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abstract
Power and energy consumption are first-order constraints on the design and operation

of computer systems today. Improving energy efficiency reduces the amount of energy

needed to perform a given computation as well as enables more computation to be

performed for the same amount of energy. This saves operational costs to use these

systems as well as capital costs to provision for them.

Conventionally, energy proportionality (energy consumption in proportion to the work

done, or equivalently, power consumption in proportion to utilization/performance/load

served) as proposed by Barroso and Hölzle, has been the gold standard of an ideal

system’s energy efficiency. While this model is valid for fixed-resource systems, modern

systems are reconfigurable in many aspects, allowing them to adapt to changing workload

characteristics. Smart reconfigurability increases energy efficiency. However, we show

that reconfigurability invalidates the conventional notions of ideal energy proportionality

if the system starts to behave super-proportionally. Super-proportional systems provide

more performance (or work) in proportion to the power (or energy) used. We propose a

new ideal model, Energy Optimal Proportional (EOP), that subsumes the conventional

model and improves upon it by also accounting for super-proportional systems.

EOP can guide system designers to improve the maximum efficiency attainable

over the operating range and forms a basis for comparisons of energy efficiency across

systems. Power-performance Pareto optimality, on the other hand, can guide system

operators to manage load and configure resources appropriately to make the current

system execute efficiently. We propose a new intellectual framework that interrelates

these two complementary energy efficiency goals.

The rest of this dissertation focuses on energy-efficient management. We develop

new reactive governors that coordinate processor frequency (and voltage) and hardware
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prefetching to improve energy efficiency on a real (Haswell) server. We also propose

a space-efficient hardware mechanism to estimate temporal locality (reuse) in cache

accesses. The estimated distributions can be used by our new analytical models for cache

performance to drive resizing decisions of the last-level cache.

Finally, we propose a new classification system for system reconfiguration capabil-

ities. The classification is based on the semantics of what the reconfiguration affects—

computation, communication, storage, scheduling, speculation. We hope that this classifi-

cation will be insightful to future researchers while exploring the space of reconfigurable

systems, in categorizing existing work and in identifying coordination options that have

been less well explored.
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1 introduction

Computers are used extensively in a variety of applications, e.g., in hosting and searching

the Web, in predicting the weather, in managing online markets and social networks, in

analyzing genomes, in processing signals to detect gravitational waves, etc. Increased

computational demands over the years have resulted in significant energy and power

costs to provision for and operate systems. Today, power and energy are among the most

critical constraints for the design and use of computer systems [22, 160].

Datacenters host large numbers of computers that serve the computational needs

of its users. A recent report [164] states that U.S. datacenters used around 91 billion

KWh of electricity, equivalent to the energy consumption of 34 coal-fired 500 MW power

plants, in 2013. This is projected to rise to 140 billion KWh of electricity, equivalent

to the energy consumption of 50 coal-fired 500 MW power plants and costing around

$13 billion, in 2020. Thus, reducing the energy consumption of datacenters will have

significant economic and environmental benefits.

Datacenters use energy not only for running servers, but also for operating power

distribution systems, cooling systems, lighting systems, etc. The PUE (Power Usage

Effectiveness) metric [16] was developed to quantify these extra energy overheads. PUE

is the ratio of the total facility energy to the IT equipment energy. Smaller values of PUE

are better since they indicate that a greater portion of the total energy is being used to

run the IT equipment to do useful work instead of being used up by the non-IT systems

mentioned above.

The PUE metric has been very influential in driving down overheads due to non-IT

infrastructure. In the early days of the metric, PUE values of around 3.0 were common.

In recent years, the average PUE value is 1.7 [108]. A number of modern datacenters

report far lower PUE values of around 1.1 [73, 83, 156, 166, 210]. Sophisticated cooling
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technologies allow even lower PUE values [1]. PUE, however, does not track overheads

in IT infrastructure. For low PUE values, most of the datacenter energy is used by the IT

equipment, particularly, by the servers.

In order to quantify a part of the energy losses in the servers, Barroso and Hölzle

proposed the SPUE (Server PUE) metric [104]. This tracks losses in the server power

supply units (PSUs) that happen due to inefficiencies in converting A.C. power to low

voltage D.C. power required by components within the server, e.g., processors, disks,

fans, etc. Some modern PSUs can attain upwards of 95% efficiency over a portion of

their operating range.

Barroso and Hölzle [22] also observed that servers lose energy during computation

due to under-utilization. They observed that the energy efficiency (work done per unit

of energy used) of servers peak at maximum utilization but drop drastically as the

utilization decreases. The reason for this is energy losses that persist even when the

server is idle. At zero utilization, that is, when a server is not performing any useful work,

it still draws power. This energy consumption is due to leakage in processor components,

DRAM refresh, powered-on hard disks, fans, other components in the motherboard, and

high PSU inefficiency at low loads. At higher utilizations, the server needs more energy

to perform the given computations. This reduces the relative overheads due to the other

components and improves the energy efficiency.

This dependence of server energy efficiency on server utilization means that, when

not fully utilized, less work gets done per unit of energy used, or equivalently, more

energy is needed to do the same amount of work. This is problematic since servers in

datacenters are typically only 10–50% utilized [22], thus using more energy to perform

the computations than they would use if fully utilized.

To eliminate utilization-dependent energy losses, Barroso and Hölzle [22] advocated



3

for “energy-proportional” system designs. Such systems would use energy in proportion

to work, or equivalently, power in proportion to utilization. This would ensure that they

retain their maximum energy efficiency even at low utilizations. They would significantly

save server energy consumption by preventing the drastic drop in energy efficiency at

low utilizations.

Power overheads that persist when the system is idle make it non–energy-proportional.

Thus, perfect energy-proportional systems must have zero idle power. This model of an

ideal system has inspired system designers to build systems that have low idle power

(thus, have low power overheads) and a wide dynamic power range (so that the relative

power overheads are low at high utilizations).

Conventionally, attaining energy proportionality has been the cherished ideal for

minimizing energy waste. However, with recent technological and architectural ad-

vances, modern systems may exhibit super-proportional behavior, that is, they exceed the

energy efficiency of energy-proportional systems. In these systems, being only energy-

proportional is significantly wasteful. Proportionality is a lesser prize to aim for in this

changed situation with substantial energy savings remaining to be realized with more

ambitious goals.

Figure 1.1 illustrates this point. Figure 1.1a shows a representative power vs perfor-

mance profile with voltage and frequency scaling for an Intel Haswell processor [98].

Power consumption increases non-linearly with performance. Equivalently, energy con-

sumption increases non-linearly with the amount of work (computation) done. The dashed

line shows how improvements in processor design have lowered the power-performance

profile, enabling more energy-efficient operations. Figure 1.1b augments the original

graph with “Energy-Proportional” lines. Most of the power-performance curve lies below

the energy proportional line. This means that configurations represented by points on the
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Figure 1.1: Trends in Processor power-performance profiles.

curve are more efficient, that is, super-proportional. These configurations use less power

(and less energy) than a perfect energy-proportional system at the same performance (or,

serviced load). Chapter 3 corroborates this observation for our workloads, both batch

and interactive ones. Intel’s data suggests that this trend is increasing with technological

and architectural advances.

Since energy proportionality, which is the conventional ideal model, is no longer

sufficient to describe the energy efficiency potential of modern computers, we need to

define new ideals for system energy efficiency. These ideals will be useful to system

designers for building more efficient future systems and to system operators for operating

current systems more efficiently.

Moreover, neither PUE, nor SPUE, nor energy proportionality quantifies waste in

computational energy with reference to ideal system operations. We propose a new

metric, CPUE (Computational PUE), to address this need.

Super-proportionality happens in conjunction with reconfiguration capabilities found
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in modern computers. Many resources may be configurable, e.g., processor frequency (and

voltage), cache size, prefetching ability, etc. Reconfigurability and super-proportionality

together necessitate the development of new concepts and mechanisms to minimize

computational energy waste.

The dissertation focuses on the energy efficiency of reconfigurable computers that

may also exhibit super-proportional behavior. We develop new models for ideal system

design and operations, new metrics for quantifying computational energy waste and

attributing losses to root causes, and mechanisms to efficiently operate such systems.

1.1 Iron Law of Energy

Knowledge about ideal system efficiency and energy waste with respect to the ideal is

not sufficient to correct the situation to eliminate energy waste. We also need to quantify

the root causes of energy waste.

To do this, we draw inspiration from the popular Iron Law of (processor) Perfor-

mance [72, 194] that decomposes workload execution time into three components as

shown below:

Time
Program =

Instructions
Program × Cycles

Instruction ×
Time
Cycle

This separation helps compiler writers to focus on improving the first component,

computer architects to focus on improving the second component, and circuit designers

to focus on improving the third component.

A similar decomposition of workload energy consumption does not exist. We now
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propose a new Iron Law of Energy in Chapter 2 as follows:

E(c, l) = LUE(l)× RUE(c, l)× Emin, l > 0

where:

• E(c, l) is the energy consumption by the system to do the work using configuration

c at non-zero load (or, processing rate or, performance) l,

• LUE(l) is the relative energy used by the most energy-efficient configuration for load

l compared to the energy needed (Emin) by the most energy-efficient configuration

(the optimal load can be different from l),

• RUE(c, l) is the relative energy used due to operating with configuration c at load l

compared to the energy needed by the most energy-efficient configuration for that

same load l,

• Emin is the minimum energy needed by the system to do this work when operating

at the optimal configuration and load.

Similar to the Iron Law of Performance, we expect that the above decomposition

will help different actors to focus on particular aspects of energy consumption—system

designers to focus on reducing Emin and system operators to focus on reducing LUE and

RUE through load management and configuration management.

1.1.1 Load Management

One major source of wasted energy is due to suboptimal load levels, particularly low

loads, serviced by the machine. This aspect is captured by the LUE term in the Iron Law

of Energy. A value greater than 1 for LUE means that energy is wasted due to operating
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with non-optimal loads. Chapter 2 shows that non-optimal loads can use in excess of

350% energy compared to that needed at optimal loads. System operators can prevent or

mitigate this loss by managing load levels serviced by machines.

In a datacenter, load management is a global policy decision since multiple machines

are affected by it, either to absorb load from or relinquish load to other machines so that

the total serviced load is unaffected. This may not always be possible, e.g., in the case of

stateful services with expensive state migration costs.

We do not focus on mechanisms to perform inter-server load management in this

dissertation.

1.1.2 Configuration Management

Modern computers are reconfigurable in multiple ways and not being careful about the

operating configuration can be extremely wasteful in terms of energy consumption. This

aspect is captured by the RUE term in the Iron Law of Energy. A value greater than 1

for RUE means that energy is wasted due to operating with non-optimal configurations.

As Chapter 2 shows, up to 51% more energy can be used by suboptimal configurations

even if load is managed to be in the optimal range. For a given load, configuration

management is local to the machine in the sense that other machines need not be aware

of or affected by the configuration of the target machine.

This dissertation focuses primarily on configuration management of single machines—

management of processor frequency (Chapters 3 and 5), cache prefetching (Chapter 3),

and cache organization (Chapters 4 and 5).
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1.2 Service-Level Agreements (SLA)-aware Governors

We use existing terminology of calling resource management policies as governors. System

operators may need to use governors to ensure that runtime Service-Level Agreements

(SLAs) are satisfied. There is thus a need for SLA-aware governors. Some examples of

SLAs are:

• Maximize energy efficiency, that is, minimize energy used.

• Maximize performance while operating within a given power budget.

• Maximize power savings, that is, minimize power consumption, while meeting a

given performance target.

Minimizing system energy consumption reduces the operational cost of machines

and datacenters by reducing electricity bills. Limiting/capping power consumption has

multiple benefits as follows.

1. It generates less heat and thereby reduces cooling needs and operational costs.

2. It requires provisioning for a smaller amount of total power to the system and

datacenter. This reduces capital costs.

3. It allows for better utilization of datacenter capacity. Otherwise, the datacenter

has to be provisioned for worst-case/nameplate power consumption of all servers

whereas most servers are poorly utilized leading to stranded capacity. Improving

datacenter capacity utilization can significantly reduce the Total Cost of Ownership

(TCO) [21].
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Operating under power constraints is important for both servers and mobile sys-

tems [98]. However, this may slow down computation. So the user may want to specify

SLAs that include performance targets that should be reached.

Linux distributions include governors that manage processor frequency. Some of the

well-known governors are Performance (highest frequency), Powersave (lowest frequency)

and OnDemand (dynamically change frequency according to utilization). The OnDemand

governor is the default for many distributions. However, these governors are not sufficient

for managing modern servers. There are three main reasons why the existing Linux

governors are inadequate:

1. The existing governors only control processor frequency. However, other aspects

of the system, e.g., prefetching, number of active cores, etc. are also controllable

at run time. System designers are increasingly making reconfigurable interfaces

public and new governors should exploit those to increase energy savings.

2. There is no way for the user to specify SLAs/high-level management goals, e.g.,

minimize energy while meeting a performance target. The assumption made by

the existing governors is that the user always wants peak performance or lowest

power, but there could be other management goals. New governors need to be

more expressive in order to meet the needs of the users.

3. Modern processors automatically transition to low-power states when idle. This

significantly reduces the utility of the OnDemand governor. We will show in Chap-

ter 3 that the OnDemand governor performs almost identically to the Performance

governor for all of our workloads.

Chapter 3 shows that, for the SPECpower benchmark, the existing governors are

significantly energy-inefficient for most load levels other than peak and idle. We see
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significant inefficiencies for batch workloads as well. We develop new governors that

address the shortcomings of the current governors by considering prefetch control and

cache resizing in addition to frequency control, by being SLA-aware, and by aiming to

constrain system operations to the Pareto frontier (Dynamic EO).

1.3 Contributions

The main contributions of this dissertation are:

1. Definition of new ideals and metrics for reasoning about energy efficiency.

Instead of Energy Proportional (EP), we propose Energy Optimal Proportional

(EOP) as the new design ideal for energy efficiency. A system that is EOP will always

use minimum energy, Emin, (or equivalently, always have maximum efficiency) to

do a given amount of work irrespective of the load. EOP thus characterizes a

lower bound on the energy consumption, or equivalently, an upper bound on the

energy efficiency of the given system. EOP will be helpful to system designers as

they improve the system’s maximum energy efficiency (reduces Emin) and make a

greater portion of the operating range closer to EOP (reduces LUE over a greater

range of loads).

For system operators, we propose a new operational ideal called Dynamic Energy

Optimal (Dynamic EO). This is determined by the set of system configurations

that have the lowest power among all configurations that can serve the same load.

System operators should strive to operate their system close to Dynamic EO. This

will ensure that RUE is close to 1.

We also propose a new metric, CPUE, for quantifying computational energy waste.

Our new Iron Law of Energy in Chapter 2 helps quantify two operational con-
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tributors to wasted energy—non-optimal loads and non-optimal configurations

for serving the loads—that will help system operators to focus better on load

management and configuration management.

Chapter 2 discusses these new ideals and energy consumption metrics in more

detail.

2. Development of new SLA-aware governors that control both processor frequency

and cache prefetching.

In contrast to the existing Linux governors, our governors

a) take user-specified SLAs into account while managing resources, and

b) aim to constrain system operations to Dynamic EO.

Chapter 3 shows that our new governors save significant energy compared to

the existing Linux governors. Two of our workloads, md and SPECpower, show

significant performance improvements for the same power budget with dynamic

control of prefetch settings.

3. Development of new cache performance models based on reuse distance prop-

erties to determine optimal cache size and associativity at runtime.

Since workloads differ in their cache utilization properties, being able to efficiently

and accurately predict cache performance for different cache sizes and organizations

is important for saving cache leakage energy, with controlled performance impact,

by dynamically resizing the cache. Determining the optimal cache configuration

without needing to try out all possible configurations requires low-cost models that

can be used online to predict the performance of potential target cache configurations.

Our analytical models are based on the reuse distance distributions of accesses to
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the cache. The reuse distance of an element in an address stream is the number of

unique elements accessed between two successive accesses to the same element.

Chapter 4 develops online methods that monitor cache access streams to determine

reuse distance distributions and use that to predict cache miss rates for any cache

size and associativity.

In contrast to earlier work on way counters [175, 214] that can predict cache miss

rates only for different associativities, our models can predict cache performance

for different cache sizes and associativity not only for LRU, but also for other

replacement policies such as PLRU, RANDOM, and NMRU.

4. Development of a new governor that controls for cache organization (size, num-

ber of sets) and processor frequency.

Depending on the workload characteristics, the last-level cache can be resized and

the processor frequency increased to get more performance for the same power

budget. Chapter 5 develops a governor that controls these knobs to achieve 0.5–15%

performance improvement for a given power budget.

5. Development of a new classification system for system reconfiguration capabil-

ities.

Computer architecture has been greatly enriched by classifications/taxonomies of

various aspects of system design and operation, such as Flynn’s classification of

machine organizations [78], Hill’s 3C classification of cache misses [103], Wang-Baer-

Levy’s classification of virtual-real cache hierarchies [227], etc. We propose a new

classification system for reconfigurability, based on the semantics of reconfiguration

knobs, in Chapter 6. We hope that this classification is more insightful than a

component-based or mechanism-based classification of reconfiguration knobs.
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1.4 Implications

The implications of our work are three-fold.

Firstly, the notion of conventional energy proportionality (EP) being a model of

ideal system efficiency is no longer true. This has resulted from modern systems being

reconfigurable and super-proportional. The energy efficiency of the system at its peak

performing point can be significantly less than the best that it can achieve. Consequently,

aiming to attain EP may result in significant lost opportunities in improving efficiency.

Instead, system designers should aim to attain EOP.

This also means that comparisons between systems based on the energy consumptions

at their peak performing points can be misleading since that may not be the best energy

efficiency realizable on either system. EOP can form a basis for such comparisons.

Further, the policy of race-to-halt (running the system at its highest speed and then

shutting it down to save power) can be suboptimal in terms of energy consumption since

race-to-halt aims for attaining the EP power-performance profile, not the EOP profile.

Race-to-halt is thus more of a performance-optimal policy rather than an energy-optimal

one. As we will demonstrate with our new reactive governors for SPECpower [205] in

Chapter 3, it may be more energy efficient to control processing speed so that the system

is never under-utilized while still serving the offered load. This strategy minimizes idle

time whereas the race-to-halt policy maximizes idle time. Our new governors employ

a “jog-to-halt” policy that subsumes race-to-halt by selecting processing speeds that

minimize energy consumption while meeting performance targets or power caps.

Secondly, while the intense focus on datacenter PUE has led to significant reductions

in datacenter cooling overheads, it has also resulted in IT equipment inefficiencies being

one of the largest contributors to energy waste in modern datacenters. With increasing

computational demands and electricity costs and reducing PUE numbers, optimizing
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computational energy through smart server reconfigurations and load balancing will

result in more overall savings than it has in the past. It is important to have useful

metrics that can guide such operating decisions. Our new metrics—CPUE, LUE, and

RUE—can help to analyze and guide those decisions.

Thirdly, existing governors in Linux as well as RAPL capabilities in modern processors

are inadequate for achieving maximum energy efficiency. Currently, Linux governors

do not consider the full range of reconfiguration capabilities present in the system.

Currently, RAPL also has the same limitation and additionally only guarantees a maximum

power cap, but ignores performance considerations. Thus, any performance, including

suboptimal ones, is possible within that cap. Decoupling power management from

performance management risks missing performance goals or energy goals or both.

Finally, we hope and believe that the concepts and models presented in this dissertation

will help improve the energy efficiency of future data centers, that in turn will lower

energy needs and associated environmental impacts, increase computational capacity

within existing budgets, and promote job growth through improved profit margins.
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2 energy efficiency ideals and the iron law

Energy efficiency is the new fundamental limiter of processor performance, way

beyond numbers of processors.

— Shekhar Borkar and Andrew A. Chien [35]

2.1 Overview

Energy efficiency is the work done per unit amount of energy consumed. Maximizing

energy efficiency is important as it allows more work to be done for a given energy

budget and also allows work to be done faster for a given power budget. This has

economic and environmental benefits as it minimizes the energy needed to do a given

computation.

While compute capability, in terms of the number of transistors per chip, has steadily

increased (Moore’s Law [158]), operating voltage has not reduced in proportion (limited

Dennard scaling [63]). Borkar and Chien [35] observed that although Pollack’s rule [170]

predicts a speedup potential (beyond speedups in transistor switching) in proportion to

the square root of the number of transistors in a processor, energy-efficiency concerns

discourage many microarchitectural techniques that can enable those performance gains.

Thus, improving energy efficiency will also improve processor performance.

Energy-proportional computing, that uses energy in proportion to the work done, is

an important concept for energy-efficient systems since it seeks to eliminate energy waste

by only using as much energy as the work done. However, modern computers are not

energy proportional. For example, they use non-trivial power when they are powered on

but not used. This is due to processor leakage power, DRAM refresh, and power draw
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by various components such as fans, hard disks, etc. Energy proportionality has been an

useful goal for system designers to make their systems more energy-efficient.

One way to increase proportionality could be to use innovative power-delivery

solutions. PowerNap [151] proposed a new power delivery system called RAILS that

reduces idle power consumption and proposed to rapidly transition the system to a

nap (sleep) state. The nap state retains volatile information, e.g., memory state. With

an expected transition time of 10ms or less, the system should be able to save power

during idle periods of short durations. The RAILS system consists of multiple power

supplies to improve upon the low efficiency of individual power supply units. The RAILS

supplies are provisioned such that the power consumption of the idle system is in the

efficient operating range of a single supply. As server blades become active, more RAILS

supplies get electrically connected so that all the supplies operate in their efficient ranges.

However, the PowerNap approach does not work well for some workloads, e.g., OLDI

workloads, because full system idleness is relatively rare [152]. Moreover, the napping

opportunity decreases further as the number of cores increase [154].

Modern computers also have reconfigurable resources, e.g., processor voltage and

frequency levels. We show that intelligent reconfiguration can cause these computers

to exceed the efficiency of conventional energy-proportional machines when they are

performing work. The original definition of energy-proportional computing, first proposed

by Barroso and Hölzle, does not characterize the energy efficiency of recent reconfigurable

computers, resulting in non-intuitive “super-proportional” behavior (more work done

in proportion to the energy used). This chapter introduces a new definition of “ideal”

energy-proportional computing and new metrics to help guide both system architects

and operators to configure systems to operate close to this ideal efficiency.

We show that the traditional ideal of energy-proportional may be significantly energy
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inefficient, and hence, not suited to be an ideal model. Instead, we propose Energy

Optimal Proportional (EOP) as the new ideal model for system designers. An ideal EOP

system has the maximum efficiency over its entire performance range. Making systems

more EOP is a design goal for system architects.

Currently, real systems are not EOP any more than earlier systems were EP. We

propose Dynamic EO (Dynamic Energy Optimal), which is the power-performance Pareto

frontier and which can be realized on the current system, as the new ideal model for

system operators. The Pareto frontier is a set of Pareto-optimal configurations. A system

configuration is Pareto optimal if it is not possible to reconfigure the system to improve

performance without also increasing power consumption or to reduce power consump-

tion without also degrading performance. Pareto-optimal power-performance system

configurations help enforce service-level objectives such as maximizing performance for a

given power budget or minimizing power for a given performance target, both leading to

energy savings. System operators should aim for Dynamic EO to achieve power-efficient

performance for the current system.

This chapter focuses on defining new ideals for energy proportional computing and

new metrics to quantify operational energy wastage of computing systems.

The main contributions of this chapter are:

1. We show that the conventional “ideal” model of energy proportionality does not

fully describe the energy efficiency potential of modern super-proportional systems.

2. We propose new ideals for both system designers and system operators. EOP is

the new design ideal that subsumes conventional “ideal” energy proportionality.

Dynamic Energy Optimal (Dynamic EO), that is the power-performance Pareto

frontier, is the new operational ideal.
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3. We propose a new metric called Computational Power Usage Effectiveness (CPUE)

to quantify excess computational energy used with respect to that by EOP.

4. We propose new metrics, Load Usage Effectiveness (LUE) and Resource Usage

Effectiveness (RUE), that can help system operators to focus on load management

and configuration management to make the system operate efficiently.

5. We develop the “Iron Law of Energy” that quantifies the impact of poor load

management and poor configuration management on CPUE.

Section 2.2 defines energy efficiency and describes our experimental setup. Section 2.3

shows why the conventional “ideal” model is inadequate for modern systems. Section 2.4

proposes our new design and operational ideals. Section 2.5 discusses several properties

of the power-performance Pareto frontier and their implications on managing for efficient

operations. Section 2.6 proposes a new metric for quantifying energy waste and its

decomposition into two components, pertaining to load management and configuration

management. Section 2.8 describes how Pareto frontiers of individual systems can

be composed to determine the Pareto frontier for a collection of systems. Section 2.7

discusses some of the overheads and challenges involved in energy-efficient scheduling.

2.2 Terminology and Infrastructure

Similar to Barroso and Hölzle [22, 104], we define energy efficiency as Work
Energy , or equiva-

lently, Performance
Power . The performance of a system is measured as the rate of doing work,

e.g., the load serviced, or transactions completed per unit time. Performance normalized

to that at peak load levels is the system utilization [22].

The system that we use in this work is a single-socket quad-core Haswell-based Xeon

E3-1275 v3 server with 32 GB memory (DDR3-1600), henceforth referred to as HS. HS
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runs RHEL with kernel version 2.6.32. It has a frequency range of 0.8–3.9 GHz with

3.5+–3.9 GHz being the turbo boost region. The turbo boost plan is 2/3/4/4 meaning

that the maximum frequency can be 3.5 + 0.1*2 = 3.7 GHz with all four cores active, 3.5 +

0.1*3 = 3.8 GHz with three cores active, and 3.5 + 0.1*4 = 3.9 GHz with two or one cores

active. We run the system with all four cores, hyperthreading (2 hardware threads per

core, that is, 8 hardware threads per socket), and cache prefetching enabled by default.

All cores run at the same frequency (except perhaps in turbo mode where individual

cores may be throttled differently). The socket frequency can changed in steps of 100

MHz by writing to Model Specific Registers. Any value for the turbo region implies a

limit on the maximum frequency. HS has a socket TDP of 84W and a remarkably low

socket power of ~0.27W when idle. DRAM idle power is ~4.3W.

We use the SPECpower benchmark [205] in this chapter. This Java workload simulates

warehouse transaction processing, with (by default) as many warehouses as logical

processors on the system under test, that is, the server. Transaction requests to each

warehouse arrive in batches of 1000 transactions each. The batches have (negative) expo-

nentially distributed interarrival times. The server load is measured in total transactions

per second. The workload first calibrates the maximum, or 100%, load. Next, it does

measurement intervals by varying the load offered to the system under test from 100%

(max. utilization) to 0% (no utilization) in decrements of 10%. In these intervals, the

load served must be within 2% (up to 2.5% shortfall for the 100% and 90% intervals is

allowed) of the offered load. We use a Watts Up? (.net) meter [107] for system (wall)

power measurements. SPECpower uses its own software utility (daemon) for periodically

measuring and reporting system power. SPECpower reports power numbers only for the

measurement intervals. This is what is plotted against performance in all the graphs for

SPECpower profiles.
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We refer to 100% load as the maximum load achieved for the Peak Performance

Configuration (all cores at the highest frequency and prefetching enabled). All loads are

normalized with respect to that peak load.

2.3 Inadequacy of Conventional Energy Efficiency Ideals

We see that peak energy efficiency occurs at peak utilization and drops quickly as

utilization decreases.

— Luiz André Barroso and Urs Hölzle [22]

The average efficiency is always less than the peak efficiency; modern servers are only

maximally efficient at 100%.

— David Meisner and Thomas F. Wenisch [153]

Barroso and Hölzle observed that real systems—at that time—attain peak efficiency

at peak utilization, but quickly lose efficiency as utilization drops as they are unable

to proportionately reduce power consumption. They posit that an “ideal” energy-

proportional system should always use energy in proportion to the work done, by

maintaining this peak efficiency even at reduced load.

Figures 2.1 and 2.2 illustrate this original model for HS running SPECpower. Figure 2.1

shows the server’s power-performance profile at different load levels with the highest

processor frequency. We label these points with Peak Performance Configuration) since the

machine can serve maximum load (peak performance) with this configuration.

The EP line represents Barroso and Hölzle’s “ideal” energy-proportional profile where

performance is linearly proportional to power. We consider this a design ideal for future

systems, since current systems have unavoidable idle power consumption. The Dynamic

EP line accounts for idle power [141], and represents an operational ideal for the current
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Figure 2.1: Power-Performance profile with conventional server configuration.
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Figure 2.2: Conventional efficiency model of servers.

system. This server’s Peak Performance Configuration achieves power-performance very

close to Dynamic EP. Figure 2.2 shows that the corresponding energy efficiency (η),

normalized to that at peak performance, reduces quickly from 100% as performance

drops. In contrast, an EP system is always 100% efficient.
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Figure 2.3: Power-Performance profile for super-proportional systems.
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Figure 2.4: Performance (Load) vs Efficiency for super-proportional systems.

Barroso and Hölzle’s observation has been instrumental in helping drive recent system

designs to have lower idle power and a wide dynamic power range. However, their model

describes systems with fixed resources, while these modern, more-efficient processors have

reconfigurable resources—e.g., core frequencies, voltages, number of active cores, threads
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per core, etc. that can be varied at runtime.

Operating with fixed resources can be inefficient when a server faces variable loads,

either due to fluctuating demands, or service consolidation and load balancing among

other servers [47, 60, 148].

Servers are usually configured for maximum performance (that is, the Peak Perfor-

mance Configuration), but other configurations can trade performance for greater energy

efficiency. Figure 2.3 shows that changing just the socket frequency (and consequently

voltage) results in energy efficiency that exceeds the “ideal” EP profile. Specifically,

by varying the frequency from 3.9 to 0.8 GHz, the Haswell server can achieve super-

proportional efficiency over almost 60% of the performance range (points in the shaded

Super-Proportional region—where performance is super-proportional to power). Fig-

ure 2.4 shows that the maximum efficiency (ηmax, occurring at approximately two-thirds

load) is 29% higher relative to the EP energy efficiency, for this server.

Reconfigurable systems create opportunities for increased efficiency even outside the

super-proportional region. For example, Figure 2.4 shows that the Peak Performance Con-

figuration attains a relative efficiency of 61% at 30% load, while a different configuration

achieves a relative efficiency of 88% at the same load. In other words, the usual server

configuration uses 44% more energy than necessary to satisfy the same load, despite

being nearly on the Dynamic EP line.
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Ideally systems would exhibit energy-proportionality, wherein servers consume power

in proportion to their load.

— David Meisner et al. [152]

In an energy-proportional system, explicit power management is unnecessary, as

power consumption varies naturally with utilization.

— David Meisner et al. [151]

energy-proportional computing must be the ultimate goal for both hardware architecture

and software-application design.

— Shekhar Borkar and Andrew A. Chien [35]

As we have demonstrated, neither EP nor Dynamic EP (that is, the conventional ideal

models) describes the full potential of modern computing systems. While non-linearity

with reconfiguration is well-known, e.g., with frequency (and voltage) control, the existing

ideal models do not consider its impact on peak efficiency. New models are needed

to aid operating system schedulers and system administrators to configure systems to

deliver maximum efficiency.

2.4 Redefining EP and Dynamic EP

The EP model assumes that maximum energy efficiency occurs at maximum (100%) load

and argues that an ideal system should achieve that efficiency for all loads. Yet Figure 2.4

shows that a reconfigurable server actually attains maximum efficiency (ηmax) at a lower

load (ηmax_L < 100%). We argue that a better ideal model is one that achieves this optimal

efficiency ηmax for all loads.
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Figure 2.5: EOP and Dynamic EO models.

Similar to the EP model, the ideal system should have maximum efficiency (ηmax) at

every load. This implies that for a given computation, it will use minimum energy (Emin)

to do it irrespective of the computing rate (performance or load). Figure 2.5 shows its

geometric interpretation as a straight line passing through the points (0, 0) and (ηmax_L,

ηmax_P). This ideal system, that is energy optimal at every load, uses power linearly

proportional to load (l/ηmax power at load l). Energy optimality at every load implies

energy proportionality, but the converse is not true, e.g., EP is proportional but not

optimal at all loads.

We call this new model EOP (Energy Optimal Proportional) since it is both optimal

and proportional. EOP is a design ideal that gives system designers a way to measure

how far the energy efficiency of a target design differs from the best possible design,

hopefully leading to more energy-efficient systems. EOP subsumes the EP model for all

systems—it improves upon EP for super-proportional systems and is identical to it for

all others.
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Of course real systems are unlikely to achieve this design ideal, e.g., due to unavoid-

able idle power, so system software needs an operational model that characterizes the

maximum efficiency that can be realized by the current system at different loads. We

address this using the well-known power-performance Pareto frontier [19, 27, 183], shown

as a dashed line in Figures 2.3–2.6. The Pareto frontier represents configurations in the

current system that use the lowest power, and hence are the most efficient, among all

configurations that can serve a given load. These configurations are Pareto optimal in the

sense that, among these configurations, one cannot reduce power without also reducing

load or increase load without also increasing power.

