1) by 1 to indicate that this query is
required by one more user.

3.3 Dynamic Regrouping Algorithms

ABC P ABC p | [ABC
AB | [BC AB | [BC BC

Figure 3.2: An illustration of our two-phrase regrouping

algorithm using the query workload in Figure 2.1.

Our regrouping consists of two phases (Figure 3.2). The
first phase (P1 in Figure 3.2) isto construct missing edges
among nodes that have a sub-query relationship. For
example, in Figure 2.1, there is no link between node
ABC and node BC before regrouping, because node BC is
created later than node ABC. Thus node ABC is not
aware of the existence of node BC as a potential grouping
opportunity. Thus, the first phase of our regrouping
algorithm is to construct links between existing nodes and
nodes that were added since the last regrouping was
performed (node ABC and BC in Figure 3.2).

The goal of the second phase of regrouping is to find a
minimal-weighted solution from the current solution by
removing redundant nodes (P2 in Figure 3.2).

In the following discussion, we provide a description and
asimple cost analysis of our regrouping algorithm.



3.3.1 Phase 1: constructing links among existing nodes
and new nodes

The main idea of this algorithm is that for any pair of
nodes in the graph, if one node is a sub-query of ancther
node, it creates a link between them if it did not exist
before.

Two important optimizations can significantly reduce
phase-1 computation. First, since all possible edges have
been created during previous regroupings, it is not
necessary to re-compute sub-query relationships among
the nodes that existed prior to the last regrouping.
(Attentions in phase-2 regrouping are required for this
assertion to be hold and will be discussed in next section.)
Such reationships are, thus, only evaluated between
existing nodes and nodes added since the last regrouping,
which are stored in the query log. Since the number of
existing nodes can be very large, this optimization can
significantly reduce the computation costs associated with
phase-1 regrouping. Second, since we don’t generate a
bushy tree plan, the difference of levels between a parent
and a child isaways 1. Thus, we need not construct links
between nodes whose lengths differ more than 1. Thisis
why nodes are separately stored according to their length
in both group tables and query logs.

Based on the above optimizations, our agorithm works as
follows: from bottom-up, it checks whether each node in
thelevd i query log hasany parentsin theleve i+1 group
table. If so, the node is connected to its parent nodes. A
similar process is done for nodes in the level i query log
and nodes in the level i-1 group table. These steps
effectively compute a nested-loop join among nodes in
the level i query log and nodes in the level i+1 and the
level i-1 group table. The join condition is a subset
relationship if we treat each query as a set of data input
file names. To evaluate the set-containment operation
efficiently, the signature of each query is used. Given
signature sig_C and sig_P for node C and P, respectively,
if sg_C & ~sig_Pisnot true, we know that C is definitely
not asub_query of P. The advantage of using a signature
is that it can quickly eiminate cases for which set
containment does not hold, and it never generates “false
drops’. However, as in any hash-based algorithms, false
matches can occur. When a match of signatures occurs,
validation using query stringsisrequired. Signature-based
algorithms are fairly efficient for regrouping continuous
gueries, since most nodes do not have many edges. Thus,
most set-containment check would be false and can be
recognized immediately using signatures.

3.3.2Phase 2: A greedy algorithm for level-wise graph
minimization (Level)

Finding a set of nodes with minimum weight from an
existing solution still has an exponential searching space.
Thus, the motivation of Level algorithm isto use agreedy
algorithm to find a good solution at each level to reduce

the search space. At any time, the Level algorithm
considers only nodes of two adjacent levels.

MinimizeGraph() {
for each level L in group-tables{
/I L ranging from the maximum number of join-1to 1
for each node N in the level-L group table {

InitializeSet(N)

}

for each node N in final Set
PurgeSiblings(N);

while (remain set is not empty){
scan each node R in the remain set {
if (R’ sreference count == 0) {
remove R from the remain set
deleteNode(R)

elseif (R.cost/R.reference_count
< Current_minimum) {
M=R
Current_minimum
=R.cost/R.reference_count;
}
}

remove M from the remain set
PurgeSiblings(M)

}

InitializeSet(Node N) {
if Nisafina node
Add N into final_set
else{
add N into the remain_set
N.reference_count = number of parents of N
}
N.visited = false
}

purgeSiblings(Node N) {
For each parent P of N {
if (IP.visited) {
Decrease the reference count of N's
siblings of same parent P by 1
P.visisted = ture

}

Figure 3.3 Important modules of the Level algorithm.

