
University of Wisconsin-Madison

Log-Based Transactional
Memory

Kevin E. Moore

 03/07/2008 Wisconsin Multifacet Project

Motivation

• Chip-multiprocessors/Multi-core/Many-core
are here
– “Intel has 10 projects in the works that contain four

or more computing cores per chip” -- Paul Otellini,
Intel CEO, Fall ’05

• We must effectively program these systems
– But programming with locks is challenging

– “Blocking on a mutex is a surprisingly delicate
dance”
 -- OpenSolaris,
mutex.c

 03/07/2008 Wisconsin Multifacet Project

Locks are Hard

// WITH LOCKS

void move(T s, T d, Obj key){

 LOCK(s);

 LOCK(d);

 tmp = s.remove(key);

 d.insert(key, tmp);

 UNLOCK(d);

 UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0

Thread 1

Moreover

Coarse-grain locking limits
concurrency

Fine-grain locking difficult

 03/07/2008 Wisconsin Multifacet Project

Transactional Memory (TM)

• Programmer says
– “I want this atomic”

• TM system
– “Makes it so”

• Software TM (STM) Implementations
– Currently slower than locks

– Always slower than hardware?

• Hardware TM (HTM) Implementations
– Leverage cache coherence & speculation

– Fast

– But hardware overheads and virtualization challenges

void move(T s, T d, Obj key){

 atomic {

 tmp = s.remove(key);

 d.insert(key, tmp);

 }

}

 03/07/2008 Wisconsin Multifacet Project

Goals for Transactional Memory

• Efficient Implementation
– Make the common case fast

– Can’t justify expensive HW (yet)

• Virtualizing TM
– Don’t limit programming model

– Allow transactions of any size and duration

 03/07/2008 Wisconsin Multifacet Project

Implementing TM

• Version Management
– new values for commit

– old values for abort

– Must keep both

• Conflict Detection
– Find read-write, write-read or

write-write conflicts
among concurrent transactions

– Allows multiple readers OR one
writer

Large state
(must be precise)

Checked often
(must be fast)

 03/07/2008 Wisconsin Multifacet Project

LogTM: Log-Based Transactional Memory

• Combined Hardware/Software Transactional Memory
– Conservative hardware conflict detection

– Software version management (with some hardware
support)

• Eager Version Management
– Stores new values in place

– Stores old values in user virtual memory (the transaction log)

• Eager Conflict Detection
– Detects transaction conflicts on each load and store

 03/07/2008 Wisconsin Multifacet Project

LogTM Publications

 [HPCA 2006] LogTM: Log-based Transactional Memory

[ASPLOS 2006] Supporting Nested Transactional Memory
 in LogTM

 [HPCA 2007] LogTM-SE: Decoupling Hardware
 Transactional Memory from Caches

 [ISCA 2007] Performance Pathologies in Hardware
 Transactional Memory

 03/07/2008 Wisconsin Multifacet Project

Outline

• Introduction

• Background

• LogTM

• Implementing LogTM

• Evaluation

• Extending LogTM

• Related Work

• Conclusion

University of Wisconsin-Madison

LOGTM

 03/07/2008 Wisconsin Multifacet Project

LogTM: Log-Based Transactional Memory

• Eager Software-Based Version Management
– Store new values in place

– Store old values in the transaction log

– Undo failed transactions in software

• Eager All-Hardware Conflict Detection
– Isolate new values

– Fast conflict detection for all transactions

 03/07/2008 Wisconsin Multifacet Project

1

E8

LogTM’s Eager Version Management

1200

40

80

C0

• New values stored in place

• Old values stored in the
transaction log

– A per-thread linear (virtual) address
space (like the stack)

– Filled by hardware (during
transactions)

– Read by software (on abort)

Data BlockVA

Log Base

Log Ptr

TM count

C0

0 0

R W

0 0

0 0

7c90 34 23

24

1

1 1

156

<example>

Transaction
Log

00 15

100

 03/07/2008 Wisconsin Multifacet Project

Eager Version Management Discussion

• Advantages:
– No extra indirection (unlike STM)

– Fast Commits

• No copying

• Common case

• Disadvantages
– Slow/Complex Aborts

• Undo aborting transaction

– Relies on Eager Conflict Detection/Prevention

 03/07/2008 Wisconsin Multifacet Project

LogTM’s Eager Conflict Detection

Requirements for Conflict Detection in LogTM:

1. Transactions Must Be Well Formed
• Each thread must obtain read isolation on all memory

locations read and write isolation on all locations written

2. Isolation Must be Strict Two-Phase
• Any thread that acquires read or write isolation on a

memory location in a transaction must maintain that
isolation until the end of the transaction

3. Isolation Must Be Released at the End of a
Transaction
• Because conflicts may prevent transactions from making

progress, a thread completing a transaction must release
isolation when it aborts or commits a transaction

 03/07/2008 Wisconsin Multifacet Project

LogTM’s Conflict Detection in Practice

• LogTM detects conflicts using coherence
– Requesting processor issues coherence request

to memory system

– Coherence mechanism forwards to other
processor(s)

– Responding processor detects conflict using local
state & informs requesting processor of conflict

• Requesting processor resolves conflict
(discussed later)

 03/07/2008 Wisconsin Multifacet Project

I [none]M [old]M [new]

I [old]M@P0 [old]

Example Implementation (LogTM-Dir)

Directory

P1

I [none]

• P0 store

– P0 sends get exclusive
(GETX) request

– Directory responds with
data (old)

– P0 executes store

P0

GETX DATA

 (--)Metadata (--)Metadata (--) (W-)

 03/07/2008 Wisconsin Multifacet Project

M [new]M [new]

Example Implementation (LogTM-Dir)

Directory

P1

I [none]

M@P0 [old]

• In-cache transaction conflict

– P1 sends get shared
(GETS) request

– Directory forwards to P0

– P1 detects conflict and
sends NACK

P0

GETS

Fwd_GETS

Conflict!

NACK

Metadata (W-) Metadata (--)

 03/07/2008 Wisconsin Multifacet Project

Conflict Resolution

• Conflict Resolution
– Can wait risking deadlock

– Can abort risking livelock

– Wait/abort transaction at requesting or responding proc?

• LogTM resolves conflicts at requesting processor
– Requesting can wait (using coherence nacks/retries)

– But must abort if deadlock is possible

• Requester Stalls Policy
– Logically order transactions with timestamps

– On conflict notification, wait unless already causing an older
transaction to wait

 03/07/2008 Wisconsin Multifacet Project

LogTM API

User System/Library Low-Level

begin_transaction()

commit_transaction()

abort_transaction()

Initialize_logtm_transactions()

Register_abort_handler(void (*)
handler)

Undo_log_entry()

Complete_abort_with_restart()

Complete_abort_wo_restart()

University of Wisconsin-Madison

IMPLEMENTING LOGTM

 03/07/2008 Wisconsin Multifacet Project

Version Management Trade-offs

• Hardware vs. Software Register Checkpointing

• Implicit vs. Explicit Logging

• Buffered vs. Direct Logging

• Logging Granularity

• Logging Location

 03/07/2008 Wisconsin Multifacet Project

Compiler-Supported Software Logging

• Software Register Checkpointing
– Compiler generates instructions to save registers to

transaction log

• Software-only logging
– Compiler generates instructions to save old values and to

the transaction log

• Lowest implementation cost
– All-software version management

• High overhead
– Slow to start transactions (save registers)

– Slow writes (extra load & instructions)

 03/07/2008 Wisconsin Multifacet Project

In-Cache Hardware Logging

• Hardware Register Checkpointing
– Bulk save architectural registers (like USIII)

• Hardware Logging
– Hardware saves old values and virtual address to memory at

the first level of writeback cache

• Best Performance
– Little or no logging-induced delay

– Single-cycle transaction begin/commit

• Complex implementation
– Shadow register file

– Buffering and forwarding logic in caches

 03/07/2008 Wisconsin Multifacet Project

In-Cache Hardware Logging

VALog Target

Store Target

Data

ECC

ECC

ECC

L1 D Cache

CPU Store
Buffer

L2 Cache

VALog TargetECC

Store Target

Data

ECC

ECC

Bank 0 Bank 1

CPU Store
Buffer

CPU

L1 D L1 D

 03/07/2008 Wisconsin Multifacet Project

Hardware/Software Hybrid Buffered Logging

• Hardware Register Checkpointing
– Bulk save architectural registers (like USIII)