We call this model Dynamic EO. Like Dynamic EP, it is an operational ideal that seeks

to characterize the best energy efficiency that can be achieved for a given system. But it

differs from Dynamic EP in two aspects—it characterizes optimality that can already be

realized by some among the multitude of configurations in the current system and it

does not assume linearity of the power-performance profile.

Figure 2.5 illustrates the different models. These are the

• design ideals: conventional (EP), new (EOP), and

• operational ideals: conventional (Dynamic EP), new (Dynamic EO).

The EOP line meets (is tangential to) the Dynamic EO line only at points having the

maximum efficiency (ηmax).The following energy efficiency relations hold for any system:

Dynamic EP 6 EP 6 EOP

Dynamic EO 6 EOP

where 6 means less than or equal to for values of efficiency. Systems, like our server,

that can operate in the non-Sub-Linear region for any portion of their performance range

have Dynamic EP 6 Dynamic EO for all such loads.
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2.5 Power-Performance Pareto Frontier (Dynamic EO)

In this Section we describe some properties of Dynamic EO and their implications for

optimal system operations.

Every configuration of the system can be characterized by its performance and power

consumption. We call each such (Configuration, Performance, Power) tuple a system

state. The Pareto frontier is determined by only those states that use the lowest power

among all states having at least that performance. It is a subset of the set of system states.

The governors that we develop in Chapters 3 and 5 seek to constrain system operations

to Pareto-optimal states.

Let Π denote the set of system states with Πi representing the ith state having

performance Πi.Perf and power consumption Πi.Power. Let the highest performing state

be Π0. We apply the well-known concepts of Pareto dominance and Pareto optimality.

State Πi Pareto-dominates state Πj if (Πi.Perf > Πj.Perf)∧(Πi.Power 6 Πj.Power).

Property 1: The Pareto frontier is the set of non-dominated states.

In Figures 2.3 and 2.4, the Pareto frontier is the set of states represented by the dashed

line. The states that lie on the EP line in the Super-Proportional region are dominated by

the states on the frontier.

Implication: Constraining system operation to the Pareto frontier is important since

dominated states are less efficient than dominating states (also see Figure 2.4). The state

with the maximum efficiency (ηmax) lies on the Pareto frontier.

Property 2: States on the Pareto frontier have the same total order in both power and

performance.

Let Πi,Πj be states on the Pareto frontier. Then (Πi.Perf > Πj.Perf) ⇐⇒ (Πi.Power >

Πj.Power). We number the states in decreasing order of performance. The ordering

relation for states on the frontier is thus: i < j ⇐⇒ (Πi.Perf > Πj.Perf) ∧ (Πi.Power >
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Πj.Power).

Implication: While the state space is inherently two-dimensional, the Pareto frontier

is more constrained allowing system operators to qualitatively reason about the other

dimension from looking at one dimension alone. For example, increasing the power

budget will improve performance at the Pareto frontier if the power is used. This is not

true for the whole state space where states with less performance can use more power.

This positive correlation between the two dimensions exists at the Pareto frontier.

Property 3: System states that optimize power-performance metrics are located at the Pareto

frontier.

Consider a state Πi that is not on the frontier. So there exists at least one other state Πj

such that Πi.Perf > Πj.Perf and Πi.Power 6 Πj.Powerwith at least one of the inequalities

being strict. This implies that the highest performing state with/without a (maximum)

power cap and the lowest power state with/without a (minimum) performance bound

lie on the Pareto frontier.

In this work we assume that performance ∝ delay−1. Since energy is power

multiplied by time (delay), it implies that the lowest energy point with/without a

delay cap must lie on the Pareto frontier. Since the state corresponding to the highest

performance-per-watt is the same as the state with the lowest energy, that state will also be

on the Pareto frontier. Moreover, according to the above condition, states corresponding

to the minimum energy-delay (ED) product or ED2 product or, in fact, any EDn,n > 0

must also lie on the Pareto frontier.

Since states on the Pareto frontier are more efficient than other states, the highest

performing state with/without a maximum power cap, the lowest power state with/with-

out a minimum performance bound, the highest performance-per-watt state, the lowest

energy state, the lowest energy-delay state, etc. will lie on the Pareto frontier.
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Implication: Optimizing system operations for commonly used power-performance

or energy efficiency metric necessitates operating it at the Pareto frontier.

Property 4: The points of contact between the frontier, Power = f(Perf), and the tangent

curve Power = cn(Perf)n+1,n + 1 > 0 and some constant cn, represent configurations that

optimize (minimize) metric EDn. (n = 0 means energy E.)

Let Πi be a state that optimizes (minimizes) metric EDn. By Property 3, Πi must

be on the frontier. Since E = Power(Perf)−1 and EDn = Power(Perf)−n−1, Πi will

be on the curve for the power function Power = cn(Perf)n+1 if we choose cn =

Πi.Power(Πi.Perf)−n−1. cn is thus the optimum value for EDn. Moreover, every

point on this power function curve will have the same value for EDn, which is cn. No

part of the frontier can be below this curve, as then states on this part of the frontier will

have lower power for the same performance compared to points on the power function

curve directly above them and thus have a smaller value for EDn than cn which is a

contradiction.

Note that all points on the curve above the linear tangent are suboptimal with respect

to E, all points above the quadratic tangent are suboptimal with respect to ED, all points

above the cubic tangent are suboptimal with respect to ED2, and so on.

Implication: This forms the basis for the geometric interpretation of the Pareto

Proportional line described in Section 2.4. Every point on the linear tangent has the same

slope, which is equal to Power
Performance , that is, performance-per-watt−1 value of the most

energy-efficient point.

Property 5: The Pareto frontier is not necessarily convex (or concave).

Let Πi,Πj,Πk be states on the frontier with i < j < k. The ordering relations

only imply Πi.Perf > Πj.Perf > Πk.Perf and Πi.Power > Πj.Power > Πk.Power, not

Πj.Power 6 Πk.Power+
(
Πj.Perf−Πk.Perf
Πi.Perf−Πk.Perf

)
(Πi.Power− Πk.Power).
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Implication: Convex optimization approaches cannot be directly applied while com-

posing multiple Pareto frontiers. Moreover, hill-climbing based search techniques at the

frontier can get stuck in local optima instead of reaching global optima. However, as

we show in Section 2.8, convex (polynomial) approximations to the Pareto frontier may

work well enabling applications of efficient optimization techniques.

2.6 Computational PUE

Datacenters can satisfy a given load by distributing it to machines in different ways. Each

machine can also be configured in a large number of ways. These modes for servicing

the load differ in the amount of energy consumed, since some modes are more inefficient

than others.

A hypothetical ideal system, that is, one that meets the design ideal EOP, achieves

maximal energy efficiency (ηmax) and thus minimizes the energy (Emin) needed for a

given computation regardless of load. We would like a metric to quantify the excess

energy used by a real system, compared to this ideal system.

Our new metric, Computational Power Usage Effectiveness (or, CPUE), measures how

much energy a server uses with configuration c at load l compared to the energy used

by EOP. We define

CPUE(c, l) =
Actual server energy with c at l

EOP energy at l , l > 0 (2.1)

=
E(c, l)
Emin

, l > 0 (2.2)

Thus, E(c, l) = CPUE(c, l)× Emin, l > 0 (2.3)
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CPUE(c, l) is inspired by the well-known PUE metric [16] that tracks energy waste

for datacenters by taking the ratio of facility energy consumption to energy consumption

by IT equipment. PUE > 1 quantifies excess relative energy used by the datacenter

due to the non-IT infrastructure. Similarly, CPUE(c, l) > 1 quantifies excess relative

computational energy used whenever efficiency drops below ηmax.

We have seen that there are two major factors that lead to energy inefficiencies: i)

running the system at a non-optimal load and ii) for a given load, running the system

with a non-optimal configuration. We can decompose CPUE(c, l) to isolate these two

factors.

We defined CPUE(c, l) as E(c, l)/Emin. For a given amount of work, energy consumed

is inversely proportional to efficiency. Thus,

CPUE(c, l) =
ηmax
η(c, l) , l > 0 (2.4)

=

(
ηmax

ηPareto(l)

)
×
(
ηPareto(l)

η(c, l)

)
, l > 0 (2.5)

= LUE(l)× RUE(c, l), l > 0 (2.6)

Thus, E(c, l) = LUE(l)× RUE(c, l)× Emin, l > 0 (2.7)

where LUE(l) denotes Load Usage Effectiveness at load l and RUE(c, l) denotes Resource

Usage Effectiveness of configuration c and load l.

LUE(l) is the efficiency of EOP(ηmax) relative to that of of Dynamic EO at load l.

LUE(l) > 1 with LUE(l) = 1 ⇐⇒ l can be served at maximum efficiency (ηmax). Since

energy consumed is inversely proportional to efficiency, LUE(l) > 1 quantifies excess

energy used, relative to Emin, due to non-optimal loads assuming that the Pareto-optimal

configuration has been chosen to serve load l.

RUE(c, l) is the efficiency of Dynamic EO relative to that of configuration c, both
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at load l. RUE(c, l) > 1 with RUE(c, l) = 1 ⇐⇒ c is a Pareto-optimal configuration.

RUE(c, l) > 1 quantifies excess energy used, relative to Dynamic EO at load l, due to

using non-optimal (Pareto-dominated) configuration c for serving load l.

Inspired by the “Iron Law of Performance”, we call Equation 2.7 the “Iron Law of

Energy”. System designers will focus on minimizing Emin whereas system operators will

focus on minimizing LUE and RUE.

Both LUE(l) and RUE(c, l) can be expressed in terms of CPUE(c, l). Since RUEPareto(l) =

1 for every l, LUE(l) = CPUEPareto(l) and RUE(c, l) = CPUE(c, l)/CPUEPareto(l).

Our proposed RUE and LUE metrics can help system operators isolate the sources

of energy inefficiency and guide new policies to reduce it. LUE is important for load

management of Pareto-optimal configurations. RUE is important for configuration

management for Pareto-dominated configurations. While LUE is applicable to all systems,

both old and new, it only partially quantifies energy waste in reconfigurable systems that

can be configured in a plurality of ways. RUE completes the quantification.

2.7 Load and Configuration Management

Most data centers are provisioned to meet peak load, but normally operate at much

lower load levels. The LUE metric can help operators quantify the potential benefit

of deploying load management policies [47, 60, 148], e.g., concentrating load on some

servers and shutting down others. Of course, any such policy must also ensure that

service-level agreements are still satisfied [171].

Figure 2.6 shows that CPUE for the Peak Performance Configuration is always > 1

(wastes energy) and increases as load decreases. The best CPUE for this configuration is

1.29, occurs at peak load, and implies 29% excess energy used relative to Emin. LUE (that

is, CPUE for Dynamic EO), on the other hand, first decreases to 1, then increases, revealing
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a sweet spot of 6 10% excess energy used at around 51%–90% of peak performance.

Barroso and Hölzle [22] observed that servers typically operate at 10%–50% load. The

LUE curve for SPECpower (Figure 2.6), shows excess energy used due to suboptimal

load of approximately 10% at the higher end of this range, to over 250% (not shown)

at the lower end. The steep slope of the LUE curve at low loads makes even modest

load management very attractive. For example, increasing load from 10% to 20% of peak

reduces LUE from 3.55 (255% excess) to 1.99 (99% excess) and a further increase to 25%

peak load reduces LUE to 1.68 (68% excess).

Even in a data center with perfect load balancing, reconfigurable servers may be

misconfigured, wasting significant energy even at optimal load. Figure 2.7 shows RUE for

SPECpower for all system configurations and loads. Operating with the Peak Performance

Configuration is significantly wasteful even at low loads, e.g., 21% excess energy used

at 10% load compared to operating at Dynamic EO. The excess increases to 51% before

decreasing to zero at peak load. Not all Pareto-dominated configurations are as wasteful—
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the shaded band identifies configurations that have an RUE of 6 1.1 and hence limit the

extra energy used to 10%.
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Figure 2.7: Resource Usage Effectiveness.

Configuration management (to reduce RUE) may incur costs, e.g., due to transition

times while changing configurations. System designers are making great strides in

reducing these costs. For example, processor frequency transitions complete within a

few hundred microseconds today.

Calculating LUE and RUE (as well as determining EOP and Dynamic EO) requires

knowledge of the Pareto frontier. In this chapter, we determine the frontier offline by

running the workload multiple times with the server configured to different frequencies.

Offline characterization is also used in prior work [19, 183], but may not be feasible

in an online setting with unknown workloads. In Chapter 3 we introduce an online

policy that closely approximates the frontier by controlling processor frequency and

cache prefetching.

Workload characterization incurs overheads, but researchers have demonstrated [60,
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148] its feasibility and utility in large-scale computing environments, e.g., at Google

datacenters and Amazon EC2. With modern systems showing trends of increasingly

making components reconfigurable, we expect further applications of such techniques to

infer characteristics that are relevant to these components.

2.8 The Π-dashboard

With one or more reconfiguration knobs in the system, the user is faced with the daunting

task of choosing the right configuration that meets a desired power-performance or

energy-efficiency criteria. The Π-dashboard attempts to bridge the gap between high-level

power-performance goals and system resource configurations—a mapping capability

that is largely missing in today’s systems. Π-dashboards enable selection of a variety

of power-performance profiles for the system. The user or operating system can select

a desired power-performance profile from the Π-dashboard resulting in a “one-shot”

transition of the system to the corresponding configuration.

As discussed in Section 2.5, we denote the collection of system states as Π-states.

Each state is characterized by the performance and power consumption of the system

when operating with that configuration. Pareto-optimal Π-states can be totally ordered

(Section 2.5, Property 2). The Π-dashboard is a tabular representation of this totally

ordered list of Pareto-optimal Π-states.

Chapter 3 shows how we use power-performance predictors, using hardware counters,

to characterize the expected impact of different configurations and subsequently identify

Pareto-optimal configurations. A controller/coordinator creates the dashboard from the

predictions and interfaces with the user or operating system. It updates the dashboard

periodically as execution profiles change over time. The coordinator may be implemented

as a software routine (ISR) that runs on one or more cores, or as a specialized unit such
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as a PCU in modern systems [181].
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Figure 2.8: Coordination architecture.

Figure 2.8 shows a schematic overview of hierarchical coordination across multiple

systems. The Pareto Predictors of individual systems predict power-performance pro-

files of the reconfigurable Resources of their systems. The local controller/coordinator

communicates the Pareto-optimal Π-states to the upper-level coordinator. This coordi-

nator composes the Pareto frontiers to get the overall Pareto frontier and exposes the

Π-dashboard to the user. The configurations for the selected profile are then communi-

cated back to the local controllers/coordinators as a “contract” that should be honored

by the individual systems for subsequent execution.

The coordinator can compose Pareto frontiers using an optimization program. Let

there be n machines, numbered 1..n. Let xi,j and yi,j respectively denote the performance

and power consumption in the jth Pareto-optimal state, Πj, in machine i. The overall

performance range that can be supported is [mini,j(xi,j),
∑n
i=1 xi,0]. The optimal power

consumption, p, for any performance l in this range can be determined by solving the

following program:
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Model R2

Linear 0.9138
Quadratic 0.9813

Cubic 0.9959
Quartic 0.9988
Quintic 0.999

Table 2.1: R2 values for polynomial fits to SPECpower Pareto frontier.

minimize p =

n∑
i=1

∑
j

Ii,j ∗ yi,j (2.8)

such that l 6
n∑
i=1

∑
j

Ii,j ∗ xi,j (2.9)

Ii,j ∈ {0, 1} ∀i, j (2.10)∑
j

Ii,j = 1 ∀i (2.11)

In the above, condition 2.9 requires that the desired performance be met, condition 2.10

allows any state to be either fully selected or not selected, and condition 2.11 requires

exactly one state to be selected per system.

In general, the Pareto frontier is not convex (Section 2.5, Property 5). So, a local

optima in an optimization program dealing with Pareto frontiers is not necessarily a

global optima. But for many real systems, convex (e.g., polynomial) approximations may

work well. Table 2.1 shows the coefficient of determination values (R2 values, best fit

value=1) for several polynomial fits to the SPECpower Pareto frontier on HS. A quadratic

or higher order approximation works quite well. The approximation errors may be higher

if the models are required to include specific points. Convex approximations may reduce

the computational effort required to solve the optimization program.
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2.9 Conclusion

In this chapter, we explored the relation between two well-known but dissimilar concepts,

power-performance Pareto optimality and energy proportionality, both of which share

the end goal of making computing more energy efficient. We demonstrated that the

conventional model of energy proportionality is inadequate for reconfigurable systems

since it does not guarantee energy optimality. We defined a new model, EOP, that

guarantees both optimality and proportionality and established its relation to the Pareto

frontier.

Real systems are not ideal and hence use more energy than that used by the ideal EOP

system (Emin). We proposed a new metric, Computational PUE (CPUE), that quantifies

how much excess computational energy is used by the system relative to that by EOP.

This depends on both the load served and the system configuration used to serve that

load.

Our new Iron Law of Energy shows that CPUE can be decomposed into three terms—

LUE, RUE, and Emin. The LUE and RUE metrics separate the load and configuration

aspects of suboptimality. LUE answers the question: how suboptimal is a given load?

RUE answers the question: how suboptimal is a given configuration with respect to the

most efficient configuration that can also serve that load? LUE is affected by demand

fluctuations and inter-server load management whereas RUE is affected by intra-server

configuration management.

While system components are increasingly being designed to be reconfigurable,

identifying the Pareto frontier is challenging, particularly with multiple reconfigurable

resources and dynamically changing runtime environments. Scheduling frameworks that

carefully choose configurations and operating ranges will unlock the full potential of

current and future reconfigurable systems. This will be our focus in Chapter 3.



39

3 pareto governors

3.1 Overview

In this chapter we develop new operating system governors (resource managers) that

seek to operate the system at or close to Dynamic EO (power-performance Pareto frontier)

so that Service-Level Agreements (SLAs) are satisfied. We call such governors Pareto

governors.

We consider the following SLAs in this chapter. (See Chapter 1, Section 1.2, for more

background on these SLAs.)

• SLAee: Maximize energy efficiency.

• SLApower: Maximize performance given a power cap/budget.

• SLAperf: Maximize power savings given a performance target.

Maximize power savings for the same performance

Current 
configuration

Maximize energy efficiency

Performance

Po
w

er

Dynamic EO

EOP
Maximize performance for 
the same power

Figure 3.1: State transitions to Dynamic EO for meeting SLAs.

Figure 3.1 shows what transitions the Pareto governors must make to the current

operating point to meet various SLAs.
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Our governors manipulate two dynamic reconfiguration knobs—processor frequency

(and voltage) scaling and cache prefetching. Processor caches improve performance by

keeping recently or frequently used data on chip so that when the data is needed again,

a long offchip access to main memory is avoided. However, caches are of finite size and

previously used data may need to be evicted to make room for other data before being

needed again. Cache misses happen when data is needed but is not in the cache either

because it was never needed before, or was evicted from the cache. Cache prefetchers

try to reduce cache misses by predicting data that is likely to be needed in the near

future and proactively fetching it into the cache [201]. Unfortunately, the prediction may

be inaccurate, leading to cache pollution, or not timely, leading to reduced or negative

benefits [17, 201, 209].

Our governors use the BIPS (Billion Instructions Per Second) throughput metric to

determine current application or to set performance targets. We assume the existence of

user-supplied software routines that convert between BIPS and high-level performance

metrics. Similar to existing governors in Linux, our new governors do not keep track of

higher-level application constructs such transactions, queries, etc. The workloads that we

consider for our experiments do not have any latency constraints. Other workloads that

have latency constraints on high-level constructs should estimate their BIPS requirement

and communicate that to the governors.

Our new governor for SLAee significantly improves BIPS-per-watt (energy efficiency),

with a maximum improvement of 67% and an average (geometric mean) improvement

of 30% (Section 3.8) compared to the performance-per-watt of the highest-frequency

configuration (EP energy efficiency). Improving performance-per-watt is important as it

translates into more work being done for the same energy cost or less energy being used

for the same amount of work.
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Our new governor for SLApower improves over traditional RAPL-based governors

by controlling prefetch enable and governing for full system power (Section 3.9).

The SPECpower benchmark calculates a figure of merit called “overall ssj_ops/watt”

(= avg. load
avg. power ). This is the overall energy efficiency over all the load levels. With only static

frequency selection (single frequency for the entire run), this figure of merit is maximized

at 3 GHz achieving 16% higher figure of merit compared to that for the configuration

with the maximum frequency. However, our new governor for SLAperf (Section 3.10)

results in 31% higher figure of merit by carefully controlling frequency and prefetch

settings dynamically. Note that the power meter that we use is not accepted by SPEC as

valid for submitting reports and the figure of merit calculations mentioned above may

be approximate.

The main contributions of this chapter are:

1. We develop a new OS governor that seeks Pareto-optimality for socket frequency

(and associated voltage) scaling and hardware cache prefetching. To the best of our

knowledge, this is the first work to develop governors that simultaneously control

for these two knobs on a real system. OS governors currently do not seek to control

for hardware prefetching.

2. We propose a two-level design for constructing SLA-aware governors. The first level

predicts the Pareto frontier (Dynamic EO) and the second level chooses a state on

the frontier that targets the desired SLA. This makes governors easily retargetable

to different SLAs.

Section 3.3 describes existing governors in Linux. Section 3.6 develops a new governor

for maximizing energy efficiency using frequency (and associated voltage) control. Section

3.7 extends this to include cache prefetch control. Section 3.8 discusses how to control
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for wall (full system) power in addition to socket and memory power. Sections 3.9 and

3.10 develop governors for maximizing performance under a power cap and minimizing

power for a performance target.

3.2 Infrastructure

We use the Intel Haswell server, described in Section 2.2 of Chapter 2 and henceforth

referred to as HS, for our experimental evaluations in this chapter. The OS acpi-cpufreq

interface allows controlling frequency in 15 steps from 0.8–3.5 GHz (0.8–2.0 GHz and

2.1 GHz–3.5 GHz in steps of 200 MHz) and enabling/disabling the turbo boost region

(3.5+ GHz). Although writing MSRs (Model Specific Registers) directly provides greater

control, we use this interface for a fair comparison with the existing governors. (We

make an exception to this rule in Section 3.10.3 where we consider all frequencies for

our new reactive governor that seeks to minimize idle time.)

We measure socket power and DRAM power using an additional software thread

that reads available RAPL (Runtime Average Power Limit) counters [52, 113] at 1 second

intervals. This runs as a thread separate from application threads and any governor

threads. The governors that we develop also read RAPL counters for power calculations.

We measure wall power with a Watts Up? (.net) meter [107] at 1 second intervals. This

also runs as a separate additional thread for experiments where we use wall power.

We consider 14 workloads from SPECOMP2012 [206], graph500 [88], hpcg [66, 188],

and SPECpower [205]. Of these, graph500 and SPECpower are run to completion whereas

the other workloads are run for the first 1200 seconds of their executions (a few runs of

kdtree complete within this time at high frequencies).
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3.3 Governors in Linux

The Linux acpi-cpufreq module includes the following governors [37] that control the

operating frequency. The goal is to manage power-performance by either setting the

frequency statically, or by varying it in response to processor utilization. The governors

available in our system are shown below. The root user can dynamically change the

governor.

• PowerSave (S): Sets all cores to the lowest frequency. The idea is to use the least

amount of power to do the work, but performance may be less than what could be

achieved on this machine.

• OnDemand (O): Periodically samples (default: 10 ms interval) cores to adjust

frequencies based on core utilization. The idea is to reduce power by lowering

frequency when the CPU is not fully utilized and increase frequency as utilization

increases so that the performance impact is minimal. The Conservative (C) governor

is a variant of the OnDemand governor with more conservative utilization thresholds

for changing frequencies.

• UserSpace (U): The idea is to give the root user control of the frequency settings.

On HS, the root user can set the socket frequency (all cores together) to any of

the allowed frequencies. The interface does not allow per-core settings for HS. All

cores transition to the highest frequency of any core in the socket. This mode is

useful only if the workload is known well in advance so that it can be run with

different frequencies to determine the best setting. This is not practical in most

deployments but is useful in reasoning about improvement opportunities.

• Performance (P): Sets all cores to the highest frequency. The idea is to get the

maximum performance. This governor also uses the maximum power.
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To further distinguish between modes, we constrain U mode to exclude S or P mode

frequencies, i.e., it operates in the range of 1.0–3.5 GHz.

While these governors attempt to control knobs (e.g., processor frequency) in the

system, none of them seek to meet SLAs that deal with energy consumption, power

limits, or performance targets.

3.4 Two-level governor design

There are two challenges in developing governors that seek to optimize for SLAs—dealing

with multiple hardware reconfiguration knobs (DVFS, prefetching, and possibly more

to be made available in future) and dealing with different SLAs. To simplify governor

design and make them retargetable to different deployment scenarios, we propose the

following two-level governor design:

1. Pareto Predictor: This predicts the power-performance Pareto frontier for the system

and currently observed execution profile.

2. Objective Selector: This level selects the desired operating state from the Pareto

frontier according to the SLA to be achieved.

The objective selector remains unchanged if the available knobs change and the Pareto

predictor remains unchanged if new SLAs are targeted. We believe that this simplifies

governor construction and portability.

The above separation is possible because of a few properties of the Pareto-optimal

frontier:

• Configurations that optimize power-performance metrics lie on the Pareto frontier

(Section 2.5, Property 3). This makes it sufficient to focus only on the frontier to

meet SLAs.
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• Power and performance of states on the Pareto frontier have the same monotonic

ordering relation (Section 2.5, Property 2). This makes predicting effects of system

configurations easier, e.g., reducing a power cap will reduce performance.

Section 3.6 describes the basic sampling and interpolation schemes used by the Pareto

predictor. This is slightly extended in Section 3.7 to include an additional reconfiguration

knob (cache prefetching). The objective selector for SLAee computes performance-per-

watt for each predicted point on the frontier and selects the next system state to be the

one that is expected to maximize performance-per-watt. Objective selector mechanisms

for SLApower and SLAperf are described in Sections 3.9 and 3.10 respectively.

Modern systems [181] often include a centralized power-control unit (PCU) that

collects telemetry information from functional blocks and performs control actions. Our

proposed Pareto predictor can be colocated with or implemented by such a PCU to

reduce runtime overheads.

Our new governors do not control frequency in the turbo boost region (3.5+ GHz)

except for the SLAperf governor for SPECpower (Section 3.10). This is because we cannot

control frequency exactly in that region, but a vendor implemented version of our work

would not have this difficulty. It is possible to control performance indirectly by limiting

power in this region at a fine granularity (e.g., 0.125W [141]) through the RAPL capability

(also see Section 3.9). However, as we shall show, energy-efficient operations are usually

at much lower frequencies. Hence we do not include the additional complexity of finely

controlling the turbo region in our governors.
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3.5 Deployment Scenarios

One deployment scenario makes the simplifying assumption that the system can be

completely shutdown (zero power draw) when there is no work and (near-)instantly fully

enabled when work arrives. As an example, Figure 3.2 shows the performance in Billion

Instructions-Per-Second (BIPS) and power consumption in Watts (W) of graph500 [88] for

different socket frequency settings on HS in this deployment scenario.
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Figure 3.2: Example power-performance profile with Wall Power.

The SPECpower workload also measures the wall power of the system as the power

cost to complete work. Additionally, SPECpower includes power measurements when the

system is under zero load, that is, no work done.

In practice, this deployment scenario may not be realizable as there is usually a

non-trivial latency cost while booting the system. An alternate deployment scenario

assumes that the system transitions to active idle (non-zero idle power) when there is no

work and is (near-)instantly fully enabled when work arrives. This minimize delays due

to system wakeup when a workload is dispatched. In this scenario we are interested



47

0

10

20

30

40

50

60

0 1 2 3 4 5 6

So
ck

et
 +

 M
em

 P
ow

er
 (W

)

Performance (BIPS)

GRAPH500Socket DVFS

ηmax

Sub-Proportional

Super-Proportional

Figure 3.3: Example power-performance profile with Socket + Mem Power.

in the extra cost, measured by the socket and memory RAPL (Running Average Power

Limit [113]) energy counters, to execute the workload. We will start with this deployment

scenario for developing our governors. Figure 3.3 shows the power-performance profile

for graph500 in this scenario.

For both scenarios, the EP line connects the origin (no extra power used for no work

done) to the highest performing point with the default Peak Performance Configuration

(all cores at their highest frequencies, prefetching enabled). While performance remains

the same in both scenarios, the power consumption accounted for varies. Section 3.8

shows how to convert between the two power models. The states having the maximum

efficiency (ηmax) are higher-performing states in the first scenario, than in the second

scenario, to compensate for idle power.

EP delivers performance in proportion to the extra power used. The EP line divides

the power-performance landscape into two regions—“Sub-Proportional”, where the

performance is less than proportional to the extra power (equivalently, lower energy

efficiency than that of EP), and “Super-Proportional”, where the performance is more
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than proportional to the extra power (equivalently, higher energy efficiency than that of

EP). Our governors aim to operate the system at Dynamic EO (power-performance Pareto

frontier) that automatically accounts for super-proportional behavior, if it manifests.

3.6 SLAee: Maximize energy efficiency

Our first goal is to develop a new governor that seeks Pareto-optimal operation and by doing

so improves energy efficiency, measured as performance-per-watt (BIPS/Watt). For this

section, we consider system power as the sum of socket power and DRAM power, both

of which are estimated using RAPL counters. This corresponds to the second scenario

(Figure 3.3) discussed in Section 3.5.

Figures 3.4a and 3.5a show example power-performance traces for applu (SPECOMP2012)

and graph500 in P mode. Figures 3.4b and 3.5b show energy-efficient (but lower-

performing) executions using our new governor that we will describe shortly. Lower-

performing executions that save energy may be desirable in situations with relaxed

performance constraints, e.g., in batch executions, and when energy costs are important

to the user.

Workload applu performs several iterations, each with a memory-intensive portion

followed by a compute-intensive portion; the performance and power spikes indicate

iteration boundaries. The DRAM power drops during the compute-intensive part of each

iteration due to less memory accesses. Workload graph500 runs 64 iterations of breadth-

first search after initialization. Both applu and graph500 exhibit long-term periodic

behavior in both performance and power readings, with periods of tens of seconds

corresponding to iteration lengths. Long-term stability in average power-performance

profiles reduces differences between fixed-time and fixed-work experiments.

HS exhibits significant opportunities in improving BIPS /Watt (equivalently, Instruc-
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(b) applu. Instructions/nJ = 0.32.

Figure 3.4: Power-Performance traces for applu in P-mode and R(10)-mode on HS. Higher
Instructions/nanoJoule implies more energy efficiency.

tions/nanoJoule) by changing frequency settings alone. BIPS changes between 1.18x

(swim) to 4.86x (bwaves) in going from S to P modes whereas power changes between

2.52x (swim) to 5.67x (botsalgn), leading to a BIPS/Watt range of 1.29x (imagick) to 2.14x

(swim) between best and worst values for that workload over all frequencies. For all these

workloads, the minimum BIPS/Watt happens for P mode. applu and graph500 show a

BIPS/Watt range of 1.84x and 1.67x respectively (also see Figure 3.6).
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Figure 3.5: Power-Performance traces for graph500 in P-mode and R(10)-mode on HS.
Higher Instructions/nanoJoule implies more energy efficiency.

We implement a simple reactive, R(t), mode of operation to exploit the improvement

potential. Our approach is to sample power and performance at a few different frequencies,

then use that information to interpolate the frontier. Referring to Figure 3.2 as an example,

we see that at least three samples are needed to target super-proportionality. In contrast,

aiming for proportionality would require only two points, but the non-linearity in system

behavior between the points could not be predicted or controlled.
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We implement two power-performance predictors (in software)—one for the socket

subsystem and the other for the memory subsystem. The socket predictor sets the

frequency to 0.8 GHz (lowest frequency), 2.1 GHz (midpoint frequency) and 3.5 GHz

(nominal frequency) in three consecutive intervals of t ms each and observes the power,

performance, memory read and write bandwidths for each setting. It then interpolates

(quadratic or piecewise linear) the effects for the other frequencies.

A software coordination module, running on one of the cores, reads the socket pre-

dictions and DRAM predictions every 51t ms (immediately after the 3t socket sampling),

composes the predictions, estimates the frontier and selects the best frequency. The

length of the interval that the system runs in this state is 48t. It is during this time that

the DRAM predictor is periodically invoked (every 12t ms) to adjust a computed linear

regression between DRAM power and read and write bandwidths (two variables) based

on current readings. The regression is reset every 17 observations (204t ms) to react

faster to phase changes. We choose this value since 17 is not divisible by 4 (48t/12t = 4),

so the regression will not be reset at the time when the readings are needed for the

power estimations with the interpolated values.

Since the optimal frequency will be in of the high/mid/low ranges, the sampling

overhead is approximately 2t
51t~4%. The workload continues to execute, although sub-

optimally, in those two sampling intervals, so the temporal overhead is usually < 4%.

Figures 3.4b and 3.5b show power-performance traces for applu (SPECOMP2012) and

graph500, in R(10) and the improvement in BIPS/Watt.

