MANAGING WIRE DELAY IN CHIP MULTIPROCESSOR CACHES

by

Bradford M. Beckmann

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN - MADISON

2006






Abstract

Increasing on-chip wire delay and growing off-chip miss latency, present two key challenges in designing
large Level-2 (L2) CMP caches. Currently, some CMPs use a shared L2 cache to maximize cache capacity
and minimize off-chip misses. Others use private L2 caches, replicating data to limit the delay from slow
on-chip wires and minimize cache access time. Ideally, to improve performance for a wide variety of work-

loads, CMPs prefer both the capacity of a shared cache and the access latency of private caches.

In this thesis, we propose three techniques that combine the benefits of shared and private caches. In partic-
ular, to reduce access latency in a shared cache, we investigate cache block migration and on-chip trans-
mission lines. Migration reduces access latency by moving frequently used blocks towards the lower-
latency banks. We show migration successfully reduces latency to blocks requested by only one processor,
but doesn’t reduce the latency to shared blocks. In contrast, transmission lines can reduce on-chip wire
delay by an order of magnitude versus conventional wires and provide low latency to all shared cache
banks. We demonstrate on-chip transmission lines consistently improve performance versus a baseline

shared cache, but bandwidth contention can limit them from reaching their full potential.

To improve the effective capacity of private caches, we propose Adaptive Selective Replication (ASR).
ASR dynamically monitors workload behavior and replicates cache blocks only when it estimates the ben-
efit of replication (lower L2 hit latency) exceeds the cost (more L2 misses). When ASR detects replication

is less beneficial, processors coordinate writebacks with remote on-chip caches to conserve cache storage.
ASR provides a robust CMP cache hierarchy: improving performance versus both shared and private
caches. Additionally, ASR can leverage the fast remote cache access latency provided by transmission
lines and reduce off-chip misses versus a design using conventional wires. We demonstrate the combina-
tion of transmission lines and ASR outperforms either isolated technique and preforms similarly to a

shared cache using four times the transmission line bandwidth.






Acknowledgments .

| dedicate this thesis to my wife, Jennifer. Her support over these six years has been invaluable. Though
God has tremendously blessed me throughout my entire life, no gift has been greater than her. However,
the space in this section is better spent acknowledging others, because words cannot describe how grateful

I am of her.

I'm forever thankful to my advisor David Wood. | could not had asked for a better advisor. David is not

only incredibly brilliant, but one of the most admirable people | have ever met. He taught me how to break
down data and to write research papers that provided intuition and insight. | really appreciate all the hours
he spent working with me and my research. Furthermore, | appreciate him making my graduate school

experience very enjoyable. Now it is my job to remember what he has taught me.

I would like to thank the other members of my defense and preliminary exam committees, as well as other
Wisconsin faculty members. First, | would like thank Mark Hill for his advice and helpful suggestions. His
feedback certainly has improved both my research and presentation skills. Second, | would like to thank
the other members of my defense and preliminary exam committees for their objective feedback: Guri
Sohi, Mikko Lipasti, Mike Swift, and Charlie Chen. Also, | would like to thank some other Wisconsin fac-
ulty members that taught me: Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Ras Bodik, and Mary Ver-

non.

Similarly, | would like to thank all of the former and current members of Multifacet: Dan Sorin for initially
encouraging me to pursue architecture research and allowing me to tag along with him to watch Danny
Heatly and the 2000-2001 Badger hockey team; Milo Martin for showing me how to do just about every-
thing research-wise including the proper way to program; Carl Mauer for answering what | am sure
seemed to be an infinite number of questions; Alaa Alameldeen for listening to my concerns and thoughts,

and providing me very useful feedback; Min Xu for always being a pleasant guy to talk to both profession-



v
ally and personally; Pacia Harper for acquainting me with Multifacet; Ross Dickson for introducing me to

the Multifacet code base; Kevin Moore for being a good friend, giving me an outlet at work to discuss
baseball and college basketball, and helping me professionally to communicate my ideas clearer; Jarrod
Lewis for being a great intramural football quarterback; Bhavesh Mehta; Michael Marty for being a good
friend, providing me some competition on the golf course, and for giving me helpful feedback that stimu-
lated my research; Luke Yen for maintaining the Opal code base and helping me out whenever | asked;
Jayaram Bobba; Michelle Moravan; Dan Gibson for being a fun guy to have a beer with and discuss

ostriches; and Andy Phelps.

There are many other friends | thank as well. First | want to thank my good friend and roommate of four
years, Tim Denehy. Despite the fact that Tim consistently dominated me on the golf course, he never
gloated. Tim's talent both intellectually and athletically is only equaled by his modesty. Tim has been a
great friend and a great asset professionally. Also | thank my other friends in Madison—the list is so long |
fear to forget someone. Additionally, | thank the other things in Wisconsin that I'll miss: Lake Louie beer;
Etes-Vous-Prets (EVP) coffee; Wisconsin Football, Women’s Volleyball, Men’s Basketball, and Men’s
Hockey teams; and the Big Ten Pub. Finally, | thank all my friends back in Ohio and woxy.com for broad-

casting over the internet so I'd miss home a little less.

My family deserves a special thank you, especially my parents. Through my parents hard work, my life has
been full of great opportunities and experiences. | hope one day to be as great of a role model to my kids,
as they have been to me. Also | want to thank my sisters—Ellen, Jill, and Tricia—who have been tremen-
dously supportive and my Uncle Mike who probably doesn'’t realize how much | enjoy spending time with
him.

Finally, my research has been financially supported these different sources: the National Science Founda-
tion with grants CCR-0324878, CNS-0205286, and EIA-9971256 and donations from IBM, Intel and Sun

Microsystems.



Table of Contents

Abstract [
Acknowledgments ili
Table of Contents %
List of Figures Xi
List of Tables XV
Chapter 1 Introduction 1
1.1 On-chip Global Wire Technology . ........... . e 3
1.2 Multithreaded Workload Behavior —............ .. ... ... ... ... .. . . . 4
1.3 Wire Delay Management Techniques for Different Sharing Types .................. 6
1.4 Thesis ContribUtiONS . . . ... e 8.
1.5 Dissertation Structure . ... .. 9.
Chapter 2 Background: On-Chip Wire Technology 11
2.1 Conventional RC Communication . . ... ... ... ...ttt e 11
2.1.1 PropagationDelay . ... ... ... 11.. ..
2.1.2 Physical ReqUIremMeNntS . . ... ... 14
2.1.3 Power ConsumMpPtioON ... ... i 14
2.2 On-chip Transmission Line Communication . ........... ..., 15
2.2.1 Propagation Delay . ... ... 15....
2.2.2 Physical Requirements . ............. .. . . 17
2.2.3 Power ConsUMPLiON . . ..ot 18
2.3 Comparison: Conventional RC Wires versus On-chip Transmission Lines .......... 20
2.3, LateNCY ..ot e e 20

2.3.2 Bandwidth Density ........... . i i e e 21 ...



Vi

2.3.3 Dynamic Power . ... . .. 22 ...

2.4 Attractive Alternative Technologies ... ... . i e

2.5 SUMMAIY . e e 24

Chapter 3 Global Wires and Large On-chip Caches 25
3.1 Wire Delay and Cache Partitioning ............ . i

3.2 CIM: Cache Investigative Model . ... ... .. . . .
3.2.1 CIM: Cache Partitioning . . . . ...ttt

3.2.2 CIM:Wire TeChNOlOgy . . . o oo e e ettt

3.3 Cache Organization and Memory System Performance .........................
3.3.1 SharedCMP Cache .......... ..

3.3.2 Private CMP Caches . . ... ...
3.4 SUMMAIY oo e e 36

Chapter 4 Exploiting Workload Behavior 37
4.1 Characterizing Sharing Types ... ... . . . . . . 7....

4.1.1 ReQUESES . ..t 40.
4.1.2 Cache CapacCity . ... ...ttt e 42. ...
4.1.3 Sharing Behavior . ... . 43 ...
4.1.4 Requestvs. Cache Block Locality ........... ... ... .. . . . . ...
415 Cache Hit Ratio . .. ... ...t a7. . .
4.1.6 Probability Distribution Functions . ............ ... . . . .. .

4.2 Exploiting Workload Behavior Through Migration . ....... ... ... ... ..........
4.2.1 Modelling Migration . . . ... 2...

4.2.2 Evaluating Migration . ............ . . . . . 6...

4.3 Exploiting Workload Behavior Through Replication ...........................
4.3.1 Modelling Replication . . .. ... 8...



vii

4.3.2 Evaluating Replication

........................................... 2... 6
A4 SUMMAIY .t e e e e e 70
Chapter 5 Cache Block Migration 71
5.1 MOtIVALION ..o e 71
5.2 Baseline: CMP-SNUCA ... e 72
5.3 CMP-DNUCA e 74. .
5.3 OVEIVIBW . . e e e e e e 14 .
5.3.2 Implementation . ... ... ... . T4 ...
5.4 Methodology ... ... 7
5.5 Evaluation . ... 78
5.5.1 Block Movementin CMP-DNUCA ... ... ... e 79
5.5.2 Searchingin CMP-DNUCA . ... ... . . e e e 81
5.6 SUMMAIY ... e 85
Chapter 6 Adaptive Selective Replication 87
6.1 MoOtiVation .. ... e 87
6.2 Baseline: Private CMP Caches .. ... e ettt et 88
6.3 Adaptive Selective Replication .. ........ ... 9... 8
6.3.1 Replication and CMP Cache Performance ................................ 89
6.3.2 Balancing Replication Via ASR .. ... ... . . . 91
6.4 Implementing ASR .. .. 92.
6.4.1 Selective Probabilistic Replication .. .......... ... ... ... ... ... ... ...... 93
6.4.2 ASRHardware .......... ... 94 ...
6.4.3 Storage and Energy . .. ... 98.
6.5 Methodology . ... .. 929
6.5.1 Alternative Cache DesigNns . ... ...t e e e e e 99

6.5.2 System Parameters



6.6 Evaluation . ... ... . 102
6.6.1 Replication Capacity and Memory Cycles .......... ... .. . 102
6.6.2 Adapting to Workload Behavior . . .......... . ... . 105
6.6.3 Sharing Type Latency vs. Off-chipMisses . .. ......... ... ... ... ........ 106
6.6.4 Comparison of Replication Schemes . .......... ... ... ... ... .. ... 108
6.7 Related WOrk ... ... 113
6.7.1 Multiprocessor MEMOIIES . . . ...ttt e 113
6.7.2 UNIprocessor CaChes . . ... i e e 114
6.7.3 Chip Multiprocessor Caches . . ... .. 115
6.8 SUMMAIY ... 117
Chapter 7 Transmission Line Caches 119
7.1 MOtiVation ... e 119
7.2 Shared CMP-TLC .. ... . . 121 ..
T.2.1 OVEIVIBW . o ot e 121.
7.2.2 Methodology . ......... . 124 ..
7.2.3 Evaluation .. ... 125.
7.3 Private CMP-TLC .. e 130..
7.3 1 OVEIVIEW . . e e e e e e e e 130.
7.3.2 Methodology . ... ... 132..
7.3.3 Evaluation: Baseline Private CMP Protocol . .............. ... ... .. ...... 133
7.3.4 Evaluation: Interaction with ASR . . . .. ... ... .. . 135
7.3.5 Sharing Type Latency vs. Off-chipMisses . .. ......... ... ... ... ... .... 136
7.4 Comparing Best Performing Designs . ... ... 140
7.5 Related WOrkK . ..o 142

7.6 SUMMAIY .. e 143



Chapter 8 Conclusions and Future Work 145
8.1 CONCIUSIONS ... i 145
8.2 FUtUre WOrK . . 146

References 149






Xi

List of Figures

Sample Output Waveform of a 10 mm On-chip TransmissionLine .................... 16
Stripline Transmission LiNeS . . ... ... .. e 18.
Latency ComMPariSON . ...ttt et e e e 20.
Cross-sectional Wire CompariSON .. ... v ittt e e e 21....
Dynamic Power COmMpPariSON . . .. ..ottt e 22. ...
NUCA Cache Network for an 8 Processor CMP . .. ... ... e 26
Diagram of the Cache Investigation Model . ........ ... ... . . . . .. . . . .. 27
CIM: Cache Partitioning - Cache Access Time vs. Bandwidth Demand ................ 31
CIM: Wire Technology - Cache Access Time vs. Bandwidth Demand ................. 33
L2 Cache Shared Requests Breakdown (1: Single Requestor, RO: Shared Read-only, RW: Shared
REA-WIIEE) . e e 41
Request to Block Distribution: Single RequestorData .. ........ ... ... ... ... ...... 45
Request to Block Distribution: Shared Read-only Data .................. ... . ....... 45
Request to Block Distribution: Shared Read-write Data . ............................ 46
Normalized L2 Cache Hit RatioS . .. ... .. e e A7. . ..
Probability Distribution Function HLb|IR - F(X) ........ ... ... ... ... ... ... ... ..... 48
Probability Distribution Function HLb|S - M(X) . ... . 49
Probability Distribution Function HRDB|S - N(X) . ... ... e 49
Probability Distribution Function HLb|SRO - G(x) ......... ... ... ... . ... ... ... .... 50
Probability Distribution Function HLB|SRW - H(X) ... ... . . . 50
Probability Distribution Function HRb|SRO -P(X) ......... ... ... ... . . . . . . .. ... .... 51
Probability Distribution Function HRb|SRW - Q(X) . ... ... 51
Migration Model: All Workloads Default Parameters . ......... ... ... ... ... . .... 56
Replication Model: All Workloads Default Parameters — .............. ... ... ......... 62
Replication Model: All Workloads Except Art Default Parameters . ................... 62
Replication Model: Apache Cache Capacity vs. Probability of Replication .............. 64
Replication Model: OLTP Cache Capacity vs. Probability of Replication ............... 65
Replication Model: Cache Capacity vs. Probability of Replication .................... 66
Replication Model: Apache Miss Latency vs. Probability of Replication . .............. 67

Replication Model: OLTP Miss Latency vs. Probability of Replication ................. 68



4-21

Replication Model: Miss Latency vs. Probability of Replication . ..................... 69
16 MB CMP-NUCA Layout with CMP-DNUCA Bankcluster Regions ................ 73
CMP-DNUCA: L2 Hit Distribution . . . . .. e e 79
a) Oltp DNUCA Distribution . ... ... e e e e e e 80. .

b) Ocean DNUCA Distribution .. ... .. e 80...
CMP-DNUCA: Average L2 Hit Latency (S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-
DNUC ) e 81
Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S: CMP-SNUCA, D: CMP-
DNUCA, pD: perfect CMP-DNUCA) . ... .. . e 83

CMP-DNUCA: Speedup (S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)
84

CMP-DNUCA: Normalized Memory Cycles (S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect

CMP-DNUCA) . 84.
Private CMP Cache ... ... . e 89

a) Replication Benefit .. ... . Q0

D) Replication COSt ... ... 90

c) Replication Effectiveness . ... . . . e 0. .

ASR Decision Table for Adjusting Replication . .......... ... . .. ... .. .. ... 92
Binary Tree Position Translationto LRURank ............ ... ... .. . . . ... 96
Layout of CMP-Shared ... ... .. e et 100. .

a) Current CMP: L2 Hit Cycles / InStr. . ... 103
b) Current CMP: L2 Miss Cycles / Instr. . ... .. 103
C) Current CMP: Total Cycles / INStr. . ... 103
d) Future CMP: L2 Hit Cycles [ INStr. . .. e 103
e) Future CMP: L2 Miss Cycles [ INStr. .. ... .. e e e 103
f) Future CMP: Total Cycles / INStr. ... .. 103
a) Future CMP: ASR Adaptability Apache . ... .. .. . . e 105
b) Future CMP: ASR Adaptability Oltp ... .. ... 105
a) Future CMP: ASR Adaptability Apache—Processor0 ............. ... 105
b) Future CMP: ASR Adaptability Apache—Processors 1-7  .............. ... ... 105

Future CMP: Normalized L1 Miss Latency to Sharing Types and Off-chip Misses
(S: CMP-Shared, P: CMP-Private, A: SPR-ASR) ... . e 107



6-10

6-11

6-12

6-13

6-14

6-15

7-5

7-6

7-7

7-8

7-9

7-10
7-11

Xili
Current CMP: Speedups (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC,

A SPR-ASR) . 109
Current CMP: Memory Cycles (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C:
SPR-CC, A: SPR-ASR) ... 09... 1
Future CMP: Speedups

(S: CMP Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR) .. 110
Future CMP: Memory Cycles

(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR) .. 110
Future CMP 500 cycle memory latency: Speedups (S: CMP-Shared, P: CMP-Private, V: SPR-VR,
N: SPR-NR, C: SPR-CC, A: SPR-ASR) ... e e e 111
Future CMP 500 cycle memory latency: Memory Cycles (S: CMP-Shared, P: CMP-Private, V.
SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR) ....... ... .. . . . 111
Shared CMP-TLC ... 121
Uncontended Latency Comparison Between CMP-SNUCA and Shared CMP-TLC ...... 123
CMP-SNUC A 124
Shared CMP-TLC: Average Remote L1 Cache Hit Latency (S: CMP-SNUCA, T: Shared CMP-
TLC, W: Shared CMP-TLC-WDM) . ... e 125
Shared CMP-TLC: Average L2 Cache Hit Latency (S: CMP-SNUCA, T: Shared CMP-TLC, W:
Shared CMP-TLC-WDM) ... e e 126
Shared CMP-TLC: L1 Miss Cycles Breakdown (S: CMP-SNUCA, T: Shared CMP-TLC, W:
Shared CMP-TLC-WDM) ... e e et e e et ettt 127
Shared CMP-TLC: Speedup (S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-
WDM) et e 128

Shared CMP-TLC Transceiver Sensitivity: Speedup (S: CMP-SNUCA, T: Shared CMP-TLC,

+1: Shared CMP-TLC with one extra transceiver delay cycle, +2: Shared CMP-TLC with two
extra transceiver delay CycCles) . ... e 129...
Shared CMP-TLC-WDM Transceiver Sensitivity: Speedup (S: CMP-SNUCA, W: Shared CMP-
TLC-WDM, +1: Shared CMP-TLC-WDM with one extra transceiver delay cycle, +2: Shared
CMP-TLC-WDM with two extra transceiver delay cycles) ......................... 129
Private CMP-TLC ... 131
Private CMP-TLC: Private L2 Miss Cycles Breakdown (P: CMP-Private, T: Private CMP-TLC, R:
Private CMP-TLC-Request W: Private CMP-TLC-WDM)  .......... ... ... ... . ..., 133



7-12

7-13

7-14

7-15

7-16

7-17

7-18

7-19

XV
Private CMP-TLC: Speedup (P: CMP-Private, T: Private CMP-TLC, R: Private CMP-TLC-

Request W: Private CMP-TLC-WDM) ... ... e e e 134
Private CMP-TLC w/ASR: L1 Miss Cycles Breakdown (A: ASR, T: Private CMP-TLC w/ASR,

O: Private CMP-TLC-Request w/ASR, W: Private CMP-TLC-WDM W/ASR) .......... 135
Private CMP-TLC w/ASR: Speedup (A: ASR, T: Private CMP-TLC wW/ASR, O: Private CMP-
TLC-Request wW/ASR W: Private CMP-TLC-WDM W/ASR) .. ... ... i 136
Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S: CMP-Shared, P: CMP-
Private, R: Private CMP-TLC-Request, A: ASR, O: Private CMP-TLC-Request w/ ASR) . 137
Combination of Techniques: Speedup (S: CMP-Shared, P: CMP-Private, R: Private CMP-TLC-
Request, A: ASR, O: Private CMP-TLC-Requestw/ ASR) . ........................ 138
Private CMP-TLC-Request with ASR Transceiver Sensitivity: Speedup (S: CMP-Shared,

O: Private CMP-TLC-Request with ASR,

+1: Shared CMP-TLC with one extra transceiver delay cycle, +2: Shared CMP-TLC with two
extra transceiver delay cycles) ... . 139. ..
Best Performing Comparison: L1 Miss Cycles Breakdown (8: CMP-Shared, 64: CMP-SNUCA,
O: Private CMP-TLC-Request W/ASR, T: Shared CMP-TLC) ............ ... ........ 140
Best Performing Comparison: Speedup (8: CMP-Shared, 64: CMP-SNUCA, O: Private CMP-
TLC-Request W/ASR T: Shared CMP-TLC) . ... . e 141



XV

List of Tables

ITRS Projections for Conventional Global Wires. . . .......... .. . . i, 13
Bandwidth Density CompariSONn . . . .. ... ... e e 22 ..

