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Motivation

• Chip-multiprocessors/Multi-core/Many-core 
are here
– “Intel has 10 projects in the works that contain four 

or more computing cores per chip” -- Paul Otellini, 
Intel CEO, Fall ’05

• We must effectively program these systems
– But programming with locks is challenging

– “Blocking on a mutex is a surprisingly delicate 
dance”
    -- OpenSolaris, 
mutex.c
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Locks are Hard

// WITH LOCKS

void move(T s, T d, Obj key){

  LOCK(s);

  LOCK(d);

  tmp = s.remove(key);

  d.insert(key, tmp);

  UNLOCK(d);

  UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0

Thread 1

Moreover

Coarse-grain locking limits 
concurrency

Fine-grain locking difficult
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Transactional Memory (TM)

• Programmer says
– “I want this atomic”

• TM system
– “Makes it so”

• Software TM (STM) Implementations
– Currently slower than locks

– Always slower than hardware?

• Hardware TM (HTM) Implementations
– Leverage cache coherence & speculation

– Fast

– But hardware overheads and virtualization challenges

void move(T s, T d, Obj key){

  atomic {

   tmp = s.remove(key);

   d.insert(key, tmp);

  }

}
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Goals for Transactional Memory

• Efficient Implementation
– Make the common case fast

– Can’t justify expensive HW (yet)

• Virtualizing TM
– Don’t limit programming model

– Allow transactions of any size and duration
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Implementing TM

• Version Management
– new values for commit

– old values for abort

– Must keep both

• Conflict Detection
– Find read-write, write-read or 

write-write conflicts
among concurrent transactions

– Allows multiple readers OR one 
writer

Large state
(must be precise)

Checked often
(must be fast)
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LogTM: Log-Based Transactional Memory

• Combined Hardware/Software Transactional Memory
– Conservative hardware conflict detection

– Software version management (with some hardware 
support)

• Eager Version Management
– Stores new values in place

– Stores old values in user virtual memory (the transaction log)

• Eager Conflict Detection
– Detects transaction conflicts on each load and store
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LogTM Publications

     [HPCA 2006] LogTM: Log-based Transactional Memory

[ASPLOS 2006] Supporting Nested Transactional Memory 
  in LogTM

     [HPCA 2007] LogTM-SE: Decoupling Hardware 
   Transactional Memory from Caches

      [ISCA 2007] Performance Pathologies in Hardware 
   Transactional Memory
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LogTM: Log-Based Transactional Memory

• Eager Software-Based Version Management
– Store new values in place

– Store old values in the transaction log

– Undo failed transactions in software

• Eager All-Hardware Conflict Detection
– Isolate new values

– Fast conflict detection for all transactions
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Eager Version Management Discussion

• Advantages:
– No extra indirection (unlike STM)

– Fast Commits

• No copying

• Common case

• Disadvantages
– Slow/Complex Aborts

• Undo aborting transaction

– Relies on Eager Conflict Detection/Prevention
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LogTM’s Eager Conflict Detection

Requirements for Conflict Detection in LogTM:

1. Transactions Must Be Well Formed
• Each thread must obtain read isolation on all memory 

locations read and write isolation on all locations written

2. Isolation Must be Strict Two-Phase
• Any thread that acquires read or write isolation on a 

memory location in a transaction must maintain that 
isolation until the end of the transaction

3. Isolation Must Be Released at the End of a 
Transaction
• Because conflicts may prevent transactions from making 

progress, a thread completing a transaction must release 
isolation when it aborts or commits a transaction
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LogTM’s Conflict Detection in Practice

• LogTM detects conflicts using coherence
– Requesting processor issues coherence request 

to memory system

– Coherence mechanism forwards to other 
processor(s)

– Responding processor detects conflict using local 
state & informs requesting processor of conflict

• Requesting processor resolves conflict 
(discussed later)
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I [none]M [old]M [new]

I   [old]M@P0 [old]

Example Implementation (LogTM-Dir)

Directory

P1

I [none]

• P0 store

– P0 sends get exclusive 
(GETX) request

– Directory responds with 
data (old)

– P0 executes store

P0

GETX DATA

 (--)Metadata  (--)Metadata (--) (W-)
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M [new]M [new]

Example Implementation (LogTM-Dir)

Directory

P1

I [none]

M@P0 [old]

• In-cache transaction conflict

– P1 sends get shared 
(GETS) request

– Directory forwards to P0

– P1 detects conflict and 
sends NACK

P0

GETS

Fwd_GETS

Conflict!