For all of the timing intervals mentioned above, we do not account for additional

governor overheads due to system calls, interpolation, estimations, etc. So, the actual

intervals will be slightly longer. The governor in Section 3.10.3 accounts for these

overheads.
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There are three main issues in implementing the interpolant for the socket predictor:

1. Getting successive sample points that show non-decreasing performance and power

with increasing frequency.

2. Getting sample points with acceptable measurement noise/jitter.

3. Dealing with non-convexity of the frontier.

The first issue arises when the workload exhibits local phase behavior. The second

issue arises with rapid sampling that makes the jitter in the energy measurements seem

to be higher than that in the timing measurements leading to occasionally unrealistic

power calculations. The third issue arises when the number of samples is not enough to

correctly estimate the shape of the frontier.

To deal with the first two issues, we disregard samples if either decreasing values

are found or if power readings differ in more than 10x between the three samples and

the coordinator transitions to 3.5 GHz. While other default actions are possible, we

choose to penalize ourselves when we are not confident about the interpolation. On

average (geometric mean) less than 2% of samples are discarded, but the frequency can

occasionally be high, e.g., ~10% for bwaves in R(1). We do not correct for the third issue

and our results will be suboptimal for non-convex frontiers.

Figure 3.6 compares the energy efficiency (performance-per-watt) with different modes

of operation. For all these workloads, the P mode has the lowest efficiency. The numbers

at the top show maximum gains (e.g., 1.36 implies 36% gains) in energy efficiency over

P-mode by selecting the optimal frequency in U or S modes (Figure 3.6a) and R(10)

mode (Figure 3.6b). We observe that:

• The potential rewards for selecting optimal configurations are significant: The efficiency

improvements were 28.6% (imagick) to 113.7% (swim) over P (geometric mean: 55%
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Figure 3.6: BIPS-per-Watt on HS with different policies.

over P, 13.4% over S). The O and P modes are suboptimal for this metric for every

workload.

However, the improvements come at a performance cost. Compared to P mode, the

most energy-efficient frequency setting for each workload resulted in a reduction of

BIPS of around 12.8% (mgrid) to 45.3% (botsspar), with a geometric mean of 35.4%.

So, there is a tradeoff between energy savings and performance loss. For batch

executions the performance loss may be tolerable. For other executions, Section 3.10

discusses a governor that try to reduce energy while meeting a given performance

constraint.
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• There is no single best static frequency setting: The best static frequency settings for

the different workloads were 0.8 GHz (swim), 1.0 GHz (applu, graph500, hpcg), 1.4

GHz (mgrid), 1.8 GHz (bt, botsspar), 2.0 GHz (ilbdc, smithwa, kdtree), 2.1 GHz (md,

nab, botsalgn, fma3d), 2.3 GHz (bwaves, imagick).

• Rapid profiling and reconfigurations are not necessary for long running workloads: We did

a sensitivity analysis with t=1 msec, 4 msec, 10 msec, and 20 msec. The resulting

performance-per-watt numbers indicate that R(20) (geometric mean: ~48% over P,

8.3% over S), R(10) (geometric mean: ~49% over P, ~9% over S), and R(4) (geometric

mean: 48.7% over P, 8.8% over S) improved over R(1) (geometric mean: 27.5% over

P, -6.7% over S). For the rest of our discussion on this governor we will focus only

on t=10 msec, that is, R(10).

We observe that many workloads exhibit long-term variation and periodic behavior.

For example, applu shows ~34.3 sec periodicity in P mode (Figure 3.4a) and ~42.3 sec with

R(10) (Figure 3.4b). graph500 exhibits ~12.3 sec periodicity in P-mode (Figure 3.5a) and

~15 sec with R(10) (Figure 3.5b). We expect long training intervals that track considerable

execution history to work well with such workloads.

The socket predictor could use a variety of interpolants, e.g., piecewise linear or

quadratic, to predict power and performance for different frequencies from the profiled

data. The choice of the interpolant trades off accuracy with computation cost.

We use quadratic interpolation for the socket predictor. A piecewise linear interpola-

tion would be faster, but for the performance-per-watt metric, only one of the sample

frequencies (0.8/2.1/3.5 GHz) would get chosen as the optimal frequency. This is because

Perf(f) = af+b, Pwr(f) = cf+d =⇒ Perf(f)/Pwr(f) is monotonic in f. So, the maxima

will always occur among the end points of the interval. This is a generic result and is

not limited to using frequency as the independent variable.
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Figure 3.7: R(10) freq. distribution for applu (0.8–3.5 GHz).

To overcome this, we also evaluated quadratic interpolation for an alternative socket

impact predictor without needing to change the coordinator. Figure 3.7 shows the

frequency distribution for both schemes for applu. While Linear fluctuates mostly

between 0.8 and 2.1 GHz, resulting in ~66% improvement over P-mode, Quadratic selects

more frequencies in between resulting in 76.4% improvement. mgrid showed similar

improvements.
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Figure 3.8: Average energy efficiency of applu as a function of the number of instructions
executed and processor frequency.

For our evaluations, we run SPECOMP workloads for the first 1200 seconds. Only a

few runs (when run at high frequencies) of kdtree finish within this time while other

runs and all runs of other workloads do not finish. Doing fixed-time experiments, as
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opposed to fixed-work experiments, runs the risk of comparing efficiency numbers from

incomparable runs. However, for these workloads, the differences are small. For example,

Figure 3.8 shows that, for any operating frequency, the average energy efficiency (over the

total instructions executed so far) of applu stabilizes after a sufficiently large number of

instructions have executed. So comparing across runs having different, but large, number

of instructions is possible.

We re-evaluated results using the same number of instructions (minimum across all

policies from the fixed-time runs) for each workload. In terms of U-mode gains over

P-mode, applu changed from 84% to 80% whereas botsspar changed from 47% to 52%.

The geometric mean changed < 2% for all policies. All trends remained the same.

3.7 SLAee: Adding L2 Prefetch Control

Hardware prefetching on Intel x86 machines can be enabled or disabled by writing

specific values to Model-Specific Registers (MSRs) [112]. All prefetchers are enabled

by default. In this study we keep the DCU (L1 Data Cache) prefetchers enabled, but

dynamically enable or disable the L2 prefetchers. We set the prefetching mode for all

cores identically.

Figure 3.9 shows one example workload each for beneficial prefetch (mgrid) and

harmful prefetch (md) with all possible socket DVFS settings. When prefetching is

disabled, md shows 14% improvement in peak performance and 13.6% in maximum

energy efficiency whereas mgrid shows 12.3% loss in peak performance and 14.9% loss in

maximum energy efficiency. Since prefetching benefits are workload dependent, a static

prefetch setting will always be suboptimal for some workloads.

We extend the frequency governor in the following simple way: Instead of taking

one sample at 2.1 GHz, we take two samples—once with prefetching enabled and once
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Figure 3.9: Example profiles. States at the Pareto frontier have L2 prefetching disabled
for md, but enabled for mgrid.

disabled. We choose the prefetching mode that gives better performance and continue

with that for the remaining two samples and estimating the frontier for that interval.

Our choice of 2.1 GHz for taking the initial two samples is motivated by the need to keep

the overhead of taking an extra sample small. A mid-range frequency, such as 2.1 GHz,

is likely to incur a lower additional overhead for this than a high frequency, such as 3.5

GHz since the energy-efficient operations for most workloads are not at high frequencies.

Similar to R(t), we name the new governor RF(t) (Reactive with prefetch control),

parametrized by t, the length of the profiling interval in milliseconds. Figure 3.10

shows the distribution of prefetch modes (enabled/disabled) selected by RF(10) for our

workloads. As expected, md ran with prefetching mostly disabled whereas mgrid ran
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Figure 3.10: L2 Prefetch mode distribution by RF(10).

with prefetching mostly enabled. Apart from mgrid, workloads bt, swim, applu, smithwa

and kdtree also predominantly chose to keep prefetching enabled. Other workloads chose

between both enabled and disabled modes.
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Figure 3.11: BIPS-per-watt of governors with (RF(10)) and without (P, PF, R(10)) dynamic
control for L2 Prefetching.

Figure 3.11 shows performance-per-watt for four governors—P, R(10) (prefetching

always enabled), PF (prefetching always disabled) and RF(10) (prefetching dynamically

controlled). The secondary horizontal axis (top) shows the improvement (e.g., 1.48

implies 48% improvement) in performance-per-watt of RF(10) compared to P. RF(10)
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improved performance-per-watt beyond R(10) for md (48% instead of 31%) but did not

create significant differences for other workloads.

To summarize our results so far, we find that the P, PF and O modes can always be

improved by the other policies. S works best for swim, well for hpcg, but can be improved

by U, R and RF for the other workloads. U is a good policy to use provided that workload

is known in advance and profiling experiments can be carried out. R reaches close to U

but is unable to outperform it. This is likely because these workloads have long-term

stable behavior (see for example, Figure 3.8) making the best static frequency not a bad

choice. On the other hand, R suffers from runtime profiling overheads and prediction

errors due to sampling inconsistency and non-convexity of the frontier. The situation

changes for SPECpower (see Sections 3.10.2 and 3.10.3), where reactive governors do

significantly better than static frequency settings. RF further improves upon R if disabling

prefetch is useful but does not hurt energy efficiency if not, so it represents the best of

both prefetch modes.

3.8 SLAee: Adding Control for Wall Power

For the experiments in Sections 3.6 and 3.7, we consider system power as the sum of

processor and memory power as estimated by the RAPL counters. We do not consider

the power consumptions for other components (e.g., power supply, network interfaces,

hard disks, etc.) that account for 20-30W power, with system idle power of HS at ~26W.

HS has a 350W, 80 Plus Gold PSU (Power Supply Unit) [218, 230]. We will now correct

for the extra system power considering a deployment scenario where the cost to execute

a workload includes the wall (full-system) power.

Measuring wall power requires external power meters (e.g., Watts Up? meters) and are

usually available only at long measurement granularities (e.g., minimum 1 sec intervals)
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as opposed to the millisecond granularity of RAPL counter measurements used by our

governors (R(10) requires a measurement interval granularity of 10 msec).
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Figure 3.12: RAPL and Wall Power correlation.

To correct for the extra power we need to model the relation between the socket+mem

power (measured by RAPL counters) and wall power (measured by a Watts Up? meter).

Figure 3.12 shows the two values for all frequency settings for our workloads. We then fit a

linear model and a quadratic model to the data. The slope of the straight line is consistent

with the power efficiency of 87% (1.141−1~0.876) of this PSU at <50% load [218, 230].

However, the y-intercept suggests a system idle power of ~20W (@x=~4.6W, socket+mem

idle power) instead of the ~26W actually observed. Conversely, the quadratic model

gives a better fit for idle power as well as a slightly better fit overall. One reason for

this could be that load-dependent variations in the power efficiency of the PSU give

rise to some non-linearity. In that case the SPUE (Server PUE) metric [104] that tracks

power supply overheads may be more accurately characterized by a formulation that

includes both load-dependent and load-independent factors than by a single number,

e.g., 1/(rated power efficiency of the PSU). We use the quadratic model to estimate wall
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power from socket+mem power.
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Figure 3.13: BIPS-per-watt of governors P and RF(10) with wall (full-system) power.

Figure 3.13 shows the performance-per-watt for the baseline P governor and our new

RF governor, with wall power for the run measured using a Watts Up? meter. During the

run, RF uses RAPL counters for profiling, then applies the wall power model mentioned

above to the interpolated power numbers.

The maximum gains in performance-per-watt achieved by RF over P is 67% (swim)

while the geometric mean over all workloads is 30.2%. Although the improvements are

somewhat smaller than those in Figure 3.11 due to consideration of the extra system

power for both the governors, this is significant improvement in energy efficiency realized

on a real server machine. Since CPUE is directly proportional to energy consumption and

inversely proportional to energy efficiency, we have CPUE(P)
CPUE(RF) =

E(P)
E(RF) =

η(RF)
η(P) = 1.302. So

the average energy savings of RF over P is E(P)−E(RF)
E(P) = 1 −

E(RF)
E(P) = 1 − 1.302−1 = 23.2%.

Energy savings reduce operational expenses that in turn reduces TCO for datacenters.

RF thus opens up opportunities either for cost savings by using ~23% less energy on

average to do the same work or for revenue generation by doing ~30% more work on

average for the same energy cost.

While it improves energy-efficiency, RF loses performance, with respect to P mode,
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ranging from 0.2% (md) to 30% (bt) with a geometric mean of 19.5%.

3.9 SLApower: Maximize performance within a power

cap/budget

None of the standard Linux governors S, C, O, U, P deal with power caps/limits. There

is no way for the user to specify power caps to these governors.

The RAPL [113] capabilities include mechanisms to enforce a limit on the power

consumption. One advantage of RAPL limits over frequency settings is that they can be

fine-grained (e.g., units of 1/8 W) leading to greater control of the state space. Another

advantage is that since RAPL limits are enforced by the hardware, the management

overhead is lower than that of a software-controlled governor. Prior works [141, 213]

have used power limiting as a mechanism to improve energy efficiency.

There are two main disadvantages of the RAPL power-capping mechanisms:

1. Capping of wall power cannot be directly specified. One needs to use a model,

similar to the one that we developed in Section 3.8, to convert wall power limits to

RAPL domain power limits.

2. Management of non-frequency resources does not automatically happen through

the RAPL mechanisms. For example, setting or clearing RAPL limits does not

affect prefetching status (enabled/disabled). So, workloads such as md that benefit

significantly from prefetch control would not see those advantages with the RAPL

approach. From this perspective, RAPL guarantees a power cap, not best performance

within that power cap. Pareto optimality provides the stronger guarantee.

The first limitation can be easily overcome, but the second limitation is more profound

and needs more effort to address. This limitation is likely to be accentuated with the
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addition of more reconfigurable knobs in future systems. Our new governor for SLApower

improves upon the RAPL governor in this aspect. We demonstrate it by controlling

prefetch settings as well as socket frequency to get the maximum performance within a

specified power budget.

For the RAPL experiments in this section, we limit average socket power over 1 second

intervals from 10W to 80W in steps of 5W. For our system, we could enforce a power

cap only for the entire socket, not for the memory or for other components.

We develop a new governor (by modifying the objective selector) to select the next state

that is predicted to use the highest power among all states with less power consumption

than the SLA target. We name this governor RF_SLApower(t). There are three differences

between this governor and the RAPL governor:

1. We specify limits on full system power or socket power as needed. The Pareto

predictor uses the model shown in Figure 3.12 to estimate wall power from socket

and memory RAPL energy counter measurements. We specify power limits in

steps of 5W from 35W to 80W for graph500 and 105W for md. In contrast, for the

RAPL governor we capped socket power and measured the resulting system power.

Since the RAPL interface does not allow specification of full-system power caps,

the two power limits do not have an exact correspondence.

2. We impose a power limit on every reconfiguration interval, which is 510 msec long

for RF_SLApower(10). So it is somewhat more strict than the sliding window of 1

second that we used for the RAPL experiments.

3. We do not set turbo mode frequencies. This is because our Pareto predictor

has limited control over frequency selection and hence limited insight on power

consumption in turbo mode. So, the maximum frequency that we set is the nominal
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frequency (3.5 GHz). However, this limits the maximum performance that can be

attained.
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Figure 3.14: Power-performance profiles for graph500 and md for SLApower.

We investigate enforcement of SLApower using RF_SLApower(10) and the RAPL

governor for two of our workloads: graph500 and md. Figure 3.14 shows the power-

performance profiles for both approaches. Both workloads exhibited behavior close to

Pareto optimal with RF_SLApower(10). The RAPL governor works well for graph500,
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but causes Pareto-dominated (hence suboptimal) operations for md as it does not control

prefetch settings.

We also observe that RF_SLApower(10) falls short of achieving the maximum per-

formance at the upper end of operating range. This is because the maximum allowable

frequency in this governor is 3.5 GHz (nominal frequency) since we cannot effectively

control the turbo range. One way to get around this limitation could be to use RAPL

to control DVFS settings and have RF_SLApower control other settings, e.g., prefetch

settings. Of course, one needs to to calculate the appropriate RAPL power caps from

system power caps using the inverse of the power mapping function shown in Figure 3.12.

3.10 SLAperf: Maximize power savings given a performance

target

None of the standard governors S, C, O, U, P deal with performance targets. There is no

way for the user to specify performance targets to these governors. The RAPL capabilities

(see Section 3.9) allow power caps to be specified, but not performance targets to reach.

We name our new governor RF_SLAperf(t). It allows the user to specify performance

targets in absolute or relative (with respect to peak) BIPS. The governor is agnostic

of higher-level performance goals, e.g., transactions per second or response latency

distributions. The user needs to have a mapping between such performance goals to one

of the performance targets mentioned above. We will now describe the governor designs

for these two types of performance targets.
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3.10.1 Governing for absolute performance targets

To govern for this SLA, we keep the Pareto predictor intact, but modify the objective

selector to additionally keep track of the performance so far (time elapsed and instructions

executed). This allows it to set the desired performance target for the next interval so

that if the target for the interval is met, then the average performance so far would be

that required by the SLA. The objective selector makes one of three possible choices:

1. If the average performance so far is greater than the SLA, the lowest performing

point is chosen.

2. Otherwise, if the next interval target is greater than the best performance predicted

for 3.5 GHz, turbo mode is chosen.

3. Otherwise, the point on the frontier that meets or just exceeds the next interval

target is chosen.

The above is a simple policy for the objective selector. Other policies are possible and

they will be useful particularly if they include workload semantics and predictions of

future workload behavior since the Pareto predictor lacks both these dimensions.

We investigate enforcement of SLAperf using RF_SLAperf(10) for two of our work-

loads: md and graph500. md has mostly homogeneous behavior during its execution and

we will show that it can be governed well to meet the SLA. On the other hand, graph500

has significant heterogeneity (different execution phases) and, as we shall show, cannot

be governed well without prior knowledge of the phase behavior.

md has an average performance range of 4.8–21.6 BIPS at the frontier depending

on the frequency setting and L2 prefetching disabled. We select SLA targets of 5.0,

7.5, 10.0, 12.5, 15.0, 17.5, 20.0 and 22.5 BIPS (unreachable). graph500 has an average



67

performance range of 2.9–5.6 BIPS at the frontier depending on the frequency setting

and L2 prefetching enabled. We select SLA targets of 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5 BIPS.
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Figure 3.15: Power-performance profiles for md and graph500 for SLAperf.

Figure 3.15 shows the power-performance profiles and expected behavior for both

workloads. The profile for md was at the frontier except at high performance targets.

Its highest performance is around 3.5% less than the maximum possible. This is due to

sampling/profiling and prediction overheads in the governor. Also, when it is given a
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target close to its highest performance, it tries to compensate for the loss by transitioning

more into turbo mode resulting in more power consumption and consequently, Pareto-

dominated states.

The governor failed to meet the SLA for most points of graph500 and the profile

was quite suboptimal, being closer to proportional than Pareto optimal. However, as we

explain below, this is primarily due to the non-homogeneous nature of the workload

rather than incorrect state transitions chosen by the governor.
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Figure 3.16: Execution profiles for graph500 with SLA = 3.5 BIPS and 5.5 BIPS.
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Figure 3.16 shows detailed execution profiles for graph500 for two SLAs: 3.5 and

5.5 BIPS. The primary vertical axis (left axis) and the blue line show the number of

instructions executed per second in BIPS. The secondary vertical axis (right axis) and

the red line show the power (socket+memory) in Watts. The Avg. BIPS line shows the

average BIPS attained by the workload execution so far. The dashed line shows the

average BIPS expected to be reached over the entire execution. The governor seeks state

transitions that will maintain the average BIPS equal to the SLA BIPS.

graph500 has non-homogeneous behavior—the initial ~290 seconds is mostly a high

performance phase where high BIPS is possible whereas the remainder of the execution

(successive iterations of breadth-first search) consists of a low performance phase. Initially,

the average BIPS is higher than the SLA BIPS, so the governor reduces frequency to the

lowest possible to save power. Eventually, execution enters the low performance phase

and the average BIPS starts dropping more rapidly. However, the governor continues

with a low frequency execution as the SLA BIPS is still lower than the average BIPS. After

a while (1152 seconds for SLA=3.5, 491 seconds for SLA=5.5), the average always remains

below the desired SLA although the governor transitions to higher frequencies. By now

it is too late to take corrective action because of the nature of the low performance phase.

The governor ends up transitioning to turbo mode (observe the sharp increase in power

consumption), but average BIPS continues to drop. This is more pronounced for SLA=5.5,

where the SLA is breached earlier in the execution, than for SLA=3.5.

This case study highlights a challenge with targeting this SLA for non-homogeneous

workloads. There was no way that the governor could have known about future execution

characteristics without such information being provided to the objective selector. The

executions were doomed to miss SLA quite some time before the violations started

to appear. Timely prediction of maximum attainable performance in future execution
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intervals is needed to resolve this issue.

Another challenge for targeting this SLA is that it is highly sensitive to the accuracy

of online performance predictors. For our governors, we sample execution at different

operating points and use that data to predict performance for the next interval using

interpolation for intermediate points assuming convex behavior. This also assumes that

the behavior in the next interval will closely match the characteristics of the sampled

execution. Some inaccuracy in performance prediction is inevitable when one or more of

these assumptions are violated. These issues are not specific to our governor design and

must be addressed by any control policy seeking to target this SLA.

3.10.2 Governing for relative performance targets
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Figure 3.17: Power-performance profiles for SPECpower with Linux governors.

Figure 3.17 shows power-performance profiles for SPECpower with the default gover-

nors. P-mode and O-mode perform similarly and use the highest power for the achieved

load. S-mode uses the lowest power for the achieved load, but the maximum load
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achievable is low (see below). C-mode works better than P-mode or O-mode at low loads

but in general consumes significantly more power than S-mode or the U-mode Pareto

frontier for the same load. For these experiments we “niced” the power measurement

daemon and set the ignore_nice_load parameter of the O and C governors to discount

activity by the daemon while calculating processor utilization.

Even though the S-mode profile lies on the Pareto frontier, there are two limitations

with this policy:

1. It can only serve up to around 27% of peak load. So it will fail the performance

requirement (load served must be within a certain limit of the offered load; see

Chapter 2, Section 2.2, for details) at higher loads. The other governors in Figure 3.17

can serve high as well as low loads.

2. Although RUE = 1 for this governor, LUE > 1.58. This means at least 58% excess

energy used compared to operating with the best load even though it is operating at

the Pareto frontier. Actually, its profile does not even enter the Super-Proportional

region.

So, restricting servers to this policy is not a good idea. The other governor profiles are

distant from Dynamic EO, thus having large RUE values. So, using these policies will

lead to significant energy waste.

To govern for this SLA, we modify the Pareto predictor to also sample turbo mode so

that peak BIPS can be estimated. Instead of limiting the maximum profiling frequency

to 3.5 GHz, we now have the maximum profiling frequency as 3.7 GHz (midpoint of

the turbo range 3.5–3.9 GHz) since we do not know the actual temperature-dependent

operating frequency.

For any load, the target relative BIPS is set to be equal to that load level (load relative
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to maximum load). For example, attempting to service 70% load level sets the target

relative BIPS to 0.7. The objective selector selects the lowest-power configuration that is

predicted to have relative BIPS greater than or equal to the target relative BIPS.

We call this new governor RF_SLAperf(t). The parameter t, in milliseconds, deter-

mines the length of the intervals as follows. For 100% target performance,

1. Turn prefetching off and profile for t msec.

2. Turn prefetching on and profile for t msec. Choose and set prefetching mode that

performed better.

3. Run with that setting for the next 48t msec.

For this target performance, the frequency is kept at 3.7 GHz and not changed.

For a lower target performance, the plan is

1. Set frequency to 2.1 GHz (midpoint frequency). Turn prefetching off and profile

for t msec.

2. Turn prefetching on and profile for t msec. Choose and set prefetching mode that

performed better.

3. Set frequency to 3.7 GHz (turbo frequency). Profile for t msec.

4. Set frequency to 0.8 GHz (lowest frequency). Profile for t msec.

5. Estimate the Pareto frontier, select the best frequency, run with that setting for the

next 48t msec.

DRAM bandwidth and energy consumption are profiled as before.

Figure 3.18 shows power-performance profiles with governors R_SLAperf(10) and

RF_SLAperf(10). R_SLAperf(t) has prefetching always enabled whereas RF_SLAperf(t)
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Figure 3.18: Power-performance profiles for SPECpower with RF_SLAperf(10) and
R_SLAperf(10).

dynamically controls it. Controlling prefetch settings increases the maximum load

achievable compared to P-mode that always has prefetching enabled. RF_SLAperf(10)

outperforms P-mode by around 4%. This outcome is qualitatively similar to md (See

Figure 3.14). The increase in maximum performance can also be observed by running in

P-mode with prefetching disabled (P-mode + No L2 Prefetch profile).
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Figure 3.19: Distributions of frequency and prefetch settings for SPECpower with
RF_SLAperf(10).

Figure 3.19 shows distributions of frequency and prefetch settings selected by governor
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RF_SLAperf(10) over the entire run that includes both calibration and measurement

intervals of SPECpower (see [205], or, a brief description of SPECpower intervals in

Section 2.2). As expected, it disabled prefetching for most of the time.

RF_SLAperf(10) also chose a number of different frequencies for each run depending

on the load serviced. By default, SPECpower does 3 calibration intervals followed by

11 measurement intervals. During the calibration intervals and the first measurement

interval, the server is offered very high load. So we expect that during these times the

maximum frequency would be chosen by the governor. Thus for at least (3+1)/(3+11) =

28.6% of the time, the maximum frequency should be chosen. The last measurement

interval is “Active Idle”, that is zero load is offered, so we expect to select the lowest

frequency during this interval which is around 1/(3+11) = 7.1% of total time. We observe

from Figure 3.19 that the 3.5+ GHz setting (that is, maximum frequency in turbo mode)

was chosen for around 34% of the time and 0.8 GHz (the lowest frequency) was chosen

for around 15% of the time.

3.10.3 Governing to minimize idle time

So far, a performance target (absolute or relative) needed to be specified to the governors

so that they could ensure that SLAperf is satisfied. We will now discuss a new governor

that aims to service the offered load without keeping any processing contexts idle. We

will demonstrate its action in the context of the SPECpower workload execution.

The key idea is to predict the highest frequency such that there are no idle cycles.

Let α denote the number of active (that is, not idle) cycles per second in the last interval.

The governor estimates the optimal value of target frequency for the next interval to be
α
8 . The division by 8 is done since there are 8 logical threads on HS. This assumes that

in the next interval,
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1. the load will remain the same (or at least, not increase) and

2. all threads will be equally active

In case these assumptions are not true, the system may not be able to serve the

offered load. To protect against this situation, the governor increases the estimated target

frequency by a step whenever it equals the current frequency and doubles the value of

the step. This facilitates an exponential ramp-up of frequency over successive intervals

so that the offered load is served. On the other hand, if the estimated target frequency is

less than the current frequency, the frequency is set to the target frequency and the step

is re-initialized. Additionally, our governor selects the best prefetch setting for the next

interval.

We call our new governor RF_Active(t,p). Following are the three main steps under-

taken by our governor in each interval.

1. Turn prefetching off and profile for p/2 msec

2. Turn prefetching on and profile for p/2 msec. Choose prefetching mode that

performed better.

3. Estimate and set target frequency for the remaining interval, so that the total interval

is t msec.

Figure 3.20 shows the power-performance profile of our new governor with differ-

ent parameter values: RF_Active(10,2), RF_Active(100,20), and RF_Active(500,20). We

statically determine the length of the interval in Step 3 by taking into account governor

overheads for system calls, profiling, and estimations. Note that this governor does not

predict either power or performance for any configuration, but manages to operate the

system very close to Dynamic EO.
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Figure 3.20: Power-performance profiles for SPECpower with RF_Active(10,2),
RF_Active(100,20), and RF_Active(500,20).
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Figure 3.21: Distributions of frequency and prefetch settings for SPECpower with
RF_Active(10,2).

Figures 3.21–3.23 show the distributions of frequency and prefetch selections made

by RF_Active(10,2), RF_Active(100,20), and RF_Active(500,20) respectively. For these

experiments, we consider all frequencies, not just the ones available through the OS

acpi-cpufreq interface. RF_Active(10,2) suffers from more overheads and less accurate

selection of resource settings with shorter intervals—it keeps prefetching enabled for

a larger fraction of time and also selects the maximum frequency more often than
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Figure 3.22: Distributions of frequency and prefetch settings for SPECpower with
RF_Active(100,20).
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Figure 3.23: Distributions of frequency and prefetch settings for SPECpower with
RF_Active(500,20).

RF_Active(100,20) or RF_Active(500,20). Compared to RF_SLAperf(10) (Figure 3.19),

RF_Active(100,20) and RF_Active(500,20) select the lowest frequency more often and the

maximum frequency less often but keep prefetching enabled for longer.

3.11 Limitations

We will now discuss a few limitations of our governor designs—socket-wide control,

intrusive profiling, sampling inconsistency and non-representativeness, and non-zero

reaction times.
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3.11.1 Socket-Wide Control

Our governors select the same resource setting for the entire socket. This works well for

HS, but newer machines offer capabilities for more fine-grained control, e.g., per-core

DVFS settings. Having the same frequency setting for all cores may be suboptimal for

non-homogeneous workloads if the hardware supports different per-core settings.

Even for machines supporting per-core control, we expect that we can continue with

the current profiling strategy (low frequency, middle frequency, high frequency) for all

cores. Our idea is to predict power-performance Pareto frontiers for each core and use

those to select optimal per-core settings. However, to do that we need to know the

performance and energy consumption of each core for each frequency setting profiled.

Current processors already report per-core performance. On HS we measure the

energy consumption of the entire socket (HS does not report per-core energy consumption)

but this will not be sufficient to determine per-core frontiers. If future processors report

per-core energy consumption, then those values can just be used. Otherwise, per-core

energy consumption needs to be predicted. One way to do this is to use per-core

performance counter values, e.g., BIPS and generated memory bandwidth. Offline

regression models that correlate performance counts with energy consumption could

help to identify which counters are significant for the given machine.

Determining per-core prefetch settings is more difficult. Whether or not prefetching

is useful depends on many factors such as the cache access patterns, the prefetching

algorithm, and the timeliness of initiating prefetch. At this point we cannot suggest any

efficient user-level or OS-level strategy to accurately determine optimal settings without

additional hardware support from the vendor.

Constructing Pareto frontiers, using interpolation, individually for many cores can

be costly in software. Hardware support for doing this in the PCU would be very
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useful. Heuristics that trade off accuracy vs cost can be used if a software solution is

required. For example, since piecewise linear interpolation only selects end points for

optimal values (Section 3.6), interpolation is not required and only the end points can be

considered. This would be faster than quadratic interpolation, but may be suboptimal

for some workloads.

3.11.2 Intrusive Profiling

Our governors try out a few resource configurations (e.g., socket frequencies) to determine

their effectiveness before selecting the predicted optimal configuration. This intrusive

profiling may be costly both in terms of reconfiguration latency and energy for some

resources, e.g., cache configurations. In Chapter 4 we describe a novel method for

predicting cache performance using reuse distance distributions of cache accesses. That

method does non-intrusive profiling, but requires new hardware support.

3.11.3 Sampling Inconsistency and Non-representativeness

Our governors infer the impact of DVFS on the Pareto frontier by sampling execution

with three frequencies—lowest, high, and intermediate—over three consecutive intervals

and then fitting a quadratic polynomial to the measured power-performance values.

This strategy works if the samples have consistent properties and are not drawn from

different execution phases. To protect against making invalid interpolations we implement

simple checks on the sampled power-performance values, e.g., performance at the lowest

frequency should not exceed that at the high frequency, etc. The sample inconsistency

problem can be avoided by an alternate approach [202, 207] that samples performance

counters once, then predicts power and performance for other configurations using a

precharacterized model. However, this approach is limited by the number of performance
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counters that can be concurrently read on real systems (can affect prediction accuracy)

and also by the availability of the particular counters on different platforms (can affect

portability).

3.11.4 Non-Zero Reaction Times

Our R(t) governors logically partition execution time into epochs with each epoch

consisting of a profiling phase followed by a prediction phase (execution with the

predicted optimal settings). The plan is t-t-t-48t without prefetch control and t-t-t-t-48t

with prefetch control. The profiling phase lasts for t-t-t (total: 3t) or t-t-t-t (total: 4t) time,

resulting in the epoch time being 51t or 52t. A small amount of extra delays exist due

to overheads in system calls and calls to library functions to read system state and to

execute the governor code.

Disregarding schedule variance (exact schedule timing may not be possible) and

resource reconfiguration latency, the epoch time represents the worst-case time that the

system needs to react to changes in execution characteristics. Shortening the prediction

phase will allow faster reaction times at the cost of increasing profiling overhead.

The unit of time, t, cannot be made very small in part due to limited update frequency

of the RAPL counters, usually about once every millisecond [96, 113]. In contrast, the

DVFS transition time is typically a few tens to few hundreds of microseconds [95, 168]

which is about one to three orders of magnitude smaller than t. However, these limits

are due to hardware constraints and will affect other governors as well.