CIM: Cache Bank Partitioning Parameters . . . ... 30.....
CIM: Wire Technology Parameters. . . ... i 32....
Workload DesSCrptioNS . . . ..o e s 38
Evaluation Methodology . . . ... .. e 38
Percentage of Cache Blocks Profiled at L2 Eviction. .. ......... .. ... . ... 39
L2 Cache Request Profile .. ... ... . i 40

L2 Cache Capacity and Allocation Profile .. ......... ... ... ... ... ... ........42. ...
L2 Cache Block Sharing Behavior .. ........ ... ... .. A4

2010 System Parameters . ... ... e e 172

SPR Replication Levels. . .. ... e 94

ASR Storage Overhead . . ... . . 98
Comparison of Configuration Parameters . . .. ....... ... ... 101
Storage Overhead CompariSON . . ... ...ttt e e 112 ..
Shared CMP-TLC Cache Interface Unit Height Breakdown . ......................... 122



XVi



Chapter 1

Introduction

Over the past decade, computer-driven productivity and efficiency gains have lead to strong economic
growth [51]. At the heart of this new computer infrastructure lie the servers that provide the backbone of
electronic commerce and information distribution. In particular, these servers improve commercial work-
load efficiency by increasing throughput. Multiprocessor systems can increase server throughput because

commercial workloads contain abundant parallelism.

With the increasing number of transistors available on a chip per process generation [82], multiprocessor
systems have shifted from multi-chip systems to single-chip implementations. Specifically, chip multipro-
cessors (CMPs) containing 2-8 processors have recently became commercially available [53, 62, 65, 77].
In order to improve CMP performance, these CMPs require high-bandwidth low-latency communication

between processors and their associated instructions and data.

By quickly providing processors with instructions and data, on-chip caches can significantly improve CMP
performance. Small private high-level caches integrated closely with the processor cores provide each pro-
cessor quick access to their most recently requested instructions and data. However, these finite-sized
caches satisfy only a portion of requests, and many other requests must access larger lower-level caches.
These large on-chip caches should both store a lot of data, thus minimizing off-chip miss latency’s impact

on performance, and quickly retrieve requested data to reduce global wire delay’s effect on performance.

Low-level cache management presents a key challenge, especially in the face of the conflicting require-
ments of reducing off-chip misses and managing slow global on-chip wires. Current CMP systems, such as

the IBM Power 5 [53] and Sun Niagara [62], employ shared caches to maximize the on-chip cache capac-



2
ity by storing only unique cache block copies. While shared caches usually minimize off-chip misses, they

have high access latencies since many requests must cross global wires to reach distant cache banks. In
contrast, private caches [65, 77] reduce average access latency by migrating and replicating blocks close to

the requesting processor, but sacrifice effective on-chip capacity and incur more misses.

An attractive alternative to mitigating slow global wires with private caches, is improving shared cache
access latency with technologies such as dynamic block migration and on-chip transmission lines. Cache
block migration can improve shared cache performance by exploiting the fact that cache banks closer to a
processor can be accessed more rapidly than distant banks. In particular, migration reduces average cache
access time by moving frequently requested data to the closer cache banks. In contrast, on-chip transmis-
sion lines replace slow conventional wires with a high speed alternative. However, despite their substantial
speed advantage—up to a factor of 10 by the end of the decade—transmission lines will not replace most
conventional on-chip wires because they have over a factor of 10 lower bandwidth density. Instead, these

sparse wires must be used carefully in order to improve shared cache performance.

In comparison, private cache performance can be improved using selective replication and transmission
lines. In particular, selective replication strives to balance the latency benefit of replication with the capac-
ity benefit of storing more unique block copies. By limiting replicas, selective replication increases the
probability a hit is satisfied by a remote on-chip cache. Complementary, integrating transmission lines in
the on-chip communication network can substantially reduce remote cache hit latency. Thus, together
selective replication and transmission line can provide better private CMP performance than either tech-

nigue in isolation.

Overall, this dissertation examines the performance impact of migration, selective replication, and trans-
mission lines in the context of both shared and private CMP caches. Specifically, the dissertation focuses
on CMPs with Level-2 (L2) cache banks comprising the lowest level of the cache hierarchy, but these tech-

niques also apply to caches with greater depth. The dissertation not only evaluates important multithreaded



3
commercial workloads, but also selected multithreaded scientific workloads to demonstrate the different

techniques’ sensitivity to workload behavior. Due to the significant sharing that exists in commercial work-
loads, the dissertation illustrates that block migration is less effective for a shared CMP cache than previ-
ous results have shown for uniprocessors. Instead, the dissertation advocates for selective replication
within a private CMP cache. By only allowing a few replications, selective replication can attain a majority

of the benefit (reduce latency) without encountering most of the cost (increase off-chip misses). Further-
more, the dissertation proposes an adaptive selective replication mechanism because the optimal amount of
replication varies depending on workload behavior and system constraints. Finally, the dissertation demon-
strates on-chip transmission lines improve both shared and private cache performance and shows that

transmission lines can work in concert with other techniques.

In the remainder of this chapter, Section 1.1 introduces on-chip global wire technology and Section 1.2
describes the multithreaded workload behavior that influences CMP cache design. Section 1.3 details the
three wire delay management techniques analyzed in this dissertation. Section 1.4 presents the disserta-

tion’s main contributions, and Section 1.5 provides a roadmap for this document.

1.1 On-chip Global Wire Technology

On-chip wire delay plays an increasingly significant role in integrated circuit design. Design partitioning,
the integration of more metal layers, and higher repeater density allow conventional wire dimensions to
decrease slower than transistor dimensions. Thus, wire delay remains relatively constant for short intra-
partition distances [46, 104]. However, on-chip wire delay between separate partitions is a growing perfor-
mance bottleneck. For instance, global wire delay increased the L2 cache access latency for Intel's Prescott
processor [91] from 23 cycles to 27 cycles when its L2 cache size increased from 1 MB to 2 MB [71, 93].

In the future, conventional global wire delay will become even worse. For example, transmitting data 1 cm



4
requires about 3 cycles in current (2006) technology, but will necessitate over 8 cycles in 2010 technology

assuming a cycle time of 20 fanout-of-three delays [38].

An emerging alternative approach to conventional slow global wires is to use on-chip transmission lines
[21]. Transmission lines exhibit much lower latencies than conventional wires since their signalling speed
is dominated by a relatively short inductive-capacitance (LC) delay rather than a series of a relatively large
resistive-capacitance (RC) delays. In layman’s terms, one can compare the latencies of transmission lines
and conventional RC wires by comparing the speed of a ripple moving across water in a bathtub to the
speed of changing a bathtub’s water level. While this gross analogy provides some insight behind transmis-
sion line’s latency advantage, it ignores the key issues of realistic on-chip transmission lines, including

attenuation.

In order to communicate the incident wave across on-chip global wires, signal attenuation must be mini-
mized. In particular, transmission lines require very wide, thick wires and dielectric spacing to operate in
the LC range, which are only available in a chip’s uppermost interconnection metal layers. These
extremely sparse metal layers are best utilized for the few long distance communication links whose

latency can have a significant impact on overall system performance.

By targeting transmission lines to long cross-chip communication, they can facilitate compact layout, and

reduce power consumption. Chapter 2 describes why transmission lines don't require repeaters like con-
ventional wires. Also, using first-order equations, Chapter 2 demonstrates that transmission lines can con-
sume less dynamic power than conventional interconnect. Later, Chapter 7 proposes using transmission

lines to improve the layout and performance of several different CMP caches.

1.2 Multithreaded Workload Behavior

In order to improve CMP cache performance, it is important to understand the demand workloads place on

them. In particular, this dissertation focuses on CMP cache designs that improve multithreaded commer-



5
cial and scientific workload throughput. The on-chip cache blocks of multithreaded workloads can be split

into three different sharing types that exhibit distinct behavioB8itigle Requestdrlocks are accessed by

a single processor, Shared Read-Onlplocks are read, but not written, by multiple processors, and 3.
Shared Read-Writblocks are accessed by multiple processors, with at least one write. The remainder of
this section summarizes each sharing type’s unique behavior. Later, Section 1.3 will describe how different

technigues can exploit these behaviors to improve CMP cache performance.

Single Requestor BlocksSingle requestor blocks consume the majority of cache capacity for both
commercial and scientific workloads. However, single requestor blocks only satisfy the majority of
requests in scientific workloads. In general, data blocks and not instruction blocks account for almost all
single requestor blocks stored in CMP caches. Because scientific algorithms successfully split their data
sets into multiple independent segments, these workloads frequently utilize single requestor blocks. In
contrast, commercial workloads often share L2 blocks between multiple threads, in part because these
workloads have much larger instruction footprints [12]. Thus, techniques improving the latency to single
requestor L2 blocks are more effective in improving scientific workload performance than commercial

workload performance.

Shared Read-only BlocksShared read-only blocks consume relatively little capacity in a shared L2
cache, but satisfy a disproportionally large number of L2 requests. For commercial workloads, with
instruction footprints that often spill into the L2 cache, the high utilization of shared read-only L2 blocks is
especially evident. Interestingly, shared read-only requests exhibit high locality for these shared read-only
L2 blocks. Specifically, for the evaluated commercial workloads, less than 300 KB of shared read-only
data satisfies at least 70% of all shared read-only L2 requests. Some scientific workloads also frequently
access shared read-only blocks, but these requests display significantly less locality and consume more L2
capacity than the commercial workloads. Therefore, techniques exploiting shared read-only request local-

ity can improve commercial workload performance more than scientific workload performance.



6
Shared Read-write BlocksFor most commercial workloads, shared read-write blocks satisfy a notice-

able proportion of requests, but for scientific workloads, they satisfy very few requests. Furthermore, for
these commercial workloads, shared read-write blocks exhibit migratory sharing behavior [99] and average
less than 2 intervening requests between writes. Therefore, a CMP cache that disallows shared read-write
replication, could facilitate faster cache-to-cache transfers by removing coherence invalidations on writes.
Overall, techniques that reduce shared read-write request latency would likely improve commercial work-

load performance more than scientific workload performance.

1.3 Wire Delay Management Techniques for Different Sharing Types

By utilizing different wire delay management techniques, CMP caches can exploit each sharing type’s
unique behavior. This section introduces three such techniques and provides their high-level intuition.

These techniques will be described in greater detail through the dissertation’s remaining chapters.

Migration for Single Requestor Blocks.By moving single requestor blocks closer to their requesting
processor, migration can potentially reduce access latency without adversely affecting the other on-chip
processors. Migration can be implemented statically by using a private CMP cache design, or can be pre-
formed dynamically within a shared CMP cache. Dynamic migration was first proposed by Kim, Burger,
and Keckler [58] within the context of a uniprocessor Non-Uniform Cache Architecture (NUCA). Specifi-
cally, Kim et al. exploited the fact that cache banks closer to the processor could be accessed faster than
further banks and migrated frequently requested blocks to these closer banks. The resulting dynamic

migration policy achieved substantial performance improvements for the uniprocessor.

In contrast, for a shared CMP cache, this dissertation demonstrates that migration is less effective because
shared blocks tend to congregate in the middle of the cache. Furthermore, migration can create uneven
cache bank utilization, thus, increasing cache conflict misses and negating migration’s latency reduction.

Using a high-level model, Chapter 4 examines directly migrating blocks to the last requesting processor’s



7
closest cache bank. The model’s results show migration could improve scientific workload performance

because of frequent use of single requestor blocks, but migration potentially degrades commercial work-

load performance because of repeated requests to shared blocks. Then, using full system simulation,
Chapter 5 demonstrates that a more gradual migration policy is also ineffective. Instead, Chapter 6 shows a
private CMP cache that statically allocates single requestor blocks to the requesting processor’s local cache
banks is more effective. However, replication between private caches can reduce effective cache capacity

and negate migration’s latency benefit.

Selective Replication for Shared Read-only Block®y intelligently replicating data between pri-

vate L2 caches, selective replication can reduce shared read-only request latency, without adversely affect-
ing cache capacity. By migrating and replicating data, private caches minimize cache access time.
However, excessive replication sacrifices on-chip capacity and incurs more off-chip misses. Recently,
researchers have proposed three different selective replication schemes that strive to balance latency and
capacity [20, 26, 121]. Two of these previous proposals—CMP-NuRapid [26] and Victim Replication
[121] use static rules that can not adjust to changes in workload behavior, while the third—Cooperative
Caching [20]—controls replication capacity via a parameterized value. Section 6.5.1 of Chapter 6
describes these proposals in detail. Similar to Cooperative Caching, Chapter 6 proposes the Selective Prob-
abilistic Replication (SPR) mechanism that also controls replication via a parameterized value, but does so
with less hardware. Also, Chapter 6 proposes the Adaptive Selective Replication (ASR) mechanism that
dynamically monitors workload behavior to control SPR’s replication parameter. ASR improves perfor-
mance versus the recent hybrid proposals and provides performance stability by always performing at least

comparably to the best alternative.

Transmission Lines for Shared Read-write BlocksTransmission lines’ significant speed advan-
tage over conventional wires can reduce shared read-write request latency, as well as overall request

latency. For a shared CMP cache, Chapter 7 demonstrates transmission lines can reduce overall L2 hit



8
latency versus conventional wires, but bandwidth contention limits their overall effectiveness. Also Chap-

ter 7 shows transmission lines can improve private CMP cache performance. For the private cache, trans-
mission lines are most effective when they target low-bandwidth latency-critical signals such as request

messages.

1.4 Thesis Contributions
The main contributions of the dissertation are:

» Multithreaded Workload Characterization. The dissertation breaks the working sets of commercial
and scientific workloads into three different sharing types: single requestor data, shared read-only data,
and shared read-write data. The characterization shows that each sharing type displays distinct behav-

ior that can be exploited using different caching techniques.

 Block Migration in CMP Caches. The dissertation illustrates that block migration is less effective for
CMPs than previous results have shown for uniprocessors. Even with a perfect search mechanism,
migration alone only improves performance versus a shared cache baseline for four workloads—Jbb,
Art, Barnes, and Ocean—by a maximum of 2%, while degrading the performance of the other four
workloads by as much as 7%. This is in part because shared blocks migrate to the middle equally-dis-

tant cache banks, accounting for 55-83% of L2 hits for the commercial workloads.

 Selective Probabilistic Replication (SPR)The dissertation presenBlective Probabilistic Replica-
tion (SPR) a simple replication mechanism that exploits the fact that the most frequently requested L2
blocks are also the most frequently evicted L1 blocks. By using probabilistic filtering, SPR requires
significantly less hardware than previous proposals CMP-NuRapid [26] and Cooperative Caching [20],

and equivalent hardware to the Victim Replication proposal [121].



9
» Adaptive Selective Replication (ASR)The dissertation proposes tAgaptive Selective Replication

(ASR)mechanism that dynamically controls replication within a private CMP cache. When applied to
SPR, ASR provides a dynamically adaptive CMP cache hierarchy that improves performance by as
much as 12% versus previous replication policies. Furthermore, ASR adds only 1.2% storage overhead

to a future on-chip cache hierarchy.

« Transmission Line Caches.The dissertation demonstrates transmission lines reduce on-chip cache
access latency for both a shared and private CMP cache by as much as 30%. Overall, these Transmis-
sion Line Caches (TLC) improve performance up to 8% using single bit transmission lines and 15%

for transmission lines using wave division multiplexing.

e Combination of Techniques.The dissertation shows the combination of migration, ASR, and trans-
mission lines achieves 14% average performance improvement over an 8-banked baseline shared
cache and performs competitively with a 64-banked TLC using four times the transmission line band-

width.

Prior versions of the block migration and transmission line cache work described here have been previ-
ously published in conjunction with my advisor David Wood [14, 15]. The work of Selective Probabilistic
Replication and Adaptive Selective Replication was developed jointly with Michael Marty and David

Wood and will be published soon [13].

1.5 Dissertation Structure

The thesis begins with Chapter 2 summarizing future on-chip wire technologies with a focus towards on-
chip transmission lines. Next, using an analytical model, Chapter 3 analyzes how wires impact CMP cache
design and presents equations describing memory system performance for both shared and private cache
hierarchies. Chapter 4 characterizes multithreaded workload behavior and then uses the characterization

data to explore the potential performance benefits of migration and selective replication. Following the



10
high-level exploration, Chapter 5 use full system simulation and performs detailed analysis of cache block

migration within a shared CMP cache. Then Chapter 6 proposes the Adaptive Selective Replication mech-
anism that dynamically regulates replication within a private CMP cache to match workload demand.

Chapter 7 presents a multitude of cache organizations that utilize on-chip transmission lines to improve
performance, including a private cache design utilizing ASR. Finally, Chapter 8 concludes the dissertation

and provides several avenues for future work.



11

Chapter 2

Background: On-Chip Wire Technology

This chapter presents an overview of on-chip wire technology. Section 2.1 and Section 2.2 describe the
delay, physical requirements, and power characteristics of conventional on-chip communication and on-
chip transmission line technology, respectively. Then, Section 2.3 quantitatively compares these three
characteristics for both wire technologies. Finally, Section 2.4 discusses how other potential wire technolo-
gies—such as package level interconnects and on-chip optical communication—appear similar to on-chip

transmission lines from an architectural perspective.

2.1 Conventional RC Communication

The vast majority of on-chip communication is best described using conventional resistive-capacitance
(RC) models. This section describes the propagation delay, physical requirements, and power consumption

of these wires.

2.1.1 Propagation Delay

Resistance, capacitance, and inductance determine wire delay. Equation 2.1 presents the telegrapher’s
equation that describes voltage propagation across any type of wire as a function of time assuming conduc-

tance is negligible:

2v _ 0V 92V
ﬁ = RCEH_CF (2.1)



12
wherex is the distance along the wirejs time, V is voltage, andR, C, andL represent the resistance,

capacitance, and inductance of the wire. Wire resistance is directly proportional wire length and is
inversely proportional to a wire’s cross-sectional area. Meanwhile, wire capacitance is directly propor-
tional to a wire’s surface area and intermetal dielectric constant, and is inversely proportional to the dis-

tance between wires. Finally, wire inductance depends on the rate of current change and circuit layout.

For conventional on-chip wires, with relatively small cross-sectional area, the first RC term dominates. In
other words, voltagdiffusionacross the wire determines signaling speed [28]. Furthermore, as wire dis-
tance increases, both wire resistance and capacitance increases because both terms are directly propor-

tional to wire length. The result is conventional wire delay grows quadratically with distance.