• Buffered Logging
– Hardware saves old values and virtual address to a small

buffer

• Good Performance
– Little or no logging-induced delay for small transactions

– Single-cycle transaction begin/commit

– Reduces processor-to-cache memory traffic

• Less-complex implementation
– Shadow register file

– No changes to caches

 03/07/2008 Wisconsin Multifacet Project

Store
Buffer

Register File

Hardware/Software Hybrid Buffered Logging

VALog Target

Store Target

Cache

CPU

Store
Buffer

Log
Buffer

Register File

Transaction
Execution

Buffer Spill

 03/07/2008 Wisconsin Multifacet Project

Implementing Conflict Detection

• Existing cache coherence mechanisms can support
conflict detection for cached data by adding an R
(read) W (write) bit to each cache line

• Challenges for detecting conflicts on un-cached data
differ for broadcast and directory systems

• Broadcast
– Easy to find all possible conflicts

– Hard to filter false conflicts

• Directory
– Hard to find all possible conflicts

– Easy to filter false conflicts

 03/07/2008 Wisconsin Multifacet Project

LogTM-Bcast

• Adds a Bloom Filter to track
memory blocks touched in a
transaction, then evicted
from the cache

• Allows any number of
addresses to be added to
the filter

• Detects all true conflicts

• Allows some false conflicts

RW DataTag

Overflow
filter

L2 Cache

R

W

CPU
L1 D

L1 I

 03/07/2008 Wisconsin Multifacet Project

LogTM-Dir

• Extends a standard MESI directory with sticky
states

• The directory continues to forward coherence
traffic for a memory location to processors
that touch that location in a transaction then
evict it from the cache

• Removes most false conflicts with a single
overflow bit per cache

 03/07/2008 Wisconsin Multifacet Project

Sticky States

M S I

M M

E E

S S

I Sticky-M Sticky-S I

Directory State

C
a

c
h

e
 S

ta
te

 03/07/2008 Wisconsin Multifacet Project

 LogTM-Dir Conflict Detection w/ Cache Overflow

• At overflow at processor P0
– Set P0’s overflow bit (1 bit per processor)

– Allow writeback, but set directory state to Sticky@P0

• At (potential) conflicting request by processor P1
– Directory forwards P1’s request to P0.

– P0 tells P1 “no conflict” if overflow is reset

– But asserts conflict if set (w/ small chance of false positive)

• At transaction end (commit or abort) at processor P0
– Reset P0’s overflow bit

• Clean sticky states lazily on next access

 03/07/2008 Wisconsin Multifacet Project

M [new]I [none]

M@P0 [old]M
sticky

@P0 [new]

LogTM-Dir

Directory

TM count 0 P1

I [none]

TM count 01

• Cache overflow

– P0 sends put exclusive
(PUTX) request

– Directory acknowledges

– P0 writes data back to
memory

P0

PUTX ACK DATA

 (W-)R/W (--)R/W

 03/07/2008 Wisconsin Multifacet Project

LogTM-Dir

Directory

I (--) [none]

TM count 0 P1

I [none]

TM count 0

M@P0 [old]

1

• Out-of-cache conflict

– P1 sends GETS request

– Directory forwards to P0

– P0 detects a (possible)
conflict

– P0 sends NACK

P0

M (--) [old]M (-W) [new]

M
sticky

@P0 [new]

I [none]

GETS

Fwd_GETS

Conflict!

NACK

 (-W)Signature (--)Signature

 03/07/2008 Wisconsin Multifacet Project

LogTM-Dir

Directory

I (--) [none]

TM count 0 P1

I [none]

TM count 0

M@P0 [old]

1

• Commit

– P0 clears TM count and

– Signature

P0

M (--) [old]M (-W) [new]

M
sticky

@P0 [new]

I [none]

0

Signature (--) (-W) Signature (--)

 03/07/2008 Wisconsin Multifacet Project

M
sticky

@P0 [new]S(P1) [new]

0

LogTM-Dir

Directory

I (--) [none]

TM count 0 P1

I (--) [none]

TM count 0

• Lazy cleanup

– P1 sends GETS request

– Directory forwards request
to P0

– P0 detects no conflict,
sends CLEAN

– Directory sends Data to P1

P0

M (--) [old]M (-W) [new]I [none]