3.12 Conclusion

This chapter focused on online mechanisms to reduce RUE by constraining the system

to operate close to the Pareto frontier. We developed new OS governors that seek
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Pareto optimality in the presence of frequency scaling and cache prefetching and thereby

improve the energy efficiency of a modern Intel Haswell server machine. We demonstrated

improvements in performance-per-watt by up to 67% (maximum gains) and 30% on

average (geometric mean over all workloads). This opens up significant opportunities for

revenue generation or cost savings.

We proposed a two-level design to construct governors that are aware of Service-

Level Agreements (SLAs) and can be easily retargeted to optimize for different SLAs.

We also presented case studies and discussed challenges in governing for maximizing

performance within a power cap and minimizing power for a performance target.
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4 cache reuse models

4.1 Overview

Processor caches are critical components of the memory hierarchy that exploit locality to

keep frequently-accessed data on chip. Caches can significantly boost performance and

reduce energy usage, but their benefit is highly workload dependent. In modern power

and energy constrained computer systems, understanding a workload’s dynamic cache

behavior is important for making critical resource allocation and scheduling decisions.

For example, allocating excess cache capacity to a workload wastes power, as large caches

dissipate significant leakage power, while allocating insufficient cache capacity hurts

performance and increases main memory power.

Caches can be made dynamically reconfigurable to enable energy savings by exploiting

workload characteristics. Previous research has explored placing some or all of a cache in

low-power mode [10, 67, 77] or dynamically partitioning the cache to eliminate resource

contention [175, 214]. A recent Intel processor [116] can dynamically reduce its LLC’s

capacity to save power. Researchers [240] have also explored mechanisms to dynamically

reconfigure both the number of sets and the associativity of set-associative caches.

Being able to exploit cache reconfiguration capability will enable our governors to

make the system operate more efficiently if possible. But real systems today offer limited

or no support for user-/OS-driven cache reconfigurations. So, in this chapter and the

next one, we will study cache reconfigurations using a simulator.

Cache reconfigurations incur significant overheads, so we will not consider the

expensive approach of trying out various configurations before deciding on the best

configuration. Instead, we will use online predictors that estimate the temporal locality

in cache accesses and predict the performance of different cache configurations. These
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models will be our focus in this chapter whereas the next chapter will focus on using

these models to develop governors that control both core frequency and cache size to

meet SLApower.

We develop a reuse distance/stack distance based analytical modeling framework

for efficient, online prediction of cache performance for dynamically reconfigurable

set-associative caches that use LRU/PLRU/RANDOM/NMRU replacement policies.

Our framework is inspired by two foundational works: Mattson’s stack distance char-

acterization [150] (also used later as reuse distance [29, 65]) and Smith’s associativity

model [103, 200] for LRU caches.

The central theme of our framework is to decouple temporal characteristics in the

cache access stream from characteristics of the replacement policy. We propose a novel

low-cost hardware circuit, that uses Bloom Filters and sampling techniques, to estimate

cache reuse distance distributions online. These distributions are then used as inputs

to analytical models of replacement policy performance to predict miss ratios. This

separation of aspects brings the advantage of being able to easily refine either aspect in

isolation without affecting the other.

Our work differs from prior art in being suited for online predictions [103, 200],

working with practical replacement policies other than LRU [103, 174, 175, 200, 215],

allowing reconfigurability in the number of sets in addition to associativity [127, 174, 175],

and being very low cost [84]. Our framework unifies existing cache miss rate prediction

techniques such as Smith’s associativity model, Poisson variants, and hardware way-

counter based schemes.

The main contributions of this chapter are:

1. We formulate an analytical framework based on generalized stochastic Binomial

Matrices [212] for transforming reuse distance distributions (Sections 4.4, 4.5).
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2. We formulate new miss ratio prediction models for RANDOM (Section 4.5.2),

NMRU (Section 4.5.3), PLRU (Section 4.5.4) replacement policies.

3. We show that the traditional hardware way-counter based prediction [215] for

varying associativity is a special instance of our unified framework (Section 4.6.2).

Further, we show how way-counter data for LRU may be transformed to apply to

caches with a different number of sets. (Section 4.6.2.2)

4. We propose a novel hardware scheme for efficient online estimation of reuse

distance/stack distance distributions (Section 4.6.1).

The rest of this chapter is organized as follows:

Evaluation Infrastructure: Section 4.2 describes the workloads and simulators that

we used for this study.

Temporal locality metrics: Section 4.3 defines reuse distributions that capture the

temporal locality of address streams. Section 4.4 shows how to modify these to apply for

a cache with a different number of sets.

Replacement policy models: Section 4.5 introduces the notion of cache hit-functions

that, when multiplied with the per-set reuse distribution, produce expected cache hit ratios.

Sections 4.5.1.1 and 4.4.3 consider optimizations for LRU hit ratio prediction. Sections

4.5.2, 4.5.3 and 4.5.4 develops new prediction models for RANDOM, NMRU, PLRU

respectively. Section 4.5.5 discusses prediction accuracy and computation overheads.

Hardware Support: Section 4.6.1 presents the novel, low-cost hardware for estimating

reuse distributions. We also discuss two traditional hardware mechanisms—set-counters

and way-counters (Section 4.6.2).

Index Hashing: Section 4.7 describes the index-hashing scheme that we used to map

addresses to cache sets.
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PPPPPPPPPsize
assoc. 2 4 8 16 32

2MB 214 213 212 211 210

4MB 215 214 213 212 211

8MB 216 215 214 213 212

16MB 217 216 215 214 213

32MB 218 217 216 215 214

Table 4.1: Relation between number of sets and associativity for different cache sizes.
Assuming some cache configuration is the current configuration, there are a total of
25-1=24 possible other cache configurations. An inspection of the table reveals that
at most 4 of these possible 24 configurations can have the same number of sets as the
current configuration. For example, with 32MB 32-way as the current configuration,
other configurations with the same number of sets (214) are: 2MB 2-way, 4MB 4-way,
8MB 8-way and 16MB-16-way. Thus, way-counters (Section 4.6.2) can predict for at most
4 of 24 possible other configurations at any time.

4.2 Infrastructure

In our study, caches are characterized by the number of sets S, associativity A, and

replacement policy. We generally use S ′ and A ′ while referring to the target cache

configuration for which we want to predict the miss ratio. We assume a fixed line size of

64 bytes. Table 4.1 shows the relation between S, A and cache size for the configurations

of the Last-Level Cache (LLC) that we study.

Our models estimate hit ratio (hit/access). This is easily converted into other measures:

miss ratio=1-hit ratio; miss rate=miss ratio*access/instruction. For evaluating prediction

quality, we obtain address traces of accesses to a 32MB 32-way LLC in a simulated system

(Table 4.2) for our workloads, run the traces through a standalone cache simulator (that

does not model timing) and compare measured against predicted metrics.

Table 4.2 describes the 8-core CMP we use for gathering traces. We assume an

8-banked L3 cache that is dynamically re-configurable for a total of 25 configurations (see
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Core configuration 4-wide out-of-order, 128-entry window, 32-entry scheduler
Number of cores 8 On-chip frequency 2132 MHz

Technology Generation 32nm Temperature 340K
Functional Units 4 integer, 2 floating-point, 2 mem units

Branch Prediction YAGS 4K PHT 2K Exception Table, 2KB BTB, 16-entry RAS
Disambiguation NoSQ 1024-entry predictor, 1024-entry double-buffered SSBF

Fetch 32-entry buffer, Min. 7 cycles fetch-dispatch time

Inclusive

L1I Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP
L1D Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP
L2 Cache private 256KB 8-way per core, 6 cycle access latency, PLRU, ITRS-LOP

L3 Cache shared, configurable 2–32 MB 2–32 way, 8 banks, 18 cycle access latency,
PLRU, ITRS-LOP, serial

Coherence protocol MESI (Modified, Exclusive, Shared, Invalid), directory
On-Chip Interconnect 2D Mesh, 16B bidirectional links

Main Memory 4GB DDR3-1066, 75ns zero-load off-chip latency, 2 memory controllers,
closed page, pre-stdby

Table 4.2: System configuration.

Workload Time #LLC accesses #unique line #pages in LLC
(seconds) ×106 addresses ×106 accesses ×106

apache 0.562 177.764 3.829 0.136
jbb 0.260 35.474 5.831 0.123
oltp 0.410 150.126 2.401 0.138
zeus 0.322 10.488 1.003 0.048

Table 4.3: Workload Characteristics. Cache line size = 64 bytes. Page size = 4K bytes.

Table 4.1). The cache uses a hashed indexing scheme to map addresses to cache sets (see

Section 4.7). We conservatively assume a constant access latency for all configurations.

We use 4 Wisconsin commercial workloads [4] (apache, jbb, oltp, zeus). Each

workload uses 8 threads and runs for a fixed amount of work (e.g. #transactions or loop

iterations [6]) that corresponds to ∼4B instructions per workload. Each simulation run

starts from a mid-execution checkpoint that includes cache warmup. Table 4.3 shows a

summary of the characteristics of the workload executions.

Figure 4.1 shows the average miss ratios for a 32 MB 32-way LLC over the execution
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Figure 4.1: “Instantaneous” and cumulative miss ratios. Granularity is 1000 LLC accesses.

of the workloads. The “instantaneous” miss ratios are computed at the end of every 1000

accesses to the LLC and show a lot of variation for every workload. The cumulative miss

ratio shows the average miss ratio of all LLC accesses in the execution till that point. It

is much more stable than the “instantaneous” ratios. Its final value at the end of the

execution is the overall/long-term average miss ratio. Our miss ratio prediction models

aim to predict this long-term average.

Table 4.4 show why it is useful to consider reconfigurability in both the number

of sets and ways (associativity) for the LLC. For a given cache size, M∗ compares the

maximum to minimum miss ratio for all configurations with that cache size (see Table 4.1

for the configurations). We obtain these numbers by running the access traces through

our standalone cache simulator. As an example, oltp sees up to 57% increase in miss

ratio with a suboptimal configuration for a 2MB LRU cache. MS indicates what happens
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Policy Workload 2MB 4MB 8MB 16MB 32MB
M∗ MS M∗ MS M∗ MS M∗ MS M∗ MS

LRU

apache 1.07 1.07 1.04 1.01 1.19 1.04 1.69 1.04 1.33 1.00
jbb 1.03 1.03 1.14 1.08 1.13 1.02 1.09 1.00 1.08 1.00
oltp 1.57 1.57 1.80 1.30 1.53 1.04 1.45 1.01 1.44 1.00
zeus 1.13 1.13 1.09 1.03 1.07 1.01 1.08 1.00 1.07 1.00

RANDOM

apache 1.01 1.01 1.02 1.00 1.07 1.01 1.17 1.01 1.13 1.00
jbb 1.01 1.01 1.02 1.01 1.03 1.01 1.02 1.00 1.02 1.00
oltp 1.20 1.20 1.34 1.13 1.30 1.03 1.29 1.01 1.23 1.00
zeus 1.02 1.02 1.03 1.01 1.02 1.00 1.02 1.00 1.02 1.00

NMRU

apache 1.03 1.00 1.02 1.00 1.02 1.00 1.07 1.01 1.06 1.05
jbb 1.02 1.00 1.02 1.00 1.03 1.01 1.04 1.03 1.04 1.04
oltp 1.12 1.12 1.21 1.03 1.18 1.00 1.17 1.01 1.11 1.01
zeus 1.04 1.00 1.04 1.00 1.03 1.01 1.03 1.02 1.03 1.03

PLRU

apache 1.06 1.06 1.04 1.01 1.15 1.03 1.49 1.03 1.30 1.00
jbb 1.03 1.03 1.10 1.05 1.11 1.02 1.07 1.00 1.05 1.00
oltp 1.43 1.43 1.59 1.20 1.46 1.04 1.38 1.01 1.34 1.00
zeus 1.10 1.10 1.08 1.02 1.05 1.00 1.05 1.00 1.05 1.00

Table 4.4: Relative miss ratios for difference cache sizes and replacement policies. M∗
shows the max-to-min miss ratio over configurations having all possible number of sets
for the given cache size. Relative ratios > 1.05 are shown in red. MS shows the relative
miss ratio of the configuration having the same number of sets (=214) as that of the largest
cache (32 MB, 32-way) compared to the minimum miss ratio over all configurations for
the given cache size. Entries with relative ratios > 1.05 are shaded .

if only way configurability is present. It assumes the same number of sets (214) as that

for the 32MB 32-way cache. For oltp, this turns out to be the worst configuration for

a 2MB cache (configuration: 2MB, 2-way)—it has 57% more misses than for the best

configuration (2MB 32-way, number of sets = 210). Set configurability is more important

at small cache sizes than at larger sizes.
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4.3 Measures of Temporal Locality

In this section we develop metrics of temporal locality in the address stream that are

independent of the cache configuration. These metrics will be used for estimating the

miss ratios for arbitrary cache configurations. For our study, all addresses are (hashed)

line addresses of cache accesses.

Consider an address trace T as a mapping of consecutive integers in increasing order,

representing successive positions in the trace, to tuples (x,m) where x identifies the

address and m identifies its repetition number. The first occurrence of address x in the

trace is represented by (x, 0). Let t = T−1 denote the inverse function. t(x,m) denotes

the position of the mth occurrence of address x in the trace. We now introduce a few

more definitions.

Reuse Interval: The reuse interval (RI) is defined only when m > 0 and denotes the

portion of the trace enclosed between the mth and (m− 1)th occurrence of x. Formally,

RI(x,m) = 
{(z,m ′)|t(x,m− 1) < t(z,m ′) < t(x,m)} if m > 0

undefined otherwise

Unique Reuse Distance: This denotes the total number of unique addresses between

two occurrences of the same address in the trace. Thus,

URD(x,m) =


∣∣∣{z|(z,m ′) ∈ RI(x,m)}

∣∣∣ if m > 0

∞ otherwise

Numerically, this is 1 less than Mattson’s much earlier stack distance [150].

Absolute Reuse Distance: This denotes the total number of positions between two
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occurrences of the same address in the trace. Thus, ARD(x,m) =


∣∣∣RI(x,m)

∣∣∣ = t(x,m) − t(x,m− 1) − 1 if m > 0

∞ otherwise

As an example, in the access sequence a b b c d b a, URD(a, 1) = 3 and ARD(a, 1) = 5.

4.3.1 Reuse Distance Distributions

Our study is concerned with average-case behavior. So instead of focusing on each indi-

vidual point in T , we characterize it using probability vectors that reflect average/expected

distributions.

• The unique reuse distance distribution of trace T is a probability distribution that

we denote by row vector r(T) such that the kth component,

rk(T) = P(URD(x,m) = k), ∀(x,m) ∈ image(T).

• The expected absolute distance distribution of trace T is a row vector that we

denote by d(T) such that the kth component,

dk(T) = E(ARD(x,m)|URD(x,m) = k),∀(x,m) ∈ image(T)

4.3.2 T → r(T) is a Lossy Transformation

The characterization is lossy in the sense that in general, T cannot be recovered from

r(T) even up to permutation of entity identifiers.

Consider two traces TA and TB such that they have disjoint sets of entities and

different values of reuse metrics. Let TAB denote a new trace formed from concatenating,

in order, sequences represented by TA and TB. This operation is not commutative, that is,

TAB and TBA are distinct, yet have the same values for the reuse metrics. So the reverse
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x x

z0z1 z2 z3 zk

{z0}* {z0,z1}* {z0,z1,z2}* {z0,z1,z2,...,zk}*

Figure 4.2: Unique elements z0, z1, ... zk−1 partition dk(t) into subintervals.

mapping from r(T) to T is not unique. The argument can be extended to show that any

trace characterization using position-agnostic metrics must be lossy.

4.3.3 d(T) Estimation

It is obvious that ARD(x,m) > URD(x,m),∀x,m. It then follows that dk(T) > k,∀k such

that rk(T) > 0. Also, d0(T) = 0. We now show how to compute (an approximation to)

d(T) given r(T).

Figure 4.2 shows a schematic of a trace and organization of URDs within a reuse

interval for some address x. z0, z1,...zk denote distinct addresses. This is just a conceptual

tool and does not constrain the actual permutation of addresses in a particular reuse

interval. The immediate next access after reference address x must be something other

than x (otherwise the reuse interval would immediately terminate with k = 0). Between

this first address z0 and the next different address z1, the only possible URDs of accesses

must be 0. Between z1 and z2, the only possible URDs can be 0 and 1. Extending

this reasoning till zk−1 and zk we observe that dk(T) and dk−1(T) differ only in the

last sub-sequence which consists of a run of accesses with URDs in {0, 1, ..,k − 1}. We

approximate the length of this run with the expected number of trials to success in a

geometric distribution with success probability
∑∞
i=k ri(T).
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Figure 4.3: Actual, Moving Average (window size = 100) of Actual, and Estimated d(T).

We thus arrive at the following recurrence:

d0(T) = 0

dk(T) = dk−1(T) +
1∑∞

i=k ri(T)
(4.1)

Expanding the recurrence gives us

dk(T) =

k∑
j=1

1∑∞
i=j ri(T)

=

k∑
j=1

1
1 −

∑j−1
i=0 ri(T)

This is similar to known approximations for the coupon collector’s problem assuming

a given order of coupons [34]. We find good agreement in trends between observed

(Moving Average) and estimated values of d(T) as illustrated in Figure 4.3. The moving
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Figure 4.4: Effect of the number of sets (S) on per-set locality for oltp.

average calculation acts like a low-pass filter that removes short-term variation to reveal

long-term trends. Our estimates are good for workloads with long traces, e.g., apache

and oltp. We expect the differences to reduce for jbb and zeus with longer traces.

4.4 Per-set Locality

Replacement policy decisions (determining which cache line to evict) in traditional caches

happen for each individual set. This in turn influences the miss ratio. So it is essential

to determine the locality in the address stream that each individual set sees on average.

We refer to the temporal locality in the per-set address stream as the per-set locality.

Per-set locality is strongly influenced by the number of sets (S) in the cache. The set

of unique addresses in the address stream is split among the sets based on the index

mapping function. The address stream that any individual set sees is the subset of the

original address stream consisting of all accesses to the addresses mapping to that set. S

thus determines the degree to which the address stream is split. Decreasing S increases

URDs of the per-set address streams since addresses that hitherto mapped to other sets

now get mapped to the reference set, and vice versa.

Accordingly, we extend our previous notations of locality metrics to additionally
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include S as a parameter. Thus r(T ,S) denotes the unique reuse distribution of the

sub-sequence of T that a single set in the cache observes on average. r(T , 1) is the

temporal locality of the original address stream, which is also the per-set locality of a

fully-associative cache (S = 1). Figure 4.4 illustrates how r(T ,S) changes with S for oltp.

d(T) is adapted to d(T ,S) similarly and can be estimated from r(T ,S) using Equation

4.1. For brevity of notation, we will omit specifying one or more parameters when their

values are clear from the context.

As Table 4.1 shows, cache configurations in our study have a range of number of sets

(210 to 218). For efficiently predicting miss ratios it is essential to be able to determine

how r(S) can be transformed to r(S ′) for S ′ 6= S. The rest of this section develops a (new)

methodology for this.

4.4.1 r(S ′) Estimation

For set-associative caches with S ′ > 1 we make the simplifying assumption, similar to

Smith’s model [103, 200], that the mapping of unique lines to cache sets are independent

of each other. While this assumption does not always hold with the traditional bit

selection index function, some processors use simple XOR hashing functions that increase

uniformity [134]. The uniformity assumption enables both the following model and the

use of uniform set-sampling techniques.

Accesses to a given set can thus be modeled as successive Bernoulli trials with the

success of each trial having probability 1
S ′ . While computing r(S ′) from r(1), we note

that rj(S ′) is the sum of the probability of exactly j successes (j addresses mapping to the

reference set) from rk(1), ∀k. The generalized stochastic Binomial Matrix [212] B(x,y) has

the value kCjyjxk−j in row k, column j, where kCj denotes the jth binomial coefficient

and x+ y = 1. This is the same as the probability of exactly j successes in k Bernoulli
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Figure 4.5: Reuse distribution transformations with stochastic Binomial Matrices.

trials with probability of each success being y. Viewing the computation of r(S ′) from

r(1) through the lens of matrix multiplication, we recognize that the transformer is a

generalized stochastic Binomial Matrix, B(1 − 1
S ′ ,

1
S ′ ). Thus,

r(S ′) = r(1) · B(1 −
1
S ′

, 1
S ′

) (4.2)

Figure 4.5 shows a schematic of the transformation. The transformer, B, is always a

lower triangular matrix.

It is straight-forward to show that the transformation respects
∑∞
i=0 ri(S

′) =
∑∞
i=0 ri(1) =

1. Qualitatively, this transformation results in a re-distribution of mass with r(S ′) getting

compressed as S ′ is increased and dilated as S ′ is decreased (see Figure 4.4).

We will now show how to compute r(S ′) from any starting cache configuration S.

This shows how computations can be reused instead of always needing to start from the

ground configuration (S = 1) and will also be useful in reasoning about way-counters

(Section 4.6.2).

Binomial Matrices are invertible (when the second parameter is non-zero) and closed

under multiplication within the same dimension [212]. Using identities B(x,y)B(w, z) =
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B(x+ yw,yz) and B(x,y)−1 = B(−xy−1,y−1), [212], we get

r(S ′) = r(1) · B(1 −
1
S ′

, 1
S ′

)

= r(S) · (B(1 −
1
S

, 1
S

))−1 · B(1 −
1
S ′

, 1
S ′

)

= r(S) · B(1 −
S

S ′
, S
S ′

) (4.3)

Equation 4.3 is a general form of Equation 4.2. The transformer depends only on the

ratio of the number of the sets in the current cache to that in the target cache. There are

two cases to consider depending on the value of this ratio:

Case 1, S ′ > S: The transformation is always safe in that the computed probabilities

are valid (∈ [0, 1]) even if r(S) has not been computed binomially. Moreover, this allows inter-

mediate steps; for example, computing r(214) from r(1) is equivalent to first computing

r(210) from r(1) and then computing r(214) from r(210). This provides an opportunity to

reuse intermediate computations. So, r(S) can be computed once from r(1) for the smallest

S (210 in our study, see Table 4.1) and used for all other target configurations.

Case 2, S ′ < S: Since B(1 − S
S ′ ,

S
S ′ ) = (B(1 − S ′

S , S ′S ))−1, Case 2 transforms can invert

Case 1 transforms provided Case 1 results have not been truncated (see below). Otherwise,

the computed probabilities may not be valid (6∈ [0, 1]).

For an example transformation, consider S‘ = 2S. The components of the transformed

reuse distribution, r ′, are computed as:
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Figure 4.6: LRU prediction with reuse information limited to length n at r(210) which is
first computed from r(1) (Equation 4.2).

r ′0 = r0+ (1/2) · r1+ (1/4) · r2+ (1/8) · r3+ . . .

r ′1 = (1/2) · r1+ (2/4) · r2+ (3/8) · r3+ . . .

r ′2 = (1/4) · r2+ (3/8) · r3+ . . .

r ′3 = (1/8) · r3+ . . .

. . .

4.4.2 Matrix dimension and Truncation of r

The dimension of B is determined by the maximum (per-set) URD that we are interested

to maintain to avoid large computational costs. Let n denote the length of the r vector
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that we maintain. That is, r(S) is computed for r0(S) through rn−1(S), with r∞(S)

adjusted so that r∞(S) = 1 −
∑n−1
i=0 r(S).

Assume r(210) is available, computed from r(1) using Equation 4.2. Figure 4.6 shows

predicted miss ratios with r(210) maintained for various values of n. Section 4.5.1 explains

LRU prediction. Although the maximum associativity that we consider is 32, Figure 4.6

shows that n has to be much larger than that (> 512) for good predictions for larger

caches with S ′ > 210, such as 32MB caches (see Table 4.1).

While n = 512 is good for r(210), the equivalent value for r(1) is very large, potentially

up to 512 · 210. To appreciate this, consider the r(1) address stream as a merger of the

210 mutually exclusive per-set address streams, each of which has reuse intervals of up

to 512. Determining the long-tailed r(1) distribution or using large matrices to compute

r(210) from r(1) in software is time-consuming. Section 4.6.1 proposes low-cost hardware

support to approximately estimate r(210) with n = 512.

4.4.3 Poisson approximation to Binomial

Cypher [55, 56] uses a Poisson approximation to binomial for reducing computational

costs – when i is large and 1
S ′ is small, the binomial distribution can be approximated by

a Poisson distribution with parameter λ = i
S ′ . Computing this is faster than the binomial

coefficient.

Figure 4.7 shows pseudo-code for the compute_per_set_r function that computes

Equation 4.3. It uses Poisson approximation to Binomial and assumes that r(210) up to

n = 512 is available. num_set_bits ∈ [1, 8] = log2(
S ′

S ). The computation is done for 2A ′

terms (see Section 4.5).
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void init() {
int i;
for(i=0;i<9;i++)

precomputed_exp_inc[i]=exp(-1.0/(1<<i));
for(i=1;i<64;i++)

precomputed_v[i]=1.0/i;
}

void compute_per_set_r(int num_set_bits, int max_assoc) {
const double *ptr=&r_histogram[0];
double s3=precomputed_exp_inc[num_set_bits];
double s2=1.0;
double base_lambda=1.0/(1<<num_set_bits);
double lambda=0;
int i, rd;
for(i=0;i<512;i++) {

double s1=s2;
for(rd=0;rd<2*max_assoc;rd++) {

per_set_r[num_set_bits][rd]+=ptr[i]*s1;
s1*=lambda*precomputed_v[rd+1];

}
s2*=s3;
lambda+=base_lambda;

}
}

Figure 4.7: Equation 4.3 pseudo-code with Poisson approximation.

4.5 Cache Hit Functions

Given a target cache organization (S ′,A ′,policy) and a trace T , our goal is to determine

a vector φ(r(S ′),S ′,A ′,policy) such that the expected hit ratio for the trace is

h = r ·φ (4.4)

The idea is to characterize workload traces by r and caches by φ so that the effect on hit

ratio for changes in traces or cache configurations can be readily estimated.

We callφ the cache hit function. The value of the kth component,φk is the conditional
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probability of a hit for accesses x such that URD(x,m) = k where m is the repetition count

for x at that point in the trace when the access happens. φk monotonically decreases

with k in this model. This is because non-eviction of a cache-resident address after

accesses involving k other unique addresses implies non-eviction after accesses involving

k− 1 unique addresses and the remaining accesses. If there are no intervening accesses

(k = 0), the access must be a hit. Accesses hitherto never seen (k = ∞) must miss. So,

φk =


1 if k = 0

6 φk−1 if k > 1

0 at k = ∞
(4.5)

Figure 4.8 shows φ curves for common replacement policies. We consider the well-

known, but rarely-implemented1 LRU policy as well as the practical RANDOM, NMRU,

and PLRU policies. In each figure, we superimpose the φ curves for S ′ = 214 and A ′ = 2,

4, 8, 16, and 32. These five curves appear from left to right, in that order, in each figure.

φ(LRU) is always a step function, with the 1-to-0 transition happening at A ′. We show

φ(LRU) on each figure for comparison. Note that φ for RANDOM, NMRU, PLRU are

non-zero beyond A ′. So, computing r ·φ up to A ′ is not sufficient for these replacement

policies. For our evaluations, we compute the dot-product for 2A ′ terms; longer than

that has diminishing returns for our workloads.

Apart from LRU, φ is not independent of r for different replacement policies. As

we shall show later, φ(RANDOM) depends on d, while φ(PLRU) may need more

information.
1LRU is typically not implemented in real caches for associativity larger than 4 due to hardware

complexity.
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Figure 4.8: Representative hit ratio functions (φk) with S ′ = 214 and A ′ = 2, 4, 8, 16, 32
with different replacement policies. φ0(not shown) = 1 for all policies. Note that the
x-axes are in log2 scale. Only LRU has a step function for any associativity.
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4.5.1 Estimating φ(LRU)

For a set-associative LRU cache with associativity A ′, it is well known that all accesses

with addresses re-appearing with less than A ′ unique intervening elements must hit and

all other accesses must miss. This leads us to the following characterization of the LRU

hit ratio function.

φk(LRU) =


1 if 0 6 k < A ′

0 if k > A ′
(4.6)

Figure 4.6 shows actual vs estimated (n = 512) miss ratios with LRU using Equations

4.3, 4.6 and 4.4. As observed earlier by Hill and Smith [103], increasing A ′ yields

diminishing returns.

4.5.1.1 Optimization (Smith’s Model)

A naive combination of Equations 4.4, 4.6 and 4.3 results in
(∑A ′−1

i=0 (n− i)
)

− 1 =

nA ′ −
A ′(A ′−1)

2 − 1 multiplications with binomial computations to estimate the hit ratio

for a cache with S ′ sets and associativity A ′. The number of multiplications can be

reduced by observing that due to the step-function nature of φ(LRU), some of the

coefficients will sum to 1. Expanding the computation and simplifying, we get

h(S ′)=

A ′−1∑
i=0

ri(1) +

n−1∑
i=A ′

ri(1)·
A ′−1∑
k=0

iCk·
(

1
S ′

)k
·
(

1−
1
S ′

)(i−k)

(4.7)

Equation 4.7 is an optimized version of Smith’s associativity model [103, 200]. It

requires (n−A ′)A ′ multiplications which is A
′(A ′+1)

2 −1 less than the naive combination.

But computing binomial terms is costly and n is usually much larger than A ′, so the

gains from this optimization are small.
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4.5.2 Estimating φ(RANDOM)

The RAND replacement algorithm [25] (also popularly called RANDOM) chooses a line

(uniformly) randomly from the lines in the set for eviction on a miss.

For an A ′-way set-associative cache, the probability of replacement of a given line on

a miss is 1
A ′ . Accounting for the number of misses in between successive reuses of an

address is therefore needed. For expected miss rate θ, the expected number of misses

for a sequence of α accesses is α · θ. This is why d is important for RANDOM whereas

LRU works independent of such information.

We make the simplifying assumption that miss occurrences (not specific addresses)

are independent and hence amenable to be modeled as a Bernoulli process. While this

may not be accurate, it allows us to make reasonably good predictions without tracking

additional state.

Let dk = α. The probability of i misses is estimated by αCi · θi · (1 − θ)(α−i). The

probability that a specific line is not replaced after i misses is
(
1 − 1

A ′

)i. We thus have

h(RANDOM) = r ·φ(RANDOM)

φk(RANDOM) =

α|dk=α∑
i=0

αCi·θi·(1 − θ)(α−i)·
(

1 −
1
A ′

)i
θ = 1 − h(RANDOM) (4.8)

To simplify the computation, we approximate Binomial(α,θ) by Poisson(λ = α · θ). Let

q =
(
1 − 1

A ′

)
. This gives



104

φk(RANDOM) =

α|dk=α∑
i=0

αCi · θi · (1 − θ)(α−i) · qi

=

∞∑
i=0

αCi · θi · (1 − θ)(α−i) · qi

≈
∞∑
i=0

e−λ · λ
i

i! · q
i

= e−λ(1−q)
∞∑
i=0

e−λq · (λq)i

i!

= e
−αθ
A ′ (4.9)

The system of equations in 4.8 can now be approximated by the following system.

h(RANDOM) = r ·φ(RANDOM)

φk(RANDOM) = e
−dkθ

A ′

θ = 1 − h(RANDOM) (4.10)

We solve the system of equations in 4.10 with the initial value h = r0. d is estimated

using equation 4.1. Usually 5 or fewer iterations suffice to reach within 1% of a fix-point.

4.5.2.1 Convergence for RANDOM

First note that if a fix-point exists, the solution satisfies the general conditions of φ

(Equation 4.5). This is because d0 = 0 (Equation 4.1) and from Equation 4.10,

φk

φk−1
= e

−(dk−dk−1)θ

A ′ = e
−

(
θ/A ′∑∞
i=k ri(T)

)

6 1 (4.11)

Let H denote a fix-point and h0, h1, h2, ... denote successive approximations. By
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re-arranging the system of equations in 4.10 we have

hj+1 = r0 +

n−1∑
i=0
rie

di(−1+hj)

A ′ (4.12)

Since the exponential function is monotonic, H must be unique. Since 0 6 ri 6 1, ∀i,

r0 6 H 6 1.

Also, it is easy to show that hj > hj−1 =⇒ hj+1 > hj. Thus, successive iterations

produce a chain of values r0 = h0 6 h1 6 h2....

We will now prove that hj 6 H,∀j. This is true at j = 0. For induction, let hj = H− ε

with ε > 0. Then,

hj+1 = r0 +

n−1∑
i=0
rie

di(−1+hj)

A ′

= r0 +

n−1∑
i=0
rie

di(−1+H)

A ′ · e−
diε

A ′

6 r0 +

n−1∑
i=0
rie

di(−1+H)

A ′ = H (4.13)

This shows a convergence chain r0 = h0 6 h1 6 h2... 6 H.

4.5.2.2 Optimization

A better approximation for A ′ = 2 can be obtained by using the fact that for the reference

element not to be evicted at URD > 2, the previous element must be evicted (since the

set can hold only 2 elements). The probability of the previous element to be evicted is

1 −φ1. For the reference element to hit at URD = k, it must hit at URD = k− 1 and the
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Figure 4.9: Actual vs estimated miss ratios with RANDOM replacement policy. LRU
estimates are shown as reference. r(210) is first computed from r(1) (Equation 4.2).

above condition must hold. This leads us to the following approximation.