To control wire delay across long on-chip distances, designers insert repeaters, e.g. inverters, to break long
wires into multiple shorter segments. For these segmented links, wire delay grows linearly rather than qua-
dratically with distance [116]. However, increasing wire density and operational frequencies dictate

increasing number of repeaters, leading to three key problems [46]:

* Repeaters require a substantial amount of area for their large transistors.

» Repeaters necessitate disciplined floorplanning to allocate the necessary substrate area at the proper

locations.

» Repeaters need many via cuts from the upper metal layers down to the substrate, which congest the

interconnection layers below and reduce the overall wire bandwidth.

Due to repeater insertion, determining the RC delay for conventional global communication not only
requires determining the resistance and capacitance of their actual wire segments, but also must include the
parasitic terms of their intermediate drivers and receivers. Amrutur and Horowitz [4] present the following
a simple approximation equation (Equation 2.2) that incorporates these parasitic capacitances to determine

the total delay of a signal traveling across a single wire segment:



13
TABLE 2-1. ITRS Projections for Conventional Global Wires

Year 2006 2007 2008 2009 2010
Technology (nm) 78 68 59 52 45
Reachable Distance per cycle (mm) 2.3 1.6 0.9 0.6 0.4
Delay / 10 mm (ns) 1.65 2.09 3.16 4.10 5.23
Minimum wire pitch (nm) 250 210 177 156 135
Intermetal dielectric constank( ) 2.7 2.4 2.4 2.2 2.2
Conventional RC Communication DelayR,(C, +C,) + p+ RNE%’” Crg 2.2)

whereRy andR,, are the driver and wire resistanc€;, andC, are the wire and receiver capacitances, and

p is the intrinsic delay of the driver due to its junction capacitance.

The performance of global wires using repeaters doesn't scale compared to transistors. Specifically, as
transistors become smaller and faster, wire pitch is forced to scale to smaller geometries. However, as pre-
viously mentioned, reducing a wire’s cross-sectional area, increases the wire’s RC delay. To combat this
problem, manufacturers integrate an additional metal layer per process technology to reduce wire density
demand and utilize lower-k dielectrics to reduce wire capacitance [39]. These manufacturing enhance-
ments have allowed global wire delay to stay relatively constant in terms of reachable transistors per cycle
across technology generations [104]. However, Table 2-1 shows the International Technology Roadmap
for Semiconductors (ITRS) [39] projects the reachable absolute distance per cycle will increase by over 5
times by 2010 for global RC wires. To make communication delay scale with transistors, designers must

look beyond conventional wires.



14
2.1.2 Physical Requirements

Conventional global wire pitch scales relatively well, but their intermediate repeaters and latches necessi-
tate significant substrate area. Table 2-1 shows the minimum wire pitch of conventional global wires scales
well with transistor dimensions, with both shrinking by approximately 45% over the next five years. How-
ever, as improving technology integrates more processor cores on chip, global interconnect bandwidth
must increase. Furthermore, as frequency increases and wire dimensions decrease, global wires require
higher repeater density. Frequently repeated global interconnect requires substantial dedicated substrate
area and thus cannot be routed over other large structure. For instance, Kumar, Zyuban, and Tullsen [66]
demonstrated for an eight processor CMP implemented in 65 nm technology, global interconnect using
conventional wires consumes the equivalent die area of three IBM Power4-like [106] cores. Overall, the

substrate area dominates the physical requirements of conventional global interconnect.

2.1.3 Power Consumption

Due to large wire capacitance, dynamic power dominates the total power consumed by conventional inter-
connect. Conventional RC interconnect consumes dynamic power by charging and discharging the capaci-
tance of each wire segment from one voltage value to another. Specifically, Equation 2.3 shows

conventional RC communication dynamic power equals the power required to change the wltage,

across the wire’s total capacitan€g for a given frequency, and data activity factogt  [103]:

Conventional RC Communication Dynamic Powen x C x V2 x f (2.3)

Technology and microarchitecture innovations affect each term of Equation 2.3 to different degrees. For
example, Intel's Foxton technology [86] dynamically adjusts the voltage and frequency by 50% and 80%

respectively to ensure the Montecito processor stays within its power and thermal envelope. Ramprassad,



15
Shanbhag, and Hajj [90] present a source-coding framework that reduces the average activity factor by

36% for address and data buses, resulting in a 36% reduction in dynamic power. In contrast, ITRS [39]
(Table 2-1) projects the intermetal dielectric constant (and wire capaci@rcecd/ Area ) will only
decrease by at most 23% over the next 5 years. Meanwhile, capacitance dependence ond)istamoet (

be reduced. Consequently, wire capacitance remains the hardest dynamic power term (Equation 2.3) to

optimize for conventional global interconnect.

2.2 On-chip Transmission Line Communication

Transmission lines are an alternative wire technology with potentially lower communication delay.
Printed-circuit board and other off-chip wire technologies are commonly designed to behave as transmis-
sion lines [28]. Conversely, although on-chip transmission lines have been explored for over 20 years
[107], most on-chip wires using CMOS technology are designed to operate as lossy RC lines [112]. How-
ever, with improving fabrication technology, on-chip transmission lines are starting to emerge in CMOS
circuits. For example, several current high performance chips use 7.5 mm transmission lines for clock dis-
tribution [80, 110, 117]. Longer (> 10 mm) transmission lines have been shown to work on CMOS test
chips using very wide wires [21, 52] or low operating temperatures [31]. With the introduction of lower-k
dielectrics [17] and increasing on-chip frequencies [47], more practical on-chip transmission lines will be
available before the end of the decade. This section describes the propagation delay, physical requirements,

and power demands of on-chip transmission lines.

2.2.1 Propagation Delay
Ideally, the inductance-capacitance (LC) product of transmission line wires determine their delay. Going
back to the telegrapher’s equation (Equation 2.1), this means that the second, LC term dominates wires

with low resistance and high operating frequency. In other words, wave propagation determines signaling



16

Wave Symbol rlkc transmission-line of 10 mm wire
DO:trO:v(130) X - - 4
DO:tro:v(4)  H-—- 1.05 7|
1 - I e IE L TETE LT et TE s Y o ]
i 1 i 1
950m | 1 i L H i
1 . Ped ¥ H
900m i [tae 1 1
H .1 [ 1
850m | 1 PR 1 i
1 Pie 1 1 H
8oom H 4 I v 1
! O' i d !
750m 1 ’ ! * H
i . i . i
— 4 B L
700m i ’ 1 1 !
A H
650m i ' H ' !
H 1 [} L] !
600m 1 T H ' 1
i i ' ! ' K
550m i Tl 1 ] 1
— 1 DeltaxX=5.38e-11 ! i DeltaX=4.62e-11
= d ey TSR N o TETERTERE
£ soom £ -~ T—— N4 : S N>
2 ] 1 ' ! ' i
S  450m H i ' 1
£ ] 1 H 1 H
= 1 . 1
S ao0m I ' ! \ i
. 1
" 1 H
350m 1 ' - ' i
i h 1 1 H
300m i ' 1 ' !
H ] 1 1
] I L L] =
250m H 1 H Y 1
1 ! H Y H
200m i 1 1 v H
. . 1 J 1
150m I 1 1 v ;
i Ll 1 \~ H
100m | H ! 1 .. ]
1 ' . - H
] : ' i LIS
Som gL 1 1 H ~
R T T, . 1 ~a
O | jmemememe 3 ———— ._._._._._._._._._._._._._._._._._~..~
som | .~
100m |
150m |

T T T T
1.7n 1.75n 1.8n 1.85n 1.9n
Time (lin) (TIME)

FIGURE 2-1. Sample Output Waveform of a 10 mm On-chip Transmission Line

speed [28]. Specifically, if signal frequency is greater than the cutoff frequén2RA L ), only the speed
of light in the intermetal dielectricqo/Js_r ) limits signal speed, wheRe  equals the transmission line
resistance, and.  depicts the transmission line inductarege, represents the speed of light in a vac-

uum, €, corresponds to the intermetal dielectric’s relative dielectric constant [49].

The resistance across an on-chip transmission line attenuates the incident wave traveling from the driver to
receiver. In addition, the resistance is frequency-dependent due to the “skin effect”. The skin effect phe-
nomenon arises because at high frequencies, magnetic repulsion forces current towards the perimeter of
the conductor, thereby reducing the wire’s effective cross section. The higher frequency sinusoids compos-

ing a digital pulse cause the received signal to appear rounded and stretched out.

We utilized a two-dimensional field-solver program and circuit simulation to determine the delay of on-
chip transmission lines because simple equations cannot model the skin effect accurately. We started by

using Linpar [33], a two-dimensional field-solver program, to extract the inductance, resistance and capac-



17
itance characteristics of on-chip transmission lines. Using the resulting RLC matrices, we used HSPICE to

simulate 5 GHz pulses travelling across the transmission lines [7]. Specifically, we modeled the transmis-
sion line’s frequency dependent attenuation with HSPICE’s W element transmission line model. We simu-
lated four signal wires with shielding wires separating each of them under worst case signalling conditions.
For example, Figure 2-1 illustrates that a 10 mm on-chip transmission line achieves about a 50 ps latency

between the driver and receiver. The driver and receiver add an additional 110 ps of delay [21].

2.2.2 Physical Requirements

The on-chip transmission lines require wide metal pitch and dielectric spacing in order to achieve good
incident wave propagation qualities. Specifically, due to their long length, transmission lines require
thicker and wider metal tracks to maintain low wire resistance. Additionally, transmission lines necessitate
thicker intermetal dielectrics to reduce their capacitance. While transmission line dimensions exceed the
dimensions proposed for future conventional interconnect, they actually compare to the upper metal layers

of previous high performance processors [16] and current silicon microwave chips [88].

Because transmission lines can quickly communicate across long distances without using repeaters, they
facilitate more efficient layout. As previously mentioned, conventional RC communication requires vias
and substrate area to access repeaters that amplify a signal as it travels across multiple wire segments. On
the other hand, transmission lines do not require repeaters, and their lack of intermetal layer congestion

and intermediate substrate area partially compensates for their greater routing dimensions.

We propose using single-ended voltage-mode signaling to communicate across on-chip transmission lines.
Single-ended voltage-mode signalling propagates voltage pulses across a single point-to-point link. To
reduce reflection noise across these relatively low loss transmission lines, we assumed source-terminated
drivers with digitally-tuned resistance [28]. Receivers use a large input impedance termination for full

wave reflection of the received signal. This design allows for the signal to significantly attenuate while



18

TL Shield TL Shield TL Shield

FIGURE 2-2. Stripline Transmission Lines

travelling across the wire, while the receiver can still receive a full signal swing (Figure 2-1). However this

design does sacrifice noise immunity.

Single-ended voltage-mode signaling’s increased susceptibility to noise requires additional routing area.
To reduce the noise susceptibility, we propose using alternating power and ground shielding [57] lines
between each transmission line (Figure 2-2). Also these transmission lines must be laid out in stripline
fashion with a reference plane both above and below the transmission line metal layer to provide low resis-
tance return paths for inductive induced currents [87]. Laying out the lines in this manner not only provides

several individual low-resistive return paths, but also isolates each line from most capacitive and inductive
cross-coupling noise. Additional enhancements such as low-swing differential signalling [119] and cur-

rent-mode signalling [73] further improve noise immunity, but cost routing area, circuit complexity, and

static power.

2.2.3 Power Consumption

Similar to conventional RC interconnect, dynamic power dominates the total power consumed by single-
ended voltage-mode signaling. In voltage-mode transmission line signalling, the dynamic power equals the
power required to create the incident wave (to the first-order). At the driver, the transmission line appears

as a resistor equal to the characteristic impedance of the line. Therefore, the power supplied by the driver is



19
determined by voltage across its internal resistaRggin series with the transmission line’s characteristic

impedanceZ,, for the duration of the signal pulsg[28]:

2
Single-ended Voltage-mode Transmission Line Dynamic Powex t,) x V7. f
(Rp*+Zp) (2.4)

For source-terminated transmission lineRy = Zy, and for 50% duty cycle communication,

ty = 1/(2x f). Thus, to the first-order, single-ended voltage-mode transmission line dynamic power
depends only on voltage, characteristic impedance, and the activity factor, and is independent of frequency.
Furthermore, these transmission lines only consume substantial power when actively transmitting data. In
contrast, low-swing differential signalling [119] and current-mode signalling [73] always consume power
for reference or bias voltages. Powering down these transceivers during periods of inactivity could reduce
their constant power consumption [96]. However, these complicated techniques sacrifice performance. In
this thesis, we assume single-ended voltage-mode transmission lines because they best match low-utilized

on-chip global signals.



20

6 . | | | |

RC min-pitch ——

RC 3x-pitch ----------

5 Transmission Line e
4

Latency (ns)
w

------
-------
--------
-----

-----

Distance (mm)
FIGURE 2-3. Latency Comparison

2.3 Comparison: Conventional RC Wires versus On-chip Transmission Lines

2.3.1 Latency

On-chip transmission lines offer a 6-19 times latency improvement versus conventional RC communica-
tion for global distances—4-10 mm—in 45 nm technology. Figure 2-3 plots the latency of minimum-
pitched global RC interconnect, RC interconnect with 3x minimum-pitched dimerisiand on-chip
transmission lines across global distances. Transmission lines achieve such a tremendous performance
improvement not only due to their faster signaling speed, but also their lack of intermediate repeaters

removes significant overhead compared to conventional RC interconnect.

1. Three times the minimum-pitch is often the largest permitted scale-up factor [104].



21

Reference Plane

£
1.5um 1.5um g
g eemsem o
\ \ \ \ \
I'§
10 mm Signal Vss Signal VDD signal VSs o
Transmission Line :
£
=}
o
a

3x—pitch Reference Plane

Conventional RC ™ gygugugnunongnsnanensnanenenanenenanEneNaNENENONENENONENENONENENONENENONENERORERERDE T 200 NM
min-pitch = N70 nm
Conventional RC

FIGURE 2-4. Cross-sectional Wire Comparison

2.3.2 Bandwidth Density

On-chip transmission lines demand significantly wider wires and intermetal spacing as compared to con-
ventional communication. Figure 2-4 illustrates transmission lines require a substantial increase in wire
area versus conventional interconnect and Table 2-1 compares transmission line bandwidth per width ver-
sus conventional RC communication. Specifically, on-chip transmission lines sacrifice 36-57 times the
bandwidth density versus minimum-pitch global RC communication and 12-38 times the bandwidth den-
sity versus 3x-pitch global communication. The degree of bandwidth density lost depends on distance
because longer transmission lines require larger dimensions in-order to operate in the LC range. Overall,

these projected transmission line dimensions compare to current test chips dimensions [21, 52].



22
TABLE 2-1. Bandwidth Density Comparison

Normalized
Wire Type Width Spacing Height Thickness Bandwidth
Density
min-pitch RC 35 nm 35 nm 70 nm 70 nm 1
3x-pitch RC 105 nm 105 nm 200 nm 200 nm 0.33
TL (9 mm) 1.25um 1.25u m 1.75% m 3@ m 0.056
TL (210 mm) 1.50 um 1.50u m 1.75% m 3. m 0.047
TL (11 mm) 1.75 um 1.75u m 1.75% m 3. m 0.040
TL (13 mm) 2.00 um 2.00p m 1.75% m 3. m 0.035
20 T T T R _I T
RC min-pitch
RC 3x-pitch ==-=-=-=--
Transmission Ling -
15 ¢ 7
=
E
5 10
=
)
o
5
0 1 1 1 1 1

4 5 6 7 8 9 10
Distance (mm)
FIGURE 2-5. Dynamic Power Comparison

2.3.3 Dynamic Power

For long global on-chip communication, source-terminated voltage-mode transmission lines consume less
dynamic power than conventional RC interconnect. By comparing Equation 2.3 to Equation 2.4, one sees
that whentb/(2 X ZO) <C , source-terminated transmission lines will consume less dynamic power than

conventional interconnect. Figure 2-5 graphically showsafd GHz clock frequency, this relationship



23
holds for global links beyond ~5 mm in length. (Note the RC min-pitch and RC 3x-pitch lines overlap

because both have nearly the same capacitance and use the same repeater sizing rules [10])

2.4 Attractive Alternative Technologies

On-chip transmission lines are not the only technology to provide ultra-fast cross-chip communication,
package level [9, 30, 29] and optical [23, 54, 60, 79] interconnects offer attractive alternative fast media.
Package-level interconnect, like on-chip transmission lines, utilize transmission line signalling, but instead
of implementing the wires within the on-chip metal layers, they utilize wires in a die-sized substrate above
the processor die. The major advantage of package-level transmission lines is manufacturing cost. Both
Wafer Level Package (WLP) [9] and Multi-chip Module (MCM) [29, 30] technology provide cross-chip
transmission line propagation without adding costly die manufacturing steps. However, both technologies,

sacrifice at least twice the bandwidth density as compared to on-chip transmission lines.

Similarly, optical communication [23, 54, 60, 79] offers near speed-of-light communication latency, but
their waveguide requirements and power consumption limit their applicability. On-chip optical communi-
cation relies on approximately & m wavelength light propagating through an approximate 4 m-pitched
on-chip waveguide. While these waveguide sizes are twice that of transmission lines, Wave Division Mul-
tiplexing (WDM) may provide higher bandwidth density than even conventional RC interconnect for com-
munication links greater than 5 mm [23, 60]. Another current limitation of optical communication is
power. Current optical transmitters consume more than 20 times the power than conventional RC intercon-
nect [23]. However, future technology enhancements may substantially reduce optical communication’s
power consumption. Specifically, Chenhal.[23] project optical communication will consume less energy

than conventional RC communication for 10 mm links in 45 nm technology.



24
2.5 Summary

While only time will tell what wire technology will be integrated into future CMPs, the deficiency of con-
ventional wires communicating long distances is clear. All potential replacement technologies discussed in
this section have the same general characteristics. All offer communication latency near the speed-of-light,
none require intermediate vias or repeaters, and all offer potential power savings versus conventional RC
communication for long distances. However, all suffer from different degrees of bandwidth density reduc-
tion, greater integration complexity, and higher manufacturing cost. Chapter 7 focuses on the architectural
implications of these technologies with a specific focus on single-ended voltage-mode transmission lines
because they have attained the most success in test chips. However, many of the Chapter 7’s contributions

apply to all mentioned alternative communication technologies.



25

Chapter 3

Global Wires and Large On-chip Caches

This chapter investigates wire technology’s impact on large on-chip caches. First, Section 3.1 discusses
how the growing disproportionate relationship between on-chip wire performance and transistor perfor-
mance increases cache partitioning. Then, Section 3.2 uses a simple analytic model, called the Cache
Investigative Model (CIM) to demonstrate how partitioning and wire technology affects cache latency and
bandwidth. Finally, Section 3.3 introduces equations that relate the two baseline CMP cache organiza-

tions—shared and private—with overall memory system performance.

3.1 Wire Delay and Cache Partitioning

Both localized (< 1 mm) and global (> 1 mm) wire delays impact the design of large on-chip caches. Cur-
rently level-2/level-3 on-chip caches are divided into multiple banks and sub-arrays to optimize the indi-
vidual bank’s area/delay tradeoff [64, 78]. In the future, large on-chip caches will be partitioned into

smaller banks so that local wires [113] match increasing SRAM density [8].