GETS

Fwd_GETS
CLEAN DATA

S [new]

 (--)Signature (--)Signature (R-)

University of Wisconsin-Madison

EVALUATION

 03/07/2008 Wisconsin Multifacet Project

System Model

Component Settings

Processors 32, 1 GHz, single-issue, in-order, non-memory
IPC=1

L1 Cache 16 kB 4-way split, 1-cycle latency

L2 Cache 4 MB 4-way unified, 12-cycle latency

Memory 4 GB, 80-cycle latency

Directory Full-bit-vector sharers list, directory cache, 6-
cycle latency

Interconnection Network Hierarchical switch topology, 14-cycle link latency

• LogTM-Dir

• In-Cache Hardware Logging & Hybrid Buffered
Logging

 03/07/2008 Wisconsin Multifacet Project

Benchmarks

Benchmark Synchronization Inputs

Shared Counter Counter lock 2500 cycle random
think time

B-Tree Transactions only 9-ary tree, 5 levels
deep

Barnes Locks on tree nodes 512 bodies

Cholesky Task queue locks 14

Berkeley DB (BkDB) Locks on object lists 512 operations

MP3D Locks 4096 molecules

Radiosity Task queue locks Large room

Raytrace Work list and counter
locks

Car

 03/07/2008 Wisconsin Multifacet Project

Read Set Size

0

1.25

2.50

3.75

5.00

0 200 400 600 800

C
D

F

Read Set Size (in 64-byte blocks)

Barnes
Cholesky
BkDB
MP3D
Radiosity
Raytrace

 03/07/2008 Wisconsin Multifacet Project

Write Set Size

0

0.275

0.550

0.825

1.100

0 12.5 25.0 37.5 50.0

C
D

F

Write Set Size (in 64-byte blocks)

Barnes

Cholesky

BkDB

MP3D

Radiosity

Raytrace

 03/07/2008 Wisconsin Multifacet Project

Microbenchmark Scalability

Btree 0%, 10% and
20% Updates

Shared Counter: LogTM
vs. Locks

0

7.5

15.0

22.5

30.0

0 8 16 24 32

S
p

e
e
d

u
p

Threads

20%

10%

0%

0

1.25

2.50

3.75

5.00

0 8 16 24 32

S
p

e
e
d

u
p

Threads

LogTM

EXP Lock

 03/07/2008 Wisconsin Multifacet Project

Benchmark Scalability

Barnes BkDB

0

0.275

0.550

0.825

1.100

0 8 16 24 32

S
p

e
e
d

u
p

Threads

LogTM

Lock

0

1.25

2.50

3.75

5.00

0 8 16 24 32

S
p

e
e
d

u
p

Threads

LogTM

Lock

 03/07/2008 Wisconsin Multifacet Project

Benchmark Scalability

0

2.5

5.0

7.5

10.0

0 8 16 24 32

S
p

e
e
d

u
p

Threads

LogTM

Lock

0

5

10

15

20

0 8 16 24 32

S
p

e
e
d

u
p

Threads

LogTM

Lock

Cholesky MP3D

 03/07/2008 Wisconsin Multifacet Project

Benchmark Scalability

0

7.5

15.0

22.5

30.0

0 8 16 24 32

S
p

e
e
d

u
p

Threads

LogTM

Lock

0

10

20

30

40

0 8 16 24 32

S
p

e
e
d

u
p

Threads

LogTM

Lock

Radiosity Raytrace

 03/07/2008 Wisconsin Multifacet Project

Scalability Summary

• Benchmarks scale as well or better using LogTM
transactions
– Performance is better for all benchmarks