The main idea of the Level agorithm (Figure 3.3) is to
traverse the query graph level-by-level and attempt to
remove any redundant nodes at one level a time. This
traversal can be done either top-down or bottom-up. Our
current implementation uses a top-down approach. Since
al top-level nodes in the group plan are final-nodes and
hence must be kept, the level-wise minimization
procedure starts from the second level from the top.
Assuming that level i is being processed, a subset of level
i nodes, which satisfy the following two conditions is



chosen to retain. First, all nodes at level i +1, that have
been processed already, must have at least one child in
this set. This constraint guarantees that each node at level
i+1 has at least one access path to lower levels. Second,
nodes in this set must have a minimum total cost. Nodes
that are not selected at a level are removed permanently.
Such a process stops after all levels of the query graph
have been processed. The main module of Level is
function MinimizeGraph() shown in Figure 3.3.

Next, we provide a few additional details about how the
Level algorithm works at each level. Since al fina nodes
are user-defined continuous queries, they must be retained
after regrouping. Thus, at each level, the Level algorithm
first chooses al final nodes and invokes a function called
purgeSiblings() (Figure 3.3) on each of the final nodes.
The motivation of purgeSiblings is that since all parents
of a chosen node x can use x for computation, X’ s siblings
are not required for them any more. Thus, invoking
purgeSiblings on node x removes edges between parents
of x and all x’s sibling nodes. However, removing edges
in the graph can cause problems for level-1 regrouping.
As we mentioned in the previous section, one desired
property of phase-1 regrouping is to keep all edges
between nodes that are chosen to keep after regrouping,
so that phase-1 does not have to re-compute links among
existing nodes each time regrouping is performed. Our
solution to this problem is to have a reference count
variable in each node. The initial value of the reference
count of each node is set to the number of its parents at
the beginning of each regrouping. Instead of actually
removing an edge from a node' s parent to a sibling node
in purgeSiblings, the sibling node's reference count is
decreased by 1. Thus, no edges are physically removed in
purgeSiblings. One complexity of using a reference count
mechanism is that to avoid repetitively invoking the
purgeSiblings function on the same parent node, each
node contains a variable visited with an initial valuefalse.
A parent node svisited variableis set to true after thefirst
purgeSiblings operation in order to prevent subsegquent
invocations of purgeSiblings on this node.

The main complexity of this algorithm is to choose a set
of non-final nodes that satisfy the following two
constraints after all final nodes have been selected. On the
one hand, join groups that are shared by many queries
should be kept. On the other hand, join groups whose
inputs change very frequently are not good choices to
retain, since these groups must be evaluated very
frequently and the associated cost can be high. These two
considerations can conflict with each other in some
situations and a good compromise must consider both.
This problem is similar to the classic set cover problem
[CLR90], which is a NP hard problem. To solve this
problem, Level uses another greedy algorithm to choose a
node with a minimum value of the ratio of its cost versus
its reference count. The intuition behind thisisthat since
the cost of a node is shared by all of its parent nodes, a

minimal cost per parent seems a reasonable criterion for
choosing a node to keep. Such acriterion isa compromise
of the cost and the usefulness of a node. After a non-final
node is chosen, purgeSiblings is also invoked on this
node. Such a process will be done repeatedly until thereis
no non-final node left with a reference count greater than
0. One important optimization performed at each round is
to remove nodes with a reference count of O, since all of
its parents have aready found a sub-query node. Since
each node usually does not have too many edges, many
nodes can be removed within a few rounds. Thus, this
optimization is very important in reducing the cost of

regrouping.
3.4 Cost Analysis of Regrouping Algorithms

Assume that the total number of queriesis N and that at
each moment the total number of nodes is proportional to
the number of queries already installed in the system. For
example, if there are T queries installed, we assume the
number of nodes in the system is C*T, where C is a
positive constant. Furthermore, assume that each level has
the same number of nodes and that each query containsno
more than 10 joins in our analysis. Thus, each level will
contain about C*N/10 nodes.