As cache organizations move towards smaller banks, global wire delay between cache banks becomes a
more dominant performance bottleneck. Currently, designers split large caches into 3 [53] to 4 [63] inde-
pendently addressable cache banks and use a crossbar to provide the on-chip processors uniform cache
access time. However, crossbar latency and bandwidth will not scale to future generation CMPs [66]. Kim

et al. [58] addressed this problem by defining a family of Non-Uniform Cache Architecture (NUCA)

designs. Similar to Figure 3-1, all practical NUCA designs assume a 2D array of independently address-



CPU 2 CPU 3 o
L1|L1 L1|L1 o
D$|l $ DI $ E
—
0% S
— B ——
10 P
—
)
o
© (@)
T
C
— & !
_15 81':
il oD
o
) L1|L1 L1|L1
o |$|D$ |$|DY
O CPU7 CPU 6

FIGURE 3-1. NUCA Cache Network for an 8 Processor CMP

able cache banks accessed via a switch interconnect. Thus, cache access latency is non-uniform with each

on-chip processor observing varying latency depending on the distance to the cache bank it's accessing.

The optimal NUCA network configuration depends on the relationship between cycle time and global wire

latency and bandwidth. For example, conventional RC wires provide relatively high latency and band-

26

width. Assuming an aggressive 8 FO4 cycle time [47] for the 45 nm technology,eiah [58] deter-

mined a 256 banked NUCA cache provided the optimal balance between intra-bank and inter-bank latency.
However, due to recent studies advocating that power constraints will limit future frequency scaling [102],
We assume a slower 20 FO3 [38] cycle time. The slower frequency moves the optimal NUCA configura-
tion using conventional RC interconnect to a design with fewer banks. Additionally, on-chip transmission

lines further move the optimal NUCA configuration to even fewer partitions because their lower bandwidth

density limits network connectivity.



27

toNetwork cacheBanks fromNetwork

Q

-

Processors

FIGURE 3-2. Diagram of the Cache Investigation Model

The next section illustrates this relationship between the optimal NUCA network configuration and global

wire latency and bandwidth using a high-level analytic model.

3.2 CIM: Cache Investigative Model

This section provides a closed Approximate Mean Value Analysis (AMVA) model to illustrate the global
wire’s impact on the optimal cache design. The model, called the Cache Investigative Model (CIM), inves-
tigates how cache bank partitioning in conjunction with global wire latency and bandwidth affects the aver-
age access time of a large on-chip cache. CIM does not strive to accurately predict the actual cache

performance, but instead CIM captures the high-level cache design tradeoffs.

CIM uses three queuing centers and one delay center to model a simplified cache network (Figure 3-2).
The three queuing centers represent the network from the processors to the cache banks, the network from
the cache banks back to the processors, and the actual cache banks. All network links and switches are

assumed to be fully pipelined. Therefore, the service time for the network queuing centers equals the aver-



28
age number of link-switch pairs traversed times two. The service time for the cache bank queuing centers

equals the bank access time. CIM assumes a uniform demand for the networks and cache banks. The delay

center approximates the time between processor cache requests.

The model’s customers represent round-trip cache messages. To account for writeback bandwidth, the
number of customers equals the number of processors multiplied by the maximum requests per processor
times 2. Since the bandwidth required by a request and subsequent response is similar to the bandwidth
required by a writeback and subsequent acknowledgement, CIM treats them equivalently. CIM’s closed

model captures the dependence between cache access time and throughput.

CIM’s overall goal is determining the average cache access latency of a large multi-banked cache. Equa-
tion 3.1 shows that the average cache access latency equals the summation of the calculated residence
times at the three service centers:

Average Cache Access LatencthoNetwork"' RcacheBanké" RfromNetwork

(3.1)
Equation 3.2 determines the residence time at each service center:
. E Dprocessor (processor delay center)
K O Dy(1+A) (queuing centers) (3.2)

WhereD, equals the inputted service time of the delay or queuing centehgeduals the calculated aver-
age number of customers seen at center k when a new customer arrives [68]. Spe@figallysoequals
the average think time at the processor delay ceBigkietwork@NdDiomnetworkequal the average number
of link and switch pairs crossed\g. # of link-switch pairsto/from the processor from/to the cache bank,

andD.achepanquals the average bank access time.



29
Equation 3.3 estimated, using the calculated average number of customers at each queuing @gnter,

and N equals the inputted total number of customers:

N (3.3)

X = g
(3.4)
> R
k
Wherek ranges through al service centers including the processor delay center.
Equation 3.5 applies Little’s law to each queuing center individually to caldjate
Q=X
= %R (3.5)

Then, the AMVA model iterates between Equation 3.2 through Equation 3.5 until successive calculations

of Qg agree within a tolerance of 0.1%.

Finally, Equation 3.6 presents the average time between processor requests:

: Dprocessor
Average Time Between Processor RequestsJ—

(3.6)
N-5 Q
k

, Wherek ranges only through thlkqueuing centers,



30

TABLE 3-1. CIM: Cache Bank Partitioning Parameters

8 16 32 64 128 256
Parameter Banks Banks Banks Banks Banks Banks
Parallel Links 8 8 8 8 8 8
Avg. # of link-switch pairs 3 3 4 4 5 5
Dpank (cycles) 20 15 12 9 6 4
DprocessolCycles) 100 100 100 100 100 100
N 2-256 2-256 2-256 2-256 2-256 2-25¢
Saturation pt. (cycles) 2.5 0.94 1.0 1.0 1.25 1.25

Equation 3.7 provides the saturation point whBgg,, equals the maximum dpqcessor DioNetwork @and

DfromNetwork USing the inputted number of parallel servers.

D

max
# of parallel servers (3.7)

Satruation point

3.2.1 CIM: Cache Partitioning

This subsection demonstrates how increasing CMP cache partitioning affects cache access latency under
high bandwidth demands. Specifically, for a level-2 CMP cache servicing eight on-chip processors, aver-
age inter-arrival times for L2 requests can be as low as 2 cycles for bursts as long as 1000 cycles. There-
fore, the number of customend)vary between 2 and 256 in-order to analyze average cache access latency
(Equation 3.6) under periods of high demand. The non-shaded rows of Table 3-1 present CIM’s inputted
parameters for an eight-processor CMP cache partitioned into 8 to 256 cache banks. The network between
processors and banks represents the average number of links-switch pairs traversed where links are wide
enough to transmit any message in a single cycle. Increasing bank partitioning reduces the size of each

individual bank, and thus bank service tin@y§,) deceases from 20 cycles to 4 cycles [1]. However,



31

__ 100 — . . .

@ i 8 Banlés

S _ 2 16 Banks ----eeee i
% 90 i 32 Banks .............
< gl & 64 Banks 1
Q 128 Banks -------

Q 70 ¥ 256 Banks -

© [ 33

~

@ 60 i

o5} i35

s

< 500 4

) 5

S 40

)

g, 30 r
< 20 1 1 1 1

0 2 4 6 8 10

Avg. Time Between Requests (cycles)

FIGURE 3-3. CIM: Cache Partitioning -
Cache Access Time vs. Bandwidth Demand

more banks increase th&erage number of link-switch paitsaversed between processors and banks from
3to5.

CIM’s investigation of cache partitioning exhibits the balance between the number of cache banks and
average cache access time. For each cache design, Figure 3-3 plots the average cache access time versus
bandwidth demand. Under high bandwidth demand—average time between requests less than 8 cycles—
the 8 bank configuration encounters a dramatic increase in average cache access latency due to bank con-
tention. In contrast, the other bank configurations encounter less than 15% increase in their average cache
access latency until the average time between requests reaches 4 cycles. Between 2-4 cycles, the 64 bank
configuration achieves the lowest latency. Also the bottom shaded row of Table 3-1 presents the saturation

point for each cache design. All cache designs except for the 8-banked design achieve a saturation point of

1.25 cycles or less.



TABLE 3-2. CIM: Wire Technology Parameters

32

Parameter Wide-Slow Thin-Fast
Parallel Links 8 5
Avg. # of link-switch pairs 4 1
Link + switch latency (cycles) 1+1 5+1
Dpank(Cycles) 9 5
DprocessolCycles) 100 100

N 2-256 2-256
Saturation pt. (cycles) 1.0 2.0

3.2.2 CIM: Wire Technology

This sub-section demonstrates on-chip communication innovations will improve average cache access
latency unless bandwidth limitations become a bottleneck. Specifically, the sub-section compares a 64-
banked cache using wide and slow interconnect (wide-slow) to a 64-banked cache using thin and fast inter-
connect (thin-fast). The wide-slow configuration approximates a cache using conventional RC interconnect
and the thin-fast configuration approximates a cache using an advanced technology such as on-chip trans-
mission lines. The non-shaded rows of Table 3-2 break down the two configurations’ input parameters.
Due to the fact CIM ignores many details, the model cannot accurately recreate the high inter-switch con-
tention that exists in the thin-fast network. Therefore, in order to reproduce the thinner network’s increased
bandwidth contention, the parallel links parameter reduces from 8 links for the wide-slow configuration to
3 links for the thin-fast configuration. Though thin-fast links provide single cycle latency, messages occupy
the links for 5 cycles because of their limited bandwidth. In comparison, wide-slow messages traverse 4

link-switch pairs on average, but only occupy the links for a single cycle.



33

50 — . — .
%\ : Wide-Slow ——
S 45} Thin-Fast - |
o)
g 40t ]
Qo
S 35t -
[7)]
(7]
8 30 ]
<
2 o251 -
(&)
S
. 20 1
Q2
< 15 1 1 1 1

0 5 10 15 20 25
Avg. Time Between Requests (cycles)

FIGURE 3-4. CIM: Wire Technology -
Cache Access Time vs. Bandwidth Demand

CIM’s investigation of wire technology indicates advanced wire technology will improve cache perfor-
mance until bandwidth demand exceeds a certain threshold. Figure 3-4 plots the average cache access
latency of both the wide-slow and thin-fast cache configurations versus bandwidth demand. While the
wide-slow configuration provides a consistent 26 cycle access latency until the average time between pro-
cessor requests reduces below 10 cycles, the thin-fast configuration attains access latency as low as 22
cycles, but its latency significantly increases as the average time between requests shrinks below 15 cycles.
Therefore, under periods of low bandwidth demand, the thin-fast configuration will outperform the wide-
slow configuration. However, high bandwidth demand diminishes thin-fast’s performance advantage, and
extreme bandwidth demand causes the thin-fast configuration to perform worse than the wide-slow config-

uration.

Replacing wide and slow wires with thinner and faster wires is not the only way to improve CMP cache

access latency. The next section discusses how CMP cache organization can also impact performance.



34
3.3 Cache Organization and Memory System Performance

This section focuses on how CMP cache organization impacts memory system performance. Previously,
Section 3.2 showed moderate bandwidth demand (> 10 cycles between processor requests) barely
impacted cache access latency for highly partitioned caches (64 banks) utilizing wide links. Conse-
guently, when modelling caches using thin and fast links, first-order memory system performance equa-
tions provide insight by just considering latency. This section relates average cache access latency to
overall memory system performance for both a shared and private CMP cache design. The consequences

of these models illustrate how variations in cache latencies and usage affect memory system performance.

3.3.1 Shared CMP Cache

The shared CMP cache organization [32, 62] assumes each processor has private L1 caches, while the on-
chip L2 cache is shared among all processors. Ignoring cache coherence details, requests that miss in the
local L1 cache are sent to the shared L2 cache where the request could hit, be forwarded to remote L1
caches, or be sent off-chip. For a CMP utilizing a shared cache, memory requests split into four categories:
local L1 cache hits, remote L1 hits, L2 cache hits, and off-chip misses. Equation 3.8 presents the normal-
ized memory cycles per instruction for a shared CMP cache organization. In Equatiéy 3.&e proba-

bility of a memory request being satisfied by the entitywherex is a local L1 cache, a remote L1 cache,

the shared L2 cache, or main memory hpéquals the latency of each entity.

Shared Cache
Memory Cycles: (PlocaILl X I-IocaILl) + (Premotel_’L X I-remotel_’L) + (PL2 % LLZ) + (Pmissx LmisQ
Instruction Instructions 3.8)

Assuming uniform utilization of L2 cache banks, equals the average L2 cache access latency.



35
3.3.2 Private CMP Caches

The private CMP cache organization assumes each processor has both private L1 and L2 caches. Requests
that miss in the local L1 cache are sent to the local L2 cache where the request could hit, be forwarded to
remote L1 and L2 caches, or be sent off-chip. For a CMP utilizing private L2 caches, memory requests
split into five categories: local L1 cache hits, remote L1 hits, local L2 cache hits, remote L2 cache hits, and
off-chip misses. Equation 3.9 presents the normalized memory cycles per instruction for this private CMP
cache organization. Similar to Equation 3F,in Equation 3.9 is the probability of a memory request

being satisfied by the entity; wherex is a local L1 cache, a remote L1 cache, a local L2 cache, a remote

L2 cache, or main memory ahg equals the latency of each entity.

Private Cache
Memory Cycles: (PlocaILl X I-IocaILl) + (Premotel_’L x I-remoteLl) "
Instruction Instructions

(PlocaILZ X I‘IocaILZ) + (Premotelz x I‘remoteLZ) + (Pmissx Lmiss)
Instructions

(3.9)

In general, when comparing the shared cache equation (Equation 3.8) with the private cache equation
(Equation 3.9), one can suspect similar L1 cache terms, but Equation.3,@&m will be approximately
2x Equation 3.9’ 5.4 2 term and only slightly less than Equation 3.Bygyoter st€rm. However, to com-
pensate for it's slower latency, the shared cache can expect Equatio®3,83m to be roughly 1.2x the

sum of Equation 3.9'B|gca 2 @NdPemote A€rms depending on the workload.

Next, Chapter 4 discusses how migration and replication can improve the relationship b&{yggs

PremoteL2 @NdP,issby exploiting workload behavior.



36
3.4 Summary

This chapter illustrated how wire technology and cache organization affects memory system performance.
The chapter showed cache partitioning reduces local wire delay’s impact on cache bank access latency and
improves cache bandwidth. However, as cache partitioning increases, global wire delay between cache
banks becomes a more dominant performance bottleneck. Advances in wire technology will reduce global
wire latency, but high bandwidth demands will diminish their latency advantage. A different approach to
managing wire latency relies on exploiting workload behavior via migration and replication. The next
chapter discusses how migration and replication reduces latency with both a shared and private CMP cache

hierarchy.



37

Chapter 4

Exploiting Workload Behavior

This chapter demonstrates the potential of exploiting workload behavior to reduce on-chip wire delay.
First, Section 4.1 characterizes commercial and scientific workload behavior for an 8-processor CMP.
Then, Section 4.2 and Section 4.3 present analytical models describing how cache block migration and
replication impact memory system performance. These abstract models provide high-level understanding
of the interaction between workload behavior and migration/replication. For instance, the migration model
shows that inter-processor sharing limits migration’s benefit, and the replication model demonstrates that
selectively replicating frequently requested blocks provides better performance than naively replicating all
shared blocks. Furthermore, the replication model illustrates that cache capacity and memory latency sig-

nificantly impact the optimal amount of replication.

4.1 Characterizing Sharing Types

In order to investigate the performance impact of migration and replication in a CMP cache, this section
focuses on understanding workload behavior. Specifically, this section examines an eight SPARC V9 pro-
cessor CMP using the full system simulator Simics [72] extended with the GEMS memory system timing
model [75]. Each processor’s L1 caches are split and store 64 KB with 4-way set associativity. Running the
Solaris 9 operating system, both commercial and scientific workloads are evaluated. Table 4-1 describes
the four studied commercial workloads. The four scientific workloads include two SpecOMP benchmarks
[6]: Apsi and Art and two Splash2 benchmarks [115]: Barnes (128k-particles) and Ggpax 514 ). To

address multithreaded workload variability [3], all workload evaluations use a work-related throughput



TABLE 4-1. Workload Descrptions

38

Static Web Serving: Apache We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locKs and
minimal logging as the web server. We use SURGE [11] to generate web requests. We use a repository of
20,000 files (totalling ~500 MB), and disable Apache logging for high performance. We simulate 3200 ¢lients

each with 25 ms think time between requests, and warm-up for ~2 million requests.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier sylstem,

focusing on the middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our exp¢

riments

use 1.5 threads and 1.5 warehouses per processor, a warm-up interval of 200,000 transactions, a dgta size of

~44 MB.

Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models

the database activity of a wholesale supplier, with many concurrent users performing transactions. Oy

r OLTP

workload is based on the TPC-C v3.0 benchmark using IBM's DB2 v7.2 EEE database management system. We

use a 5 GB database with 25,000 warehouses stored on eight raw disks and an additional dedicated dat
disk. We reduced the number of districts per warehouse, items per warehouse, and customers per @
allow more concurrency provided by a larger number of warehouses. There are 128 simulated users,
database is warmed up for 100,000 transactions before taking measurements.

abase log
istrict to
and the

Static Web Serving: ZeusZeus is another static web serving workload driven by SURGE. Zeus uses an gvent-

driving server model. Each processor of the system is bound by a Zeus process, which is waiting for web

serving

event (e.g., open socket, read file, send file, close socket, etc.). The rest of the configuration is the same as

Apache (20,000 files of ~500 MB total size, 3200 clients, 25 ms think time, ~2 million requests for warm

-up).

TABLE 4-2. Evaluation Methodology

Benchmark Fast Forward Warm-up Executed
Commercial Workloads (unit = transactions)

apache 500000 2000 1000
jbb 1000000 15000 10000
oltp 100000 300 200
zeus 500000 2000 2000

Scientific Workloads (unit = billion instructions)
apsi 89 4.6 loop completion
art 121 3.2 loop completion
barnes 17.3 1.9 run completion
ocean None 2.4 run completion

metric. Thus for the commercial workloads, run lengths equal transactions completed and for the Splash2
workloads, runs completed after the warm-up period indicated in Table 4-2. For the SpecOMP workloads
using the reference input sets, runs were too long to be completed in a reasonable amount of time. Instead,

these loop-based benchmarks were split by main loop completion. Thus throughput metrics, rather than



39

TABLE 4-3. Percentage of Cache Blocks Profiled at L2 Eviction

Benchmark % Profiled at L2 Eviction
apache 94%
jbb 82
oltp 85
zeus 92
apsi 81
art 99
barnes 61
ocean 97

IPC, measure workload performance. Finally, the workload characterization data presented in this chapter

is based on five runs of each workload.

The workload analysis focuses on the behavior of cache blocks during their on-chip lifetime; that is, the
interval from when a miss brings a block on chip until it is replaced. To isolate the sharing activity from
access latency, the simulation model assumes a single-banked 16 MB inclusive shared L2 cache with 16-
way associativity and a uniform access time. To mitigate cold start effects, all workloads except Barnes run
long enough so that L2 cache misses outnumber physical L2 cache blocks by at least 4 times. Therefore,
most blocks are profiled at the completion of the? cache lifetimesi.e. when they are evicted from the

L2 cache, but some blocks have very long L2 cache lifetimes and are profiled when the simulation com-

pletes. Table 4-3 shows the percentage of L2 blocks profiled when they are evicted from the L2 cache.

The cost and benefit of migration and replication depend on the cache block’s sharing behavior. This dis-
sertation identifies three distinct sharing typesSihgle Requestdylocks are accessed by a single proces-

sor, 2.Shared Read-Onlplocks are read, but not written, by multiple processors, arghadred Read-

Write blocks are accessed by multiple processors, with at least one write. Assuming a private CMP cache

using a broadcast protocol, single requestor blocks benefit from migration, but cannot benefit from replica-



TABLE 4-4. L2 Cache Request Profile

40

Single Requestor Shared Read-Only Shared Read-Write
Avg. Avg. Avg.
Bench % of A(;tfc\]/e R qul?é std % of A(;tfc\]/e R qut?é std % of A(;ti%e R qul?é std
Requests| Time / Block Requests| Time / Block Requests| Time / Block
(M cycles) (M cycles) (M cycles)
apache 13% > 1 2 449 8 44 43% 5 12
jbb 57 2 4 42 12 42 1 9 32
oltp 4 1 2 71 11 104 25 7 18
zeus 20 >1 2 55 6 64 26 3 8
apsi > 99 2 4 <1 1 9 <1 2 39
art 56 4 14 44 8 28 <1 13 22
barnes 20 30 7 74 120 330 7 87 8
ocean 94 7 5 1 3 11 5 15 47

tion. Shared read-only and shared read-write blocks can benefit from both, but replicating shared read-

write data will incur extra delay on writes due to coherence invalidations.