NACK

Metadata  (W-) Metadata  (--)
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Conflict Resolution

• Conflict Resolution
– Can wait risking deadlock

– Can abort risking livelock

– Wait/abort transaction at requesting or responding proc?

• LogTM resolves conflicts at requesting processor
– Requesting can wait (using coherence nacks/retries)

– But must abort if deadlock is possible

• Requester Stalls Policy
– Logically order transactions with timestamps

– On conflict notification, wait unless already causing an older 
transaction to wait
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LogTM API

User System/Library Low-Level

begin_transaction()

commit_transaction()

abort_transaction()

Initialize_logtm_transactions()

Register_abort_handler(void (*) 
handler)

Undo_log_entry()

Complete_abort_with_restart()

Complete_abort_wo_restart()

University of Wisconsin-Madison

IMPLEMENTING LOGTM
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Version Management Trade-offs

• Hardware vs. Software Register Checkpointing

• Implicit vs. Explicit Logging

• Buffered vs. Direct Logging

• Logging Granularity

• Logging Location
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Compiler-Supported Software Logging

• Software Register Checkpointing
– Compiler generates instructions to save registers to 

transaction log

• Software-only logging
– Compiler generates instructions to save old values and to 

the transaction log

• Lowest implementation cost
– All-software version management

• High overhead
– Slow to start transactions (save registers)

– Slow writes (extra load & instructions)
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In-Cache Hardware Logging

• Hardware Register Checkpointing
– Bulk save architectural registers (like USIII)

• Hardware Logging
– Hardware saves old values and virtual address to memory at 

the first level of writeback cache

• Best Performance
– Little or no logging-induced delay

– Single-cycle transaction begin/commit

• Complex implementation
– Shadow register file

– Buffering and forwarding logic in caches
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In-Cache Hardware Logging

VALog Target

Store Target

Data

ECC

ECC

ECC

L1 D Cache

CPU Store 
Buffer

L2 Cache

VALog TargetECC

Store Target

Data

ECC

ECC

Bank 0 Bank 1

CPU Store 
Buffer

CPU

L1 D L1 D
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Hardware/Software Hybrid Buffered Logging

• Hardware Register Checkpointing
– Bulk save architectural registers (like USIII)

• Buffered Logging
– Hardware saves old values and virtual address to a small 

buffer

• Good Performance
– Little or no logging-induced delay for small transactions

– Single-cycle transaction begin/commit

– Reduces processor-to-cache memory traffic

• Less-complex implementation
– Shadow register file

– No changes to caches
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Store 
Buffer

Register File

Hardware/Software Hybrid Buffered Logging

VALog Target

Store Target

Cache

CPU

Store 
Buffer

Log 
Buffer

Register File

Transaction 
Execution

Buffer Spill
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Implementing Conflict Detection

• Existing cache coherence mechanisms can support 
conflict detection for cached data by adding an R 
(read) W (write) bit to each cache line

• Challenges for detecting conflicts on un-cached data 
differ for broadcast and directory systems

• Broadcast
– Easy to find all possible conflicts

– Hard to filter false conflicts

• Directory
– Hard to find all possible conflicts

– Easy to filter false conflicts
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LogTM-Bcast

• Adds a Bloom Filter to track 
memory blocks touched in a 
transaction, then evicted 
from the cache

• Allows any number of 
addresses to be added to 
the filter

• Detects all true conflicts

• Allows some false conflicts

RW DataTag

Overflow 
filter

L2 Cache

R

W

CPU
L1 D

L1 I
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LogTM-Dir

• Extends a standard MESI directory with sticky 
states

• The directory continues to forward coherence 
traffic for a memory location to processors 
that touch that location in a transaction then 
evict it from the cache

• Removes most false conflicts with a single 
overflow bit per cache
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Sticky States

M S I

M M

E E

S S
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Directory State
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 LogTM-Dir Conflict Detection w/ Cache Overflow

• At overflow at processor P0
– Set P0’s overflow bit (1 bit per processor)

– Allow writeback, but set directory state to Sticky@P0

• At (potential) conflicting request by processor P1
– Directory forwards P1’s request to P0.