Phase-1 Assume that regrouping frequencies are either
every R queries or K*R queries, where K is a positive
integer. The number of regrouping is N/R, if regrouping
occurs every R queries. Using nested loop join
algorithms, at each regrouping time, each newly added
C*R nodes will be joined with existing nodes at adjacent
levels. Assuming that m-1 regroupings have been
performed aready, the number of nodes in the system
thus is m*C*R. The number of comparisons for the m-th
regrouping is m*(C*R)?, ignoring a constant reduction
factor. The total number of comparisons required for the
regrouping isgiven in formula (1).

(C*R)%+2*(C*R)*+...+N/R*(C*R)*= N(N+R)C%2 (1)
Let n, the number of regrouping for every K*R queries,
equal N/(K*R). The formula for the total number of
comparisons for regrouping every K*R queries can be
derived similarly and is given in (2).

(K*C*R)%+2* (K*C*R)*...+n* (K*C*R)?
=N* (N+K*R)* C?/2 2

Thus, the ratio of number of comparisons for regrouping
by every K*R queries versus by every R queries is as
follows.

[N(N+KR)C%2)/[N(N+R)C/2]=(N+KR)/(N+R)  (3)
Since K is a positive integer, from (3) we can see that
mor e frequent regroupings can reduce the total cost of
phase-1 regrouping. This conclusion isinteresting because
it is counter-intuitive. From (1), we know that the
accumulated costs of phase-1 of regrouping are bounded
by O(N?. The computational complexity of a single
phase-1 regrouping is O(N).



Phase-2 (Level) Assume that there are N queriesin total,
and that the total number of nodes in the system is C*N,
where C is a positive constant.

The main cost of Level consists of two parts. Thefirst part
isto select nodes to keep using a greedy algorithm at each
level. The algorithm repeatedly scans the nodes that have
not been chosen so as to choose the one with a minimum
value of the ratio of its cost versus its reference count. At
each pass, one node will be chosen and any nodes with a
reference count of O will be removed. In the worst case,
each pass can only remove one node. Thus, in the worst
case, at each leve, the cost will be (C*N/10)+(C*N/10-
1)+...+1=C*N*(C*N+10)/200. Since Level begins at the
second level from the top, the total cost is the above cost
multiplies 9. In most cases, each level contains quite a
few final nodes, which can besdlected in asinglepass. In
addition, as we mentioned in the previous section, each
node usually does not contain many edges, and most
nodes can be removed during a few initial passes. Thus
the codt, in practice, is usually much smaller than the
theoretical worst case.

The second part is to purge siblings for each chosen node.
Notice that during regrouping, each node will be accessed
at most once for each of its parents, because each access
removes at least one parent edge by decreasing the
reference count by one. Thus, the computational
complexity of this step is O(E), where E is the number of
edges in the group plan. We give a rough estimation of E
as follows. Each node may contain no more parents than
the entire number of nodes of its immediate parent level,
which is bounded by C*N/10. Thus, the total cost of this
part is bounded by (C*N/10* C*N/10)* 9=0.09* (C*N)2. In
reality, since each node contains far fewer edges than the
above estimation, this processis also very fast.

Thus, the total cost of a single phase-2 regrouping is
bounded by O(N?).

Timing of Regrouping Even though the cost of phase-1
regrouping favors more frequent regrouping, the cost of
phase-2 is proportional to the number of regroupings
performed, since minimization is done over the entire
graph. Thus, very frequent regrouping will increase the
cost of phase-2 regrouping. Thus, the cost of regrouping is
minimized only when the regrouping frequency falls in
the middle. An appropriate regrouping interval can be
obtained either by performing a more detailed cost
analysis than what we have shown above or hy
conducting experiments (shown in Section 5.4).

3.5 Continuous Query Delete

An existing continuous query can be removed from the
system when it has expired or has been explicitly removed
by auser. Grouping makes deletion a much more complex
problem, because every query becomes a portion of the
entire group plan. In particular, first, removing existing
nodes cannot affect the correctness of other queries.

Second, removing some nodes can degrade the quality of
the remaining query plan. This problem has not been
considered by traditional multiple query optimization
algorithms [CM86] [Sel 86].

Since regrouping inherently performs global query
optimization, it is natural to let regrouping handle re-
optimization after deletes occur. Our method handles a
query delete very efficiently by smply reducing the final
node count of the to-be-removed final node by 1. Therest
of the work is automatically handled when the next
regrouping is performed. If desired, regrouping can be
triggered after a number of deletes have been performed.