φk = φk−1 · (1 −φ1), k > 2 (4.14)

This approximation is possible since the model can exactly determine the set contents

for URD >= 2. For higher associativities, exact determination of set contents is difficult.

Figure 4.9 shows actual vs estimated (n = 512) values of miss ratios for RANDOM

with the estimates computed using Equations 4.3, 4.10, 4.14 and 4.4.

4.5.3 Estimating φ(NMRU)

The NMRU (or non-MRU) replacement algorithm differentiates the most recently accessed

(MRU) line from other lines in the set [203]. On a miss, a line is chosen (uniformly)
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randomly from among the A ′ − 1 non-MRU lines.

At A ′ = 2, φ(NMRU) = φ(LRU). For the rest of the cases, the framework is similar

to that of RANDOM except that accesses at URD 6 1 are guaranteed to hit. Moreover,

the replacement logic has A ′ − 1 possible choices for an eviction in case of a miss. This

leads to a few simple modifications to the system of equations in 4.10. The modified

system is shown below:

φ1(NMRU) = 1

h(NMRU) = r ·φ(NMRU)

φk(NMRU) = e
−(dk−d1)θ

A ′−1

θ = 1 − h(NMRU) (4.15)

Figure 4.10 shows actual vs estimated (n = 512) values of miss ratios for NMRU with

the estimates computed using Equations 4.3, 4.15 and 4.4.

4.5.4 Estimating φ(PLRU)

Partitioned LRU [203] (also popularly called pseudo-LRU) maintains a balanced binary

tree that, at each level, differentiates between the two sub-trees based on access recency.

Every internal node is represented by a single bit whose value decides which of the two

subtrees was accessed more recently. The cache lines are represented by the leaves of the

tree. Whenever a line is accessed, the nodes on the path from the root to the leaf flip

their bit values, thus pointing to the other subtree at each level. On a miss, the subtree

pointed to is chosen, recursively starting from the root. The line corresponding to the

leaf reached in this way is chosen for eviction. The bit-values along this path are then

flipped.
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Figure 4.10: Actual vs estimated miss ratios with NMRU replacement policy. LRU
estimates are shown as reference. r(210) is first computed from r(1) (Equation 4.2).

In the PLRU scheme, the most recently accessed element is always known but the

least recently accessed one is not. In contrast to the LRU scheme, that maintains a total

access order between the lines, PLRU maintains only a partial order. Since there is no

difference between partial and total orders involving 2 elements, PLRU is LRU when

A ′ = 2. In contrast to LRU that guarantees exactly A ′− 1 unique accesses before eviction,

PLRU guarantees at least log2(A
′) (=number of tree levels) unique accesses before the

reference address is evicted.

Since the PLRU tree is symmetric, we can fix any way as reference without loss of

generality. Let the immediate neighbor be denoted by Q0, the next two neighbors be

collectively denoted by Q1 and so on with the most distant group of A/2 neighbors

denoted by Qlog2(A)−1. To calculate the probability that the reference line will be evicted
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on a particular miss we need to consider the immediate past sequence of accesses to that

set. A necessary and sufficient condition for the reference line to be evicted is for the

suffix of the trace to have accesses that match the particular regular expression described

below.

A = 2 : Q+
0

A = 4 : Q0Q
+
1

A = 8 : Q0(Q1 +Q2)
∗Q1Q

+
2

A = 16 : Q0(Q1 +Q2 +Q3)
∗Q1(Q2 +Q3)

∗Q2Q
+
3

A = 32 : Q0(Q1 +Q2 +Q3 +Q4)
∗Q1(Q2 +Q3 +Q4)

∗

Q2(Q3 +Q4)
∗Q3Q

+
4

On a miss, the reference line will be evicted if and only if the immediately preceding

sequence of accesses follows a particular pattern. These patterns can be described using

regular expressions. In contrast to RANDOM, not only the number of misses in the

reuse interval, but also the pattern of accesses determines eviction probability. It is

difficult to estimate φ(PLRU) by computing probabilities of the regular expressions since

the distance to misses within the reuse interval as well as the ways occupied by the

intervening elements are not known. Instead, we use a different approach.

First, we compute φ(A ′ = 4,PLRU) then compute φ(A ′ = 8,PLRU) by dividing

traffic using a binomial distribution and applying φ(A ′ = 4,PLRU) on the divided traffic.

We view an 8-way tree as a composition of two 4-way trees with the top-node dividing

traffic between the two subtrees. Similar observations hold between 8-way and 16-way

trees and so on. This helps us to estimate φ(PLRU) for successively higher associativities.

We assume that the top node divides traffic evenly between its two constituent sub-trees.
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4.5.4.1 Base case: A ′ = 4

Since log2(4) = 2, φk is 1 when k 6 2. Let x denote the reference element. We will now

estimate the likelihood that the second occurrence of x in the access sequence x e1 ... e2

... ek x will hit in the cache. The elements e1 through ek all map to the same cache set

and are distinct so that the URD of the sequence is k. φk = φk−1· P(x not evicted by

ek).

First, consider the case when k > 4. To have φk = 1, x must be present in the cache.

Moreover, both ek−1 and ek will also be in the cache as PLRU guarantees that the last

two unique elements seen will remain in the cache. Since A ′ = 4, there is room for

one more element other than x, ek−1, and ek in the cache set. This element must be

ek−2 as it could not have been evicted by either ek−1 or ek. Therefore, ek−3 must have

been evicted by ek. So if ek−3 were to reappear instead of the second occurrence of

x in the above sequence, it would miss. That is, the access sequence ek−3 ... ek−2 ...

ek−1 ... ek ... ek−3 would have caused the second ek−3, with URD 3, to miss. This

probability is (1 −φ3). Thus, P(x not evicted by ek) = P(ek−3 evicted by ek) = (1 −φ3).

So, φk = φk−1 · (1 −φ3).

x

Subtree 1 Subtree 2

Figure 4.11: Schematic showing PLRU subtrees for A ′ = 4. Without loss of generality,
we denote the subtree containing the reference element, x, as Subtree 1. Also, x is not
necessarily the left-most child of Subtree 1.

The case that remains is when k = 3. For this case, we will refer to Figure 4.11 to
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describe our estimation approach. The access sequence that we are considering is x e1 ...

e2 ... e3 x, with e1, e2, e3 being distinct elements. The only scenario where x is evicted

(by e3) before its second occurrence occurs if all of the following conditions hold:

1. e3 misses. e3 has URD > 3. For an approximation, we just consider what would

happen under LRU. It would miss for URD > 3. The probability for this happening

is P(URD > 3|URD > 3) = 1 - P(URD = 3|URD > 3) = 1 - r3
1−r0−r1−r2

.

2. The last access (to either e2 or e3) before the access to e3 causes Subtree 2, not

containing x, to be accessed. We assume this probability to be 1
2 .

3. e1 and e2 map to different subtrees. Since each subtree can have only 2 elements,

Subtree 2 must get at least one of e1 or e2. Thus, the question is whether or not

the other element (e1 or e2) maps to Subtree 1. We assume this probability to be 1
2 .

Thus, φ3 = 1 −
(

1 − r3
1−r0−r1−r2

)
· 1

2 ·
1
2 = 3

4 + 1
4 ·
(

r3
1−r0−r1−r2

)
.

Putting everything together,

φk =



1 if 0 6 k 6 2

3
4 +

1
4 ·
(

r3
1 − r0 − r1 − r2

)
if k = 3

φk−1 · (1 −φ3) if k > 4

(4.16)

4.5.4.2 Recurrence: A ′ > 8

Let L = log2(A
′) and ψ = φ(A ′/2). We will refer to Figure 4.12 to describe our estimation

approach. For the first case, when k 6 L, φk must be 1. For k > L, consider the element

ek in the access sequence x e1 ... e2 ... e3 x. There are two subcases here:

1. It maps to Subtree 2. In this case, φk = φk−1.
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x

Subtree 1 Subtree 2

Figure 4.12: Schematic showing PLRU subtrees. Each subtree has A ′/2 leaves. Without
loss of generality, we denote the subtree containing the reference element, x, as Subtree 1.

2. It maps to Subtree 1. If k > A ′

2 + 2, there is at least one other element in Subtree 1

apart from x and ek. This is because at most A ′2 elements can map to Subtree 2

before an element maps to Subtree 1. So, an element within the set {e1 ... eA ′
2 +1}

must map to Subtree 1. If k 6 A ′

2 + 1, the A ′

2 elements other than ekcan all occupy

Subtree 2.

The remaining elements can map to Subtree 1 or Subtree 2. We use a Binomial

distribution with success probability 1
2 to estimate the likelihood of a certain number

of them mapping to Subtree 1. This number plus 1 (for ek) gives the URD for x

considering only accesses to Subtree 1. We then get the hit probability for this URD

from ψ.

Putting everything together,

φk =



1 if 0 6 k 6 L

φk−1
2 +

1
2

k−3∑
i=0

k−3Ci

(
1
2

)(k−3)

·ψ2+i if k >
A ′

2 + 2

φk−1
2 +

1
2

k−2∑
i=0

k−2Ci

(
1
2

)(k−2)

·ψ1+i otherwise

(4.17)
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Figure 4.13: Actual vs estimated miss ratios with PLRU replacement policy. LRU estimates
are shown as reference. r(210) is first computed from r(1) (Equation 4.2). Section 4.6.2.1
describes PLRU Way-Counters.

In the above, we ignore the case when all of {e1 ... ek} map to Subtree 1 along with

x. This occurrence has a low probability since all of {e1 ... ek} must have been hits

(probability = P(hit)k) and already have been present in Subtree 1 (probability = 2−k).

Figure 4.13 shows actual vs estimated (n = 512) values of miss ratios for PLRU with

the estimates computed using Equations 4.3, 4.16, 4.17 and 4.4.

4.5.5 Estimation Accuracy and Computation Time

Table 4.5 shows miss ratio prediction errors for different policies and workloads. LRU

prediction is the most accurate, with relative errors < 2%, followed by PLRU with relative

errors < 3%. Using the PLRU predictor instead of the LRU predictor when the actual

cache uses PLRU improves prediction accuracy by ~2% for oltp. RANDOM and NMRU
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Workload LRU RANDOM NMRU PLRU LRU→PLRU
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

apache 1.23 0.81 5.12 2.67 4.68 2.27 3.41 2.31 3.40 2.23
jbb 3.40 1.12 7.80 2.27 6.58 1.90 5.24 1.59 4.44 1.29
oltp 1.59 1.85 4.04 4.90 3.77 4.05 2.88 2.97 4.88 5.18
zeus 0.69 0.57 2.68 1.96 1.78 1.36 1.21 0.96 1.55 1.19

Table 4.5: Average absolute values of prediction errors over all cache configurations. Abs.
= (predicted - actual) miss ratio ×103, Rel. = (predicted/actual - 1)×102 (to express as a
percentage). LRU→PLRU shows what happens if the LRU predictor is used to predict
for PLRU instead of using the PLRU predictor.

have relative errors < 5%.

A major contributor to hit ratio computation time is the determination of r. Section

4.6.1 proposes low-cost hardware to approximate r(210) (with n = 512) online. Assuming

this is available, the hit ratio computation time per cache configuration on the Haswell

machine (HS, at 3.9 GHz) were – LRU: 6 0.009 msec; PLRU: 6 0.011 msec; RANDOM:

6 0.012 msec; NMRU: 6 0.012 msec. On a Nehalem 2.26 GHz machine, the times were

– LRU: 6 0.016 msec; PLRU: 6 0.018 msec; RANDOM: 6 0.023 msec; NMRU: 6 0.024

msec. This includes the time to compute r(S ′) from r(210) (Equation 4.3), amortized over

all configurations with the same S ′.

4.6 Hardware Support

Section 4.4.2 discussed that to avoid expensive computation to determine r(1) or compute

r(210) from r(1), we need hardware support to directly estimate r(210). Section 4.6.1

presents our proposed hardware technique to do this.

Section 4.6.2 discuss two traditional hardware mechanisms that help in cache miss

ratio estimation—set-counters and way-counters.
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Figure 4.14: Schematic of new hardware support.

4.6.1 New hardware support to estimate reuse distributions (r(210), n = 512)

The definition of unique reuse distance (URD) depends only on the cardinality of the reuse

interval (RI) and not on the contents of the set. This suggests applicability of hardware

signatures, such as Bloom filters [32], that can construct compact representations of sets.

Whereas shadow tags store entire tag addresses, a Bloom filter uses only one bit per

hash function to represent each address.

Our proposed hardware, shown in Figure 4.14, uses a Bloom filter (to summarize RI),

a counter to determine |RI|, and set-sampling logic. We use a 1024-bit parallel Bloom

filter [187] with two H3 hash functions [42] and a 9-bit counter. The Bloom filter can be

at most half-full (512 elements) before being reset. Larger Bloom filters can be used to

reduce aliasing errors at the cost of more area/power overhead. The hardware uses a

combination of set sampling and time sampling techniques [129, 132, 133, 172, 222]. It

works as follows:

1. Sample Initiation: The Control Logic initializes the Set Filter to match a single set
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of a cache with S = 210. It chooses this value by first time-sampling the incoming

address stream (10% selectivity) and then choosing the set number of the chosen

address as the value for the Set Filter. It also saves this address in the Reference

address register.

2. Sample Continuation: The Control Logic inspects (see step 3) each address that

passes through the Set Filter. Then it inserts the address into the Bloom Filter

and increments the 9-bit Counter provided that the Bloom Filter does not return a

match (already seen) for the address.

3. Sample Termination: This happens in one of two cases—(i) the reference address

is seen again, or (ii) the maximum value (511) for the 9-bit counter is reached before

inserting another new element. For case (i), the Control Logic increments the entry

(whose position matches the 9-bit Counter value) in the Histogram array. For both

cases, it transitions to Sample Initiation mode.

The above process is repeated. Each sequence of steps 1–3 estimates the reuse distance

of a single address in the address stream. This value is between 0–511 (both inclusive)

or considered as ∞ (> 512) otherwise. A separate counter (not shown) tracks the total

number of measurements. This value, together with the histogram entries, is used to

estimate r(210).

The technique can be generalized to estimate r(2x) by sizing the Bloom filter, histogram,

and set filter appropriately.

4.6.1.1 Bloom Filter Analysis

The Bloom Filter is used to estimate the number of unique addresses. Here we analyze

its performance by comparing three kinds of filters:
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Figure 4.15: Probability of false hit in a 1024-bit Bloom filter with 2 hash functions.

1. E (Exact): This assumes that the addresses are fully tracked so that the estimation

of the number of unique addresses is accurate.

2. B (Bloom): This uses traditional Bloom Filters. Addresses are not fully tracked, but

represented by a few bits (2 bits in our study). Aliasing (same bits set for different

addresses) may result in under-reporting of the number of unique addresses seen.

This shortens the reuse distance measured.

3. CB (Bloom with Correction): This uses traditional Bloom Filters, but applies a

correction term, based on the expected number of false aliases, to the measured

reuse distance.

The aliasing probability for a traditional Bloom Filter (B) increases with the number

of elements (addresses) inserted as more bits get set in the filter. For a Bloom Filter of

size m bits and k hash functions, the probability of a false hit (alias) with n elements

already inserted is given by

P(false hit | n elements inserted) ≈ (1 − e−kn/m)k

For our study, m = 1024 and k = 2. So the aliasing probability is

P(false hit | n elements inserted) ≈ (1 − e−n/512)2
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Figure 4.15 plots this probability. We only plot till 511 elements since measurement is

terminated beyond that and the reuse distance is considered as ∞.

To correct for this aliasing, the CB filter tracks the number of lookups for every state

(number of elements already inserted) of the Bloom filter and computes an expectation

of the total number of aliases. It then adds this count to the reuse distance measured.

Note that the computation for the expected number of aliases may not match the number

of unique aliases, so the correction is not exact.

For our analyses, the E, B, and CB filters use the same random numbers. However, the

starting points of the samples can differ. This is because Sample Termination (followed

by Sample Initiation) that happens when a long reuse distance (> 512, equiv. ∞) is

encountered, is affected by how accurately the reuse distance is calculated. So, individual

samples across the three filters are not comparable. We compare the estimated miss

ratios computed from sample results for the three filters.

Figures 4.16, 4.18, and 4.20 show the estimated miss ratios for LRU using E, B, and CB

filters respectively along with the Actual LRU miss ratio. Figures 4.17, 4.19, and 4.21 show

the corresponding errors—absolute = (estimated-actual), relative = (estimated/actual-1).

The errors are also tabulated in Tables 4.6 and 4.7. For each analysis, we replicate the

estimation hardware (except the Histogram array) to experiment with 2, 4, 8, 16, 32, and

64 Filters.

We find that CB filters reduce errors compared to B filters for some, but not all,

cases. But it incurs additional complexity for applying the (approximate) corrections. E

filters can have very low errors, e.g., for apache (#F=16) and oltp (#F=4), but are costly

to implement. The B filters provide reasonable accuracy at low implementation cost.

Surprisingly, increasing the number of filters (for any filter type) does not always increase

accuracy for our experiments. We will discuss this issue shortly.
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Figure 4.16: Online estimation of miss ratios using E filters.
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Figure 4.17: Online estimation errors with E filters.
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Figure 4.18: Online estimation of miss ratios using B filters.
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Figure 4.19: Online estimation errors with B filters.
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Figure 4.20: Online estimation of miss ratios using CB filters.
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Figure 4.21: Online estimation errors with CB filters.
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Filter Workload #F=1 #F=2 #F=4 #F=8 #F=16 #F=32 #F=64

E

apache 12.21 8.34 8.98 8.74 1.75 1.77 3.29
jbb 167.64 41.22 10.46 19.57 28.84 25.60 19.68
oltp 7.89 4.27 2.45 2.47 2.66 2.23 1.85
zeus 620.31 87.51 152.39 143.10 96.35 61.90 52.98

B

apache 10.77 12.66 7.15 8.46 5.68 3.37 4.28
jbb 19.87 39.38 18.83 21.51 18.53 18.26 25.84
oltp 62.43 3.60 3.87 4.38 4.65 4.70 4.49
zeus 56.45 62.20 134.82 117.29 73.88 29.01 46.41

CB

apache 10.80 8.38 3.14 3.13 2.00 3.88 5.21
jbb 22.16 38.67 24.12 27.44 32.59 35.08 35.47
oltp 11.81 7.45 6.59 4.94 5.54 6.61 5.88
zeus 76.16 148.57 165.43 127.42 76.96 72.78 65.11

Table 4.6: 103× Average of absolute error = abs(estimated - actual) miss ratio, over all
cache configurations. Entries with values > 50, that is, average error > 0.05 are shaded .

Filter Workload #F=1 #F=2 #F=4 #F=8 #F=16 #F=32 #F=64

E

apache 4.94 3.44 3.89 3.42 0.86 1.16 1.44
jbb 43.74 9.62 2.52 4.96 7.37 6.57 4.97
oltp 15.33 6.21 3.37 3.78 4.15 3.27 2.60
zeus 506.07 74.87 125.10 116.71 76.62 48.36 40.91

B

apache 7.25 6.22 2.62 4.44 3.67 1.95 2.16
jbb 5.64 11.39 4.70 5.71 4.72 4.13 6.69
oltp 97.88 6.01 6.30 5.53 4.59 7.14 6.49
zeus 41.54 49.50 107.24 92.18 56.93 21.88 35.29

CB

apache 7.91 5.29 1.28 1.38 1.01 1.86 2.39
jbb 6.04 10.39 5.95 7.12 8.61 8.83 9.23
oltp 13.70 10.16 11.42 9.78 11.61 13.72 12.78
zeus 60.83 113.93 129.96 100.55 60.52 56.96 50.81

Table 4.7: 102× Average of relative error = abs(estimated/actual -1) miss ratio, over all
cache configurations. Entries with values > 10, that is, average error > 10% are shaded .
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Workload apache jbb oltp zeus
#Filters
& Type E B CB E B CB E B CB E B CB

1 332 235 509 48 62 88 236 89 782 4 16 17
2 725 487 1041 132 133 186 554 377 1412 28 26 29
4 1450 1060 2210 277 233 351 1154 812 2608 46 37 50
8 2748 2232 4454 596 471 720 2273 1816 5144 97 80 119
16 5581 4421 8940 1225 926 1468 4584 3544 9681 232 208 287
32 11385 8547 17627 2433 1818 2941 9397 7855 18894 542 557 603
64 22689 17042 35109 4755 3807 5936 19093 15513 38120 1142 987 1243

Table 4.8: Number of samples selected with different sampling configurations. Configu-
rations that selected less than 385 samples are shaded (also see Section 4.6.1.3).

Table 4.8 shows the number of samples selected for reuse distance estimation in each

experiment. The large prediction error for zeus using 1 E filter is due to selecting very

few (4) samples for reuse estimation. We show more details for the 4 samples below. In

the following, the notation [n1,n2] indicates that the sample started at access number n1

(to the LLC) and ended at access number n2.

1. [22, 54]: Reuse distance of 0 was measured. That is, no intervening access happened

that passed through the Set Filter.

2. [84, 3299679]: Reuse distance of ∞ was measured. That is, at least 512 intervening

access happened that passed through the Set Filter. So, measurement for this

sample was terminated.

3. [3299697, 10292166]: Reuse distance of ∞ was measured. That is, at least 512

intervening access happened that passed through the Set Filter. So, measurement

for this sample was terminated.

4. [10292169, 10488064]: End of execution without seeing the reference address again.

Reuse distance of ∞ was taken.
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Workload apache jbb oltp zeus
#Filters
& Type E B CB E B CB E B CB E B CB

1 118 89 141 29 34 51 56 37 82 1 8 8
2 171 134 193 69 61 83 81 68 113 10 11 15
4 217 196 248 100 88 109 123 103 144 15 14 20
8 256 239 297 145 132 157 167 151 203 23 24 32

16 311 278 345 213 188 226 238 205 274 46 49 51
32 351 326 402 290 256 300 324 301 359 78 76 82
64 411 375 464 386 350 400 406 390 440 119 116 126

Table 4.9: Number of entries in the Histogram array (Figure 4.14) populated with different
sampling configurations. The Histogram array has 512 entries (for reuse distances 0–511).

As can be seen above, measuring long reuse distances “uses up” a significant number

of accesses in the trace resulting in a small number of samples for a given trace length.

This is due to the fact that the absolute distance, d(T), increases rapidly with the reuse

distance r(T) (see Section 4.3.3). This effect can be reduced by limiting the range of cache

sizes that we want to predict for (n = 512 for our study due to the large range of cache

sizes that we consider; see Section 4.4.2).

Table 4.9 shows how much of the Histogram array is touched by the different filter

configurations. For the detailed example that we just discussed (zeus with 1 E filter),

only 1 entry (for reuse distance 0) was touched. For every workload and filter type, the

number of entries touched increases with the number of filters. There is thus a strictly

monotonic reduction in the sparsity of the estimated reuse distribution. However, none of

the filter configurations touch all 512 entries for our traces. Moreover, the reuse distances

corresponding to the touched entries are not all contiguous. It is difficult to reason about

accuracy of miss ratio predictions based on sparsely populated reuse distributions. Short

traces tend to exacerbate the non-monotonicity in prediction error rates with the number

of filters. We expect longer address traces to resolve this issue.
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Figure 4.22: Online estimation of miss ratios using E filters and with a set sample
randomly chosen at the start of every sample.

4.6.1.2 Time Sampling vs Set Sampling

In the Sample Initiation mode, the Control Logic time-samples the incoming address

stream, then chooses the set address of the selected address for initializing the Set Filter.

An alternative approach is to first choose a set address (select a sample over all possible

set addresses) and initialize the Set Filter with that set address.

Figure 4.22 shows prediction errors for apache with this approach. The errors are

larger than those when the Set Filter is initialized using time sampling (Figure 4.17).

One reason is that LLC accesses are not equally distributed to all sets—some sets are

accessed more often than others. Time sampling reflects these variations better than set

sampling. More samples get chosen with time sampling than with set sampling, since

with the latter, the Control Logic has to wait till an address accepted by the Set Filter

arrives before using it as the reference address for the reuse measurement.

4.6.1.3 CLT criteria

The Central Limit Theorem (CLT) states that for large sample sizes, the distribution of the

sample means approaches a Normal distribution. We will use this to develop a guideline

for the minimum sample size that should be selected before the miss ratios are computed.
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We will use the following notation:

• µ: Population mean.

• σ: Population standard deviation.

• n: Sample size.

• X: Sample mean for a given sample.

• α: 1 - confidence level. For a confidence level of 95%, α = 1 − 0.05.

• Zα/2: The value v such that the area under the standard Normal curve between

0–v is α/2.

Then, if the CLT theorem holds, it is well-known [33] that X − Zα/2

(
σ√
n

)
< µ <

X+ Zα/2

(
σ√
n

)
. So, ∣∣X− µ

∣∣ < Zα/2

(
σ√
n

)
(4.18)

For a 95% confidence level, Zα/2 = 1.96 [33].

The metric that we are interested in this study is the average miss ratio, µ, which is

the probability that an access to the cache will miss. Let Mt denote an indicator random

variable such that

Mt =


1 if the tthaccess is a miss

0 otherwise
(4.19)
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We compute its expectation, E(Mt), and variance, Var(Mt), as follows:

E(Mt) =1 · P(access is a miss) + 0 · P(access is a hit)

=µ (4.20)

Var(Mt) =E(M2
t) − (E(Mt))

2

=µ− µ2

=µ(1 − µ) (4.21)

LetN denote the total number of accesses (population size). Then, the random variable

M =
∑N
t=1Mt

N tracks the average number of misses (µ) over all accesses. Assuming that

all Mt’s are identically and independently distributed, we get

σ =
√

(Var(M))

=

√√√√(Var(∑N
t=1Mt

N

))

=

√√√√(∑N
t=1 Var(Mt)

N

)

=
√
Var(M1)

=
√
µ(1 − µ) (4.22)

The expression µ(1 − µ) is maximized when µ = 1 − µ =⇒ µ = 0.5. Therefore,

σ 6
√

0.5 ∗ 0.5 = 0.5. Combining this with Equation 4.18, we can get
∣∣X− µ

∣∣ < 0.05 for a
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confidence level of 95%, by satisfying

∣∣X− µ
∣∣ <1.96

(
σ√
n

)
6 1.96

(
0.5√
n

)
< 0.05

that is, 1.96
(

0.5√
n

)
< 0.05

=⇒ n > 385 (4.23)

So, for a sample size of at least 385, the absolute error of the average miss ratio of

the sample from the average miss ratio of the entire trace should be less than 0.05. We

call this restriction on the sample size as the CLT criteria.

Table 4.8 shows shaded entries for experiments that did not meet this criteria. Fig-

ures 4.23, 4.24, and 4.25 show estimation accuracy by the E, B, and CB filters only for

configurations that satisfy the CLT criteria. Experiments for workloads other than zeus

passed this criteria in the sense that the absolute errors in miss ratio were less than 0.05.

Our CLT criteria can fail to contain the maximum error within a specified bound

because some assumptions may not hold in practice. For example, access are not

necessarily independent, so iid assumptions may not hold. Moreover, we are sampling

reuse distances whereas the derivation assumes sampling addresses to check whether

they missed or not. These are not orthogonal aspects, since for LRU and the same number

of sets, there is a one-to-one mapping between the reuse distance and whether or not

the address missed in the cache. However, set locality predictions for a different number

of sets can introduce errors.

We propose doing an additional test once the CLT criteria has been satisfied. This is

to predict the miss ratio for the current cache configuration and compare with the actual

value. If the difference is more than a threshold, additional sampling is needed before a

cache configuration decision based on estimated miss ratios can be made.
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Figure 4.23: Online estimation errors using E filters and CLT criteria.
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Figure 4.24: Online estimation errors using B filters and CLT criteria.
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Figure 4.25: Online estimation errors using CB filters and CLT criteria.

4.6.2 Set-Counters, Way-Counters, and Shadow Tags

Set-counters [215] use counters that track the number of accesses per set or a group of

sets. However, since they can only track changes in the number of accesses per set but

not changes in per-set locality, they do not model the behavior shown in Figure 4.4.

Way-counters [215] increment a counter associated with each logical stack position

(ordered by access recency) on every cache hit. The number of hits for associativity A ′ is

the sum of the counter values from 0 to A ′ − 1.

The above assumes A ′ 6 A where A is the associativity of the current/predicting

cache (32MB 32-way in this study). In applications such as dynamic reconfiguration

situations, this is problematic since the cache may need to be sized up, not only sized

down. Shadow tags [172] (or auxiliary tag directories [175]) circumvent this difficulty

by maintaining a copy of the tags that is not deactivated during reconfigurations. This
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always maintains a stack depth to the maximum desired value and facilitates simulating

the effect of hits and misses on a cache with associativity larger than that of the current

cache. Qureshi et al. [174] used dynamic set sampling to reduce storage and power costs

of the shadow copy.

Way-counter values, converted to probabilities, estimate r(S) up to length A. The

estimation is exact for LRU caches. Their operation can be understood by deriving

Equation 4.7 from Equation 4.3 instead of from Equation 4.2. We get

h(S ′)=

A ′−1∑
i=0

ri(S)+

n∑
i=A ′

ri(S)·
A ′−1∑
k=0

iCk·
(
S

S ′

)k
·
(

1−
S

S ′

)(i−k)

Under the assumption S ′ = S, h(S ′) =
∑A ′−1
i=0 ri(S) which is computationally extremely

efficient.

4.6.2.1 Way-counters for PLRU

In PLRU, the MRU line is known with certainty but the rest of the logical ordering is not

precisely known. Kedzierski et al. [127] proposed a heuristic for approximating logical

stack positions for PLRU caches to enable way-counter based prediction . Let waynum

be the way number of the accessed line and pathbits denote the bit-values of the tree

nodes along the path from the root to the leaf with root bit in MSB position. Let the

function reverse(b) reverse bit positions in the binary representation of b. The following

heuristic is used to approximate URD(x,m):

ˆURD(x,m) = A− 1 − (reverse(waynum)⊕ pathbits)

This approach aims to compute r·φ(LRU) with r approximately measured using the above

mechanism. However, apart from the traditional limitations of way-counters (Section

4.6.2.2), it also ignores the fact that φ(PLRU) 6= φ(LRU) for A 6= 2. Interestingly, it fails
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i h j k
(a) 4-way

j e k f b g d i
(b) 8-way

Figure 4.26: PLRU trees demonstrating non-inclusion. The 8-way tree does not include
element h of the 4-way tree.

to accurately estimate the hit ratio even for a 2-way cache where φ(PLRU) = φ(LRU)

when the current configuration that does the estimation has A 6= 2 (see, for example, Figure

4.13 where the current/predicting configuration has A=32). In contrast, our framework

overcomes this by decoupling hit ratio estimation from the organization of the current cache.

4.6.2.2 Way-Counter Limitations

Way-counters (+shadow tags) have the following fundamental limitations:

Fixed number of sets: The relation (S ′ = S) that makes way-counters efficient also

implies the restriction that the number of sets must be fixed. As can be observed from

Table 4.1, miss ratios for only 4 of 24 configurations can be predicted at any time; other

predictions must be preceded by (time-consuming) re-training for the changed S ′.

However, our framework reveals that Equation 4.6.2 may be used to transform way-

counter values when S ′ > S (also see discussion for Case 1 in Section 4.4). With reference

to Table 4.1, maintaining shadow tags corresponding to S = 210 allows conversion of

values for any S ′ 6= S. But, Figure 4.6 shows that to use way-counter values for a cache

with a larger number of sets, the shadow tags and counter values must be maintained

for n(> A) positions.
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Replacement policies with stack inclusion: Way-counters exploit the stack inclusion

property [150] of LRU to predict miss ratios ∀A ′ 6 A. For replacement policies that do

not guarantee stack inclusion (PLRU/RANDOM/NMRU), this is no longer true.

For example, consider the access sequence: a b c d e d f e g h f i j i k simul-

taneously to an 8-way PLRU set and a 4-way PLRU set. Figure 4.26 shows the two sets

and associated PLRU trees after the sequence. The arrows in the figures point to the less

recently used subtree. Initially, both sets were empty and the eviction bits in each tree

were pointing to the “left” subtrees. At the end of the sequence, the two sets together

contain 9 distinct elements (i h j k e f b g d) whereas a policy satisfying inclusion

would have exactly 8 elements. Thus, maintaining information for 8 ways is not sufficient

to accurately predict miss ratios for both a 4-way and an 8-way cache even if S ′ = S.

Tight coupling with replacement policy implementation: Since way-counters are

tightly coupled with the implementation of replacement policies that track stack positions

(e.g. LRU), they are unusable with other policies such as RANDOM that can also

be predicted well using reuse information. Way-counters depend on the replacement

policy mimicking stack operation, so they run into trouble when the stack is absent

(PLRU/RANDOM/NMRU) (see Section 4.6.2.1 for a discussion on PLRU) or reconfigured

(S ′ 6= S).

Shadow Tag overhead: For very large caches, tag area and power are significant.

Loh and Hill [142] propose novel tag management schemes for such caches. Maintaining

additional shadow tags in those systems seem difficult.