– P0 tells P1 “no conflict” if overflow is reset

– But asserts conflict if set (w/ small chance of false positive)

• At transaction end (commit or abort) at processor P0
– Reset P0’s overflow bit

• Clean sticky states lazily on next access
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M [new]I [none]

M@P0 [old]M
sticky

@P0 [new]

LogTM-Dir

Directory

TM count 0 P1

I [none]

TM count 01

• Cache overflow

– P0 sends put exclusive 
(PUTX) request

– Directory acknowledges

– P0 writes data back to 
memory

P0

PUTX ACK DATA 

 (W-)R/W  (--)R/W
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LogTM-Dir

Directory

I (--) [none]

TM count 0 P1

I [none]

TM count 0

M@P0 [old]

1

• Out-of-cache conflict

– P1 sends GETS request

– Directory forwards to P0

– P0 detects a (possible) 
conflict

– P0 sends NACK

P0

M (--) [old]M (-W) [new]

M
sticky

@P0 [new]

I [none]

GETS

Fwd_GETS

Conflict!

NACK

 (-W)Signature  (--)Signature
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LogTM-Dir

Directory

I (--) [none]

TM count 0 P1

I [none]

TM count 0

M@P0 [old]

1

• Commit

– P0 clears TM count and

– Signature

P0

M (--) [old]M (-W) [new]

M
sticky

@P0 [new]

I [none]

0

Signature  (--) (-W) Signature (--)
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M
sticky

@P0 [new]S(P1) [new]

0

LogTM-Dir

Directory

I (--) [none]

TM count 0 P1

I (--) [none]

TM count 0

• Lazy cleanup

– P1 sends GETS request

– Directory forwards request 
to P0

– P0 detects no conflict, 
sends CLEAN

– Directory sends Data to P1

P0

M (--) [old]M (-W) [new]I [none]

GETS

Fwd_GETS
CLEAN DATA

S [new]

 (--)Signature  (--)Signature  (R-)

University of Wisconsin-Madison

EVALUATION
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System Model

Component Settings

Processors 32, 1 GHz, single-issue, in-order, non-memory 
IPC=1

L1 Cache 16 kB 4-way split, 1-cycle latency

L2 Cache 4 MB 4-way unified, 12-cycle latency

Memory 4 GB, 80-cycle latency

Directory Full-bit-vector sharers list, directory cache, 6-
cycle latency

Interconnection Network Hierarchical switch topology, 14-cycle link latency

• LogTM-Dir

• In-Cache Hardware Logging & Hybrid Buffered 
Logging
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Benchmarks

Benchmark Synchronization Inputs

Shared Counter Counter lock 2500 cycle random 
think time

B-Tree Transactions only 9-ary tree, 5 levels 
deep

Barnes Locks on tree nodes 512 bodies

Cholesky Task queue locks 14

Berkeley DB (BkDB) Locks on object lists 512 operations

MP3D Locks 4096 molecules

Radiosity Task queue locks Large room

Raytrace Work list and counter 
locks

Car
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Read Set Size
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Write Set Size
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Microbenchmark Scalability

Btree 0%, 10% and 
20% Updates

Shared Counter: LogTM 
vs. Locks
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Benchmark Scalability
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Benchmark Scalability
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Benchmark Scalability
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Scalability Summary

• Benchmarks scale as well or better using LogTM 
transactions
– Performance is better for all benchmarks

• LogTM improves the scalability of some benchmarks, 
but not others

• Abort rates are low

• Next:
– Write set prediction

– Buffered Logging

– Log Granularity
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Write Set Prediction