4. Experimental Results

We conducted performance evaluations of our regrouping
algorithms using synthetic query workloads in this
section. The following experiments were conducted on a
Sun Ultra 6000 with 1GB of RAM, running Solaris 2.6.

4.1 Query Workload

The default query workload used in the experiments
consists of 10000 distinct queries. Each query contains a
set of input file names from a predefined domain. The
length of a query is defined by the number of joinsin the
query, which equals the number of input files of the query
minus 1. The length of queriesisdistributed between 1 to
10 with a distribution similar to anormal distribution with
amean value at 5. The order of queriesin the workload is
generated randomly. In addition, queries are generated by
following a Zipfian distribution with a skew factor Zinp.:
over the input files. By increasing the skew factor Zipu,
more queries are defined over a smaller number of input
files. When Z,,« equals O, the queries are uniformly
distributed across the input filesin the domain.

The update frequency of input files also follows a Zipfian
distribution, with a skew factor Zpg4e Varying the skew
factor Zypeae Will generate different update frequency
distributions. In order to investigate the corrdation
between the query and update frequency distribution, the
above two frequencies can be allocated to input files
following three particular orders in our experiments:
Random, Descending and Ascending. For example,
assume that the total number of input filesis 20 and that
the input files are named file 1 through file 20.
Descending, Ascending and Random allocate frequencies
to file_1 through file_20 in a descending, ascending and
random order, respectively. Update frequencies and query
frequencies are assigned independently. Random is the
default order used for assigning both frequencies over the
input files.

4.2 Experimental M ethodology

In this paper, we consider dynamic regrouping of alarge,
dynamic continuous query workload (e.g. tens of



thousands of queries), while queries can be triggered for
execution very frequently by data changes. An experiment
in such a setting could take days, even weeks to finish.
Instead of measuring the execution time over real data
changes, in our experiments, we use the update frequency
of a node as the metric of the cost for computing that
node, as described in Section 2.2. With more accurate cost
information, we expect that our regrouping agorithms
will be more effective in choosing “good” nodesto retain.

Our goal is to improve the effectiveness of groups by
periodically regrouping existing queries. In the pure
incremental grouping method [CDTWOOQ], each query in
the query workload is sequentially added to the system
using the incremental grouping algorithm. Assume that
gueries arrive at a fixed arrival rate with an inter-arrival
time T. Assumethefirst query arrives at time Ty, Then the
i-th query arrives at T; where T; = To+ i* T, In addition,
assume that updates over the input files follow the
predefined update frequency. We measure the cost of
computing all the joinsin the system during each interval
T, which equals the sum of the cost of nodes in the group
plan during that interval. Note that the group plan is only
changed at the beginning of each interval when a new
query is being installed. Assume that there are N queries
in the workload. We use the average of above costs over
the N intervals from T, to Ty as a measure of evaluating
the N queries using the incremental group optimization.
In our experiments, regrouping is performed immediately
after a pre-defined number of new queries have been
installed (e.g. every 10 new queries) while incremental
grouping is performed every time a new query arrives. At
each regrouping time, regrouping is immediately
performed over the group plan after the new query has
been incrementally group optimized. The group plan after
each regrouping is used thereafter. The average cost for
the entire query workload is computed in a manner
analogous to the previous case when only incremental
group optimization was used. The rdative improvement
between this cost and the cost measured with only
incremental group optimization is used as the metric for
evaluating the benefits obtained by regrouping.

Since we are only interested in a relative improvement,
without losing generality, we let T equal 1 in our
computation.

An illustration of this measurement strategy is shown in
Figure 4.1 and 4.2 using an example query workload
{ABC, BC}. Assume that ABC comes to the system
before BC and update frequency over A, Band C are 1, 2,
and 3, respectively. Figure 4.1 shows the group planswith
the cost in the pure incremental group optimization
approach. Figure 4.2 is for the incremental group
optimization along with regrouping approach. The cost of
each node equals the sum of the update frequencies of the
input files and is shown in each node in Figure 4.1 and
4.2. The average cost for the incremental group
optimization (Figure 4.1) is thus (9+14)/2=11.5. Assume

that regrouping is performed after 2 new queries are
added. Figure 4.2 shows that the group plan after the first
query ABC is ingtalled at Ty is the same as that in the
incremental group optimization. However, at time T, the
group plan after regrouping is used. Thusthe average cost
in the regrouping approach is (9+11)/2=10. In the above
example, the relative improvement of the regrouping
approach over the pure incremental group optimization
approach isthus (11.5-10)/11.5=13%.