Within a CMP cache, each of these three sharing types exhibit distinct behavior. The following subsections
begin by identifying the request, capacity, and sharing behavior of the three sharing types. Then, in order to
provide the details required by the models in Section 4.2 and Section 4.3, the section concludes by charac-

terizing the three sharing type’s request locality, working set size, and probability distribution functions.

4.1.1 Requests

To understand the usage of L2 cache blocks, this subsection analyzes the requests satisfied by each sharing
type. The subsection shows the percentage of requests to each sharing type varies significantly between the
workloads. Table 4-4 shows that shared read-only requests dominate the four commercial workloads (42-
71% of requests), while Art and Barnes (44% and 74% respectively) are the only scientific workloads to
make more than 1% of its requests to shared read-only blocks. Additionally, the commercial workloads

Apache, Oltp, and Zeus, issue many requests to shared read-write blocks (25-43%), while the other five



41

100

2 80+ — — —
P
|_
gj 60+ — — — O Stores
% [ Loads
r 40 M Ingtrs.
s}
S 20-

0_

1RW 1RW 1RW 1RW 1RW 1RW 1RW 1RW
aoache  jbb oltp Zeus s at barnes  ocean

FIGURE 4-1. L2 Cache Shared Requests Breakdown
(1: Single Requestor, RO: Shared Read-only, RW: Shared Read-write)

workloads issue no more than 7% of shared read-write requests. Finally, single-requestor blocks account

for nearly all the requests by Apsi and Ocean, nearly half for Jbb and Art, and relatively little for the rest.

The high percentage of shared read-only requests causes shared read-only blocks to have longer active life-
times and higher average utilizations than the other block types. In particular, Table 4-4‘s average active
time columns display the average number of cycles between the first and last request to a particular L2
block. Meanwhile, Table 4-4‘s average requests per block columns show the average number of request to
a particular L2 block. Across practically all workloads, shared read-only blocks exhibit the longest average
active lifetimes and highest average requests, while shared read-write blocks rank between shared read-
only blocks and single requestor blocks. Though single requestor blocks satisfy a majority of requests in

certain workloads, they average only 2-14 requests during their on-chip lifetimes.

In terms of L2 request types, the commercial and scientific workloads exhibit distinct behavior. For com-
mercial workloads, Figure 4-1 indicates that single requestor requests roughly evenly split between loads
and stores. In contrast, for all scientific workloads except Apsi, single requestor requests highly bias

towards loads. For the commercial workloads, instruction fetches contribute between 58% to 84% of



42
TABLE 4-5. L2 Cache Capacity and Allocation Profile

Single Requestor Shared Read-Only Shared Read-Write
Benchmark Avg. % of % of Avg. % of % of Avg. % of % of
Capacity Allocations Capacity Allocations Capacity Allocations

apache 51% 63% 21% 8% 28% 29%
jbb 91 93 9 7 <1 <1
oltp 53 48 20 18 27 35
zeus 72 76 11 5 16 19
apsi >99 >99 <1 <1 <71 <1
art 77 74 24 26 <1 <1
barnes 92 3 4 6 3 22
ocean 99 99 <1 <1 1 1

shared read-only requests, while for the scientific workloads, loads account for the majority of shared read-
only requests. Finally, for the commercial workloads, shared read-write requests exhibit an even split
between loads and stores, while for the scientific workloads, loads contribute at least 59% of all shared
read-write requests. By combining the data of Table 4-4 with Figure 4-1, one observes CMP caches must
manage commercial workload’s large instruction footprints to improve performance, while scientific work-

load performance improvement more closely depends on reducing load latency.

4.1.2 Cache Capacity

To understand the cache pressure placed on the L2 cache, this subsection analyzes the cache capacity con-
sumed by each sharing type. The subsection demonstrates that though shared data dominates requests, sin-
gle-requestor blocks consume the majority of the cache capacity. Table 4-5 shows that single-requestor
blocks account for over 50% of average L2 cache capacity for all workloads and over 90% for Jbb, Apsi,
Barnes, and Ocean. In comparison, shared read-only and shared read-write data consume relatively little
capacity, with the maximum being less than 50%. Table 4-5 also presents the percentage of block alloca-
tions for each sharing type. While the average percentage of capacity indicates cache storage distribution,

the percentage of allocations correlates to the number of off-chip requests for each sharing type. By com-



43
paring the capacity and allocations columns, one observes allocations match or exceed consumed capacity

for all sharing types except shared read-only data in commercial workloads. Instead, for these commercial
workloads, shared read-only data allocations are significantly lower relative to their consumed capacity.
This reduction is due to the fact that shared read-only L2 block lifetimes are twice as long as single
requestor blocks and at least 20% longer than shared read-write blocks. Replicating shared blocks in pri-
vate caches to reduce access latency is attractive, since they are accessed frequently and have long L2

cache lifetimes yet consume relatively little cache capacity.

4.1.3 Sharing Behavior

While replicating shared read-only data is attractive, blind replication is dangerous, since the degree of
sharing suggests that the capacity could increase significantly. Table 4-6 shows the probability that the next
processor to request a L2 block usually differs from the last requesting processor. This behavior is espe-
cially true for shared read-only blocks where the different requestor probability exceeds 0.83 for all work-
loads except Barnes. Therefore, replicating rather than migrating shared read-only data close to the
multiple requesting processors appears advantageous. However, the high average number of sharers for
shared read-only data indicates allowing all replication will significantly reduce the effective cache capac-
ity. Specifically, shared read-only blocks in Apache, Jbb, Oltp, Zeus, and Art are requested by 3.0 to 4.5
processors, on average, during their on-chip cache lifetime. Fully replicating these blocks could increase
the effective working set by 25-74%. Therefore, for shared read-only blocks, CMP caches must balance

replication’s on-chip latency reduction benefit with replication’s decrease of effective cache capacity.

In comparison, replicating shared read-write data is less advantageous. Allowing multiple shared read-
write copies permits faster read latency by moving shared copies close to multiple processors. In contrast,
storing a single shared read-write block facilitates quicker cache-to-cache transfers by reducing costly

coherence invalidations. Table 4-6 displays shared read-write blocks are shared less widely than shared



TABLE 4-6. L2 Cache Block Sharing Behavior

44

Shared Read-Only Shared Read-Write
LS Req?;gse{c()arnlgrob. ASVr?ér#ég Req?llgsetrc()ernlgrob. ASVr?ér#érosf Run Length
apache .90 3.6 .61 2.8 1.2
jbb .91 3.4 .62 2.4 1.1
oltp .83 4.5 .53 3.6 14
zeus .88 3.0 .56 2.3 1.3
apsl 91 7.2 .58 2.7 15
art .85 3.0 .25 2.3 3.1
barnes .66 3.2 41 2.1 4.2
ocean .83 4.7 .36 21 4.6

read-only blocks. However, for the commercial workloads, shared read-write blocks are still shared fre-

guently enough that their next requestor is likely not to be their last requestor. Also, Table 4-6 presents the
average run lengths of these blocks. Inspired by Eggers and Katz write run characterization [34], the aver-
age run length is the average combination of reads to a L2 block between writes from different processors
and remote reads to a L2 block between writes from the same processor. For the three commercial work-
loads that issue many shared read-write requests—apache, oltp, and zeus—, only 1.1-1.3 intervening
requests occur between writes. Thus, for the evaluated workloads, allowing shared read-write data replica-

tion appears less advantageous.

4.1.4 Request vs. Cache Block Locality

Fortunately, shared read-only blocks exhibit strong locality, especially for commercial workloads, while
single requestor and shared read-write blocks demonstrate less locality. Figure 4-2 plots the cumulative
distribution of single requestor requests across the cumulative percent of single requestor blocks. Interest-
ingly, three of the four commercial workloads exhibit little locality for single requestor data. Specifically,
the top 20% of single requestor blocks in OLTP, Apache, and Zeus account for less than 60% of the single

requestor requests. The scientific workloads demonstrate more locality, with the top 20% of single



45

) 100- J—
g - - —:“‘"--.-”‘

8 ','-.“‘/ >

£ o0 — cpute
& VBT S e jbb

3 60+ ---oltp
x i/ 2eUS
o i aps
2 405 - art
o barnes
g 20- --— ocean
5

O

20 40 60 80 100
Cum. % of Single Requestor Blocks
FIGURE 4-2. Request to Block Distribution: Single Requestor Data

100+

80-:

Cum. % of Shared R Only Requests

20 4 6 8 100
Cum. % of Shared R Only Blocks
FIGURE 4-3. Request to Block Distribution: Shared Read-only Data
requestor blocks in Art, Barnes, and Ocean satisfying 55-80% of single requestor requests. However, fur-

ther observation reveals the data footprint of the top 20% of single requestor blocks in Art, Barnes, and

Ocean is at least 3 MB.

In contrast, shared read-only data displays tremendous locality in the commercial workloads. Figure 4-3

plots the cumulative percent distribution of shared read-only requests across the cumulative percent distri-



46

wo, s
g
>
T —— apache
I B jbb
2 oy
3 zeus
8 aps
; S
\8 ; barnes
% 04/ --= ocean
3 i/
O *gll'

0 ' T T T T

20 40 6 8 100
Cum. % of Shared RW Blocks
FIGURE 4-4. Request to Block Distribution: Shared Read-write Data
bution of shared read-only blocks. For all commercial workloads, the top 20% of blocks account for over
90% of requests and the top 3% of blocks account for over 70% of requests. Further observation reveals the
data footprint of the top 3% of shared read-only blocks in JBB, OLTP, and Zeus is only 100-300 KB. Due

to their small footprints, selectively replicating only the most frequently requested blocks can reduce

shared read-only request latency without risking significantly decreasing effective cache capacity.

Finally, Figure 4-4 reveals shared read-write data have locality characteristics between single requestor
data and shared read-only data. The top 3% of shared read-write blocks (1 KB-1 MB) account for 20-60%
of shared read-write requests. Therefore, selectively replicating shared read-write data is less advantageous
than selectively replicating shared read-only data. Also, as previously discussed in Section 4.1.3, the lack

of intervening reads between writes does not justify replicating shared read-write data.

Because shared read-only data exhibit tremendous locality and don’t suffer coherence invalidations, this

dissertation focuses on selectively replicating shared read-only blocks.



47

Normalized L2 Hit Ratio

0.0+

<1814 12 1 2 4 8 16 32
L2 Size(MB)
FIGURE 4-5. Normalized L2 Cache Hit Ratios

4.1.5 Cache Hit Ratio

While replicating blocks can reduce L2 hit latency, it also decreases the effective L2 cache size. If replicas
displace too much of a workload'’s working set, performance may degrade significantly. Figure 4-5 illus-
trates this risk by plotting the normalized hit ratios for fully-associative caches up to 32 MB, Equation 4.1.

Hits within cache size

Normalized L2 Cache Hit Ratie — —
Hits within a 32 MB L2 cache 4.1)

While the L2 Hit Ratio doesn’t show the exact change in hits for a practical set-associative L2 cache, it

demonstrates the sensitivity that many workloads have to small changes in cache size.

For example, Ocean and Art have critical working set sizes of 4 MB and 8 MB, respectively. Increasing the
available cache capacity above those thresholds has a dramatic negative impact on performance. All of the

scientific workloads exhibit clearly identifiable working set boundaries, while the commercial workloads



48

)

o
oo
AN
. '-\\
|
3
5

Prob. HLb|1R - F(x)

.
R
I

OO i_ | | | T | T |
<814 12 1 2 4 8 16 32
L2 Size(MB)
FIGURE 4-6. Probability Distribution Function HLb|1R - F(x)

have less pronounced transitions. Ideally, a replication policy for private CMP caches would balance the

latency benefits against the capacity and miss rate costs.

4.1.6 Probability Distribution Functions

This subsection presents the probability distribution functions required by both the migration and replica-
tion analytic models. Similar to the previous normalized cache hit ratio, Probability Distribution Functions
(PDFs) illustrate the probability a request will hit in a given sized cache. Furthermore, conditional PDFs
can determine the hit probability for a certain type of request. In particular, the analytical models of the fol-
lowing sections require discrete conditional PDFs to determine the hit rate for certain request types. These
PDF plots illustrate the hits to both the local and remote LRU stacks. Interestingly, the general shapes of
the local hit curves for the scientific workloads exhibit noticeable steps, while the other curves increase

gradually.

Section 4.2's migration model requires three discrete conditional probability distribution functions: the

probability of a local hit given the request is for a single requestor bldekry;;r—(Figure 4-6), the



49

1.0—!
08-
S
= E !
1 0.6_5 i
0 : i
o) b i
| i i
T 044 :
g f i
= ! i barnes
0.2+ ! ~ocen
| |
| i
OO !‘ T T T ~1 T T T T 1
<814 12 1 2 4 8 16 32
L2 Size(MB)
FIGURE 4-7. Probability Distribution Function HLb|S - M(x)
1.0
/—/
0.8 L // _ aete

Prob. HRb|S - M(x)

0.04===5=

<UsUA U2 1 2 4 8 16 32
L2 Size (MB)
FIGURE 4-8. Probability Distribution Function HRb|S - N(x)

probability of a local hit given the request is for a shared blo&y, s—(Figure 4-7), and the probability

of a remote hit given the request is for a shared bld@kzys—(Figure 4-8).

Meanwhile, Section 4.3's replication model requires five discrete conditional probability distribution func-
tions: the probability of a local hit given the request is for a single requestor blBglsnr—(Figure 4-

6), the probability of a local hit given the request is for a shared read-only bl&gfmsro—(Figure 4-9),



50

0.2-i

Prob. HLbI|SRO - G(x)

|
!
L .
I 1 1 1 | T T T 1
814142 1 2 4 8 16 32
L2 Size (MB)
FIGURE 4-9. Probability Distribution Function HLb|SRO - G(x)

0.0
<

Prob. HLb|SRW - H(x)

<USV4A L2 1 2 4 8 16 32
L2 Size(MB)
FIGURE 4-10. Probability Distribution Function HLb|SRW - H(x)

the probability of a local hit given the request is for a shared read-only bl&krsrw—(Figure 4-10),
the probability of a local hit given the request is for a shared read-only bl&igpsro—(Figure 4-

11),and the probability of a remote hit given the request is for a shared tpglssrw—(Figure 4-12).

However, one should note one key difference between the empirical probability distributions presented

here and a true distribution function [5]. These empirical probability distributions are limited by finite sim-



51

Prob. HRb|SRO - P(x)

o

w
N\
]
|
3
g

E o v co o o o =

0.0+ T T T T T T T 1
U814 12 1 2 4 8 16 3R

L2 Size (MB)
FIGURE 4-11. Probability Distribution Function HRb|SRO - P(x)
1.0
2 0.8+
o4
0.6+
Z
0
%
T 04-
o}
[e]
x

o e e o

00+""""m-’- .................
<Av4 12 1 2 4 8 16 32

L2 Size (MB)
FIGURE 4-12. Probability Distribution Function HRb|SRW - Q(x)
ulation times and memory capacity, and thus cannot approach 1 as cache size increases to infinity. Instead,
the probability distribution functions presented in this section stop at the 32 MB. Those hits beyond 32 MB

are assumed to be compulsory misses [45].



52
In order to better understand the benefit of both migration and replication within a CMP cache, the next

two sections (Section 4.2 and Section 4.3) present and evaluate two different analytical models using the

data presented in this section.

4.2 Exploiting Workload Behavior Through Migration

This section illustrates the potential performance impact of migration in a CMP cache. By moving L2
cache blocks closer to the requesting processors, migration removes on-chip wire delay and improves
memory system performance. Previously, Section 3.3 introduced Equation 3.8 and Equation 3.9 to
describe the memory system performance of a shared CMP cache and a private CMP cache, respectively.
Neglecting cache coherence optimizations, a statically shared CMP cache allows no migration and a pri-
vate CMP cache can implement various migration policies. In particular, one easy to examine migration
policy moves L2 cache blocks directly to the last requesting processor’s private L2 cache with the swapped
out block moving into the migrated block’s previous location. Other migration policies exist, for both
shared and private caches, but cannot be easily modeled analytically and instead require execution driven
simulation. Therefore, further discussion of these more complicated policies is delayed until Chapter 5.
The remainder of this section focuses on understanding direct migration’s benefit in a private CMP cache.
Section 4.2.1 proposes a model for the direct migration policy, then Section 4.2.2 illustrates that the perfor-
mance benefit of direct migration depends on the probability of the requesting processor being the last

requestor.

4.2.1 Modelling Migration

This section constructs an abstract model to analyze the high-level benefits and limitations of migration.
Specifically, the model assumes an 8-processor private CMP cache with each processor having fast access

to its local L2 cache bank and slower access to the remote L2 cache banks. For simplification reasons, the



53
model assumes migration has no effect on the L2 miss rate and all caches are fully associative with perfect

LRU replacement. Also when a block is migrated from one cache bank to another, not only is the migrated
block assumed to be within both the previous owner processor’s and the current owner processor’s local
MRU stacks, but also the subsequent swapped block is assumed to be within both MRU stacks. The result
is the effective on-chip cache sizB) (can be greater than the local private L2 cache size because some
shared blocks may exist in other processor’s local cache banks. In particular, the shared blocks last
requested by other processors are assumed to be in remote on-chip cache banks. Therefore, based on the
previous Equation 3.99,.4 2 €quals the probability a requesting processor was the last processor to

request a given cache block that lies within the local Most Recently Used (MRU) stackiof size

Plocall2 = PLR‘ HLp = Prob. last requestor given window local MRU stack size b

= P1r*PHLbjtr* Ps* PLR s* PHLb|s (4.2)

where:

Pir = PSingIeRequestor: prob. of a request being for single requestor data (4.3)

Pg = Pgnareq= Prob. of a request being for shared data (4.4)

P_r s = Probability of Last Requestor given S (4.5)

LR|



54

b
PHLB|1R = F(0<X<h) = z f(x) = prob. of first requestor hit in local MRU stack of size £4.6)
0

b
Pripjs = M(0sX<b) = Zm( X) = prob. of shared hit in local MRU stack of sizeb (4.7)
0

_ Private Cache Size

(1-(PgxPg ) (4.8)

Similarly, Premotel 2€quals the probability a requesting processor was the last requesting processor given

the shared cache block is within the local MRU sizb: of

Premotel2 = PsX PLT?\ s PHRb‘ g = prob. not last requestor & hits in remote MRU stack size {.9)

where:

b
Prrp s = N(0sX<b) = Zn(x)dx = prob. of S hit in 7 remote MRU stacks of size b  (4.10)
0

Finally, Piss€quals the probability a request misses both in the local L2 cache and the remote L2 caches:

Pmiss = 1~ (P1r*Phibj1r* Ps* PLris™ PHLb|9 ~Ps* Prg s PHRo's (4.11)



55
In order to isolate migration’s effect on L2 cache access latency, Equation 4.12 drops the L1 cache terms of

Equation 3.9. The result is the following memory system performance equation for L1 misses:
Private Cache

L1 Miss Cycles: (PlocalL2 * Liocall2) * (Premote2 * Lremotet2) * (Pmiss™ Lmisd
Instruction (Instructions’ Lllmisse$ (4.12)

In comparison, Equation 4.13 presents the memory system performance equation for L1 misses assuming a
shared CMP cache that disallows migration:
Shared Cache

L1 Miss Cycles_ (Psharedi2 X Lshared2) * (Pmiss™ Lmisd
Instruction (Instructions’ llmisse$

(4.13)

where:

P prob. of hit in aggregate MRU stack of size  total L2 cappgily

sharedl2 ~ PAggregateStackHit:



56

8 101
(@)
)
14
p
i
- I Shared
g 054 —— ] Migration
|_
3
N
©
=
o)
Z

0.0-

apache  jbb oltp zeus aps art barnes  ocean
Benchmarks

FIGURE 4-13. Migration Model: All WorkloadsDefault

4.2.2 Evaluating Migration

This section demonstrates migration’s performance improvement highly depends on the sharing behavior.
The evaluated model is not accurate enough to project absolute performance, but does provide high-level
understanding of migration’s benefits and limitations. The model uses the empirical data provided in
Section 4.1 and setgcq 2 t0 20 cycles] emote 210 50 cyclesLgharedi2t0 44 cycles, and.,issto 300

cycles. Figure 4-13 plots the total L1 miss cycldsad8 MB private CMPcache using direct migration
(Equation 4.12) normalized to the total L1 miss cycles of a 8 MB shared CMP cache (Equation 4.13). For
the commercial workloads, migration reduces Jbb’s total L1 miss cycles by 3%, but degrades performance
for the other three commercial workloads by as much as 11%. These three commercial workloads encoun-
ter performance degradation because the majority of their requests are for shared data (Table 4-4) with
high probability a different processor was the last requestor (Table 4-6). Thus migration exacerbates on-

chip latency because many shared requests hit in remote cache banks.