4.7 Index Hashing

All the experiments in this chapter use an XOR-based hashed indexing scheme for the

LLC. The hashing scheme is inspired by prior work [55, 56].
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Let x = log2(S). Given a 32-bit byte address b, a “plain” cache interprets the bits of

b as follows:

• [0 : 5] :- block address. (Each cache line is 64 bytes.)

• [6 : 6+(x-3)-1] :- set address

• [6+(x-3) : 6+(x-1)] :- bank address. (Our LLC has 8 banks.)

• [6+x : 31] :- tag

Our “hashed” cache interprets the bits of b as follows:

• [0 : 5] :- block address. (Each cache line is 64 bytes.)

• Let k1 = bits 6 : (6+(x-3)-1) from b. (This is the set address for the “plain cache”.)

Let k2 = bits 20 : 31 from b. Compute k3 = k1⊕ k2. Bits 0 : ((x-3)-1) from k3 form

the set address for the “hashed cache”.

• [6+(x-3) : 6+(x-1)] :- bank address. (Our LLC has 8 banks.)

• [6+x : 31] :- tag

Figure 4.27 shows the savings in miss ratio with hashed indexing compared to

plain indexing, computed as 1 - (miss ratio with hashed indexing/miss ratio with plain

indexing). While there is no guarantee that hashing will always reduce miss ratios, it

reduces it in most cases. Depending on the bit patterns in the addresses, the savings can

be non-trivial, e.g., up to ~27% (absolute difference in miss ratio of 0.036) for apache.

Hashed indexing aims to distribute the total number of unique addresses uniformly

over all the cache sets. This is corroborated by Table 4.10 that shows the coefficient of

variation of the number of unique addresses mapped to each cache set for a 32-way

cache of the given size. The coefficient of variation is significantly lower with hashed
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Figure 4.27: Miss ratio reduction with hashed indexing.

indexing compared to plain indexing. The Table also shows the minimum and maximum

number of unique addresses mapping per set over all sets. As expected, the min–max

range is higher with plain indexing than hashed indexing although the average is the

same for both schemes. However, its impact on miss ratio reduction is less due to two

reasons—(i) the associativity of 32 is much less than the average number of unique

addresses mapping to each set, so conflict misses cannot be eliminated, and (ii) some

addresses will compulsorily miss irrespective of how they map to cache sets.

Since the mapping of unique addresses to cache sets is more uniform with hashed

indexing than with plain indexing, the former is also more suited for applying the

models that we developed in this chapter. (Section 4.4.1 discusses the uniform mapping

assumption made by our models.)
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Workload Size Avg. Plain Hashed
(MB) Min. Max. Coeff. Min. Max. Coeff.

apache

2 3739.28 2513 4900 0.115 3444 4033 0.028
4 1869.64 1238 2481 0.116 1705 2027 0.025
8 934.82 603 1283 0.117 839 1038 0.033
16 467.41 284 658 0.120 406 530 0.042
32 233.71 132 337 0.125 186 278 0.054

jbb

2 5694.68 5526 6259 0.013 5603 5798 0.006
4 2847.34 2741 3143 0.015 2769 2936 0.008
8 1423.67 1358 1578 0.017 1364 1485 0.012
16 711.83 660 798 0.022 668 759 0.018
32 355.92 320 400 0.029 324 392 0.025

oltp

2 2345.03 1375 8037 0.584 2213 2513 0.022
4 1172.52 664 4094 0.585 1066 1303 0.030
8 586.26 311 2048 0.586 504 658 0.041
16 293.13 145 1085 0.589 246 348 0.053
32 146.56 67 622 0.593 103 194 0.075

zeus

2 979.65 589 1311 0.107 901 1083 0.031
4 489.82 289 681 0.110 422 559 0.043
8 244.91 138 365 0.117 196 299 0.060
16 122.46 66 192 0.128 89 155 0.080
32 61.23 29 100 0.147 37 90 0.117

Table 4.10: #Unique. line addresses mapping to each set of a 32-way cache with plain
and hashed indexing. Coeff. (Coefficient of Variation) = Standard Deviation/Average.

4.8 Limitations

Our models currently do not handle the following:

1. Short-term Effects: Our models predicts long-term averages for cache performance.

Reconfiguration policies based on these models will not be able to react to high-

frequency (short-term) variations in cache performance. The main reason for this is

that the reuse sampling framework needs long traces, e.g., over several seconds of

execution time, to get a reasonable number of samples that can be used for miss ratio



137

predictions. High-frequency reconfigurations for large caches may anyways not be

feasible due to (i) latency and energy overheads in writing back a potentially large

amount of dirty data to memory when downsizing the cache and (ii) significant

cache warmup delays when upsizing the cache.

2. Prefetching Effects: Our models do not consider variability in the address stream

that may be caused by prefetching. Currently, we assume that all demand and

prefetch accesses to the LLC are included in the address stream presented to the

reuse estimation hardware and that the characteristics of this address stream will

remain unchanged with a reconfigured cache.

3. Cache Hierarchy Effects: Our models also do not consider variability in the address

stream due to inclusion policies in the cache hierarchy. For example, in a strictly

inclusive hierarchy, evictions at the LLC may cause evictions at L1 and/or L2. This

in turn can cause additional misses at those cache levels, resulting in a different

address stream arriving at the reconfigured LLC. This effect would be larger at

smaller LLC sizes than at larger sizes.

4. Other replacement policies: We have not modeled other proposed replacement

policies [117, 119] that improve upon LRU. One way to handle those could be to

model their relative advantage over LRU and use that in conjunction with the LRU

model described in this work to predict cache performance.

4.9 Conclusion

The central theme of this chapter is an online modeling framework, new analytical models,

and efficient hardware support, to predict cache performance at runtime for a range

of replacement policies and cache organizations. Our framework uses the concept of
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reuse/stack distances and transformations of probability vectors with Binomial matrices.

The framework unifies previous analytical models such as Smith’s associativity model,

Cypher’s Poisson model, and hardware techniques such as way-counters. We discussed

limitations of set and way-counters, gave a method to convert way-counter values for

caches with a different number of sets and showed that this requires maintaining shadow

tags for more than the maximum associativity. We also proposed a new predictor

that is decoupled from the cache configuration, uses hardware signatures for compact

representation of reuse intervals and can be used as an alternative to way-counters for

miss ratio predictions.

These models will enable governors to also decide optimal cache configurations,

without needing to profile numerous potential target cache configurations, in addition

to configurations for other knobs. Chapter 5 demonstrates one such governor that uses

these models and meets SLApower by simultaneously reconfiguring core frequency and

size of the last-level cache.
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5 cache power budgeting

The leakage power of a modern last-level cache is larger than the power of a simple

core running full out.

— Mark Horowitz [105]

5.1 Overview

Caches improve performance by reducing the effective memory access latency, but

consume significant static and dynamic power. Just as caches cannot be simultaneously

large and fast, they also cannot be both large and low power. Smaller caches consume

less static power, but can degrade performance and increase dynamic power due to more

misses. There is thus a tradeoff between performance and power consumption, which

depends on the currently executing set of workloads and data sets. Previous work has

shown that workloads often have critical working sets [233], and by reducing the cache

size to just hold the working set it is often possible to save power without a significant

performance loss [10]. The recent Ivy Bridge microarchitecture powers down a subset of

cache ways during periods of low activity [116].

In this chapter we explore power-performance management by dynamically configur-

ing core frequency and resizing the last-level cache. We develop a new governor that

targets SLApower, that is, maximizes performance for a power budget (see Figure 3.1

in Chapter 3 for an illustration of the actions that this governor must take). The power

budget that we consider is the system power consumed by the baseline configuration

that uses a large 32MB last-level cache and runs the cores at 2.132 GHz (see Section 5.2

for details about configurations) to execute a given workload.
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Figure 5.1: Power-performance for blackscholes with DVFS and cache resizing.

Figure 5.1 shows the power-performance state space for one of our workloads, blacksc-

holes, with cache sizes ranging from 2MB to 32MB and core frequencies ranging from

2.132 GHz to 2.665 GHz. The point (1,1), marked with ×, corresponds to the baseline

(current) configuration. For a fixed cache size, both performance and power increase

with frequency. For this workload, when frequency is fixed and cache size is increased,

performance barely changes but power consumption increases. The dashed arrow shows

the action needed to be taken by the governor to maximize performance while not

exceeding the power of the baseline (current) configuration. For this workload, the cache

needs to be reconfigured to 2MB and the frequency needs to be set to 2.482 GHz to get a

performance improvement of 16.5% while staying within the power budget. The arrow is

slightly dipped instead of being perfectly horizontal due to the unavailability of a valid

configuration at that point. Thus, for this workload, the entire power budget cannot be

utilized and the desired configuration will save (under-utilize) 2.6% power in addition to

improving performance by 16.5%.

Improved performance at the same power translates into energy savings by reducing
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RUE and subsequently, CPUE. Depending on the system, cache reconfigurability may

also reduce Emin. For example, we see in Figure 5.1 that having a 2MB configuration

lowers the Pareto frontier compared to the 32MB configuration. This in turn can change

EOP (decrease slope of line) and reduce Emin. Cache to core power-shifting benefits

will be more pronounced on processors running at lower clock frequencies than at

higher frequencies. This is because the cache power available to be redistributed is a

larger fraction of the system power in such environments whereas core dynamic power

dominates system power at higher frequencies.

To intelligently budget power between cores and caches, we investigate using hardware

support to drive analytical models of system power and performance. Online estimation

enables real-time feedback and adaptation to dynamic changes such as operating system

interactions or changing workload mixes. We demonstrate an integrated framework that

combines a cache reuse model, performance model, power model and DVFS model to

identify optimal power-budgeted configurations.

We extend the state of the art in two ways:

1. We show that careful cache power budgeting—using DVFS and cache reconfiguration—

driven by low-overhead predictors can improve performance, not just save power.

Our new governor exploits this to make the system operate close to Dynamic EO

and satisfy SLApower. For our target system, budgeting for system power improves

performance by 0.5%–15.2% for 15 of 32 workloads and saves total energy (that

includes wall power, not just on-chip and memory power) by 4.4% averaged over

all 32 workloads.

2. We develop the first online analytic power and performance models for reconfig-

urable caches that work for practical replacement policies (i.e., PLRU not just true
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LRU), do not use shadow tags, can predict for configurable-set caches, and can

configure up to larger caches, not just down to smaller ones.

Earlier works, e.g., Meng et al. [155], have used way counters and shadow tags

to determine appropriate cache configurations. However, way counters model

fixed-set configurable-associative caches. We discuss in Section 5.5 that such caches

can cause large performance degradation with small LLCs in an inclusive hierarchy

that can be avoided by using an LLC with large associativity for the same cache

size. Thus, we use configurable-set fixed-associative caches in this study. Our reuse

distance based cache performance predictor, described in Chapter 4, can be used to

model such caches.

The rest of this chapter is organized as follows. Section 5.2 describes the system

model and the workloads that we use for our evaluation. Section 5.3 shows some

of the opportunities for saving power and energy by reconfiguring caches and the

need for intelligent power budgeting. Section 5.4 presents a big-picture view of our

power-budgeting approach. Section 5.5 justifies our choice of using configurable-set

fixed-associative caches and discusses errors in cache miss rate predictions. Section 5.6

presents the models that we use to predict performance and power. Section 5.7 combines

these with DVFS models to predict optimal system configurations.

5.2 Infrastructure

Table 5.1 describes the 8-core CMP we use in this study. We assume that the core

frequencies can be increased from the baseline frequency of 2132 MHz in steps of 50

MHz. Section 5.7 describes the scaling assumptions in more detail. Similar to our Haswell

server, HS, all cores operate at the same frequency.
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Core configuration 4-wide out-of-order, 128-entry window, 32-entry scheduler
Number of cores 8 On-chip frequency 2132–2665 MHz

Technology Generation 32nm Temperature 340K–348K
Functional Units 4 integer, 2 floating-point, 2 mem units

Branch Prediction YAGS 4K PHT 2K Exception Table, 2KB BTB, 16-entry RAS
Disambiguation NoSQ 1024-entry predictor, 1024-entry double-buffered SSBF

Fetch 32-entry buffer, Min. 7 cycles fetch-dispatch time

Inclusive

L1I Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP
L1D Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP
L2 Cache private 256KB 8-way per core, 6 cycle access latency, PLRU, ITRS-LOP

L3 Cache shared, configurable 2–32 MB 32 way, 8 banks, 18 cycle access latency,
PLRU, ITRS-LOP, serial

Coherence protocol MESI (Modified, Exclusive, Shared, Invalid), directory
On-Chip Interconnect 2D Mesh, 16B bidirectional links

Main Memory 4GB DDR3-1066, 75ns zero-load off-chip latency, 2 memory controllers,
closed page, pre-stdby

Table 5.1: System configuration.

We assume an 8-banked L3 cache that is dynamically re-configurable, with capacities

ranging from 2MB to 32MB and 32-way associativity, for a total of 5 cache configurations.

We conservatively assume that the access latency in cycles is constant for all configurations.

To evaluate power and performance, we perform full-system simulation using GEMS [149]

augmented with a detailed timing and power model. We use CACTI 5.3 [197] to determine

the static power and dynamic activation energy per component.

The conventional bit-selection cache index function may not map addresses uniformly

across the sets. A number of systems that target commercial workloads use more

sophisticated hashing functions [46, 198, 221] to reduce conflict misses. Complex hashed

index functions are more common in L2 and L3 caches, where an XOR-based hash

function adds a negligible delay to the access latency. We use a simple XOR-based

hashing function, discussed in Chapter 4, to distribute lines more uniformly among the

L3 cache sets [55, 56]. This usually improves performance over the conventional bit-
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Multithreaded Multiprogrammed
Workload Abbrv. Workload Abbrv.

blackscholes blac astar(4)+bwaves(4) as-bw
bodytrack body astar(4)+gcc(4) as-gc

fluidanimate flui astar_lakes(8) as-la
freqmine freq bwaves(8) bwaves
swaptions swap bzip2(8) bzip2

ammp ammp cactusADM(2)+mcf(2)+milc(2)+bwaves(2) c-m-m-b
equake equa gcc_166(8) gcc

fma3d fma3 gcc(1)+omnetpp(1)+mcf(1)+bwaves(1)+ g-o-m-...lbm(1)+milc(1)+cactusADM(1)+bzip2(1)
gafort gafo lbm(8) lbm
mgrid mgri libquantum(8) libq
swim swim libquantum(4)+bzip2(4) li-bz

wupwise wupw mcf(4)+bwaves(4) mc-bw
apache apac mcf(4)+libquantum(4) mc-li

jbb jbb omnetpp(8) omnetpp
oltp oltp omnetpp(4)+lbm(4) om-lb
zeus zeus soplex_pds_50(8) soplex

Table 5.2: Workloads and their abbreviations. Numbers in parentheses for multipro-
grammed workloads indicate the number of copies of the corresponding constituent
workload. For example, astar(4)+bwaves(4) means 4 copies of astar and 4 copies of
bwaves. Each constituent workload of multiprogrammed workloads is single threaded.

selection index function and also makes cache modeling easier by making the distribution

more uniformly random. Due to the self-canceling property of XOR, no extra tag bits

need to be stored to retrieve original addresses, if necessary, from the hashed values.

We use two types of workloads—multithreaded and multiprogrammed. Table 5.2

enumerates these workloads along with their abbreviations that we use in the rest of

this chapter. Each workload uses a total of 8 threads.

Multithreaded workloads consist of 7 SPEComp [15] benchmarks (ammp, equake, fma3d,

gafort, mgrid, swim, wupwise) with “ref” inputs, 5 PARSEC [30] benchmarks (blackscholes,

bodytrack, fluidanimate, freqmine, swaptions) with “simlarge” inputs, and 4 Wisconsin
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commercial workloads [4] (apache, jbb, oltp, zeus). Each workload runs for a fixed amount

of work (e.g. #transactions or loop iterations [6]), corresponding to ~380M – ~570M

instructions (average: ~500M) depending on the workload, that is logically partitioned

into adjacent training and prediction intervals of roughly equal size. The interval sizes

vary according to the available work units in each workload. (See Section 5.4 for a

discussion of execution intervals.)

Multiprogrammed workloads consist of combinations of SPEC CPU2006 [101] bench-

marks (astar, bwaves, bzip2, cactusADM, gcc, lbm, libquantum, mcf, milc, omnetpp, soplex).

Each workload consists of 8 programs, equally divided among the benchmarks in the

combination. The training and prediction intervals are ~250M instructions each.

Each simulation run starts from a mid-execution checkpoint that includes cache

warmup. Simulating one or more seconds of target execution is infeasible due to high

simulation overheads of detailed models.

5.3 Cache Resizing Opportunities

Figure 5.2 shows MPKI (Misses Per Kilo Instruction) with respect to cache size for our

workloads in the Prediction Interval. (See Section 5.4 for a discussion of execution

intervals.) Our workloads exhibit a range of miss rates from very small (<< 1 MPKI) to

quite large (> 40 MPKI). We also observe the following distinctive characteristics among

our workloads.

1. Cache insensitive (low/medium locality): those that have a significant part of their

working sets that never fit in the cache. They have a high miss rate that changes

very little with cache size e.g., equa, fma3, flui, freq, gafo, wupw, libq, lbm.

2. Cache insensitive (high locality): those whose working sets mostly fit in the cache.
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They have a low miss rate that changes very little with cache size e.g., blac, body,

swap, ammp.

3. Cache sensitive: those whose working sets fit significantly more in large caches

than in smaller ones. Their miss rates change significantly with cache size, e.g.,

commercial workloads, mgrid, li-bz, mc-bw, mc-li, om-lb, soplex, etc.

Cache sensitive workloads incur high performance losses with small caches and require

larger caches for good performance. So there is less power-saving (and subsequently,

power-budgeting) opportunity by using a smaller cache. In contrast, cache insensitive

workloads are good candidates for power-budgeting, since their performance largely

does not change for different configurations.

Figure 5.3 illustrates the opportunity. It shows the average power breakdowns for

our workloads with the smallest LLC configuration (2MB 32-way), the largest LLC

configuration (baseline 32MB 32-way), and the performance gain, power saved, and

energy saved by executing the workload with the smallest cache instead of with the

largest cache. The metrics are inter-related as follows.

PerfGain = Speedup − 1

=
time with 32MB LLC
time with 2MB LLC − 1 (5.1)

PwrSave = 1 −
power with 2MB LLC

power with 32MB LLC (5.2)

EnrSave = 1 −
energy with 2MB LLC

energy with 32MB LLC (5.3)

Since Energy = Time × Power, we have

(1 − EnrSave) =
1 − PwrSave
1 + PerfGain (5.4)
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Core static Core dynamic L1+L2 LLC Clock+Network+I/O Memory background Memory active
Workload blac body flui freq swap ammp equa fma3 gafo mgri swim wupw apac jbb oltp zeus
PerfGain 0.1% -0.2% -0.5% -3.4% -0.1% 0.6% 0.3% -0.8% -0.7% -57.5% -21.1% -1.1% -39.7% -35.2% -28.0% -23.3%
PwrSave 21.8% 17.2% 19.3% 20.8% 19.2% 16.1% 16.0% 15.4% 18.1% 42.3% 14.9% 11.1% -2.1% 17.5% 5.3% 9.8%
EnrSave 21.8% 17.0% 18.8% 18.1% 19.1% 16.6% 16.3% 14.7% 17.5% -35.9% -7.9% 10.1% -69.4% -27.4% -31.4% -17.6%

EnrSaveW 9.5% 7.6% 7.9% 5.7% 8.1% 8.7% 8.4% 7.2% 7.7% -73.0% -15.0% 5.4% -67.6% -41.2% -35.5% -24.0%
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Core static Core dynamic L1+L2 LLC Clock+Network+I/O Memory background Memory active
Workload as-bw as-gc as-la bwaves bzip2 c-m-m-b gcc g-o-m-... lbm libq li-bz mc-bw mc-li omnetpp om-lb soplex
PerfGain -38.5% -36.8% -33.1% -12.6% -36.1% -9.4% -42.0% -30.6% -1.3% 0.2% -40.6% -26.2% -6.3% -42.2% -49.7% -49.3%
PwrSave 17.3% 13.5% 9.2% 13.3% 19.2% 13.3% 4.5% 11.8% 12.7% 13.8% 3.9% 13.6% 14.9% 6.1% 13.0% 9.0%
EnrSave -34.5% -36.9% -35.8% 0.9% -26.4% 4.3% -64.8% -27.1% 11.6% 14.0% -61.9% -17.1% 9.2% -62.3% -72.8% -79.6%

EnrSaveW -46.0% -47.7% -42.6% -5.9% -40.9% -2.0% -68.9% -34.7% 6.5% 7.9% -64.8% -24.7% 2.0% -67.6% -83.5% -88.5%

Figure 5.3: Two power stacks are shown for each workload: the left stack for the
lowest-power LLC (2MB 2-way) and the right stack for the highest-power LLC (baseline
configuration, 32MB 32-way). Power consumed by the 2MB LLC is not conspicuous
as it constitutes a small percentage of total power. PerfGain shows performance gain
(= speedup - 1), PwrSave shows system power saved, and EnrSave shows system
energy saved with the 2MB 32-way cache with respect to the baseline 32MB 32-way
cache. EnrSaveW accounts for wall power in energy savings calculations. Negative
improvements (= losses) are highlighted . Core power includes ROBs, bypass networks,
functional units, register files, TLBs, branch predictors, fetch & decode logic. We assume
aggressive clock-gating. See Section 5.2 for details on system model.
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While PwrSave and EnrSave only account for socket power and memory power,

EnrSaveW uses wall power estimates into calculating energy savings. We use a quadratic

function, discussed in Section 3.8 of Chapter 3, to estimate wall power from system

power reported by the simulator.

As discussed above, cache insensitive workloads show negligible performance impact

but significant power (and energy) savings. Cache sensitive workloads, on the other hand,

show significant performance and energy losses, e.g., apache suffers a 39.7% performance

loss and a 67.6% energy loss (EnrSaveW), soplex suffers a 49.3% performance loss and

a 88.5% energy loss (EnrSaveW). Further, using a smaller cache does not always save

system power—apache burns 2.1% more power. Overall, 19 of the 32 workloads waste

energy if the cache is configured to the smallest size. The geometric mean of energy

waste is 8.3% for multithreaded workloads and 33.9% for multiprogrammed workloads.

Thus, power budgeting must be done carefully, as a poor choice of cache configuration

can drastically degrade performance and waste energy. Selecting a cache configuration

that optimizes power-efficient performance is challenging since the optimal point varies

for different workloads, and even for different phases within a given workload. Exhaustive

evaluation is impractical due to the large number of feasible system configurations.

In this work, we use analytical models to estimate the power and performance of

different configurations, allowing rapid prediction of the optimal system configuration.

This requires four predictors: cache miss rate predictor, performance impact predictor,

power impact predictor, optimal DVFS scaling predictor. The miss rate predictions are

combined with simple performance and power models (Section 5.6) and an on-chip

DVFS model (Section 5.7) to identify power-budgeted configurations that will maximize

performance.
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5.4 Operations overview

This work focuses on improving performance by shifting power from the last-level cache

to the cores. For cores, we use conventional on-chip DVFS techniques, similar to those

used in Intel’s Turbo Boost [111], to run cores at higher voltage and frequency. For caches,

we use power-gating [162] to eliminate all power for disabled cache regions.

While power-gating can enable a higher power margin for utilization, it results in

dirty data being written back to memory when down-sizing the cache and non-trivial

warmup time after up-sizing the cache. Assuming a sustained memory bandwidth of

8.53 GBPS (half of maximum bandwidth in the baseline) a worst-case scenario with

32MB of dirty data needs ~3.8 msec writeback time. To keep performance and energy

overheads small (< 1%) the reconfiguration interval should be at least 380 msec. This

automatically precludes reacting to high frequency events such as context switches that may occur

between 300 to 5000 times per second [64]. In contrast, drowsy mode [77] can enable small

reconfiguration intervals with low overhead, but its need to maintain a minimum data

retention voltage (DRV) limits the available power margin.

Reconfiguration being costly and infrequent, trial-and-error search for the optimal con-

figuration at runtime is not appealing. Stepwise adaptation [163] may progress through

multiple intermediate states. In contrast, this work uses online power-performance

predictors that enable one-shot reconfiguration. They have the following strengths:

• Ability to predict performance for caches larger or smaller than the currently active

configuration so that the optimal configuration can be reached in one step.

• Ability to predict the effect of changes in the number of sets of the cache.

• Ability to work with implementable cache replacement policies, such as PLRU.

Prior work [155] has assumed LRU replacement, which is impractical to implement
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1. Concurrently,

a) Specialized hardware (Section 4.6.1 of Chapter 4) tracks reuse distance
distribution for L3 accesses.

b) Simple hardware performance counters track activity factors of cores and
caches.

c) Simple hardware performance counters track correlation between miss rate
and CPI.

2. Periodically (e.g., once per second), invoke a software routine (ISR) to determine
optimal cache configuration:

a) Predict miss rates (Section 5.5) using information from 1(a).
b) Predict performance and power (Section 5.6) using information from 1(b),

1(c), 2(a).
c) Predict DVFS scaling and possible gain (Section 5.7) using information from

1(c), 2(a), 2(b).

3. Reconfigure system with the best predicted configuration if predicted gain is
> 2%. Write back dirty cache blocks as needed.

4. System continues to monitor predicted and actual performance and power metrics
to detect and adjust in case of incorrect predictions (e.g., due to phase change
effects).

Figure 5.4: Operations Overview.

for highly-associative caches.

Figure 5.4 shows an operational overview of our proposed system. Execution time is

logically partitioned into intervals. Like most predictors, our work uses past execution

behavior to predict behavior in subsequent intervals. Simple hardware mechanisms are

used to observe execution characteristics that are then used by prediction software (ISR)

to determine the optimal system configuration. We refer to the interval used to train the

predictors as the Training Interval and the interval where the results of prediction are

applied as the Prediction Interval.
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Intervals should be long enough so that predictor and reconfiguration overheads

are small (< 1%). Predictor compute time depends on the number of target cache

configurations evaluated. This has two components: miss-rate prediction (< 0.5 msec,

using Section 4.5.5, Chapter 4, results for 25 configurations) and DVFS scaling computation

(< 0.3 msec, see Section 5.7.4). Together with cache reconfiguration overhead (< 3.8 msec),

the total time overhead < 3.8 + 0.5 + 0.3) = 4.6 msec. A small amount of additional time

is needed to read various performance counters. So, we recommend an interval length

> 500 msec. Longer intervals corresponding to 1 or more seconds of execution may be

needed to get sufficient samples. Our work targets optimizing system operations for the

average execution profile over long-term intervals.

There are two sources of error in the predicted values: model error and phase error.

Model error results from simplifying assumptions (e.g., independence and identical

distribution) that may not strictly hold in practice. Phase error also includes changes in

workload behavior as it moves though different phases of execution [195]. This distinction

helps identify which errors could be reduced by further refining the model and which

errors are orthogonal to it. When phase changes occur the behavior from a previous

interval is not a good predictor for the next interval. The predictors may be improved

using previously proposed online phase detection mechanisms [161].

Execution Time

Training 

Prediction

(a) Model Error Prediction

Execution Time

Training 

Prediction

(b) Phase Error Prediction

Figure 5.5: Training and Prediction intervals.

Model Error predictions use the same interval for training and prediction and hence
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incur model error alone. Such predictions offer insight into model accuracy, but are

useless for reconfiguration purposes. Phase Error predictions use a preceding training

interval to predict the behavior of a subsequent prediction interval and includes both

model and phase errors. These predictions are used to reconfigure the system. Figure 5.5

illustrates training and prediction intervals. In the rest of this chapter, we will use the

term Model Error and Model Error prediction interchangeably and likewise with Phase

Error and Phase Error prediction.

For both Model Error and Phase Error predictions, we study absolute error and relative

error. The absolute error is (predicted value - actual value). Relative error is (absolute

error/actual value). The actual and predicted values can be inferred using the calculation:

actual value = (absolute error/relative error).

5.5 Cache miss rate prediction

Predicting the cache miss rate for all possible cache configurations is critical to our

power-budgeting approach. We use our reuse distance based cache miss ratio predictor,

described in Chapter 4, for this purpose. This section elaborates step 2(a) of Figure 5.4.

Since our simulation runs are not very long, we do not perform address sampling to

estimate the reuse distributions. Instead, we assume that the full reuse distributions are

available for use as inputs to our miss rate predictors. A practical deployment would need

to use sampling, as described in Chapter 4, over longer runs. With a sufficient number

of samples, the inferred reuse distributions should be close to the actual distributions.

Figure 5.6 shows reuse distance distributions for our workloads in the Prediction

Interval. The dashed vertical lines with size annotations indicate fully-associative LRU

cache sizes that would be necessary if all accesses with reuse distances less than or equal

to that point must hit. Cache insensitive workloads, such as blac and equa, have “flat”
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reuse distributions over the range of cache sizes that we consider whereas cache sensitive

workloads show a significant slope.

Good miss rate predictions should not have high absolute errors. That is, the

difference between the predicted and actual MPKI should be small. Since cache miss

rates significantly affect overall performance, large absolute errors in MPKI prediction

will also translate into large errors in performance prediction that can lead to poor

configuration selections. Note that relative errors can be large for workloads with small

miss rates but have little effect on performance if the absolute errors are small.

For this study, we consider cache reconfiguration in the number of sets, but not in the

number of ways. Our caches always have 32-way associativity for all cache sizes. This is

because for small caches, smaller associativities usually cause more conflict misses than

with larger associativities. Since our cache hierarchy is inclusive, evictions at the LLC

can use evictions at L2 which can then result in increased demand accesses from L2 to

L3 that subsequently miss in L3. The effect of this is two-fold:

1. 2MB 2-way LLCs can witness significantly more accesses and misses than 2MB

32-way caches while saving negligible power due to reduced associativity, and

2. miss rate predictions using the characteristics of the address stream with the 32MB

32-way LLC are no longer accurate since the nature of the access stream to the LLC

is altered.

To elaborate on the above points, we momentarily assume that our LLC is configurable

in both the number of sets and ways. Figure 5.7 shows the number of accesses (misses

from L2) to a 2MB 2-way LLC and to a 2MB 32-way LLC, normalized to the number

of accesses to the LLC in the baseline configuration (32MB 32-way). Figure 5.8 shows

the corresponding MPKI values. Ideally, there should be no differences in the number



156

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

bl
ac

k
bo

dy flu
i

fr
eq

sw
ap

am
m

p
eq

ua
fm

a3
ga

fo
m

gr
i

sw
im

w
up

w
ap

ac jb
b

ol
tp

ze
us

as
-b

w
as

-g
c

as
-la

bw
av

es
bz

ip
2

c-
m

-m
-b gc
c

g-
o-

m
-..

.
lb

m
lib

q
li-

bz
m

c-
bw

m
c-

li
om

ne
tp

p
om

-lb
so

pl
exN

um
 A

cc
es

se
s t

o 
LL

C 
(N

or
m

al
ize

d) 2-way 32-way
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of accesses to the LLC. However, due to a strictly inclusive cache hierarchy and more

conflicts, the 2-way cache witnesses more accesses than the 32-way cache. The effect

is more pronounced for the multiprogrammed workloads than for the multithreaded

workloads. Large changes in the access stream contribute to large changes in MPKI

values in addition to that due to changed cache organization.

Figure 5.9 shows the average of absolute errors in MPKI prediction for both Model

Error and Phase Error over all workloads for different associativities and all cache sizes

(2MB, 4MB, 8MB, 16MB, 32MB) for each associativity. We observe that for both Model

Error and Phase Error, predictions for 32-way caches are significantly more accurate than

for 2-way caches. For Model Error, the average error increases from 0.65 MPKI to 4.1

MPKI—a 6.3× change. For Phase Error, the average error increases from 1.2 MPKI to 4

MPKI—a 3.3× change.

Figures 5.10 and 5.11 show prediction error distributions for Model Error and Phase

Error respectively for different associativities over all cache sizes that we consider. The

predictions become more accurate at higher associativities. This is seen in the Absolute



158

Error vs. Relative Error scatter plots where the data points become more concentrated

around the origin as associativity increases. It is also seen in the cumulative distribution

plots where the worst case error decreases and the curves reach 100% more quickly as

associativity increases.

For the rest of this chapter we only consider 32-way caches. Figures 5.10 and 5.11

show that the absolute error for Model Error is < 7 MPKI with 90% of errors within

2.4 MPKI. For Phase Error, the worst-case error is ~10 MPKI with 90% of errors within

3.74 MPKI. The Phase Error charts also show a few points with high relative error (swap)

but this happens with at small MPKI values and result in small absolute errors, so the

performance impacts of mispredictions are small.

5.6 Performance and Power prediction models

Predicting miss rates for target cache configurations is necessary, but not sufficient for

making power-budgeting decisions; it is also necessary to predict performance and power

impact. This section elaborates step 2(b) of Figure 5.4.

To predict performance given an L3 miss rate r for an instruction interval, let ˆCE(r)

denote the estimated number of cycles to complete that interval. ˆCE(r) = ˆCPI(r)×

number of instructions (aggregate, over all cores). We approximate ˆCPI(r) by measuring

the actual L3 misses, cycles and instructions committed during the training interval using

hardware performance counters and then using least-squares regression to fit this to a

simple linear model so that ˆCPI(r) = g+ r× h for estimated constants g and h.