ABC ABC
6 6
To *‘ _ﬁ/}'
AB AB BC
3 3 5

Figure 4.1: The group plans with the cost in the pure
incremental group optimization approach.

ABC ABC
6 6
T[) * Tl
AB BC
3 5

Figure 4.2: The group plans with the cost in the
incremental group optimization approach along with the

regrouping approach.

The overhead for incremental grouping and regrouping is
measured by the average time spent performing these
operations.

4.3 Perfor mance Results

Symbol Explanation Values

K Maximum number of joinsin each 10
query

L Number of input files 20

Zinput Skew factor of distribution of queries 1
over input files

Oinput Order of allocating appearance Random
frequencies over input files

T Frequency of regrouping in terms of 10
number of new queries installed

D Duplication ratio of queriesin the 1
query workload

N Number of queriesin the workload 10000

Zypdate Skew factor of distribution of update 1
frequency over input files

Oupdare | Order  of alocating  update | Random
frequencies over input files

Table 4.1: Experimental variables and their default values.

The parameters used in the experimentsarelisted in Table
4.1. Unless specified explicitly otherwise, the parameter
valuesin Table 4.1 are used.



4.3.1 Regrouping v.s. Incremental Grouping

In the following experiments, we investigate how our
regrouping algorithm behaves under different situations
by varying several important experimental parameters.
(1) Varying Zipu (skew factor of the Zipfian
distribution of queries over input files)

Zinput | Avg. | Avg. | % Cost | Total | Total | Avg. No
Cost | Cost | Improv | RG IG of Nodes
with | w/o | ement | Time | Time | withRG
RG | RG (s) (9

0 |2640| 2972 | 11.2% | 5600 179 9772
1 | 1547 | 1832 | 15.6% | 1040 130 6426
2 |1195| 1513 | 21.0% | 410 71 4743
3 | 1106 | 1477 | 25.1% | 370 42 4212

Table 4.2: Experimental results when varying Zinpu.

In Table 4.2, as we increase Zinpy, the skew factor of the
Zipfian distribution of queries over input files, the
computation costs of both incremental grouping and
regrouping decrease. The reason isthat as Zjqp, increases,
more queries are defined over a small subset of the input
files, which makes incremental grouping and regrouping
more effective.  More interestingly, the relative
performance improvement of regrouping over incremental
grouping increases from 11% to 25% as Z increases from
0 to 3. This indicates that when there are good grouping
opportunities among queries, pureincremental groupingis
not ableto capture all of them. Regrouping, in such cases,
can obtain alarge improvement.

The total incremental grouping time stays very low,
between 179 seconds and 42 seconds. The time drops
because, when Zin,, becomes large, a new query has an
increased chance of finding a node with the same query
existing in the group plan aready. In such cases,
incremental grouping simply increases the final node
count of the existing node by 1, which is much less costly
than the normal case when the entire sub-tree of the new
query istraversed. As Zi, increases, the average number
of nodes in the group plan drops from 9772 to 4212,
causing the total time spent for regrouping drops sharply
from 5600 to 370 seconds. Each regrouping takes less
than a half second, when Zi,,, equals 2 or 3.

(2) Varying Z,pgae (kew factor of the Zipfian
distribution of update frequencies over input files)

Table 4.3 shows that both regrouping and incremental
grouping become more effective as Z pgae, the skew factor
of the Zipfian distribution of update frequencies over
input files, increases from 0 to 3. The rdative
improvement of regrouping over incremental grouping
decreases dlightly from about 17% to 14%. This occurs
because when Zuqe is O, €ach input is updated at the
same frequency. In this case, the regrouping algorithm
only needs to select nodes to keep by the number of
parents of a node. As mentioned earlier, when selecting
nodes to retain while regrouping two, potentially

conflicting, properties are considered, the number of
parents and the update frequency of a node.

Zypdae| AVQ. | Avg. | % Cost | Total | Total | Avg. No
Cost | Cost | Improv | RG IG | of Nodes
with w/o | ement | Time | Time | with RG
RG RG (s) (s)

0 2242 | 2695 | 16.8% | 1080 | 134 6516
1 1547 | 1832 | 15.6% | 1040 | 130 6426
2 1023 | 1198 | 14.6% | 1130 | 133 6519
3 858 | 1001 | 14.3% | 1170 | 129 6586

Table 4.3: Experimental results when varying Z,pdae.