57
In contrast, migration improves performance for all four scientific workloads, with the degree of improve-

ment directly corresponding to the percentage of single requestor requests (Table 4-4). For instance, Apsi
and Ocean exhibit the largest percentage of single requestor requests (99% and 94% respectively) and thus
they encounter the most significant reduction in total L1 miss cycles (12% and 11% respectively). Mean-
while, Art and Barnes exhibit a smaller percentage of single requestor requests (53% and 19% respec-

tively) and thus they encounter only a small reduction in total L1 miss cycles (6% and 1% respectively).

Overall, the migration model demonstrates the performance improvement provided by direct migration
directly corresponds to a workload’s sharing behavior. Migration significantly benefits workloads with lit-

tle temporal sharing, but migration can degrade performance for workloads with a large amount of sharing.

4.3 Exploiting Workload Behavior Through Replication

Similar to the previous migration evaluation, this section focuses on illustrating the potential performance
impact of replication in a CMP cache. Analogous to migration, a statically shared CMP cache disallows
replication, where a private CMP cache can implement various replication policies. These replication poli-
cies range from replicating all shared L2 cache blocks to disallowing replication and instead migrating all
L2 cache blocks. Because replicating shared read-write blocks will incur extra delay on writes due to
coherence invalidations, the model focuses on replicating shared read-only data and migrating shared read-

write and single requestor data.

The degree of shared read-only replication will have a significant impact on CMP cache performance. As
demonstrated in Section 4.1, selectively replicating the most frequently requested shared read-only blocks
may provide most of replication’s benefit without significantly decreasing the effective cache size. The
model proposed in Section 4.3.1, evaluates how adjusting the amount of replication impacts memory sys-
tem performance. Also the model analyzes how CMP cache size and memory latency relate to the perfor-

mance benefit of selective replication.



58
4.3.1 Modelling Replication

This section constructs an abstract model to analyze the benefits and limitations of selective replication.
The model assumes the same parameters as the model proposed in Section 4.2.1 including the presumption
that single requestor, shared read-write, and any non-replicated shared read-only blocks always migrate to
the last requestor’'s L2 cache with the swapped out block lying within the new owning processor’s local
MRU stack. Since only shared read-only data will be selectively replicated, the model begins (Equation

4.15) by splitting the memory cycles spent on L1 misses in a private CMP cache into the three sharing

types:
Private Caches
L1 Miss Cycles_ (P1r*L1g) * (Psro*Lsrd * (Psrw* Lsrw
Instruction (Instructions llmisse$ (4.15)
where:

P1r = Psinglerequestoi Prob. of a request being for single requestor data  (4.16)

Psro= PSharedReadomy: prob. of a request being for shared read-only data  (4.17)

Psrw = Psharedreadwrits Prob. of a request being for shared read-write data  (4.18)

Next, Equation 4.19 introduces the probability of shared read-only block replication:

Prep = Preplication= Prob. that a shared read-only block is replicated (4.19)



59
and Equation 4.20-4.24 present the probability requests of each sharing type hit in a local or remote MRU

stack of size b:

b
Phibjir = F(0sX<b) = Z f(x) = prob. of first requestor hit in local MRU stack of siz€4020)
0

b
PhLbjsro= G(0<X<b) = Zg(x) = prob. of shared read-only hit in local MRU stack of si£é.81)
0

b
Pyipjsrw= H(0sX<b) = zh(x) = prob. of shared read-write hit in local MRU stack of si#e2B)
0

b
PHRb\SRO: P(0O<sX<h) = Zp(x)
0

prob. of SRO hit in 7 remote MRU stacks of size b(4.23)

b
Phrp srw= Q(O<X<b) = Zq(x)
0

prob. of SRW hit in 7 remote MRU stacks of size 44.24)

where b equals the effective private cache size:

_ Private Cache Size
(1_(PSRWX PLT:Q‘ SRW+ I:)SROX PLT:\)‘SROX (1_PRep))) (4.25)




60
To model the accuracy of selectively replicating frequently requested shared read-only blocks, Equation

4.27 introduces the functidacalitysrdX), where x is the percentage of L2 cache capacity devoted to
shared read-only replica@apRepThe function returns the probability a requested shared read-only block
would have been replicated for the given replication capacity. The function assumes perfect selection of the

most frequently requested blocks. Therefore, the valdeaaflitysr{x) directly corresponds to the shared

read-only locality plot in Figure 4-3: (4.26)
localitygg 4 X) = the locality of SRO hits for x% capacity for replicas (4.27)
CapRep= % Capacity for Replicas Pggox PLT?\SROX Prep (4.28)

Equation 4.29 usescalitysrdx) in combination withPy ,;sroandP| risroto determine the probability

of a local stack hit for a shared read-only request:

PLsH srRo™ PHLbjsro* (PLRr sro* Prgsro 10¢@1IYsrdCapRep) (4.29)

Finally, Equation 4.30 calculates the total cycles spent on L1 misses in a private CMP cache using selective

replication:



61
PrivateCadhes
L1 Miss Cycles_ P1r* (PhLbj1r* Liocal ¥ (1 =PhHipj1R) * Lmisd .
Instruction (Instructions’ llmisse$

Psro* PLsH srRO* Liocal N
(Instructions’ lLmisse$

Psro* (1 ~Py sk srd * Phrb srRA Lremote
(Instructions’ LlLmisse$

Psro* (1 ~Pr sk srd * (1 ~Phrb srd) * Lmiss
(Instructions’ LLlmisse$

Psrw* ((PLr|srRw* PHLbjsRW * Liocal ¥ (PsrwX (PfR\ srw* PHRb sRW) * Lremotd
(Instructions’ LLmisse$

+

Psrw* (1 =PLr srw* PHLb|sRW™ PL*R‘ srw® PHRb SRW * Lmiss
(Instructions’ limisse$ (4.30)




62

259 |
S
Z ol e
O Jbb
B ! - Oltp
5‘ 154 : ZEeus
S o T
= 1047 o
0 barnes
g : --— 0ocean
- 51._——/—/

oL

0 20 40 60

% Capacity for Replicas

FIGURE 4-14. Replication Model: All Workloads Default Parameters

L. 5
; =
£z — apache
g 44 jbb
2 ---oltp
2 3 zZeus
S i
I R —-—- barnes
=2 ocean
e e

04 — I ' ' ' I

0 20 40 60

% Capacity for Replicas
FIGURE 4-15. Replication Model: All Workloads Except ArtDefault Parameters

4.3.2 Evaluating Replication
This section demonstrates the optimal amount of replication depends on workload behavior and system
configuration. Similar to the previous migration model, the replication model is not accurate enough to

project absolute performance. Instead, the model incorporates enough detail to convey high-level under-



63
standing of how selective replication impacts performance. Later, using execution driven simulation,

Chapter 6 analyzes replication’s performance impact for a particular implementation. The replication
model uses the data provided in Section 4.1, along with the same input parameters as the migration model.
Figure 4-14 plots the total L1 miss cycles of the private CMP cache using selective replication (Equation
4.30) versus the percent of capacity for replicas (Equation 4.28) across the eight evaluated workloads.
Because Art's high miss rate skews the y axis of Figure 4-14, Figure 4-15 presents the same data as

Figure 4-14 with Art excluded.

For all four commercial workloads, the percentage of capacity devoted to replicas significantly affects per-

formance. For these commercial workloads, Table 4-4 previously showed shared read-only requests
accounted for at least 42% of all L2 cache requests. By replicating the most frequently requested shared
read-only blocks close to each processor, the memory cycles consumed by on-chip communication signifi-
cantly decreases without substantially increasing off-chip misses. For instance, by devoting 10% of capac-
ity to replicas, the total L1 miss-cycles-per-instruction decreases by at least 0.4 cycles. Further increasing
the replica capacity beyond 10% has varied results. Increasing the percent capacity for replicas to 30%
reduces Oltp’s total L1 miss-cycles-per-instruction by an additional 0.2 cycles, while Jbb and Zeus observe
less than a 0.1 additional reduction. In contrast, due to replication conflicting with Apache’s large working

set (Figure 4-5), increasing the percent capacity for replicas beyond 10% increases Apache’s total L1 miss-

cycles-per-instruction by as much as 1.3 cycles.

For the scientific workloads, replication has little performance benefit and instead can lead to substantial

performance degradation. For example, Apsi and Ocean have little shared read-only data activity. Thus,

replication has no effect on performance causing these workloads to be indistinguishable from the y-axis

on Figure 4-14 or Figure 4-15. On the other hand, Barnes has some highly localized shared read-only data
activity. Thus, increasing replication initially reduces total L1 miss-cycles-per-instruction by 0.2 cycles

and then further replication increase has no performance impact. Finally, increasing Art’s replica capacity



64

T

/////////////////?555455?5/////////////

//////////////////////////%

/////////////// //////////

Bank Size (MB)

FIGURE 4-16. Replication Model: ApacheCache Capacity vs. Probability of Replication

beyond 4% leads to a 17 cycle performance degradation. This large performance degradation is caused by
replication evicting Art’s critical 8 MB working set (Figure 4-5). Art's abrupt change in performance high-

lights replication’s impact on effective cache capacity.

The optimal amount of replication shifts depending on the relationship between working set size and L2
cache capacity. Figure 4-16, Figure 4-17, and Figure 4-18 provide 3D surface plots of how replication and
cache size interact to affect performance. The amount of replication is shown as the probability of replica-
tion (Equation 4.19), instead of the percent capacity for replicas, in-order to directly compare various

cache sizes with different relative amounts of replicated data. For small (< 1 MB) private caches, Apache’s



65

20\
Yy

\
\

////

W

\
J@f’"«’////////

Total L1 Miss Cycles

//Z/

\

1

0.6

0.8 1.5

Private Cache Bank Size (MB)
Probability of Replication

FIGURE 4-17. Replication Model: OLTP Cache Capacity vs. Probability of Replication

optimal probability of replication is less than 0.1 (Figure 4-16). Then as the cache size increases, the bene-

fit provided by replication increases, and Apache’s optimal probability of replication nears 0.5.

Oltp (Figure 4-17) demonstrates more diverse behavior than Apache. For very small (< 0.25 MB) private
caches, Oltp’s optimal probability of replication is near 0.1. Then, for private caches between 0.5-1 MB,
Oltp prefers replication between 0.4-0.6 in order to move its critical shared read-only working set close to
multiple processors. Finally, for private caches between 1-2 MB, Oltp prefers replication between 0.2-0.4
because it requires less replication to keep its critical shared read-only working set close and therefore can

utilize more capacity for unique data.



66

Ll

£

.
o

///////////////////////////////////////%//

L

J

////////

—

an
Oce
nes

Bar

ication
plica
ilitv of Re
bility

Proba

he Capacity

l: Cac
ion Mode
n

licatio
Rep
4-18.
RE
FIGU



67

T

T

T

T

T

500

Normalized Total L1 Miss Cycles
-
l

T

T

1 0.9 0.8

0.7

0.6

0.5

M 02 g1 g

Probability of Replication Miss Latency (cycles)

FIGURE 4-19. Replication Model: ApacheMiss Latency vs. Probability of Replication

Figure 4-18 presents the remaining six workloads’ surface plots. The four surface plots or Jbb, Zeus, Art
and Barnes exhibit dynamic shape and the optimal probability of replication shifts depending on cache

size. Conversely, Apsi and Ocean show no change in their optimal probability of replication.

The optimal amount of replication also shifts depending on the relationship between workload behavior
and miss latency. Figure 4-19, Figure 4-20, and Figure 4-21 illustrate that the optimal amount of replica-
tion increases as miss latency decreases. In order to observe the relative performance trends, the plots nor-
malize total L1 miss-cycles-per-instruction to the zero replication case for each separate miss latency
value. Also both plots utilize an 8 MB aggregate L2 cache. For Apache (Figure 4-19) with the long 500

cycle miss latency, maximum replication encounters a 30% performance degradation versus no replication,



68

500
0.8—

0.75—

I

Normalized Total L1 Miss Cycles

07
% 05 gy

02 01
: 100
Probability of Replication Miss Latency (cycles)

FIGURE 4-20. Replication Model: OLTP Miss Latency vs. Probability of Replication

while at 100 cycles maximum replication achieves a 7% speedup. Furthermore, Apache’s lowest point
shifts from 0.1 probability of replication for the 500 cycle miss latency to 0.25-0.45 probability of replica-
tion for the 100 cycle miss latency. Similarly, Oltp’s (Figure 4-20) lowest point shifts from 0.5 probability

of replication for the 500 cycle miss latency to maximum replication for the 100 cycle miss latency.
Finally, Figure 4-21 presents the remaining six workload’s surface plots. In particular, Zeus, and Barnes
demonstrate similar dynamic shape, with the optimal probability of replication shifting to smaller values as
latency increases. Meanwhile, Jbb, Apsi, Art, and Ocean show little sensitivity to miss latency and always

prefer maximum replication.



69

$8J0AD SSIN T 101 PazifewIoN

$8J0AD SSIIN T 101 PazifewioN

Probability of Replication

Miss Latency (cycles)

Miss Latency (cycles)

Probability of Replication

Zeus

Jbb

7

%

%

W
)

””’/////

/

Y,
7

7

N

RN
NN
RN
NN
R
A
NN
SRR
//.%//

T T T T T T T
s @ o ~ © u < 0
S ©o ©o o o o o

$819AD SSIN T [BIOL PaZIfewIoN

N
~o
=1

$8J0AD SSIN T 101 PazifewIoN

Miss Latency (cycles)

500

Miss Latency (cycles)

Probability of Replication

Probability of Replication

rt

A

Aps

=

AR
N
0
W

N
W W\
a//éﬂaz
i\
o\
ul

=]
$8J0AD SSIN T [RI0L PaZI[RWION

o © ~
S} o =}
$819AD SSIN T [BI0L PazifewIoN

Miss Latency (cycles)

Probability of Replication

Probability of Replication

Miss Latency (cycles)

Ocean

Barnes

Latency vs. Probability of Replication

ISS

M

FIGURE 4-21. Replication Model



70
4.4 Summary

This chapter demonstrated the potential of exploiting workload behavior to reduce on-chip wire delay. The
chapter first characterized commercial and scientific workload behavior, and then applied the collected
characterization data to two abstract analytical models. The models are not detailed enough to accurately
predict absolute performance, but do provide high-level intuition of migration’'s and replication’s perfor-
mance impact. For instance, the first model showed migration can improve scientific workload perfor-
mance, but inter-processor sharing limits migration’s benefit in commercial workloads. The second
replication model revealed that selectively replicating frequently requested blocks provides better perfor-
mance than naively replicating all shared blocks, and that the optimal amount of replication varies between
workloads. Furthermore, the replication model illustrated that cache capacity and memory latency signifi-
cantly impact the optimal replication amount. Thus, an adaptive selective replication policy that can iden-

tify and adjust to changes in replication’s benefit, can provide more robust performance.



71

Chapter 5

Cache Block Migration

Using an analytical model, the previous chapter estimated migration may substantially improve workload
performance where little data sharing exists, but may degrade workload performance where significant
sharing exists. Using full system simulation, this chapter confirms that indeed sharing limits migration’s
performance benefit. Also this chapter demonstrates other aspects, such as smart searches and off-chip
misses, further limit migration’s performance benefit. The chapter begins with Section 5.1 motivating
dynamic migration and Section 5.2 describing the shared cache design. Then Section 5.3 explains the
migrating cache design, Section 5.4 details the evaluation methodology, and Section 5.5 provides simula-

tion results. Finally, Section 5.6 concludes the chapter.

5.1 Motivation

Increasing wire delay makes it difficult to provide uniform access latencies to all on-chip L2 cache banks.
One alternative is Kinet al.s Non-Uniform Cache Architecture (NUCA) design [58], which allow nearer
cache banks to have lower access latencies than further banks. For a uniprocessbilkiemonstrated

that dynamically migrating frequently requested blocks to these nearer cache banks significantly improved

performance by effectively exploiting the distance locality between the processor and close cache banks.

However, supporting multiple processors (e.g., 8) places additional demands on NUCA cache designs.
First, simple geometry dictates that eight regular-shaped processors must be physically distributed across

the 2-dimensional die. A cache bank that is physically close to one processor cannot be physically close to



72

TABLE 5-1. 2010 System Parameters

Memory System Dynamically Scheduled Processor
split L1 | & D caches 64 KB, 4-way, 3 cycles clock frequency 5.0 GHz
unified L2 cache 16 MB, 16-way pseudoLRU[9p] reorder buffer / scheduler 128/ 64 entries
L1/L2 cache block size 64 Bytes pipeline width 4-wide fetch & issfe
memory latency 250 cycles + on-chip delay pipeline stages 15
memory bandwidth 50 GB/s direct branch predictor 3.5 KB YAGS
memory size 4 GB of DRAM return address stack 64 entries
outstanding memory requests/CPU 16 indirect branch predi¢tor 256 entries (casfaded)

all the others. Second, an 8-way CMP requires eight times the sustained cache bandwidth. These two fac-

tors strongly suggest a physically distributed, multi-port NUCA cache design.

While block migration works uniformly well for uniprocessors, this chapter confirms Chapter 4's conclu-
sion that shared CMP cache migration performance depends on inter-processor sharing. Additionally, the
chapter exposes that, because processors pull frequently requested cache blocks in multiple directions,
migration’s effectiveness in a shared CMP cache is more dependent on “smart searches” [58] than its uni-
processor counterpart, yet smart searches are harder to implement in a CMP environment. Specifically, this
chapter shows that CMP migration without a smart search mechanism degrades performance versus the
baseline CMP cache for all workloads except Barnes. Furthermore, even with an perfect search mecha-
nism, block migration alone only improves the performance of four workloads—Jbb, Art, Barnes, and
Ocean—by a maximum of 2%, while degrading the performance of the other four workloads by as much
as 7%. This is in part because shared blocks migrate to the middle equally-distant cache banks, accounting

for 55-83% of L2 hits for the commercial workloads.