• LogTM improves the scalability of some benchmarks,
but not others

• Abort rates are low

• Next:
– Write set prediction

– Buffered Logging

– Log Granularity

 03/07/2008 Wisconsin Multifacet Project

Write Set Prediction

• Predicts if the target of each load will be modified in
this transaction

• Eagerly acquires write isolation

• Reduces “waits for” cycles that force aborts in LogTM

• Four Predictors:
– None -- Never predict

– 1-Entry -- Remembers a single address

– Load PC -- History based on PC of load instruction

– Always -- Acquire write isolation for all loads and stores

 03/07/2008 Wisconsin Multifacet Project

Abort Rate with Write Set Prediction

0

0.25

0.50

0.75

1.00

N
O

N
E

B
a
rn

e
s

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

B
k
D

B

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

C
h
o
le

s
k
y

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

M
P
3
D

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

R
a
d
io

s
it
y

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

R
a
y
tr

a
c
e

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

A
b

o
r
ts

/
A

tt
e
m

p
te

d
 T

r
a
n

s
a
c
ti

o
n

 03/07/2008 Wisconsin Multifacet Project

Performance Impact of WSP

0

1.25

2.50

3.75

5.00

N
O

N
E

B
a
rn

e
s

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

B
k
D

B

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

C
h
o
le

s
k
y

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

M
P
3
D

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

N
O

N
E

R
a
d
io

s
it
y

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

S
p

e
e
d

u
p

 (
o

v
e
r
 l
o

c
k
s
)

0

7.5

15.0

22.5

30.0

N
O

N
E

R
a
y
tr

a
c
e

1
_
E
N

T
R
Y

L
O

A
D

_
P
C

A
L
W

A
Y
S

S
p

e
e
d

u
p

 (
o

v
e
r
 l

o
c
k
s
)

 03/07/2008 Wisconsin Multifacet Project

Impact of Buffer-Spill Stalls

0.800

0.925

1.050

1.175

1.300

1 B
a
rn

e
s 4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

In
f.

1 C
h
o
le

s
k
y 4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

In
f.

1 B
k
D

B 4
1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

In
f.

1 M
P
3
D 4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

In
f.

1 R
a
d
io

s
it
y 4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

In
f.

1 R
a
y
tr

a
c
e 4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

In
f.

E
x
e
c
u

ti
o

n
 T

im
e
 (

n
o

r
m

a
li
z
e
d

)

 03/07/2008 Wisconsin Multifacet Project

Log Granularity

0

175

350

525

700

4 B
a
rn

e
s

1
6

6
4 8

3
2

4 B
T
re

e

1
6

6
4 8

3
2

4 M
P
3
D

1
6

6
4 8

3
2

4 R
a
y
tr

a
c
e

1
6

6
4

L
o

g
 S

iz
e
 (

in
 b

y
te

s
)

Values

Address

Unused

 03/07/2008 Wisconsin Multifacet Project

Modeling Abort Penalty

• Abort penalty
– Delays coherence requests

– Delays transaction restart

• Penalty consists of:
– Trap overhead (constant)

– Rollback overhead (per log entry)

• Measured performance for 3 settings:
– Ideal -- single-cycle abort

– Medium -- 200 cycle trap, 40-cycle per undo record

– Slow -- 1000 cycle trap, 200-cycle per undo record

 03/07/2008 Wisconsin Multifacet Project

Sensitivity to Abort Penalty (no WSP)

0

0.253

0.505

0.758

1.010

1
/0

B
a
rn

e
s

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

C
h
o
le

s
k
y

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

B
k
D

B

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

M
P
3
D

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

R
a
d
io

s
it
y

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

R
a
y
tr

a
c
e

2
0
0
/4

0

1
0
0
0
/2

0
0

E
x
e
c
u

ti
o

n
 T

im
e
 (

n
o

r
m

a
li
z
e
d

 t
o

 1
-c

y
c
le

 a
b

o
r
ts

)

 03/07/2008 Wisconsin Multifacet Project

Sensitivity to Abort Penalty (with WSP)

0

0.263

0.525

0.788

1.050

1
/0

B
a
rn

e
s

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

C
h
o
le

s
k
y

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

B
k
D

B

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

M
P
3
D

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

R
a
d
io

s
it
y

2
0
0
/4

0

1
0
0
0
/2

0
0

1
/0

R
a
y
tr

a
c
e

2
0
0
/4

0

1
0
0
0
/2

0
0E
x
e
c
u

ti
o

n
 T

im
e
 (

n
o

r
m

a
li

z
e
d

 t
o

 1
-c

y
c
le

 a
b

o
r
ts

)

University of Wisconsin-Madison

EXTENDING LOGTM

 03/07/2008 Wisconsin Multifacet Project

Extending LogTM

• Supporting Nesting in LogTM
– Support nested VM by segmenting the transaction log