The time spent on both incremental grouping and
regrouping is almaost constant when Z pqxe increases from
0 to 3. Thisis because in this experiment, queries follow
the same digtribution over the input files. The average
number of nodes in the group plan remains amost
constant.

(3) Varying K (maximum number of joinsin a query)

K| Avg. | Avg. | % Cost | Total | Total | Avg. No
Cost Cost | Improv | RG IG of Nodes
with w/o | ement | Time | Time | withRG
RG RG (s) (s)

12| 1970 | 2265 | 13.0% | 1280 390 7190

10| 1547 | 1832 | 15.6% | 1040 130 6426

8| 1161 | 1445 | 19.7% | 660 44 5551

Table 4.4: Experimental results when varying K.

In our experiment the length of queries is distributed
between 1 to K, the maximum query length, following a
distribution similar to a normal distribution with a mean
value at K/2. Table 4.4 illustrates that as K decreases
from 12 to 8, the relative improvement of regrouping
increases from 13% to 20%. This is because, as K
decreases, query nodes are distributed in a much smaller
search space, with more opportunity for grouping. As K
decreases from 12 to 8, since the incremental grouping
algorithm can search a much smaller query space for a
new query, the time spent for each incremental regrouping
operation decreases dignificantly from 39 to 4.4
milliseconds. The time for each regrouping decreases
from 1.3 to 0.7 seconds.

(4) Varying Oippyt and Oypate (Orders for allocating
appear ance frequencies of input files in queries and
update frequencies over input files, respectively)

As mentioned in Section 3, the two key factors when
regrouping are to select nodes that have many parents and
that are updated infrequently. These two factors can
conflict in some cases. We want to investigate how this
may affect the effectiveness of regrouping.

In this experiment, we investigate, in two specific cases,
the correlation between the distribution of queries and the
distribution of update frequency. In the first case, both
distributions have the same order, (€.9. Oinput = Oupdate =
Descending), which implies that a node with the most



parents is also updated most frequently. Thisisthe case
with the highest extent of conflict in choosing nodes to
retain. In the second case, the two distributions have the
opposite order, (e.g. Opnpw = Descending, Oupgae =
Ascending), which implies that a node with the most
parent is also the one updated least frequently. We expect
regrouping to spend less time in choosing nodes in the
second case than thefirst one.

Oinput |Oupdare| Avg. | Avg. | % Cost | Total | Total | Avg. No
Cost | Cost |Improve| RG IG of
with | w/o | ment | Time | Time| Nodes
RG | RG (s) (s) |withRG

Dsc | Dsc | 3507 | 4208 | 16.7% | 2020 | 149 | 7663

Dsc | Asc | 1403 | 1655 | 15.2% | 1040 | 130 | 6425

Table 4.5: Experimental results when varying Oinpyt and Oypgate.

As expected, the experimental results in Table 4.5
demonstrate that both incremental grouping and
regrouping, in the second case, perform much better than
the first case. Surprisingly, the relative improvement of
regrouping over incremental grouping is almost the same
in both situations. The execution time spent on an
incremental group optimization remains aimost constant
in both cases. The time for a regrouping in the second
case is about half that of the first case, even though the
number of nodes differs dightly. The time difference
comes from the fact that in the first case, at each levd,
nodes with the most parents (and also the least updated
ones) will be chosen to keep by the Level algorithm,
allowing the Level algorithm to finish quickly. In the
second case, the Level algorithm consumes more time
select which nodes to retain since nodes with many
parents may not be worth keeping.

Summary Overall, the following observations can be
drawn consistently from our experiments. Firdt,
regrouping consistently improves the grouping quality
compared with a pure incremental grouping strategy
under various situations. In most cases regrouping obtains
about a 16% improvement over a pure incremental
grouping strategy. In some cases, a 25% improvement is
observed. Second, regrouping usually has a larger
improvement in dSituations that favor grouping. We
believe that in real applications many grouping
opportunities will exist. For example, many users may
pose continuous queries over a few “hot files'.
Regrouping will be important in such applications. Third,
regrouping is efficient. In most cases, each regrouping
takes about 1 second in an environment with an average
of 7000 nodes in the group plan. Such an extra cost is
worthwhile given that continuous queries may be
executed many times. Furthermore, since regrouping
occurs less frequently than incremental grouping, thetotal
time spent on regrouping can be just an order of
magnitude more than time spent on incremental grouping.