5.2 Baseline: CMP-SNUCA

The chapter targets eight-processor CMPs assuming the 45 nm technology generation projected in 2010

[37]. Table 5-1 specifies the system parameters for all designs. Each CMP design assumes approximately



73

CPU 2 CPU 3 o
L1{L1 L1{L1 o Bankcluster Ke
DI $ DI $ i I:‘ Local
:'Hf 8{: I:' Center
— A ——
-0 5
—
)
o
© (@]
U
C
— !
02 ox
da oD
o
= L1|L1 L1|L1
o | $|D$ 1$(D$
o CPU 7 CPU 6

FIGURE 5-1. 16 MB CMP-NUCA Layout with CMP-DNUCA Bankcluster Regions
300 mnt of available die area [37]. We estimate eight 4-wide superscalar processors would occupy
120 mnf [64] and 16 MB of L2 cache storage would occupy 64 %{Bl?]. The on-chip interconnection

network and other miscellaneous structures occupy the remaining area.

Figure 5-1 illustrates the baseline design derived from Kahal.s S-NUCA-2 design [58]. The baseline is
denoted CMP-SNUCA because it utilizes static block placement. The CMP-NUCA layout differs from the

original uniprocessor NUCA design in several important ways:

« To correspond to the data presented in Section 3.2.1 of Chapter 3, the 16 MB L2 cache is partitioned
into 64 banks to control bank access latency [1] and to provide sufficient bandwidth to support. This
configuration differs from the original NUCA [58] and CMP-NUCA [15] proposals, which assumed
an aggressive 8 FO4 cycle time [47] and thus splitted the cache into 256 banks to provide the optimal
balance between intra-bank and inter-bank latency. Due to recent studies advocating that frequency
scaling is slowing down due to power constraints [102], We assume a 20 FO3 delay. The slower fre-

guency allows for less pipelining and partitioning in the NUCA network.



74
« Second, the evaluated CMP-NUCA implementation connects four banks to each switch and expands

the link width to 64 bytes. Each 2.2 mm link has a latency of 2 cycles and each swdch hgcle
latency. The wider CMP-NUCA network provides the additional bandwidth needed by an 8-processor

CMP.

 Third, all CMP cache banks utilize 16-way set-associative banks with a pseudo-LRU replacement pol-

icy [95] to reduce contention from different processors’ working sets [70].

e Finally, we assume an idealized off-chip communication controller to provide consistent off-chip

latency for all processors.

5.3 CMP-DNUCA

5.3.1 Overview

CMP-DNUCA migrates frequently accessed blocks to reduce cache access latency. Section 4.1.1 illus-
trated a majority of requests are for a small percentage of blocks. CMP-DNUCA strives to move these
most frequently requested blocks towards the requesting processor. Specifically, this dissertation’'s CMP-
DNUCA implementation employs block migration within the previously described baseline CMP-NUCA
layout. Three essential design aspects of a cache employing block migration are: 1. the policy for initially
allocating blocks into the cache, 2. the policy forigrating blocks within the cache, and 3. the policy for
searchinghe cache. CMP-DNUCA strives to reduce additional state, while providing correct and efficient

allocation, migration, and search policies.

5.3.2 Implementation

Allocation. CMP-DNUCA permits block migration by utilizing logical and physical organizations simi-

lar to the uniprocessor D-NUCA design [58]. CMP-DNUCA permits block movemenbdigally sepa-



75
rating the L2 cache banks into 4 unique banksets, where an address maps to a bankset and can reside

within any bank of the bankset. CMP-DNUG#ysicallyseparates the cache banks into 16 diffebamtk-
clusters each containing one bank from every bankset in a two-by-two array. The bankclusters are grouped
into two equal regions: local—lightly shaded in Figure 5-1—and center—darker shaded in Figure 5-1. The
unique local bankcluster closest to each processor is identified the procesgdosalbankcluster. Simi-

larly, the unigue center bankcluster closets to each processor is defined as the proecgssentetbank-

cluster. From the perspective of each processor, the remaining bankclusters are iderttfied lasaland

other centerbankclusters. Ideally, block migration would maximize L2 hits within each processor's my
local bankcluster where the uncontended L2 hit latency (i.e., load-to-use latency) is the lowest and limit

hits to other local and center bankclusters, where the uncontended latency is significantly higher.

The allocation policy seeks an efficient initial placement for a cache block, without creating excessive
cache conflicts. While 16-way set-associative banks help reduce conflicts, the interaction between migra-
tions, replications, and allocations can still cause unnecessary replacements. CMP-DNUCA implements a
simple, static allocation policy that uses the low-order bits of the cache tag to select a bank within the
block’s bankset (i.e., the bankcluster). This simple scheme is non-optimal because allocations are evenly
distributed across all bankclusters despite the fact that some bankclusters are more utilized than others.
However, bankcluster utilization varies depending on the workload and movement policy, so the wide dis-
tribution of allocations often avoids the pathological case where the majority of allocations are to the same
bankcluster storing the most valuable data. While not studied in this document, we conjecture that static
allocation also works well for heterogeneous workloads, because all active processors will utilize the entire

L2 cache storage.

Movement. We investigated several different movement policies for CMP-DNUCA. A movement policy
should maximize the proportion of L2 hits satisfied by the banks closest to a processor. Section 4.2's ana-

Iytical model assumed a simple policy where blocks directly migrated to a requesting processor’s local



76
bankcluster. This direct migration policy increases the number of local bankcluster hits, if most cache

blocks are private to a particular processor. However, if blocks are shared, direct migration also increases
the proportion of costly remote hits satisfied by other local bankclusters. Instead CMP-DNUCA imple-

ments a simple gradual migration policy that moves blocks along the four bankcluster chain:

other otherD my my
local — center center local

The policy separates the different block types without requiring extra state or complicated decision mak-
ing. Only the current bank location and the requesting processor id is needed to determine which bank, if
any, a block should be moved to. The gradual migration policy allows blocks frequently accessed by one
processor to congregate near that particular processor, however, blocks accessed by many processors tend

to move within the center banks.

Search. The best performing uniprocessor D-NUCA search policy used a two-phase multicast search.
CMP-DNUCA uses a similar two-phase search policy that strives to maximize first phase hits while limit-
ing the number of messages. Under the gradual migration policy, hits most likely occur in one of nine
bankclusters: the requesting processor’s local bankcluster, or the eight center bankclusters. Therefore the
first phase of our search policy broadcasts a request to the appropriate banks within these nine bankclus-
ters. If all nine initial bank requests miss, the request is sent to the remaining seven banks of the bankset.
Only after a request misses in all 16 banks of the bankset will a request be sent off chip. Waiting for 16

replies over two phases adds significant latency to cache misses.

To reduce the latency of detecting a cache miss, the uniprocessor D-NUCA design utilized a “smart
search” [58] mechanism using a partial tag array. The centrally-located partial tag structure [56] replicated

the low-order bits of each bank’s cache tags. If a request missed in the partial tag structure, the block was



77
guaranteed not to be in the cache, i.e. false negatives equaled zero. This smart search mechanism allowed

nearly all cache misses to be detected without searching the entire bankset.

In CMP-DNUCA, adopting a partial tag structure appears impractical. All processors cannot quickly
access a centralized partial tag structure due to wire delays. Fully replicated 6-bit partial tag structures (as
used in uniprocessor D-NUCA [58]) require 1.5 MB of state, an extremely high overhead. More impor-
tantly, separate partial tag structures require a complex coherence scheme that updates address location
state in the partial tags with block migrations. However, because architects may invent a solution to this

problem, we evaluate CMP-DNUCA both with and without a perfect search mechanism in Section 5.5.

A unique problem of CMP-DNUCA is the potential ftalse missgavhere L2 requests fail to find a cache

block because it is in transit from one bank to another. Because CMP-DNUCA uses token coherence [74,
76], false misses don't create a correctness problem. False misses, like other data races in token coherence,
will activate the persistent request mechanism. However, persistent request activation is slow and frequent

false misses could be a performance problem.

We significantly reduced the frequency of false misses by implementing a lazy migration mechanism. We
observed that almost all false misses occur for a few hot blocks that are rapidly accessed by multiple pro-
cessors. By delaying block migrations by a thousand cycles, and canceling migrations when a different
processor accesses the same block, CMP-DNUCA still performs at least 75% of all scheduled migrations

with only a 2-14% increase in persistent requests.

5.4 Methodology

Both the CMP-SNUCA and CMP-DNUCA designs implement a CMP-Token cache-coherence protocol
[76] with sequential memory consistency. The intra-chip protocol allows for migratory sharing between L1
caches. The L2 cache is “mostly” inclusive with the L1 caches and maintains up-to-date L1 sharer knowl-

edge. The L2 cache is not strictly inclusive because an L2 block replacement will not invalidate L1 sharers.



78
This optimization saves bandwidth and allows the L2 cache to have no transient states. The inter-chip

coherence protocol maintains directory state at the off-chip memory controllers and only tracks which
CMP nodes contain valid block copies. To facilitate fast cache-to-cache transfers of shared read-write data,
the protocol implements migratory sharing [99]. To deal with races that exist in a CMP-Token protocol, all
designs utilize a distributed persistent request mechanism [76] that activates after a 400-cycle timeout
latency. All evaluated designs also incorporate strided prefetchers between the L1 and L2 caches, as well
between the L2 caches and memory. The prefetcher is based on the IBM Power 4 [105], except it issues

prefetches for both stores, as well as loads, due to the stronger memory consistency model.

The intra-chip and inter-chip networks are modeled in detail, including all messages required to implement
the coherence protocol. The on-chip links are 64-bytes wide and the off-chip bandwidth is specified in
Table 5-1. Network routing is performed using a virtual cut-through scheme with finite buffering at the
switches. Most buffers are constrained to three messages. The buffers between the on-chip and off-chip
networks are infinitely sized to decouple the on-chip network from off-chip queueing delay due to limited

off-chip bandwidth.

The workloads evaluated in this chapter are the same as those in Chapter 4. However, to account for the
non-determinism that exists in multi-threaded workloads [3], all simulations contain small random pertur-

bations in the memory latency and the error bars indicate the 95% confidence interval.

5.5 Evaluation

Dynamic block migration strives to reduce the NUCA cache hit latency by moving frequently-accessed
blocks. However, migration’s unbalanced cache bank utilization increases the off-chip miss rate, leading to
a nominal overall performance benefit even with a perfect smart search mechanism. First, Section 5.5.1

illustrates dynamic block migration’s success in moving blocks to the quickly accessible cache banks.



79

100

o 801
'f ]
N 604 [ Other 7 Bankclusters
o 1 [ Center 8 Bankclusters
|9 40 Il L ocal Bankcluster
ko) ]
S 204

0_

apache  jbb oltp zeus s at  barnes ocean

FIGURE 5-2. CMP-DNUCA: L2 Hit Distribution

Then Section 5.5.2 demonstrates CMP-DNUCA relies upon a smart search mechanism to achieve lower

L2 hit latency and to avoid inflating the miss penalty.

5.5.1 Block Movement in CMP-DNUCA

CMP-DNUCA's migration policy significantly affects the hit clustering within the CMP-NUCA cache. In
particular, the high degree of sharing in the commercial workloads restricts block migration’s benefit.
Figure 5-2 shows the center bankclusters satisfy 55-83% of L2 hits for the four commercial workloads.
The high number of central hits directly relates to the increased sharing in the commercial workloads—
Section 4.1.3. Figure 5-3a graphically illustrates CMP-DNUCA'’s L2 hit distribution for Oltp. The top plot

of Figure 5-3a displays the L2 hit distribution for all processors. The dark grey squares in the top plot indi-
cate the majority of hits are satisfied by blocks that congregate in the center. Specifically for Oltp, the 8
center bankclusters satisfy over 83% of all L2 hits. The lower 8 plots of Figure 5-3a separate the hit distri-
bution on a per processor basis. The light grey squares on the periphery of the cache indicate each proces-
sor’s local bankcluster satisfies a more than requests than the seven remote bankclusters. Specifically, each

processor’s local bankcluster satisfies 8% of Oltp misses, while the seven remote bankclusters satisfy 10%

of Oltp misses.



80

All CPUS All CPUS
CPUO  CPU1 CPU2  CPU3 CPUO CPUL1 CPU2  CPU3
E % m % -
F H N
CPU4  CPU5 CPU6  CPU7 CPU4  CPU5 CPU6  CPU7

FIGURE 5-3. a) Oltp DNUCA Distribution FIGURE 5-3. b) Ocean DNUCA Distribution

The figures illustrate the distribution of cache hits across the L2 cache banks. The large squares indi-
cate the bankclusters and the smaller shaded squares represent the individual banks. The shading indi-
cates the fraction of all L2 hits to be satisfied by a given bank, with darker being greater. The top figure
illustrates all hits, while the 8 smaller figures illustrate each CPU’s hits.

Conversely, CMP-DNUCA designs exhibit very different behavior for the four scientific workloads. The
scientific workload Ocean iterates over a column-blocked 2D matrix resulting in good locality and little
sharing. Figure 5-2 indicates that CMP-DNUCA successfully migrates 74% of Ocean’s L2 hits to the local
bankclusters. The dark colored squares of Figure 5-3b graphically display how well CMP-DNUCA is able
to split Ocean’s data set into the local bankclusters. To a lesser degree, CMP-DNUCA is also able to split
Art’'s and Barnes’s working set, with the local bankclusters satisfying 40% and 34% of L2 hits, respec-
tively. Meanwhile, Apsi experiences virtually no improvement from CMP-DNUCA, which starkly contra-
dicts migration‘s projected improvement modeled in Chapter 4. The main reason for this disparity is 88%
of L2 blocks allocate in Apsi are requested only twice. Therefore, CMP-DNUCA's distributed allocation

policy and gradual migration policy don’t move blocks to the requesting processor’s local bank during



81

40 +—= _I —
1
30H
8 1
o ]
& 204
10+
O-SDpD SDpD SDpDb SDpb SDpD SDpD SDpD S DpD
apache jbb oltp zeus apsi at barnes ocean

FIGURE 5-4. CMP-DNUCA: Average L2 Hit Latency
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

their brief active lifetimes. Instead, Chapter 4’s private cache allocation policy and direct migration policy

better matches Apsi’'s request behavior.

5.5.2 Searching in CMP-DNUCA

While block migration has the potential to reduce hit latency by moving blocks to the closer cache banks,
the slow two-phase search policy actually causes L2 hit latency to increase for some workloads. Figure 5-4
shows that CMP-DNUCA reduces L2 hit latency versus CMP-SNUCA for the four workloads, Jbb, Art,
Barnes, and Ocean. The degree of latency reduction directly relates to the success DNUCA has moving L2
hits to the local bankclusters. For instance, Figure 5-2 shows DNUCA greatest success exists in Ocean,
which also is the workload that encounters the most significant L2 latency reduction in Figure 5-4. For the
other four workloads: Apache, Oltp, Zeus, and Apsi, the latency increase results from a combination of a
much lower percentage of local bankcluster hits and a higher percentage of second phase hits in the remote
bankclusters. Specifically, second phase hits encounter 31 to 51 more delay cycles than CMP-SNUCA L2

hits because of the delay waiting for miss responses from the first phase requests.



82
A smart search mechanism would solve this problem. Figure 5-4 shows the L2 hit latency attained by

CMP-DNUCA with perfect search (perfect CMP-DNUCA), where a processor sends a request directly to
the cache bank storing the block. Perfect CMP-DNUCA reduces L2 hit latency by 0-13 cycles versus
CMP-SNUCA. Furthermore, when the block isn’t on chip, perfect CMP-DNUCA immediately generates
an off-chip request, allowing its L2 miss latency to match that of CMP-SNUCA. Although the perfect
search mechanism is infeasible, architects may develop practical smart search schemes in the future [92].
The rest of this section evaluates CMP-DNUCA with and without perfect searches to examine the potential

benefits of dynamic block migration in CMP-NUCA.

With perfect searches, CMP-DNUCA achieves lower L2 hit latencies than CMP-SNUCA, however, per-
fect CMP-DNUCA encounters more off-chip misses than CMP-SNUCA. Figure 5-5 presents the L1 miss
latency to on-chip single requestor, shared read-only, and shared read-write blocks. As expected, migration
significantly reduces single requestor latency—up to 46% for perfect CMP-DNUCA—, but is less effect
reducing shared block latency—maximum 23%. Interestingly, migration decreases shared read-write
latency by 5-23%, while migration has virtually no effect on shared read-only latency. Corresponding to
Chapter 4’s workload characterization, the reason for the disparity is shared read-only blocks are more
finely shared between processors than shared read-write blocks. Therefore, shared read-only blocks are
more likely to congregate in the center than shared read-write blocks. Figure 5-5 also displays migration
increases off-chip misses. In particular, by moving the most frequently requested blocks to a subset of
banks (Figure 5-2), CMP-DNUCA's static allocation policy is more likely to displace active cache blocks
than CMP-SNUCA. Specifically, all workloads except Apsi encounter 4-21% more off-chip misses for
CMP-DNUCA than CMP-SNUCA. This behavior directly corresponds to Figure 5-2 where, for all work-

loads except Apsi, certain bankclusters satisfied a larger than average percentage of L2 hits.



83

> Single Requ&stor

s 1.54 1

S ol ] i

o 1.0 B

= ]

S ]

5 05H

E ]

S 0055

= pD S DpD S DpD SDpD SDpb SDpD SDpD S DpD

apache jbb oltp zeus apsi art barnes ocean

= Shared Read-only

T 2 s

w© 1

— ]

2 ]

S 1 _l

c J

O

E

§0 SDpD S DpD S Dpb SDpDb SDpD SDpD S DpD S DpD
apache jbb oltp zeus apsi art barnes ocean

Shared Read-write

g _

w®] 2 I

- ]

L I |

= ]

G 4] ] —

C1:

O

g ]

20 SDpD S DpD S Dpb SDpDb SDpD SDpD S DpD S DpD
apache jbb oltp zeus apsi art barnes ocean

Off-chip

=
o
P PR
i

Normalized Misses

005 DpD S DpD SDpD SDpDb SDpD SDpD SDpD S DpD
apache jbb oltp zeus apsi art barnes ocean

FIGURE 5-5. Normalized L1 Miss Latency to Sharing Types and Off-chip Misses
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)



84

1.0

H

HH
'_

Speedup

0.6

SDpD SDpD SDpdD SDpdD SDpb SDpdb SDpdD S DpD
apache jbb oltp zeus aps art barnes ocean

FIGURE 5-6. CMP-DNUCA: Speedup
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

=
o
N,

M Loca L1
(1 Shared L2

I III [ Remote
0 m Off-chip
-

SDpdb SDpdp SDpdD S DpD SDpD SDpdb SDpdD S DpD
apache jbb oltp zeus apsi art barnes  ocean

Norm. Memory Cycles
o
9.

o
?