• Predicts if the target of each load will be modified in 
this transaction

• Eagerly acquires write isolation

• Reduces “waits for” cycles that force aborts in LogTM

• Four Predictors:
– None -- Never predict

– 1-Entry -- Remembers a single address

– Load PC -- History based on PC of load instruction

– Always -- Acquire write isolation for all loads and stores
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Abort Rate with Write Set Prediction
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Performance Impact of WSP
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Impact of Buffer-Spill Stalls
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Log Granularity
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Modeling Abort Penalty

• Abort penalty
– Delays coherence requests

– Delays transaction restart

• Penalty consists of:
– Trap overhead (constant)

– Rollback overhead (per log entry)

• Measured performance for 3 settings:
– Ideal -- single-cycle abort

– Medium -- 200 cycle trap, 40-cycle per undo record

– Slow -- 1000 cycle trap, 200-cycle per undo record
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Sensitivity to Abort Penalty (no WSP)
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Sensitivity to Abort Penalty (with WSP)
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Extending LogTM

• Supporting Nesting in LogTM
– Support nested VM by segmenting the transaction log

– Non-transactional escape actions facilitate OS interactions

• Virtualizing Conflict Detection with Signatures 
LogTM-Signature Edition (LogTM-SE) tracks read 
and write sets with signatures (like Bloom Filters)
– Supports thread switching and paging by saving, restoring 

and manipulating signatures

University of Wisconsin-Madison

RELATED WORK
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Related Work

• Hardware Support for Database Transactions

• Early Transactional Memory Systems

• Hardware TM (HTM)

• Software TM (STM)

• Hybrid TM

• TM Virtualization
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Early Transactional Memory Systems

• Hardware Support for Database Transactions
– 801 Storage System

• Database-like transactions on 1-level store (memory and disk)

• Transactions are durable

• Early HTM
– Knight

• used transactions to parallelize code written in ‘mostly 
functional’ languages

– Herlihy and Moss
• First HTM

• Implementation based on a separate transaction cache

• Transactions limited to cached data
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Unbounded Transactional Memory

• Uses Eager VM and Eager CD

• Supports unbounded transactions in 
hardware

• Complex hardware
– Pointer and state bits for each line in memory

– Hardware state machine for transaction rollback

– Global virtual address space
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Transactional Memory Coherence and 
Consistency (TCC)

CPU
L1 D

L2 Cache 

Logically Shared

Write buffer ~4 kB, 

Fully-Associative

On-Chip 

Interconnect

Broadcast-Based 

Communication

R

L1 Cache tracks 

read set
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Bulk

• Encodes read and write sets in signatures 
(like bloom filters)

• Like TCC, uses lazy VM and lazy CD

• Can detect conflicts for non-cached data
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Hybrid Transactional Memory

• Combines HTM and STM

• Executes small transactions in hardware, large 
transactions in software

• Allows program execution on existing hardware 
(without HTM support)
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Transaction Virtualization

• Virtual Transactional Memory (VTM)
– Rajwar and Herlihy

– Adds a virtualization mechanism to limited HTM (e.g. Herlihy 
and Moss TM)

– Implements CD and VM for transactions that exceed 
hardware capabilities in micro-code

• Page-granularity Transaction Virtualization
– PTM -- Chuang et al.

– XTM -- Chung et al.
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Before Virtualization After Virtualization

$Miss Com
mit

Abort $Evicti
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$M
iss
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Abort $Evic
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Thread 
Switch
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-
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-

-

SC
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S

H

S

S

SC

S

SC

S

S

S

S
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LogTM-SE - - SC - - S SC - S S

Shaded = virtualization event

- = handled in simple HW

H = complex hardware

S = handled in software

A = abort transaction

C = copy values

W = walk cache

V = validate read set

B = block other transactions

HTM Virtualization Mechanisms
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Conclusion

• TM can make parallel programs faster and easier to 
write

• LogTM provides:
– Hardware/Software Implementation

• Simple, flexible hardware

– Software-Based Eager Version Management

• Makes the common case (commit) fast

• Reduces hardware complexity

– Hardware-Based Eager Conflict Detection

• Allows blocking to reduce wasted work
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