In addition, our experiments also show that incremental
grouping is fairly effective and efficient under various

Situations. In most cases, each incremental grouping only
takes about 15 milliseconds, obtaining a fairly good
quality.

From those observations, we believe a mixed approach of
a constant incremental grouping plus a periodical
regrouping achieves the real balance between
performance and cost.

4.3.2 Timing of Regrouping

In this section, we study the timing of regrouping. Two
approaches, periodic regrouping and active regrouping
are studied. In the former approach, regrouping occurs
after a fixed number of queries have been added to the
system. In the later approach, the run-time status of a
continuous query system is monitored against some pre-
defined threshold. Regrouping is performed when a
triggering condition is satisfied.

(1) Periodic Regrouping
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Figure 4.3: Experimental results of regrouping every
fixed number of queries

We measure the execution time for each phase of
regrouping (Figure 4.3). The total time on phase 1 of
regrouping (which constructs links among existing nodes
and new nodes since the last regrouping) increases
significantly from 120 to 7747 seconds, as the regrouping
interval is increased from after every query to every 500
queries. On the other hand, the total time of phase 2 of
regrouping (which minimizes the graph using the Level
algorithm) drops from 8300 to 19 seconds. In our
experiments, thetotal regrouping time reaches aminimum
value when regrouping occurs about every 20 queries.
This observation perfectly matches our cost analysis and
predications in Section 3. We can see that regrouping,
when it occurs at the desired rate (every 20 queriesin the
above example), is 10 times faster than that when it
occurs either after every query or every 500 queries. Thus,
the timing of regrouping isfairly crucial.

Results from this experiment show that the regrouping
quality only degrades dightly, as regrouping frequency
varies from every query to every 500 queries. This is



because the query workload contains 10000 queries and
the variance is not large enough to cause significant
differencesin the cost improvement.

(2) Active Regrouping

Even though a periodic regrouping approach is very
smple, it has the potential drawback of performing
inefficiently. A more efficient approach, active
regrouping, performs regrouping only when necessary.
Such an approach can potentially reduce the overhead of
regrouping. The main idea of active regrouping isto let
the system be monitored on some particular parameters at
running time. Either users or the system can specify a
threshold for triggering the execution of aregrouping. We
use the following experiments to illustrate the potential
advantages of using an active regrouping approach.

D| Avg. | Avg. |% Cost| Tota RG | Total IG|Avg. No of
Cost Cost |Improv| Time (s) |Time (s) |Nodes with
with RG |[w/o RG| ement RG
1| 1547 | 1832 |15.6% | 1040 130 6426
2| 809 962 |15.9% | 2496 128 3353
3| 536 640 |16.2% | 4374 144 2211

Table 4.6: Experimental results when varying D.

In this experiment, we duplicate each of the 10000 queries
D times and insert them into the query workload in a
random order. Thus, the total number of queries in the
workload is D*10000. Table 4.6 shows that the average
cost of both incremental grouping and regrouping dropsin
proportion to 1/D, when the duplication ratio (D)
increases from 1 to 3. This is because a duplicate query
will match an existing node without adding any new
nodes. The total time for incremental grouping is almost
the same regardless of D, since it takes almost no time to
incrementally group a duplicate query. The total time of
regrouping, however, increases significantly, because
regrouping is performed after every 10 queriesinstalled in
the experiment. Thus, the number of regroupings
increases as D increases. Since duplicate queries do not
add new nodes to the group plan, it may not be worth
regrouping if the group plan has not changed
significantly. This experiment shows the drawbacks of a
blind, periodic regrouping approach.

D |Avg. Avg. (% Cost |Total RG [Total IG |Avg. No of
Cost Cost |Improv [Time(s) [Time (s) [Nodeswith
with RG |w/o RG |ement RG

1| 1547 | 1832 | 15.6% 759 127 6424
2| 808 962 | 16% 799 140 3329
3| 536 640 |16.3% 923 138 2208

Table4.7: Experimental results of an active regrouping
approach.