For a set of n tuples of the form (xi,yi), i = 1..n, the constants can be calculated with
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Figure 5.10: Model Error for miss ratio estimation.
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Figure 5.11: Phase Error for miss ratio estimation.
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Figure 5.12: CPI regression for commercial workloads in the Training Interval

the following equations.

h =

∑n
i=1 xiyi
n −

(∑n
i=1 xi
n

)(∑n
i=1 yi
n

)
∑n
i=1 x

2
i

n −
(∑n

i=1 xi
n

)2 (5.5)

g =

∑n
i=1 yi
n

− h

(∑n
i=1 xi
n

)
(5.6)

The above estimation is done online. At the end of every 20,000 cycles, two metrics

are computed: (xi = ∆ LLC misses/∆ instructions committed) and (yi = ∆ cycles/∆

instructions committed). The individual (xi,yi) tuples are not stored. Instead, cumulative

metrics (product, square, sum) with earlier values are computed. 4 registers and 1 counter

(for tracking total number of tuples) are maintained. At the end of the training interval,

the slope (h) and offset (g) of the best-fit line are computed.
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Figure 5.13: Combined CPI regression for commercial workloads in the Training Interval

The linear approximation does not always succeed. In some cases due to variations

in program behavior, low MPKI, or lack of variability in the tuples, the slope may

be computed as negative. This is unrealistic as we expect execution time to increase

with MPKI due to the long off-chip miss latency. In such cases, the computed slope

is discarded and instead a predetermined value is chosen. We chose this to be the

value estimated for the commercial workloads over the Training Interval using oracle

information. We get this oracle information by simulating the workloads for all possible

cache sizes in the Training Interval and measuring the MPI and CPI values. Figure 5.12

shows the individually fitted lines as well as R2 values for each commercial workload.

The R2 values are close to 1 indicating good fits. Figure 5.13 shows the fitted line over

data points from all four commercial workloads. The fit is less good (lower R2 value),

but we use this as a representative for average program behavior. Also, we predict CPI

to be the same if predicted MPKI is within 0.01 or 1% of the current configuration.

Figures 5.14 and 5.15 show Model Error and Phase Error in CPI estimation over all

workloads using the online estimator. The average of absolute values of relative errors

for Model Error is 4.7% whereas for Phase Error it is 9.9%. For Model Error, 90% of
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Figure 5.14: Model Error for CPI estimation.
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Figure 5.15: Phase Error for CPI estimation.

predictions have within 14.7% relative error whereas for Phase Error it is 23.6%.

For power predictions, we separately predict static power and dynamic power. We use

CACTI to estimate static power and dynamic energy per activation per component. For the

L3 cache, the number of tag and data activations for accesses, misses, replacements and

coherence activities is tracked. To predict activations, the model makes some simplifying

assumptions, e.g., L3 accesses, coherence activities, and the percentage of L3 misses

that cause additional writebacks to memory is the same as that observed in the current

configuration. These assumptions are not strictly true but work reasonably well.

Figures 5.16 and 5.17 show Model Error and Phase Error in system power estimation

over all workloads using the online estimator. The average of absolute values of relative
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Figure 5.16: Model Error for system power estimation.
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Figure 5.17: Phase Error for system power estimation.

errors for Model Error is 4% whereas for Phase Error it is 5.8%. For Model Error, 90% of

predictions have within 6.2% relative error whereas for Phase Error it is 12.4%. Since

static power is known, the errors are due to dynamic power estimations. This has two

components: activation count estimation and performance estimation. Improving either

will reduce errors.

5.7 Model-driven Power Budgeting

The analytical models of the preceding sections determine the power and performance

of different cache configurations for a given workload. Here we describe how to estimate

whether or not it is better to reconfigure the cache to a smaller configuration that uses less
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Figure 5.18: Max. performance gains with basic model (Section 5.7.1). Each series
corresponds to a different value of β, from β = 65% to β = 90%. Dold = β(1 − α)P.

power, leaving more power available to run the core at a higher voltage and frequency.

This section elaborates step 2(c) of Figure 5.4.

We develop our power-budgeting model in three steps, each step adding some

more complexity to the previous one. First, Subsection 5.7.1 presents a basic model for

calculating maximum performance gains in a power-budgeting environment where power

gating and on-chip DVFS are used for shifting power. Next, Subsection 5.7.2 applies it to

power budgeting for on-chip resources and includes the effects of temperature rise with

frequency scaling on static power estimations. Finally, Subsection 5.7.3 includes main

memory power in the power budget. We use only on-chip DVFS. Memory voltage and

frequency are not scaled.

5.7.1 Basic model

Let P be the power-budget (assumed to be fully utilized by the current configuration)

and let α denote the fraction of this budget that can re-budgeted for better performance.

The power margin, αP, can include both static and dynamic power of the current

configuration. Ideally, DVFS transforms all of αP into additional dynamic power in
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the target configuration. However, there are leakage losses due to temperature and

voltage rise and performance losses due to non-scaling of memory latency. Figure 5.18

shows a schematic of power shifted from the old (current) configuration to the new

(target) configuration. After DVFS, the dynamic power of the target configuration,

Dnew 6 Dold + αP. Since dynamic power is proportional to V2f, we have

Dnew

Dold
=

(
Vnew

Vold

)2(
fnew

fold

)
6

(
1 +

αP

Dold

)
(5.7)

Let γ = fnew
fold

. So, Speedup 6 γ. Using published data [99] for voltage-frequency

pairs for the Pentium M, we assume that (Vnew − Vold) ∝ (fnew − fold) and that every

200MHz change in frequency is accompanied by a 50mV change in voltage. Thus,

Vnew = Vold + 50mV
(
fnew−fold

200MHz

)
. We also assume a base operating voltage of 0.9V and

a base operating frequency of 2132MHz. Substituting values in Equation 5.7,

(
Vnew

Vold

)
= (1 + 0.5922(γ− 1)) (5.8)

(1 + 0.5922(γ− 1))2γ 6

(
1 +

αP

Dold

)
(5.9)

Figure 5.18 shows maximum performance gains with γ 6 1.25. The gains increase with

both α and β.

5.7.2 On-chip power-budgeting model

We will now extend the basic model by including the effects of temperature rise with

DVFS and will apply it to on-chip power budgeting. For on-chip power-budget P,

current operating voltage V , frequency f, temperature T and target cache configuration

C̄ = (capacity,associativity), let P̂st(C̄, T) and P̂dyn(C̄,V , f) denote the estimated

on-chip static and dynamic power respectively. The dynamic power before DVFS,
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Dold = P̂dyn(C̄,V , f). The power margin, αP = P − P̂st(C̄, T) − P̂dyn(C̄,V , f) can be

utilized by increasing the operating voltage and frequency to Vnew and fnew respectively.

However, scaling is accompanied by an increase in static power that reduces the available

power margin due to temperature and voltage increase.

Since chip power-budget is fixed, ideally, overall chip temperature cannot rise (Stefan-

Boltzmann law). However, since processor chips are not ideal black-bodies, the higher

dynamic power of the cores can cause the operating temperature to rise locally. This

in turn increases the static power dissipation by ∆P̂st(T) = P̂st(C̄, Tnew) − P̂st(C̄, T).

∆P̂st(T) depends on γ. For our implementation we assumed a maximum temperature

rise of 8 ◦C corresponding to a maximum scaling of 533MHz (2132MHz to 2665MHz)

with 3 ◦C contributed by every 200MHz [99]. We assumed a continuous scaling domain

with temperature rise proportional to scaling. Thus, ∆P̂st(T) = ( γ−1
1.25−1)× (P̂st(C̄, T + 8) −

P̂st(C̄, T)). By default, CACTI allows modeling temperature effects in steps of 10K. We

used linear interpolation to obtain static power at other points. So,

∆P̂st(T) =

(
γ− 1
0.25

)
× 8

10 × (P̂st(C̄, T + 10) − P̂st(C̄, T)) (5.10)

The higher operating voltage increases static power dissipation. Assuming a lin-

ear model [38], the increase is ∆P̂st(V) =
(
Vnew
Vold

− 1
)
× P̂st(C̄, T)). Combining with

Equation 5.8, we have

∆P̂st(V) = 0.5922× (γ− 1)× P̂st(C̄, T) (5.11)

Both ∆P̂st(T) and ∆P̂st(V) reduce αP. Plugging values into Equation 5.9, we get

(1 + 0.5922(γ− 1))2γ 6

(
P − P̂st(C̄, T) − ∆P̂st(T) − ∆P̂st(V)

P̂dyn(C̄,V , f)

)
(5.12)
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Since memory voltage and frequency are not scaled, the number of cycles to execute the

same task in the scaled configuration is increased due to scaling of memory latency

(in terms of processor cycles). This reduces the increase in on-chip dynamic power

that Equation 5.12 assumes. We use this fact to improve Equation 5.12. With a linear

performance predictor model, ˆCPI(r) = g+r×h. After scaling, ˆCPI(r)scaled = g+γ×r×h.

So,

(1+0.5922(γ−1))2γ 6

(
g+ γ× r× h
g+ r× h

)
×

(
P − P̂st(C̄, T) − ∆P̂st(T) − ∆P̂st(V)

P̂dyn(C̄,V , f)

)
(5.13)

5.7.3 System power-budgeting model

We will now include memory power in addition to on-chip power in the power budget.

We start from Equation 5.13, noting that since memory voltage and frequency are not

scaled, P̂dyn(C̄,V , f) still refers to on-chip dynamic power. However, increase in memory

power can reduce the available power budget. Let P ′, P̂mbp(C̄) and P̂map(C̄,γf) denote

the available system power-budget, estimated memory background power and estimated

memory active power. Equation 5.13 can now be reformulated as

(1 + 0.5922(γ− 1))2γ 6

(
g+ γ× r× h
g+ r× h

)
×(

P ′ − P̂st(C̄, T) − ∆P̂st(T) − ∆P̂st(V) − P̂mbp(C̄) − P̂map(C̄,γf)
P̂dyn(C̄,V , f)

) (5.14)

For I instructions, the expected execution time with the target configuration is

I×
(
g+γ×r×h

γ

)
with frequency scaling γ and I× (g+ r× h) without frequency scaling.

So,

P̂map(C̄,γf) = γ×
(

g+ r× h
g+ γ× r× h

)
× P̂map(C̄, f) (5.15)

Equation 5.15 is plugged into Equation 5.14 for the final equation.
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5.7.4 Results and Limitations

Equation 5.14 can be rearranged in the form f(γ) 6 0 and solved in software using known

techniques for solving cubic equations. To keep overheads low, we recommend using

enumeration for f(γ): for each allowed frequency step, evaluate f(γ) and check the sign

of the result. A change in sign between consecutive steps indicates a solution point. Each

evaluation takes < 5 µsec on a Nehalem (2.26GHz) machine. We have 11 frequency steps

over the frequency range that we consider. Thus, the DVFS computation time per cache

configuration is < 0.06 msec and < 0.3 msec over all 5 cache configurations.

Figure 5.19 shows the performance gains and power-budget utilization of the best

predicted configurations when optimizing performance subject to a system power budget.

The baseline is the system with the highest-power LLC (32MB 32-way). The Table at the

bottom of the figure includes the configurations selected.

Fifteen workloads show 0.5% to 15.2% performance improvement over the baseline.

There is some under-utilization of the baseline power budget, leading to positive values

of PwrSave numbers, due to conservative assumptions about the effect of DVFS on combi-

national logic and errors in expected performance and power of the target configurations.

All 17 workloads for which a configuration different than the baseline was predicted

saved energy (EnrSaveW) from 1.3% to 14.6%. The remaining workloads continued with

the baseline configurations and did not save energy. The geometric mean of energy

savings over all 32 workloads was 4.4%.

Unfortunately, the predicted configurations led to performance loss for swim and lbm

and more power being used for gcc and omnetpp. Inaccurate predictions may lead to

performance loss, under/over-utilization of the power budget and associated thermal

overshoot. This situation is not unique to our system: any non-oracular predictive

mechanism would need to detect and deal with occasional mispredictions.
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Figure 5.19: System power budgeting (Section 5.7.3) with best predicted configuration
(NI prediction). Two power stacks are shown for each workload: the left stack for the
predicted configuration and the right stack for the baseline configuration (32MB 32-way
LLC, 2132 MHz frequency). For each workload, the system power consumed by the
baseline configuration is the power budget. CacheSize and FreqScale (= new frequency

baseline frequency
- 1) together define the predicted configuration. PerfGain shows performance gain (=
speedup - 1), PwrSave shows system power saved (= remaining system power budget
with respect to the baseline), and EnrSave shows system energy saved with the predicted
configuration compared to the baseline. EnrSaveW accounts for wall power in energy
savings calculations. Negative improvements (= losses) are highlighted .

We will now compare our model predictions to that by an oracle. The oracle runs all

possible configurations (#configurations = #cache sizes × #frequencies) to determine the

highest-performing configuration that satisfies the power budget. The oracle identifies

configurations on the Pareto frontier. Figure 5.20 shows the performance gains with

respect to the baseline configuration with the oracle and our model for all predictions

where at least 2% gains were predicted, either by the oracle or the model, while being

within the power budget. For example, the oracle predicts 16.5% gains for blac whereas
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Figure 5.21: Comparison of power savings between the oracle and our model.

the configuration selected by our model achieved 14.1%. The oracle never selects a

performance-losing configuration. Our model, on the other hand, selected configurations

that caused performance losses on two applications—swim (3.3%) and lbm (1.1%). The

model-selected configurations performed better than the oracle for two benchmarks—gcc
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Figure 5.22: Comparison matrix between the oracle and our model.

(model: 7.6%, oracle: 2.9%) and omnetpp (model: 6.5%, oracle: 2.8%), because they

overshot the power budget by 5.4% and 2.6% respectively. The power savings, shown

in Figure 5.21, shows what percentage of the power budget remains unutilized. The

savings are negative, indicate overshoot of the power budget, for gcc and omnetpp. For a

number of workloads, the unutilized power budget is higher with the model-selected

configurations than with the oracle-selected configurations. This under-utilization leads to

lower performance gains than the oracle for the corresponding workloads in Figure 5.20.

Figure 5.22 shows a qualitative comparison between the oracle and the model, cor-

related across performance gains and power savings (power budget under-utilization).

There cannot be any workload for which the oracle gains less performance and saves less

power than the model, so the bin in the lower-right quadrant is empty. The bin in the

upper-left quadrant shows workloads (as-la, bwaves, mcf-li)) where the oracle gained more

performance as well as saved more power than the model. The upper-right quadrant

shows workloads for which the model performed better than the oracle, but saved less

power. This can only happen if the power budget is overshot. The lower-left shows

workloads where the model resulted in conservative behavior—less performance than the

oracle, but more underutilized power budget. The remaining workloads had identical

gains with the oracle and with the model. This includes two workloads, flui and as-gc,
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with performance gains (15.2% and 0.5% respectively) with power budgeting and the

rest of the workloads with no gains or less than 2% gains. Note that since gains for as-gc

are within the minimum 2% threshold, this configuration is not actually selected by the

oracle, but we include it here to maintain the invariant that the oracle is always at least

as good as the model.

Of the workloads show in Figures 5.20 and 5.21, 11 workloads (blac, body, flui, swap,

ammp, fma3, as-bw, as-gc, gcc, libq, omnetpp) had the same cache size selected by both the

model and the oracle. Of these, flui and as-gc also had the same frequency selections.

For gcc and omnetpp, the frequency selected by the model was higher than that selected

by the oracle resulting in overshoot of the power budget. For the remaining 7 workloads,

the model-selected frequency was lower than the oracle-selected frequency resulting in

under-utilization of the power budget. Since frequency reconfigurations can be done

with significantly less overhead than cache reconfigurations, they can be subsequently

adjusted to stay within or better utilize the power budget.

We propose using online monitoring schemes similar to Intel’s Turbo Boost technol-

ogy [111] so that the system can continuously monitor and compare predicted power-

performance with actual values. In case performance is below expectations, the system

will revert back to baseline thereby restoring long-term performance loss to 0%. In case of

power/thermal overshoot with strict budgets, throttling mechanisms must be employed

to scale down excess voltage and frequency immediately. For soft budgets, corrective

action can be taken in the next interval. A guard mechanism may be used along with

our predictors to make the system energy-secure [36].

Our DVFS model assumes that enough thermal headroom is available to accommodate

the desired scaling. We claim that the maximum permissible scaling is limited by how

efficiently heat can be moved away from each individual core to the heat sink, and is
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not significantly lowered by our scheme. Thermal resistance is directly proportional to

thickness/separation and inversely proportional to cross-sectional area [199]. Typical chip

thicknesses are < 1 mm and thermal conductivity of copper is higher than silicon [199].

Thus, lateral thermal resistance between cores is expected to be much higher than vertical

thermal resistance. As long as on-chip/system TDP is not exceeded, which is guaranteed

when predictions are accurate, any system that supports overscaling of voltage/frequency

of cores should be able to benefit from LLC power budgeting for performance. Although

we assumed a maximum frequency scaling of 25%, the maximum actual scaling was

16.4%. A lower scaling limit would reduce speedups and is similar to having a lower

power margin.

Limitations of the reuse-based cache performance estimation framework, discussed in

Section 4.8 of Chapter 4, continue to be applicable to this study.

5.8 Conclusion

As technology scales, intelligently budgeting power between system components will

become increasingly important to obtaining optimum power-performance. In this chapter,

we focused on maximizing performance of a chip multiprocessor (CMP) system for a

given power budget (SLApower), by developing techniques to budget power between

processor cores and caches. While this governor only targeted SLApower, it can also be

easily retargeted for SLAee or SLAperf.

Dynamic cache configuration can reduce cache capacity, thereby freeing up chip

power, but may increase the miss rate (and potentially memory power). Dynamic voltage

and frequency scaling (DVFS) can exploit the saved power to increase core performance,

potentially increasing system performance. We demonstrated that favorable configurations

can be selected using simple analytic models, driven by hardware performance counters
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to estimate the cache reuse distribution (also see Chapter 4).

Unavailability of this reconfiguration knob in real systems made it necessary to

evaluate this space using full-system simulation. Detailed simulation models show that

carefully budgeting power between cores, memory, and caches can improve system

performance 0.5%–15.2% for 15 of 32 workloads and save an average of 4.4% total energy

(wall power) averaged over all 32 workloads.
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6 related work

6.1 Overview

In this chapter we briefly discuss related work in characterization and governance of

reconfigurable computers. These include:

• Characterizations of energy efficiency (Section 6.2). We describe our work in this

area in Chapter 2.

• Descriptors for system power-performance states (Section 6.3). We propose using

Π-states and the Π-dashboard ([192], Chapter 2).

• Power-performance goals targeted by governors (Section 6.4). We discuss the SLAs

that we target in Chapter 3.

• Analytical models for cache performance (Section 6.5). We develop new models

([191], Chapter 4) that are based on cache reuse distances.

• Examples of system reconfiguration studies and reconfigurable knobs (Section 6.6).

We describe the knobs that we study and their governance mechanisms in Chapters 3

and 5.

Finally, in Section 6.6.1 we propose a new classification system for governance studies that

is based on the behavioral semantics of the reconfiguration capabilities instead of on the

components that are reconfigured. Semantics-based classification enjoys the advantages

of being more compact and perhaps more insightful than the other classifications.
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6.2 Energy Efficiency Characterization

Energy proportionality has been extensively studied [22, 106, 122, 141, 184, 213, 231, 232].

Barroso and Hölzle [22] introduced the concept and argued that energy proportionality

should be one of the main design goals. They compute power efficiency as Utilization
Power .

We use the same definition for efficiency, but relabel utilization as percentage of peak

performance.

David Lo et al. [141] proposed a relaxed model of energy-proportionality, called

Dynamic Energy Proportionality, that ignores idle power. This corresponds to the

Dynamic EP line in Figure 2.1. This linear model has also been studied in other prior

works [223, 232]. Daniel Wong and Murali Annavaram [232] name the region that we

call Sub-Linear as Superlinear. We prefer to use “Sub-” in the sense that operating in

this region lowers efficiency compared to that of Linear (Dynamic EP).

A number of metrics for characterizing energy efficiency exist. Efficiency ( Performance
Power )

can be computed at individual loads [22], or as Total Performance
Total Power over all loads [205]. Metrics

based on the dynamic power range compute the ratio between the idle and peak power

consumptions [223]. Other metrics consider the deviation of the power curve from an

ideal curve, e.g., maximum relative power difference with respect to Dynamic EP [223],

area enclosed by the power curve relative to that by Dynamic EP [232] or EP [184, 232],

power used in excess to that by EP [232], etc. These metrics continue to be useful with

the new ideals, EOP and Dynamic EO, replacing the conventional ideals.

Wong and Annavaram [232] introduced the notion of the EP Wall that needs to be

overcome. They proposed leveraging heterogeneity to improve energy efficiency at low

utilization. Our work with prefetch control and cache power budgeting will further

help to overcome the wall. Wong and Annavaram [231] also investigated techniques for

quantifying energy proportionality of a cluster of servers.
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We observe that both Pegasus [141] and Knightshift [232] report data appearing

to show occasional incursions into super-proportional regions. Chung-Hsing Hsu and

Stephen W. Poole [106] observed real machines doing better than the conventional “ideal”

system that assumes linear proportionality. They proposed quadratic proportionality

(Power(u) ∝ u2, where u is the load level) as the new ideal model. However, this makes

ideal system efficiency load-dependent
(

u
Power(u) = 1

u

)
, with higher efficiency at lower

loads than at higher loads.

Our view is that the design ideal, EOP, will have maximum efficiency (ηmax) inde-

pendent of load and will consume power linearly proportional to load, as proposed in

the original EP model, but the constant of proportionality is different: it is defined by

the most efficient configuration instead of by the configuration achieving the maximum

performance. The Pareto frontier (Dynamic EO) is the operational ideal for the system and

its efficiency is load-dependent. The most efficient configurations lie at the intersection

of the EOP and Dynamic EO curves.

Song et al. [204] proposed Iso-energy-efficiency (EE) as the energy ratio between se-

quential and parallel executions of a given application. Our CPUE, LUE and RUE metrics

do not use specific execution modes (e.g., sequential/parallel, homogeneous/heteroge-

neous, speculative/non-speculative, cache-conscious/cache-oblivious, etc.) for reference,

but compare system states to the Pareto frontier (Dynamic EO) or to EOP. The definitions

of our metrics are oblivious to which configurations created the frontier.

The EE model focuses on maintaining equal efficiency as systems and applications

scale up. In contrast, the EP and EOP models focus on maintaining equal efficiency

under changing loads. So our metrics include load, along with the configuration, as a

parameter for quantifying excess energy used. On the other hand, EE does not quantify

its dependence on load.
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Barroso and Hölzle [104] compute datacenter energy consumption as PUE × SPUE ×

energy to electronic components. While PUE [16] accounts for non-compute overheads in

datacenter building infrastructure, SPUE (Server PUE) accounts for overheads, e.g., power

supply losses, to computing energy. Our RUE and LUE metrics do not separate SPUE

losses from computing energy but separate energy-wasting operating configurations and

loads from optimal ones.

6.3 Power-Performance States

ACPI: The Advanced Configuration and Power Interface (ACPI) specification [102] is an

open standard that allows devices (resources) to specify discrete operating states identified

by alphanumeric names. For example, P0, P1, P2,... represent processor performance

states. ACPI enumerations lack quantification of system-wide power-performance impacts

by not accounting for inter-resource interactions or dynamic execution profiles. A static

enumeration of possible states for individual knobs, as in the ACPI [102] approach, is

insufficient because it does not quantify power-performance impacts at the system level

or take into account correlated effects across different knobs (e.g., prefetching). So, it is

difficult to answer questions such as: which system configuration performs the best for a

given power budget? which system configuration has the minimum energy-delay (ED)

or ED2 product?

New P states: Eckert et al. [70] proposed new processor P-states and L2 cache P-

states, but did not provide a framework for optimal system configuration selection.

The new processor states save power by reconfiguring pipeline front-end structures

and mechanisms, e.g., register and fetch buffer sizing, simplified speculation control,

limited checkpoint state, etc. (Sharkey et al. [193] also explored different fetch throttling

mechanisms that differed in local (per-core) vs global chip information and per-core vs
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chip-wide settings.) New states for L2 include drowsy and power-gating states. Dirty

data from power-gated L2 ways is written to the L3 cache.

Π-states: Sen and Wood [192] proposed Π-states that overcome the limitations of

ACPI state enumerations. This is motivated by the observation that individually ordered

lists of operating states for different resources, as in ACPI, do not identify ordering for

combinations of states across resources, required for system-level coordinated manage-

ment. ACPI enumerations lack quantification of system-wide power-performance impacts

by not accounting for inter-resource interactions or dynamic execution profiles.

Each Π-state is a 4-tuple (slowdown, dynamic energy, static power, work) that describes

the effect of using a configuration of a system component. A centralized coordinator

stitches these descriptors together to determine system-wide impacts if multiple compo-

nents are reconfigured. The system computes a Π-dashboard consisting of Pareto-optimal

Π-states that are numbered in decreasing order of performance. The user or operating

system selects a desired Π-state, that corresponds to the optimum value of a metric

(e.g., minimum energy, minimum EDP, etc.), causing the system to transition to the

corresponding configuration.

6.4 Optimization Goals

There exists a variety of flavors of the power/energy management problem. The power-

budgeting problem seeks to partition a maximum power budget among resources to

maximize performance [115]; the energy-minimization problem seeks to find configurations

that minimize energy consumption (equivalently, maximizes performance/watt); the min-

EDP problem seeks to minimize the energy-delay product (EDP) [82] so that configurations

that reduce energy but cause unacceptable delays are not chosen. Snowdon et al. [202]

generalized this metric to include non-integral exponents for power and delay. Our
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two-level governors, described in Chapter 3, can be easily retargeted to optimize system

operations for these metrics.

A number of works have studied power/energy management while meeting tail

latency and response time deadlines [122, 141, 152]. Targeting this SLA may require that

workload-specific semantic knowledge be available to the objective selector. Our current

governors do not have high-level knowledge about the workloads and we do not target

this SLA in this work.

6.5 Cache Models

The goal of these models is to predict cache performance (miss ratio) as a function of

cache organization and workload properties. Here we briefly describe various approaches

to solve this problem.

Power-Law models: Chow [50], Hartstein et al. [100], and others used power laws

based on cache capacity to predict miss ratios. One instance of such a power law predicts

that the miss ratio reduces by
√

2 if the cache capacity doubles, and is popularly known

as the 2-to-
√

2 rule. These models have practically zero overhead but may have large

errors since they do not account for working-set sizes and cache access patterns.

Unique and absolute reuse distance models: Mattson [150] introduced the concept

of predicting miss ratios from (unique) stack distances for caches that use replacement

policies having the inclusion property. This technique has been subsequently used in

many works [29, 55, 56, 65, 103, 140, 191, 196, 200, 242]. Guo and Solihin [91] proposed

circular sequence profiles that are similar to stack distances in reuse intervals.

Stack distance distributions can be determined offline or online. In offline algorithms,

stack distances are computed offline from an address trace. Previous work has exten-

sively studied cache miss rate prediction using offline estimation of LRU stack/reuse
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distances [12, 29, 103, 196, 200], but have limited applicability for online use.

Computation time to determine the distributions can be reduced with efficient algo-

rithms [13] or by approximate analysis [242]. Hill and Smith [103] introduced techniques

for estimating miss ratios for many different cache organizations from a single pass

over an address trace. Shi et al. [196] perform single-pass stack simulation to project

cache performance and to study the impact of data replication for various L2 cache

configurations. Online determination of the stack distance distribution cannot directly

apply techniques from offline methods due to constraints on computational state and

complexity.

Tam et al. [220] use hardware mechanisms for address sampling and post-processing

software for computing stack distance distributions. Since distribution estimation and hit

ratio computation is offline, it cannot react to workload changes in real time.

Online methods have severe restrictions on space and time complexity, but must

achieve good accuracy. Way counters [127, 175, 215] exploit the LRU stack property to

predict miss rates for configurations smaller than the current cache. Shadow tags [172]

(or Auxiliary Tag Directories [175]) extend way counters to predict configurations with

higher associativity than the active cache configuration. Dynamic set-sampling can reduce

overheads [174]. Way counters have been extended to work with PLRU replacement [127]

using a heuristic that estimates the LRU stack depth using the PLRU tree bits. Suh et

al. [214], Qureshi et al. [175] proposed mechanisms for partitioning of shared caches

(L2) among competing processes using way-counters. Suh et al. [215] also proposed

set-counters in LRU order, with each counter tracking accesses to a group of sets. We

discuss a limitation of set counters in Chapter 4, Section 4.6.2. Gordon-Ross et al. [84]

used a hardware TCAM to track stack distances for LRU miss-ratio predictions. However,

area overheads probably limit this approach to small caches. In contrast, our methods
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([191], Chapter 4) have very low area and power overheads, so they can used for large

caches. We predict miss ratios for caches that are configurable in both the number of

sets as well as ways.

StatCache [28] and StatStack [71] used sampling on the cache access stream to estimate

the absolute distance distributions, then use that to estimate miss ratios for fully-associative

LRU or RANDOM caches. Estimating absolute distances is easier than estimating unique

distances. We also use absolute distances for RANDOM cache estimations, but estimate

average absolute distances from unique distances. We use unique distances for LRU caches.

Pan and Jonsson [167] use absolute distance distributions and Markov models to estimate

performance of set-associative caches. Inter-Reference Gaps in IRG models [169, 219] are

basically absolute reuse distances.

Binomial and Poisson models: Smith [200] and Hill [103] introduced the technique

of using Binomial distributions along with stack distances to model set-associative LRU

caches. We use the same approach in our work ([191], Chapter 4) but can handle

some implementable, non-LRU, policies as well. Agarwal et al. [3] also use Binomial

models, in conjunction with other models, e.g., Markov models, for cache performance

estimations. Their models also account for block sizes, degree of multiprogramming, and

task switching intervals. Stone and Thiebaut [211], Falsafi and Wood [75] use binomial

probability models to model cache reload transients due to context switches based on

the footprints of the competing programs and cache size. The Binomial model assumes

independent mapping of addresses to cache sets. Pan and Jonsson [167] improved

prediction accuracy by considering the actual mapping achieved.

Cypher [55, 56] proposed using Poisson distributions to estimate cache miss ratios

from estimated stack distances. We use a similar approximation in Chapter 4 to reduce

the computational costs associated with using the Binomial model. Cypher also used
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filter fraction metrics that reduce the effective distance to be tracked. Computing filter

fractions can be expensive.

Markov models: These models consider the evolution of cache states with transition

probabilities between states [90, 91, 167] but can be computationally expensive. Guo

and Solihin [91] proposed Replacement Probability Functions (RPFs) that describe the

probability that a line at a certain stack position will be replaced given that a miss

happens to that cache set. (Our cache hit function, φ, describes the probability that a line

at a certain stack position will hit given that an access happens to that line.) Guo and

Solihin’s Markov model tracks the evolution of states described by reuse intervals and

stack positions. Grund and Reineke [90] proposed replacement policy tables that improve

upon Guo and Solihin’s approach by decoupling policy characterization from workload

properties. Agarwal et al. [3] used Markov models to characterize spatial locality. Others

have used Markov models to analyze the behavior of context switch misses [138].

Closed-form models: These models express cache performance in terms of easily-

computable, non-recursive expressions having a small number of terms. The power-law

models are examples of closed-form models (parametrized with an initial measurement).

Cache Calculus [24] developed a system of differential equations, solving which produces

closed-form expressions of (fully-associative) cache performance in terms of cache size

and high-level data structures, e.g., array sizes in array access workloads. One challenge

is to be able to formulate the cache access stream in terms of high-level data structures.

Worst-case models: Reineke and Grund [180] prove relations on best and worst-case

bounds of cache performance for several replacement policies. Our work, in contrast,

studies average case behavior.

A number of prior works [14, 89, 179] have explored applying static analysis techniques,

such as abstract interpretation, to determine bounds on cache performance for real-time
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systems. Lv et al. [144] provide a survey of the area.

Xiang et al. [235] developed a higher-order theory of locality (HOTL) that interrelates

a number of locality metrics—reuse distance, fill time, footprint, miss ratio, and time

between cache misses.

6.6 Reconfiguration Knobs

In this section we briefly discuss some microarchitectural and runtime knobs for power-

performance management where a dynamic choice can be made on whether or not to

execute using a certain system/component configuration or on the extent/degree of such

reconfiguration. Our goal is to present different kinds of reconfigurable architectures/ca-

pabilities, not necessarily to catalog all prior studies within each class.

Core DVFS: Dynamic voltage and frequency scaling (DVFS) and dynamic frequency

scaling (DFS) for cores are well-known techniques [86, 110, 111, 229].

Isci et al. [115] introduced the concept of maximizing performance for a given power

budget, using a global power manager and per-core monitors to set per-core DVFS

modes. Their MaxBIPS policy predicts the power and performance for each possible

configuration. This can limit scalability to larger number of cores. A global manager

selects the configuration predicted to have the highest throughput within the power

budget.