– Non-transactional escape actions facilitate OS interactions

• Virtualizing Conflict Detection with Signatures
LogTM-Signature Edition (LogTM-SE) tracks read
and write sets with signatures (like Bloom Filters)
– Supports thread switching and paging by saving, restoring

and manipulating signatures

University of Wisconsin-Madison

RELATED WORK

 03/07/2008 Wisconsin Multifacet Project

Related Work

• Hardware Support for Database Transactions

• Early Transactional Memory Systems

• Hardware TM (HTM)

• Software TM (STM)

• Hybrid TM

• TM Virtualization

 03/07/2008 Wisconsin Multifacet Project

Early Transactional Memory Systems

• Hardware Support for Database Transactions
– 801 Storage System

• Database-like transactions on 1-level store (memory and disk)

• Transactions are durable

• Early HTM
– Knight

• used transactions to parallelize code written in ‘mostly
functional’ languages

– Herlihy and Moss
• First HTM

• Implementation based on a separate transaction cache

• Transactions limited to cached data

 03/07/2008 Wisconsin Multifacet Project

Unbounded Transactional Memory

• Uses Eager VM and Eager CD

• Supports unbounded transactions in
hardware

• Complex hardware
– Pointer and state bits for each line in memory

– Hardware state machine for transaction rollback

– Global virtual address space

 03/07/2008 Wisconsin Multifacet Project

Transactional Memory Coherence and
Consistency (TCC)

CPU
L1 D

L2 Cache

Logically Shared

Write buffer ~4 kB,

Fully-Associative

On-Chip

Interconnect

Broadcast-Based

Communication

R

L1 Cache tracks

read set

 03/07/2008 Wisconsin Multifacet Project

Bulk

• Encodes read and write sets in signatures
(like bloom filters)

• Like TCC, uses lazy VM and lazy CD

• Can detect conflicts for non-cached data

 03/07/2008 Wisconsin Multifacet Project

Hybrid Transactional Memory

• Combines HTM and STM

• Executes small transactions in hardware, large
transactions in software

• Allows program execution on existing hardware
(without HTM support)

 03/07/2008 Wisconsin Multifacet Project

Transaction Virtualization

• Virtual Transactional Memory (VTM)
– Rajwar and Herlihy

– Adds a virtualization mechanism to limited HTM (e.g. Herlihy
and Moss TM)

– Implements CD and VM for transactions that exceed
hardware capabilities in micro-code

• Page-granularity Transaction Virtualization
– PTM -- Chuang et al.

– XTM -- Chung et al.

 03/07/2008 Wisconsin Multifacet Project

Before Virtualization After Virtualization

$Miss Com
mit

Abort $Evicti
on

$M
iss

Commi
t

Abort $Evic
tion

Pagin
g

Thread
Switch

UTM - - - H H H HC H H H

VTM - - - S S SC S S S SWV

UnrestrictedTM - - - A B B B B AS AS

XTM

XTM-g

-

-

-

-

-

-

ASC

SC

-

-

SCV

SCV

S

S

SC

SC

SC

SC

AS

AS

PTM-Copy

PTM-Select

-

-

-

-

-

-

SC

S

S

H

S

S

SC

S

SC

S

S

S

S

S

LogTM-SE - - SC - - S SC - S S

Shaded = virtualization event

- = handled in simple HW

H = complex hardware

S = handled in software

A = abort transaction

C = copy values

W = walk cache

V = validate read set

B = block other transactions

HTM Virtualization Mechanisms

 03/07/2008 Wisconsin Multifacet Project

Conclusion

• TM can make parallel programs faster and easier to
write

• LogTM provides:
– Hardware/Software Implementation

• Simple, flexible hardware

– Software-Based Eager Version Management

• Makes the common case (commit) fast

• Reduces hardware complexity

– Hardware-Based Eager Conflict Detection

• Allows blocking to reduce wasted work

 03/07/2008 Wisconsin Multifacet Project

Thanks to my Collaborators

• Jayaram Bobba, Mark Hill, Derek
Hower, Steve Jackson, Nick Kidd, Ben
Liblit, Mike Marty, Michelle Moravan,
Tom Reps, Mike Swift, Haris Volos,
David Wood, Luke Yen