An active regrouping approach can help solve this
problem. Table 4.7 shows the result of using an active
regrouping approach over the same query workload used
in Table 4.6. In this experiment, regrouping is triggered
when the number of new nodes added since last

regrouping becomes more than a predefined regrouping
threshold (20 nodes in this experiment). Since duplicate
gueries do not introduce new nodes to the group plan, the
number of new nodes added since last regrouping is a
much better measure of the changes that have occurred to
the actual group plan. Table 4.7 illustrates that the active
regrouping approach achieves the same quality as the
periodic approach. However, as D, the duplication ratio of
a continuous query workload, increases from 1 to 3, the
total time spent regrouping increases only very dightly
from 759 to 923 seconds, because the number of
regroupings performed is amost the same in al three
cases. In contrast, the total time spent regrouping in the
periodic regrouping approach increases from 1040 to
4374 second, as D isincreased from 1 to 3 (Table 4.6).

5. Related Work

Previous research on multiple-query optimization [RC88]
[Sel86] [RSSB0OO] [MRSRO01] considers only a one-time
global query optimization over a batch of queries. Early
research on multiple-query optimization [RC88] [Sel86]
has focused on finding an optimal query plan for a small
number of queries with common sub-expressions. Those
approaches usually use exhaustive search approaches and
can be very expensive for processing a large number of
gueries. [RSSBOQ] proposes some important heuristics to
reduce the cost of exhaustive search agorithms.
[MRSRO1] further applies the multiple-query
optimization techniquesin [RSSB0OO] to materialized view
selection and maintenance. In contrast, we consider the
dynamic regrouping of continuous queriesin the presence
of alarge, dynamic query workload.

Dynamic query re-optimization [BFMVO00] [KD98]
[UFA98] is ancther closaly related area. In earlier studies,
gueries are dynamically re-optimized based on run-time
information. Such a dynamic schemeisusually better than
a traditional query optimization approach, which only
uses information available at query optimization time.
There are two magjor differences between our work and
theirs. First, while they consider optimizing single
queries, the focus of our work is multiple query
optimization. Second, re-optimization uses new data
dtatistics collected during query execution, while our
regrouping mechanisms are driven by newly-arrived
gueries in a query workload. Thus, these two approaches
are orthogonal and can be applied together.

Our regrouping algorithms use signature nested loop joins
for set-containment join predicate. Extensive studies of
signature-based join algorithms can be found in [HM97]
[RPN+00].

6. Conclusions and Future Work

In this paper, we design and evaluate an efficient and
dynamic regrouping approach to optimize a large



continuous query workload. The results from this paper
show that when a periodic dynamic regrouping is applied
together with incremental grouping [CDTWOQ], it can
further improve a pure incremental grouping method by
up to 25% at a very low overhead of regrouping time. Our
heuristic-based regrouping is very efficient even when
applied to a fairly large group plan with about 6500 join
groups. Cost analysis and experimental study are
presented to determine a good regrouping interval, which
is critical to the efficiency of a periodic regrouping
approach. In addition, our results show that active
regrouping, which performs regrouping whenever
necessary, can significantly reduce the total regrouping
time. Overall, we believe a constant incremental grouping
plus an occasional dynamic regrouping can achieve ahigh
quality grouping at a fairly low cost.

Dynamic regrouping of large continuous query workloads
is still an open research area. In this section, we briefly
mention a few of the problems on which we are currently
working.

* Accurate Cost Estimation of Nodes: In this paper, for
the simplicity purpose, we use the update frequency
of a node as the metric of the cost for computing that
node. An accurate estimation of the cost of a node
can be difficult and tedious. Detailed cost models
presented in [CDNO2] might be used for the cost
estimations. In addition, our phase-2 regrouping
algorithms can be extended to incorporate such
changes.

* Regrouping with Considerations of Adding New
Nodes: Our regrouping algorithm significantly
reduces the search space by removing redundant
nodes from an incremental group optimization
solution. We plan on investigating how adding new
intermediate nodes can help regrouping. Preliminary
experimental results indicate that considering adding
nodes can significantly increase regrouping time with
only a dight improvement in performance.

* Memory Constraint: The amount of memory
available is another important factor that can
significantly affect the time spent regrouping. Our
algorithm assumes all nodes can fit in available
physical memory. When the number of instaled
continuous queries becomes very large, the entire
query plan may not be able to fit in the physica
memory available for regrouping. It would be
interesting to re-evaluate our algorithm in such an
environment.

» Considering queries with operators other than joins
for dynamic regrouping.
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