Ma et al. [145] explored the problem of selecting different per-core DVFS levels

for systems that have the capability. Their mechanism first uses feedback control to

determines an aggregate frequency that does not exceed the specified power budget.

Next, this is partitioned among groups of cores where all cores within the same group

run threads of the same application. Finally, cores within the group are allocated their

frequency settings based on thread criticality.
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Koala [202] developed a power-performance management framework in the OS. It uses

DVFS to manage tradeoffs between performance and energy consumption. Koala uses

performance counters to characterize an offline model to predict energy for all frequency

settings. It then uses this model online to select the best setting. Koala proposed a

new metric called generalized energy-delay (P1−αT 1+α, α ∈ [−1, 1]) that extends the ED

metric by allowing non-integral exponents for both power (P) and delay (T).

Spiliopoulos et al. [207] proposed green governors that improve energy efficiency

by controlling core frequency and voltage settings. The governors use performance

counters (to obtain IPC and stall counts) and measurements of idle static power to

predict the performance and energy consumption for different frequency settings. The

governors choose the best frequency that optimizes a given metric, e.g., minimum

EDP, minimum ED2P, minimum EDP with a performance constraints. Our frequency

governors, described in Chapter 3, use a profiling-based approach that interpolates

power and performance from a few measurements. Our prefetching governor profiles

prefetching modes and selects the best-performing mode. Our governor for SPECpower

does not predict power/energy for any configuration. Its goal is to reduce the number

of idle cycles while maintaining the current performance. It only profiles for prefetch

modes but not frequencies. A profiling-based approach removes the need for building

accurate performance and power models from performance counters, but is only possible

for knobs that allow fast reconfiguration, e.g., processor frequency or prefetching. Our

governor for cache sizing, described in Chapter 5, builds a performance and power model

from performance counters.

Rubik [125] uses per-core DVFS to reduce power while still meeting latency constraints

of work requests. It maintains two tables that describe distributions of per-request core

and memory completion times in cycles. These tables are updated periodically (every
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100ms). Every time a request completes or a new request is admitted, the tables are

consulted and a frequency is calculated that meets completion time constraints for all

current requests. Rubik uses a power model based on performance counters to guide

its decisions. A proportional-integral (PI) controller runs over a longer interval (1 sec)

to compare predicted with measured latencies and calculate adjustments. Rubik also

studies consolidating batch and latency-critical applications together to reduce total idle

power of servers.

Prekas at al. [171] propose mechanisms that control per-core DVFS and the number of

logical cores (physical cores and hyperthreads) allocated to applications running on the

IX [26] operating system. Their controller keeps track of network queueing delays to help

in resource management and can migrate applications and network processing between

cores. They propose two schemes, one for reducing computing energy and the other

for reducing idle power through consolidation. In both schemes, latency constraints are

maintained.

Rangan et al. [177] proposed maintaining different homogeneous cores at different

voltage/frequency levels. Depending on its runtime characteristics, a workload can

be rapidly migrated from one core to another so that it can be executed at a different

frequency. This scheme aims to reduce DVFS transition times from microseconds, with

voltage regulators, to nanoseconds by inter-core migration.

A number of prior works [141, 182, 213] have explored the use of RAPL [113] in

specifying power caps. Rountree et al. [182] used RAPL to reduce power for HPC (High

Performance Computing) applications and observed that power limits can transform

power variations across machines into performance variations. Lo et al. [141] used RAPL

to improve energy efficiency of OLDI (online data intensive) workloads. As we have

discussed in Section 3.9, current RAPL implementations do not deal with reconfiguration
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knobs such as cache prefetching.

Memory DFS/DVFS: Deng et al. (MemScale) [62] and David et al. [59] proposed

using DFS/DVFS for main memory.

Core DVFS and memory DVFS: Subramaniam and Feng [213] explored using RAPL

for both cores and DRAM to improve energy efficiency of enterprise workloads and

found that limiting power for the core domain provides the most benefits compared to

other domains.

CoScale [61] demonstrated coordinated management of core DVFS and memory DVFS.

It uses a gradient-descent heuristic that is related to the greedy solution strategy for the

integer knapsack problem. The approach in CoScale is to arrange operating states in

decreasing order of marginal utility (∆power/∆performance) and greedily pick states

till a maximum slack is not violated. Although theoretically the greedy strategy can have

up to a 2-approximation factor [58], CoScale demonstrates a tighter approximation in

practice. Their default epoch length is 5ms.

Number of cores/threads and core DVFS: Li and Martinez [136] explored simulta-

neous management of the number of cores and DVFS levels for the chip (all cores at

the same level). Their algorithm performs a binary search on the number of processors,

starting from the middle number. For each number, it tries lowering the DVFS level till

the performance target is just missed. This process is repeated on the upper or lower

halves of the search space on the number of processors till no improvement is found.

Heuristics are used to speed up the search for the appropriate DVFS level for each setting

of the number of cores. Overall, the complexity is O(αlog(N)) for N cores and α << L

for L DVFS levels.

Vega et al. [224] explored coordinated management of core DVFS and the number of

enabled cores. This is driven by heuristics based on core utilizations. The utilization is
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averaged over a number of intervals, with the best choice of history length being 3. They

consider a time interval of 1 second for reconfiguration decisions.

Curtis-Maury et al. [54] studied varying the number of threads, mapping of threads

to cores, and core DVFS levels. This involves sampling the execution with a few config-

urations before a reconfiguration decision is made. The applications are instrumented

around OpenMP parallel regions. Varuna [208] also changes parallelism dynamically,

but does not need to make changes to application source code.

Cache size: Albonesi [10] introduced mechanisms for disabling cache ways to save

energy. Dropsho et al. [67] proposed the accounting cache that uses way counters

to evaluate configurations with different associativities. Yang et al. proposed cache

reconfiguration in the number of sets [238] and in both sets and ways [237]. Kaxiras et

al. [126] introduced cache decay that exploits generational behavior of cache line usage

to reduce cache leakage with (area-expensive) power-gating control per line and a (small)

performance hit. Instead of fully disabling cache lines and losing state, Flautner at al. [77]

introduced the drowsy cache where cache lines can be put into a low-power state-saving

mode for saving energy. Our work (Chapters 4 and 5, [190]) studies reconfiguring the

cache for both associativity and the number of sets, but not enabling/disabling at the

granularity of cache lines, and considers power gating the disabled regions for maximum

power savings.

Intel processors/microarchitectures such as the Core Duo [163], and Ivy Bridge [181]

dynamically size caches based on activity. In contrast, reuse-based predictors track

locality and hence select a smaller cache for highly cache-active but cache-insensitive

workloads whereas activity-based models would select a large cache. Some recent Intel

processors allow core-wise monitoring and partitioning of the LLC capacity [53].

Yang et al. [237, 238] compare the number of misses to a bound/threshold to drive
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reconfiguration decisions. Keramidas et al. [128] compared the number of misses and

conflict misses to bounds/thresholds to decide reconfigurability in the number of sets

and ways of LRU caches. Sundararajan et al. [216] considers both the LRU stack distance

and number of dead sets to determine the configuration for the number of sets and

associativity.

Gordon-Ross et al. [84] proposed a one-shot cache reconfiguration scheme. It uses a

hardware TCAM to determine stack distances of addresses and tracks stack hit counts

for various cache sizes, assuming stack inclusion. It (time-)samples the address stream to

reduce the average processing time. The hardware TCAM results in a 12% area overhead

for the ARM920T that has 16KB instruction and data caches. As we have discussed

in Chapter 4, tracking stack distances for large multi-megabyte caches is prohibitively

expensive.

Albericio et al. [8] proposed the reuse cache, an LLC organization where the data

array is sized depending on the amount of data that is reused. The tag array is decoupled

from the data array. On a miss in the tag array, data is fetched from memory but not

placed in the LLC data array. On a hit to the tag array for a line that is not present in

the data array (indicates reuse), that line is fetched from memory and placed in the data

array. This scheme requires modifications to the coherence protocol, forward pointers in

the tag array, reverse pointers in the data array, and uses a different replacement policy

for the tag and data arrays. Traditional cache resizing, in the form that we have studied,

does not need these changes but incurs overheads during resizing due to subsequent

warmup.

Cache compression: Compression helps to store more data in a cache of a given size

compared to storing in uncompressed form. Compression may reduce misses but makes

hits more costly due to the decompression latency. Alameldeen and Wood [5] proposed
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an adaptive compression scheme that uses stack distance information to decide whether

to allocate cache lines in compressed or uncompressed form. Further benefits can be

derived by combining compression with adaptive prefetching [7].

Cache size and compression: Hajimiri et al. [97] studied cache size reconfiguration

along with code compression.

Cache partitions: The fraction of shared cache space available to each core or

application can also be dynamically controlled. Cache partitioning [49, 178] can be

application-utility-aware [175, 214], LLC-bank-aware [124], MLP-aware [159], spatial-

locality-aware [93], cooperative [217] etc. The partitions may be coarse-grained [49, 178,

217] or fine-grained [146, 186].

Cache hierarchy: Albonesi [9] studied simultaneous reconfiguration of L1 and L2

cache sizes in an exclusive hierarchy. Balasubramonian et al. [20] studied reconfigurable

L1, L2, and TLBs for energy-efficient performance. A single large cache organization

serves as a configurable 2-level non-inclusive hierarchy. The optimal cache configuration

is selected by exploration—successive cache sizes are chosen till the miss rate is sufficiently

small. The reconfiguration intervals for the cache and TLB are 100K cycles and 1M cycles

respectively.

Cache content replication: Chang and Sohi [45], Beckmann et al. [23] explored

replicating cache blocks from a remote LLC bank in the private or local LLC bank. The

advantage is that hits to local banks are faster than those to remote banks. However,

replicating blocks reduces effective capacity of the cache that in turn can potentially

increase the miss rate. The degree of replication can be varied based on cost-benefit

tradeoffs.

Cache insertion/promotion/eviction: Caches are of finite size and hence must even-

tually evict some existing data to make room for new data when needed. A number
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of works have proposed new management policies that decide whether or not to insert

new data [79, 94, 165], where (in terms of recency) to insert new data [79, 118, 119,

120, 123, 173, 234], and how to promote [119, 120, 131, 135, 236] or protect [69] or

evict [169, 176, 185, 219] data.

Access granularity:Veidenbaum et al. [225], Yoon et al. [239] proposed dynamically

reconfiguring the width/granularity for cache and memory accesses.

Cache size and core DVFS: Meng et al. [155] explore cache resizing (in the number

of ways) and changing core DVFS levels. They use way counters and analytic power-

performance models for power management. In contrast to MaxBIPS, they use a greedy

search strategy to decide the final configuration.

Their work has several limitations as follows. First, they assume true LRU replacement,

which is impractical to implement for highly associative last-level caches. This is critical,

because practical implementations such as PLRU do not have the stack property and thus

a single tag array cannot both provide replacement decisions and miss-rate predictions for

larger sized caches. While Meng et al.’s work could probably be extended to use shadow

tags and dynamic set sampling [172, 175], the extra area and power would far exceed

that of our reuse sampling approach. Second, their study evaluates 600µsecs observation

intervals, which are far to short to amortize the reconfiguration overhead of large, e.g.,

32MB LLCs. Finally, their approach only handles limited cache reconfigurability (number

of ways, not sets), does not consider thermal effects on leakage power, and optimizes for

the lowest-power configuration, not the highest-performance configuration.

Cache size, memory bandwidth, and core DVFS: Bitirgen et al. [31] used a machine

learning approach for resource management. They construct a per-application artificial

neural network (ANN) that takes as input the power budget, bandwidth, cache size, and

various performance counter values to predict performance as output. These ANNs are
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queried by a global resource manager that uses a stochastic hill-climbing algorithm to

select a configuration predicted to achieve the highest performance.

Chip-wide DVFS and thread packing: Cochran et al. [51] explored simultaneous

management of DVFS levels and packing of threads on to a subset of cores. They use

an offline characterization process to analyze performance counters and power caps

to create a lookup table. This is queried at run time for all potential configurations

to determine the optimal setting. The online lookup uses performance counter values

including information from thermal sensors, but does not require power information.

The control activation period is in the order of seconds.

Core organization: Reconfiguring various components in both the frontend and

backend of cores has been well studied. Albonesi [9] proposed Complexity-Adaptive

Processors (CAP) with reconfigurable resources (instruction queue size, L1 and L2

cache sizes). Manne et al. [147] proposed mechanisms that reduce energy consumption

by adapting control speculation to prevent potentially wrong-path instructions from

being dispatched. Ghiasi et al. [80] proposed switching between in-order and out-

of-order executions. Bahar and Manne [18] explored changing the issue width and

the number of enabled functional units. Buyuktosunoglu et al. [39, 40] studied issue

queue reconfiguration and fetch gating. Forwardflow [81] dynamically tracks dataflow

dependencies in the instruction stream and uses a dataflow queue whose capacity can be

dynamically reconfigured, thereby changing the instruction window size. The dataflow

queue is organized into banks that can be independently activated/deactivated by system

software.

Core throttling and memory throttling: Felter et al. [76] demonstrated performance

benefits through power-shifting between the core and memory within a power budget.

They achieve this by throttling core and memory operations depending on workload
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characteristics. Core throttling is done at the instruction dispatch unit. Memory throttling

is done by limiting the number of memory request per unit time (allowed bandwidth).

Their throttling mechanism affects shifting of active power. They studied interval sizes

in the range of 5µ sec to 1ms.

Core organization and number of cores: Ipek et al. proposed core fusion [114]

where resources of independent cores are dynamically grouped/fused together to form

a larger core resulting in asymmetric CMPs. WiDGET [228] dynamically changes the

number of instruction engines and the number of execution units allocated to each engine.

Instructions are steered from the instruction engines to the execution units dynamically

allocated to it.

Cache size and core organization: Albonesi et al. [11] explored adaption of the L1

cache sizes and core resources. Dropsho et al. [68] also studied dynamic reconfiguration of

these resources in GALS (Globally Asynchronous, Locally Synchronous) microprocessors.

The L1I, L1D, and L2 caches have reconfigurable associativities. The branch predictor has

a configurable history length. The L1D and L2 caches are sized together. Similarly, the

L1I cache and branch predictor are sized together. The sizes of the integer and floating

point issue queues are configured depending on the ILP that is available.

Core organization and DVFS: Sasanka et al. [189] explored changing the DVFS level

along with core instruction window size, issue width, and the number of functional units.

This study aims to reduce energy consumption for multimedia applications while still

meeting deadlines. The DVFS decision seeks to eliminate idle time between processing

different frames whereas reconfiguring the other resources aims to reduce processing

energy within each frame without affecting execution time.

Core organization and memory idle states: Li et al. [137] studied reconfiguration of

both core resources (instruction window size, issue width, number of functional units)
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and memory idle states (standby, nap, powerdown). Each application phase is profiled,

with the number of profiling intervals per phase being equal to the number of processor

configurations. This overhead is amortized over multiple occurrences of each phase for

long running applications. The decision algorithm aims to optimally distribute the target

slack between the core and memory.

Dynamic task reassignment: Chakraborty et al. [43, 44] proposed computation

spreading in over-provisioned multicore systems (OPMS). This uses a light-weight virtual

machine monitor (VMM) to assign similar computation fragments (parts of software

threads) to cores. For example, OS code is executed on a different core than user code.

The idea is to improve energy efficiency through dynamic specialization (e.g., predictive

structures such as branch predictors, etc., can work better if similar code is executed on

the same core) as well as manage peak power consumption by limiting the number of

simultaneously active cores in OPMS.

Prefetching: Data prefetching is a well-known speculative technique [17, 41, 74, 209]

for improving performance. However, inaccurate prefetching will use more energy either

due to unneeded or inadequate fetches or due to lack of timeliness. Both the number

of blocks prefetched [57] as well as the lookahead distance [85] may be dynamically

configured. Gornish and Veidenbaum [85] combined hardware prefetching with software

(compiler-directed) prefetching. Guo et al. [92] developed a power-aware prefetch engine

that uses analysis information from the compiler to decide on the prefetch mechanism.

Prefetching, DVFS: In Chapter 3, we demonstrate governors that improve energy

efficiency by simultaneously controlling DVFS levels and enabling/disabling of L2 cache

prefetching.

Prefetching, DVFS, and number of cores/threads: Kamruzzaman et al. [121] pro-

posed using helper threads to prefetch data needed by the main computation. A number
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of helper threads can be used, each of which can prefetch a different chunk of data.

Once the data is fetched, the compute thread is migrated to that core whereas the helper

thread is shifted elsewhere. The helper threads can run at lower frequencies whereas the

compute thread can run at higher frequencies.

Frequency control and sleep states: SleepScale [139] investigated coordinated man-

agement of frequency levels and sleep state selection. Running at higher frequencies

consumes more power, but finishes tasks earlier leaving more time to enter and remain

in deep sleep states. The best policy is determined by factors such as job size and desired

average response time. They logically partition the execution into epochs of 5mins. Once

every epoch, the best policy is determined based on the estimated interarrival times,

response times, and utilization. Considering each policy requires ~6ms for a total of < 1s

to consider all policies.

Networks: Abts et al. [2] proposed making datacenter networks consume energy

in proportion to their traffic by using a flattened butterfly topology and dynamically

changing the frequency of the communication links. Changing the link frequency

changes both its data rate and its power consumption. RAFT [157] dynamically varies

the frequencies and number of virtual channels in routers. PowerNetS [241] explores

joint optimization of workload consolidation and network traffic routing to minimize

total power.

Kim et al. [130] use spatial speculation to reduce the number of flits/bit-flips trans-

mitted thereby reducing interconnect energy. On a miss, L1 caches fetch block-sized data

from the next level. However, not all words within the block may be used in future and

hence need not be fetched. It uses a predictor to determine which parts of the requested

block is likely to be reduced. A misprediction causing a required word not to be fetched

would cause it to be fetched when the word is requested resulting in latency overheads.
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Accelerators: Being specialized, accelerators (including GPGPUs) are more energy-

efficient than general purpose processing elements. The DySER [87] accelerator uses

specialized circuit switching between computation units to eliminate instruction execution

overheads. Venkatesh et al. [226] proposed specialized processors called conservation

cores (c-cores) to reduce energy and energy-delay of hot code paths. The CPU and

c-cores communicate through scan chains. KnightShift [232] uses a heterogeneous

server architecture that adds a low power compute node along with the primary server.

DreamWeaver [154] proposed using a co-processor called the Dream processor, that

monitors and suspends incoming work requests along with a Weave scheduler that aligns

and increases idle times.

6.6.1 Classification

We will now present a new classification system for power-performance management

studies by the semantics of reconfiguration capabilities. Our classification system has

five main semantic types, each of which have several subtypes with a total of twelve

subtypes.

1. Computation:

• Organization: Number and organization of structures, such as functional units,

instruction windows, issue queues, pipelines, etc. that make up or control

how processing elements (CPU cores, network routers, etc.) do computations.

Examples: [9] [18] [40] [39] [81] [114] [228] [11] [68] [189] [137] [157].

• Speed: Time to process and transform information. Core DVFS and RAPL

studies are included in this class. We also include network router DVFS in

this class, but place memory controller DVFS in the Storage class (see below).
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Examples: [229] [86] [115] [145] [202] [207] [125] [171] [177] [182] [213] [141]

[61] [192] [136] [224] [54] [190] §5 [155] [31] [51] [189] §3 [121] [139] [157].

• Concurrency: Number of processing elements or threads to do a computa-

tion. This includes core parking, hyperthreading, task creation/stealing, and

workload consolidation studies.

Examples: [171] [136] [224] [54] [208] [51] [114] [228] [44] [43] [241].

2. Communication:

• Latency: Time to transmit a bit of information over an interconnect. This

includes frequency scaling of memory and network links.

Examples: [213] [62] [59] [61] [2].

• Bandwidth: Number of bits of information that are moved per unit time. This

includes fetch bandwidth and memory bandwidth throttling.

Examples: [213] [62] [59] [61] [192] [31] [76] [2].

3. Storage:

• Size: Number of storage cells available to applications. Not all cells may be

available—they can be shut down or allocated to other applications. This

includes cache power-gating and partitioning studies.

Examples: [192] [10] [67] [238] [237] [126] [77] [190] §5 [128] [216] [84] [8] [97]

[49] [178] [214] [175] [124] [159] [93] [217] [186] [146] [9] [20] [155] [31] [11] [68].

• Content: Information stored in allocated storage cells. This includes cache

replication, replacement, bypass, and compression studies.

Examples: [5] [97] [45] [23] [79] [94] [165] [123] [173] [118] [119] [120] [131]

[236] [69] [176] [185] [135] [234] [169] [219] [7].
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• Latency: Time to read or modify storage cells. This include memory DVF-

S/RAPL studies.

Examples: [213] [62] [59] [61] [192].

4. Scheduling:

• Spatial: Particular processing elements on which to do the computation. This

includes scheduling work on specific cores or accelerators.

Examples: [177] [54] [80] [44] [43] [121] [87] [226] [232].

• Temporal: When to do the computation. It may be scheduled later for coordi-

nated management with sleep states.

Examples: [137] [154] [139].

5. Speculation:

• Control: This includes adapting structures that affect branch prediction and

dealing with the predicted results.

Examples: [147] [68].

• Data: Amount of extra/less data to access than requested. This includes

prefetching and access granularity studies.

Examples: [225] [239] [17] [57] [85] [92] §3 [121] [130] [7].

Tables 6.1–6.3 summarize how the studies can be classified according to this system.

The Count column in the tables show tuples of the form (n1,n2) where n1 is the

number of types and n2 is the number of subtypes considered by the corresponding

study. In these examples, at most three of the five possible types and at most four of

twelve possible subtypes have been considered in any single study. This suggests the

existence of potentially unexplored combinations. For example, simultaneous adaptivity
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of communication and scheduling (such as, how can Varuna [208] coordinate with

interconnect frequency scaling), communication and speculation (such as, how can

MemScale[62] coordinate with adaptive prefetching), or storage and scheduling (such

as, how can ICP [121] coordinate with cache resizing) does not seem to have been well

explored.
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Refs. Computation Communication Storage Scheduling Speculation CountOrg. Speed Conc. Latency BW Size Content Latency Spat. Temp. Control Data
[18] X 1,1
[39] X 1,1
[40] X 1,1
[81] X 1,1
[141] X 1,1
[115] X 1,1
[86] X 1,1
[229] X 1,1
[125] X 1,1
[145] X 1,1
[182] X 1,1
[202] X 1,1
[207] X 1,1
[189] X X 1,2
[157] X X 1,2
[241] X 1,1
[208] X 1,1
[228] X X 1,2
[114] X X 1,2
[171] X X 1,2
[136] X X 1,2
[224] X X 1,2
[51] X X 1,2
[76] X 1,1
[2] X X 1,2
[67] X 1,1
[10] X 1,1
[8] X 1,1

[178] X 1,1
[216] X 1,1
[159] X 1,1
[217] X 1,1
[20] X 1,1
[84] X 1,1
[77] X 1,1

Table 6.1: Classification, by semantic types, of system reconfiguration capabilities.
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Refs. Computation Communication Storage Scheduling Speculation CountOrg. Speed Conc. Latency BW Size Content Latency Spat. Temp. Control Data
[128] X 1,1
[93] X 1,1
[126] X 1,1
[238] X 1,1
[186] X 1,1
[237] X 1,1
[214] X 1,1
[124] X 1,1
[49] X 1,1
[175] X 1,1
[146] X 1,1
[9] X X 2,2
[11] X X 2,2
[190] X X 2,2

§5 X X 2,2
[155] X X 2,2
[31] X X X 3,3
[5] X 1,1

[169] X 1,1
[120] X 1,1
[236] X 1,1
[135] X 1,1
[79] X 1,1
[165] X 1,1
[219] X 1,1
[69] X 1,1
[173] X 1,1
[185] X 1,1
[131] X 1,1
[234] X 1,1
[119] X 1,1
[176] X 1,1
[94] X 1,1
[118] X 1,1
[45] X 1,1

Table 6.2: Classification (cont.), by semantic types, of system reconfiguration capabilities.
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Refs. Computation Communication Storage Scheduling Speculation CountOrg. Speed Conc. Latency BW Size Content Latency Spat. Temp. Control Data
[123] X 1,1
[23] X 1,1
[97] X X 1,2
[62] X X X 2,3
[59] X X X 2,3
[213] X X X X 3,4
[61] X X X X 3,4
[192] X X X X 3,4
[80] X 1,1
[232] X 1,1
[87] X 1,1
[226] X 1,1
[177] X X 2,2
[43] X X 2,2
[44] X X 2,2
[54] X X X 2,3
[154] X 1,1
[137] X X 2,2
[139] X X 2,2
[147] X 1,1
[68] X X X 3,3
[85] X 1,1
[225] X 1,1
[239] X 1,1
[57] X 1,1
[92] X 1,1
[130] X 1,1
[17] X 1,1
§3 X X 2,2
[7] X X 2,2

[121] X X X 3,3

Table 6.3: Classification (cont.), by semantic types, of system reconfiguration capabilities.
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7 conclusion

Power and energy consumption are first-class constraints today for computer system

design and operations. One of the reasons for power (and energy) waste in computers is

that they continue to consume power (and energy) even when they are idle. Barroso and

Hölzle [22] proposed Energy Proportionality (EP) as a model for ideal system behavior. In

this model, the ideal system should use power in proportion to utilization (performance

or load served). The EP model has been very influential in encouraging system designers

to improve energy efficiency of their systems.

The EP model for ideal behavior holds true for systems with fixed resources. However,

modern computers have reconfigurable resources. Such reconfigurable systems may also

exhibit super-proportional behavior. The advent of such super-proportional systems is a

game changer. In these systems, one can get more performance for the power consumed

(or equivalently, more work done for the energy consumed) at intermediate loads than

what one could get in an “ideal” EP system. EP no longer characterizes the maximum

energy efficiency that super-proportional systems can attain. In fact, aiming for EP

behavior can be significantly suboptimal except at very low loads. In Chapter 2 we

proposed a new ideal model, EOP (Energy Optimal Proportional), that characterizes

maximum energy efficiency for all systems, both super-proportional and otherwise.

EOP is an ideal model for system designers. It describes a lower bound on the energy

consumption (upper bound on the energy efficiency) that the given system can achieve.

Any shortfall from this maximum efficiency at any operating load indicates potential for

further improvement. System designers can use this characterization to both improve

the upper bound as well as reduce shortfall, that is, make the Pareto frontier (Dynamic

EO) closer to EOP, throughout the operating range.
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For a given machine, system operators should aim to constrain the system to operate

at or close to the Pareto frontier (Dynamic EO). They should use operating policies,

or governors, that manage the system to satisfy different SLAs—to maximize energy

efficiency (SLAee), to maximize performance within a given power budget (SLApower),

to maximize power savings while meeting a given performance constraint (SLAperf), etc.

We develop new governors that configure processor frequency and cache prefetching

(Chapter 3) or cache capacity (Chapter 5).

We use a profiling-based approach to decide prefetch settings (enable/disable). To

predict cache performance, we first sample the cache access stream and use a Bloom filter

to determine the reuse distance distribution. The, our analytical models, described in

Chapter 4, read the estimated reuse distribution to predict cache performance for other

cache configurations that differ in the number of sets or ways. Our method is decoupled

from the current cache configuration. The hardware requirement of our approach is less

than that of shadow tags+way counters for large caches and is also more flexible in that

it can also estimate performance for target cache configurations having different numbers

of sets in addition to those with different associativities.

Being able to dynamically reconfigure (last-level) cache capacity opens up the possibil-

ity of “lowering” the Pareto frontier resulting in more energy-efficient system operation.

In Chapter 5 we developed a governor that simultaneously configures processor fre-

quency and cache capacity. Our experiments in that chapter only considered SLApower,

but it can be easily extended to target the other SLAs as well. We showed that our

analytical models that drive reconfiguration decisions work quite well compared to an

idealistic/oracular approach.

In datacenters, energy is wasted by both the cooling and the IT (compute, networking,

etc.) infrastructures. The PUE (Power Usage Effectiveness) metric [16] tracks excess
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energy used by the cooling infrastructure. Through intense focus on the problem of

reducing energy waste in the cooling infrastructures, modern datacenters have succeeded

in having very low PUE values. This in turn makes energy waste in the IT infrastructure,

particular servers, a major contributor to overall energy waste in modern datacenters. In

Chapter 2 we proposed a new metric, Computational PUE (CPUE), that tracks excess

energy used by the servers. Our new Iron Law of Energy decomposes CPUE into three

factors—LUE (Load Usage Effectiveness), RUE (Resource Usage Effectiveness), and Emin.

LUE is affected by inter-server load management decisions and demand-driven load

fluctuations. RUE is affected by intra-server resource configurations. Emin is affected by

system design choices. Making systems more energy efficient will require focused effort

on improving each of these aspects. We hope that the Iron Law of Energy will help to

drive and focus this effort.

Our work has the following limitations.

• Single-server systems: Our experiments in this work used single-server systems.

We believe that the concepts and metrics that we introduced, such as EOP, CPUE,

LUE, RUE, will continue to hold for multi-server systems as well. However, currently

we do not have experimental data to quantitatively compare against the traditional

EP model for such systems or how close to Dynamic EO the governors make the

systems operate.

• Long-term adaptations: Our governors target relatively long-term adaptations of

resources. The DVFS and prefetching governors (Chapters 2 and 3) work over

hundreds of milliseconds while our cache governors (Chapters 4 and 5) work over

seconds of execution time. Cache adaptations over short time intervals may not be

attractive due to significant overheads in reconfiguration and subsequent warmup.

A short time interval for our DVFS governor is suboptimal (R(1), see Chapter 3).
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• Simulation study: We use a real system (HS) for our DVFS and prefetching studies

(Chapters 2 and 3). Real systems today support dynamic reconfiguration for only

a small set of resources. On HS, dynamic reconfiguration of cache sizes is not

supported. Some other recent systems [109] support cache space allocation to

cores/applications, but are limited in the modes of reconfiguration (it is not clear if

both the number of sets and ways can be changed). Moreover, hardware support

for inspecting or sampling addresses of cache accesses is missing. Instrumentation-

based frameworks [143] may not fully address the needs because usually they do

not track OS kernel accesses to the cache. Thus, we use full-system simulation

to study cache reconfigurations (Chapters 4 and 5). We believe that simulation is

an indispensable tool for fully exploring this space. Simulators are flexible and

provide insight but may be inaccurate with respect to real system implementations.

• Prefetching models: Our governors in Chapter 3 account for the effects of hardware

prefetching and can handle prefetching reconfigurability in terms of enabling or

disabling it. Further reconfigurability for prefetching, e.g., dynamically changing

prefetch depths and strides, may need analytical modeling for prefetching impact as

a function of configuration. It is unfortunate that real systems today do not support

such reconfigurability. Our cache models in Chapter 4 and governors in Chapter 5

do not account for potential changes in the address stream due to prefetching

reconfigurations. This limitation, however, is not unique to our cache models but

affects almost all, if not all, current analytical models for cache performance.

• Throughput metrics: Our governors have focused on throughput-based metrics

for performance, e.g., BIPS, transactions per second, etc. that may be required

to also satisfy some constraints, e.g., in the case of SPECpower. Our governors

currently do not focus on latency-based metrics, e.g., response time or tail latency
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distributions that may be important for some applications, e.g., interactive online

applications, high-frequency trading applications, etc.

Future research will focus on removing these limitations. Recent work [125, 171] has

proposed techniques for fast adaptation, but doing so in a workload-agnostic manner and

without changes to the underlying OS is hard. Cache reconfigurations will likely be at

long-term intervals. Integrating cache performance models with prefetching models [48]

seems to be an interesting direction for further exploration.

Current studies have not fully explored simultaneous reconfiguration of multiple

different types of knobs within the same server. Our classification scheme in Chapter 6

highlights the potential for future work in the area. One of the challenges in doing such

work is the lack of availability of many dynamically reconfigurable knobs in real systems.

This makes full-system simulation a necessity for exploring this space. A number of

modern systems support reconfiguring the number of logical cores and socket-level DVFS,

but fewer systems support per-core DVFS. Only a handful of Xeon models support cache

capacity allocation. Hardware support for inspecting cache access streams is absent.

Hardware prefetching control is extremely limited (only enable/disable). Some other

knobs such as QPI (Quick Path Interconnect) speed and memory speed can be configured

only at system boot time. Making these and other knobs dynamically reconfigurable will

greatly help OS schedulers to operate systems more efficiently.
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a specpower power-performance

Figure A.1 shows the power-performance state space for SPECpower on HS for various

configurations chosen statically and fixed throughout the entire run. Each subfigure

shows particular combinations of number of cores (4 cores or 1 core) and memory

frequency (1600 MHz or 1067 MHz) and all possible DVFS levels for each combination.

We keep the default setting of prefetching enabled for all runs.
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Figure A.1: SPECpower power-performance with different configurations.

Reducing memory frequency affects bandwidth, but has noticeable impact only when

there are more active cores to generate memory traffic. Reducing the number of cores

or memory frequency reduces the maximum load that can be served, but does not

significantly lower the Pareto frontier at low loads.
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