FIGURE 5-7. CMP-DNUCA: Normalized Memory Cycles
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

CMP-DNUCA:'s off-chip miss increase cancels its reduction in L2 hit latency, leading to little overall per-
formance improvement. Figure 5-6 displays the speedup of CMP-DNUCA and perfect CMP-DNUCA
over that of CMP-SNUCA. The maximum speedup achieved by CMP-DNUCA is 1% for Barnes and the
maximum speedup by perfect CMP-DNUCA is 2% for the workloads Jbb and Ocean. For most other
workloads, both CMP-DNUCA and perfect CMP-DNUCA experience a slowdown versus CMP-SNUCA.
Apache encounters the largest performance degradations, with CMP-DNUCA degrading performance by

18% and perfect CMP-DNUCA degrading performance by 7%. While perfect CMP-DNUCA reduced L2



85
hit latency by 4 cycles in Apache, the reduction was not enough to compensate for the 16% increase in off-

chip misses. Figure 5-7 summarizes the benefits and cost migration in the CMP-NUCA cache by breaking
down the cycles spent in the memory hierarchy. The ‘L1 Cache’ bars display the fraction of the average

memory access time contributed by L1 cache hits. The ‘Shared L2’ category presents the cycles spent on
L2 hits. The ‘Remote’ category represents the cycles spent on requests that hit in remote L1 caches.

Finally, the ‘Memory’ bar exposes the cycles spent on memory accesses.

Overall, prefect CMP-DNUCA reduces the cycles spent on L2 hits at the cost of increasing the cycles
spent on memory requests. To achieve substantial performance improvement over the baseline, L2 hit
latency must be reduced without significantly affecting the amount of off-chip misses. For instance,
Section 4.1.4 revealed the majority of read-only requests where to a small fraction of read-only blocks. By
carefully replicating a small number of L2 blocks, one could obtain most of replication’s benefit without
significantly increasing off-chip misses (Chapter 6). Another solution is to replace slow conventional wires

with fast on-chip transmission lines (Chapter 7).

5.6 Summary

This chapter demonstrated that inter-processor sharing limits the performance benefit of dynamically
migrating cache blocks within a shared CMP cache. Additionally, the chapter showed that CMP cache
migration is more dependent on “smart searches” [58] than the original uniprocessor proposal, and that
migration can increase off-chip misses, thus cancelling its on-chip latency benefit. In general, migration’s
meager performance benefit does not justify its implementation complexity. Instead, a private CMP cache
can statically incorporate migration’s latency benefit without CMP-DNUCA's complexity. Furthermore,
through replication, a private cache can decrease hit latency to shared L2 blocks. However, for private
caches to be overall beneficial, one must ensure replication’s reduction in effective cache capacity does not

cancel its benefit.



86



87

Chapter 6

Adaptive Selective Replication

By allowing multiple L2 cache block copies, replication can minimize the cache access time encountered
by separate on-chip processors. However, too much replication can significantly reduce effective cache
capacity, thus increasing off-chip misses. To attack these conflicting trends, this chapter déstajise
Selective Replication (ASR) mechanism that dynamically monitors workload behavior to control repli-

cating cache blocks within a private CMP cache hierarchy.

This chapter begins with Section 6.1 motivating the need to adapt L2 cache replication to workload behav-
ior. Next, Section 6.2 introduces the baseline private CMP cache design that allows replication between
different local L2 caches. Then Section 6.3 describes the ASR algorithm and Section 6.4 presents the ASR
implementation. Section 6.5 follows with details of the evaluation methodology and Section 6.6 provides

simulation results. Finally, Section 6.7 discusses related work and Section 6.8 concludes.

6.1 Motivation

L2 cache block replication presents both a key opportunity and a significant challenge to provide good
CMP performance for a wide variety of workloads. In particular, replication can reduce cache access
latency by copying data close to multiple processors, but can increase off-chip misses by decreasing the
effective cache capacity. Currently CMP systems either employ shared L2 caches [32, 62] that prevent rep-

lication, or private L2 caches [65, 77] that allow all shared data to be replicated.

Recent hybrid cache proposals seek to achieve a balance between latency and capacity by selectively repli-

cating cache blocks. Cooperative Caching [20], CMP-NuRapid [26], and Victim Replication [121] have



88
nominally private L2 caches, but replicate data blocks under certain fixed criteria. These schemes perform

better than private and shared caches for selected workloads and system configurations. However, CMP-
NuRapid and Victim Replication each have a single static replication policy that cannot dynamically adapt
to different workload and data set behavior. Cooperative Caching uses a configurable probability to

tradeoff replication with effective cache capacity, but does not propose a method to adjust the probability.

Previously, Chapter 4 advocated the need for an adaptive replication policy. Specifically, Section 4.3
showed through its analytical model that different workloads preferred different amounts of replication.
Furthermore, the 3D plots of Section 4.3.2 illustrated that for some workloads the optimal replication level
changes depending on the interaction between workload behavior and system constraints. Clearly, some
adaptive policy is needed to determine the best replication level for given combinations of workloads and

systems.

This chapter describes Adapti@elective Replication (ASR) hardware mechanism that dynamically esti-
mates the cost (extra misses) and benefit (lower hit latency) of replication and adjusts the replication level
to minimize average access time. ASR monitors hits to remote L2 cache banks and (pseudo-)LRU cache
blocks, to estimate the benefits and costs, respectively, of additional replication. ASR monitors hits to rep-
lica blocks and a novel Victim Tag Buffer to estimate the benefit of reducing replication. ASR maintains

per-processor summaries of the costs and benefits, allowing independent localized replication decisions.

6.2 Baseline: Private CMP Caches

This chapter evaluates replication within a private CMP cache composed of eight banks as illustrated in
Figure 6-1. Similar to the 8-processor Sun Niagara CMP [62], the private CMP layout groups the 8 on-chip
processors into two equal groups and places each processor group on opposite edges of the chip. Though
the private cache uses larger and slower cache banks than Chapter 5’s shared NUCA cache, the coarse-

grained cache has several advantages. For instance, splitting the private cache into 8 banks, instead of 64,



89

Ljé Private| | Private :‘é

CPU3 [ ’ CPU 4
L1 L2 L2 L1
| $ DY
:5}5 Private|||Private :‘é

CPU2 ] = CPU5
L1 L2 L2 L1
1 $ D9
||51$ﬂivate Private :‘é

cPUL [ [ ELl CPU6

L2 L2

1 $ DY
:5%1; Private| |Private :‘é

CPUO = o CPU7
L1 L2 L2 L1
' $ DY

FIGURE 6-1. Private CMP Cache

reduces the mesh network’s area and wire demand. To prevent bank contention from significantly affecting
cache hit latency, the private L2 banks are further subbanked into 8 smaller units. Similar to the Itanium 2
microprocessor [78], each private L2 cache is closely integrated to a processor, allowing the processors to
directly query their local L2 cache tags in parallel with an L1 cache access. Also having fewer cache banks
cuts down on the area overhead for the cache controller logic and reduces complexity by decreasing the

number of locations searched on a local cache bank miss.

6.3 Adaptive Selective Replication
ASR seeks the optimum replication level by balancing the benefits of replication against the costs.
Section 6.3.1 introduces the simple memory system performance model underlying ASR and Section 6.3.2

describes ASR’s replication algorithm.

6.3.1 Replication and CMP Cache Performance
To the first order, L2 cache block replication improves memory system performance when it reduces the
average L1 miss latency. The following equation—previously introduced in Chapter 4—describes the aver-

age cycles for L1 cache misses normalized by instructions executed:



90

Koy =
9 2 9
A R — s SN
54 1 = 3 e L 1 =
L C H L C H
% Replicas % Replicas % Replicas
FIGURE 6-2. a) FIGURE 6-2. b) FIGURE 6-2. ¢)
Replication Benefit Replication Cost Replication Effectiveness

The figures above illustrate the replication benefit, cost, and effectiveness curves. The L markstrepresen
the next lower replication level, the C marks represent the current replication level, and the H marks repre-
sents the next high replication level.

Private Cache
L1 Miss Cycles: (PiocalL2 * LiocalL2) * (Premote2 * Lremotet2) * (Pmiss™ Lmisd
Instruction (Instructions’ Lllmisse$

(6.1)

whereP, is the probability of a memory request being satisfied by the extiandx is a local L2 cache,

the remote L2 caches, or main memory dcequals the latency of each entity. Therefore, the combina-
tion of thelocalL2 andremoteL2terms represent the memory cycles spent on L2 cache hits and the third
term depicts the memory cycles spent on L2 cache misses. Replication increases the probability that L1
misses hit in the local L2 cache, thus tAg., » term increases and the ot 2t€rm decreases. Because

the latency of a local L2 cache hit is tens of cycles faster than a remote L2 cache hit, the net effect of
increasing replication is a reduction in cycles spent on L2 cache hits. However, more replication devotes
more capacity to replica blocks, thus fewer unique blocks exist on-chip, increasing the probability of L2
cache misse®),ss If the probability of a miss increases significantly due to replication, the miss term will
dominate, as the latency of memory is hundreds of cycles greater than the L2 hit latencies. Therefore, bal-

ancing these three terms is necessary to improve memory system performance.



91
Optimal performance often arises from an intermediate replication level. Figure 6-2 graphically depicts

this tradeoff. TheReplication Benefiturve, Figure 6-2a, illustrates the trend that increasing replication
reduces L2 cache hit cycles. Due to the strong locality of shared read-only requests, a small degree of L2
replication can significantly reduce L2 hit cycles by moving many previous remote L2 hits into the local
cache. In contrast, increased replication gradually reduces L2 hit cycles because fewer unique blocks on-
chip lead to fewer total L2 hits. THeeplication Costurve, Figure 6-2b, illustrates that increasing L2 rep-
lication increases the memory cycles spent on off-chip misses. Rdmication Effectivenessurve,

Figure 6-2c, combines the benefit and cost curves and plots the total memory cycles. Because the benefit
and cost curves are generally convex and have opposite slopes, the minimum of the Replication Effective-
ness curve often lies between allowing all replications and no replications. ASR estimates the slopes of the

benefit and cost curves to approximate the optimal replication level.

6.3.2 Balancing Replication via ASR

By dynamically monitoring the benefit and cost of replication, ASR attempts to achieve the optimal level

of replication. ASR identifies discrete replication levels and makes a piecewise approximation of the mem-
ory cycle slope. Thus ASR simplifies the analysis toal decision of whether the amount of replication

should be increased, decreased, or remain the same. Figure 6-2 illustrates the case where the current repli-
cation level, labeled C, results indhit cycles-per-instruction and Mmiss cycles-per-instruction. ASR
considers three alternatives: (i) increasing replication to the next higher level, labeled H, (ii) decreasing
replication to the next lower level, labeled L, or (iii) leaving the replication unchanged. To make this deci-
sion, ASR not only needs ¢and M, but also four additional hit and miss cycles-per-instruction values:

Hy and My for the next higher level and Hand M _for the next lower level.

To simplify the collection process, ASR estimates only the four differences between the hit and miss

cycles-per-instruction: (1) the benefit of increasing replicafaetrease in L2 hit cyclesic - Hy); (2) the



92

A Decrease > O A Decrease <= O

? If (Alncrease> ADecreasg

@ Increase Replication Increase

S [eise Replication Definitions
<]_ Decrease Replication

AIncreas(—:‘ = (HC_ HH) - (MH - MC)

o
Il A _
V| Decrease Do pecrease = (Mc— M) = (H — H.)

¢ | Replication Nothing
<

FIGURE 6-3. ASR Decision Table for Adjusting Replication

cost of increasing replicatiofincrease in L2 miss cycledl - Mc¢); (3) the benefit of decreasing replica-
tion, (decrease in L2 miss cyclell: - M| ); and (4) the cost of decreasing replicati@mcrease in L2 hit

cycles,H, - Hp).

By comparing these cost and benefit counters, ASR will increase, decrease, or leave unchanged the replica-
tion level. Figure 6-3 presents ASR'’s decision table for adjusting replicatipn,. ... and oo sum-
marize the cost and benefit counters: positive values indicate that increasing or decreasing replication,
respectively, will improve performance. When batjy ... ag]gecrease are positive, ASR chooses the

direction with the greater predicted benefit.

6.4 Implementing ASR

Implementing ASR requires a CMP cache framework that supports multiple replication levels. Coopera-
tive Caching [20] is one possibility, but this scheme requires an expensive central tag structure.
Section 6.4.1 introduces the simpler Selective Probabilistic Replication (SPR) design which uses distrib-
uted state to make local replication decisions. Section 6.4.2 describes the additional hardware needed to

implement ASR. Finally, Section 6.4.3 summarizes ASR’s storage and energy overhead.



93
6.4.1 Selective Probabilistic Replication

Like most earlier replication proposals, SPR assumes private L2 caches and selectively limits replication
on L1 evictions. SPR uses a non-inclusive Token Coherence broadcast protocol [76] and ring writebacks
[98] to eliminate the need for a central tag structure (like Cooperative Caching) or a designated home node
(like Victim Replication). While token coherence simplified SPR’s implementation, SPR is not dependent
on token coherence and instead could have used a non-home-node directory protocol, e.g. AMD’s Hyper-
Transport cache coherence protocol [2, 111]. On an L1 cache eviction, SPR writes a shared block back to
its local L2 if (i) a the block was already allocated in the local L2 or (ii) the replication policy (below) allo-
cates a new block. Otherwise, SPR uses a ring writeback to merge the block with an existing remote L2
copy. Specifically, L1 writeback messages are passed clockwise between private L2 caches to search for an

already allocated copy or an empty L2 block.

To avoid extra delay on writes due to coherence invalidations, SPR only replicates shared read-only data.
To identify which cache blocks are shared and read-only, SPR uses the per-block dirty bit in combination
with an extra per-block shared bit. The L1 and L2 cache tags set the shared bit when receiving a request
from a processor different than the current sharer. Similar to the dirty bit, once the shared bit set, it is not
reset until the block is replaced. When the dirty bit is not set and shared bit is set, the block is considered

shared read-only.

On L1 cache writebacks, SPR uses probabilistic filtering to decide when to replicate a block. To simplify
the replication process, SPR supports six discrete replication levels (Table 6-1). Each replication level has
a unique probability that a shared read-only block will be replicated, with the lower replication levels per-
mitting very few replications. When an L1 cache evicts a shared read-only block and the block is not found
in the local L2 cache, the replication probability determines whether to replicate the block locally. Specifi-
cally, a linear feedback shift register [41] generates an 8-bit pseudo-random number which it compares to

the current replication threshold (i.e., if randomn  threshold, then replicate). Like all SPR logic, the



94
TABLE 6-1. SPR Replication Levels

Level 0 1 2 3 4 5
Probability 0 1/64 1/16 1/4 1/2 1
Threshold 0 4 16 64 128 256

pseudo-random number generator does not impact L2 cache access latency and is accessed only on L1
replacements. The probabilistic policy biases replications to frequently requested blocks because the most
frequently requested L2 blocks are also those most frequently evicted from the L1 caches. Therefore, at the
lower replication levels, SPR will devote the majority of its limited replication capacity to storing the most

frequently requested shared read-only data.

6.4.2 ASR Hardware

Determining whether to increase or decrease replication requires knowing whether a block would be repli-
cated at the next higher or next lower level. ASR identifies these blocks by comparing the random number
not just against the current replication threshold, but also against the thresholds for the next higher and
lower levels. Note that because the thresholds are monotonic, all decisions to replicate a block at level i
will also be made at level i+1. ASR uses the information about whether a block should be replicated at the

current, next lower, or next higher levels to maintain the mechanisms described below.

ASR uses four separate mechanisms to estimate the costs and benefits of replication and another mecha-

nism to trigger a replication analysis that could change the replication level.

Benefit of Increasing Replication (i - Hy). To determine the benefit of increasing replication,
ASR identifies the blocks not replicated at the current replication level, but that would have been replicated
with the next higher level. Specifically, ASR adds a Next Level Hit Buffer (NLHB) to each private L2
cache to track the replications of the next higher replication level. When a request hits in a remote L2

cache, the local NLHB is checked to determine if the request could have been a local hit if replication was



95
increased. If so, ASR increments its{HHy) counter by the number of cycles that would be saved by a

local L2 hit versus a remote L2 hit.

In order to approximate the lifetimes of current replica blocks, each processor's NLHB is sized to a 16 K
entry, 16-way set-associative buffer. Therefore, hits to NLHB entries roughly indicate those local hits that
would have been possible with the next higher replication level. In particular, for the commercial work-

loads, the average NLHB entry exist for 6 million cycles, which approximates the average current replica

lifetime of 9 million cycles.

To reduce storage overhead, the NLHBs store only 8-bit partial tags [56] of the blocks that would have
been replicated with the next higher replication level. Through exhaustive investigation, 8-bits seems to be
the best tradeoff between storage overhead and reducing false positives. Specifically, 8-bits reduce each
NLHB'’s storage cost to 16 KB, while maintaining a false positive rate below 0.05 for all evaluated work-

loads.

Cost of Increasing Replication (My - M¢). ASR estimates the cost of increasing the replication level

by estimating the utilization of soon-to-be-evicted L2 cache blocks. In other words, these are the unique L2
blocks that would exist off-chip if replication was increased. Specifically, ASR monitors the last 1 K of
least recently used L2 blocks. A monitor size greater than 1 K provides little additional benefit due to the
low locality of these blocks. If a local request hits an L2 block not identified as a current replica and the
block lies within the last 1 K of LRU blocks, the (Y+M¢) counter is incremented by the off-chip memory

latency.

Because precisely determining the recently used cache blocks is prohibitively expensive in hardware, ASR
uses way and set counters [101] to estimate which blocks are least recently used. To reduce the storage
overhead of the set counters, ASR breaks the L2 sets into 256 separate groups using the high order L2
cache index bits. By combining a L2 block’s way and set-group pseudo-Iru binary tree position [95], ASR

determines a requested block’s LRU rank. Figure 6-4 illustrates the LRU rank calculation ASR uses for a



ol MT121M31 215161 718 Mol 20| [12] [12] [13] [14] [15] < WaY

FIGURE 6-4. Binary Tree Position Translation to LRU Rank
The figure above describes how the Pseudo-LRU binary tree determines the LRU rank of each way in a 16-
way cache set. By xoring a way'’s four associated bits (ex. the figure highlights the four bits for way 14 and
15) with a way’s 4-bit identification number, a way’s Iru rank can be determined.

cache way'’s 15-bit pseudo-Iru tree. The cache set-group’s 255-bit pseudo-Iru tree follows a similar transla-

tion.

Benefit of Decreasing Replication (M - M| ). To predict the benefit of decreasing replication, ASR

uses Victim Tag Buffers (VTBSs) to track which L2 misses could have been avoided by reducing the repli-
cation level. The VTB only stores tags that were evicted due to the current replication level, but would not
have been evicted with the next lower level. When a replication associated with the current replication
level causes an L2 eviction, the VTB allocates the evicted tag. The VTB stores other L2 eviction tags only

if they replace an existing valid entry. Subsequent off-chip misses from the local processor that hit in the
VTB, increment the (M - M) counter by the off-chip miss latency. When the SPR replication level
decreases, ASR clears the VTB because the tags currently stored no longer correspond to the new lower

replication level.

To reduce storage overhead, each VTB stores 16-bit partial tags of the most recently evicted blocks in a
1 K entry 16-way set associative buffer. Similar to the NLHBSs, the 16-bit partial tags reduce each VTB’s

storage cost to 2 KB, while maintaining a false positive rate below 0.07 for all evaluated workloads.



97
Cost of Decreasing Replication (If - Hc). To estimate the cost of decreasing replication, ASR iden-

tifies blocks that are replicated at the current replication level, but would not be replicated at the next lower
level. Specifically, an extreurrent replicationbit marks these blocks in the local L2 cache tags. If a subse-
guent writeback indicates that a block would have been replicated at a lower replication level, the current
replication bit is reset. For local L2 hits that find the current replication bit set, ASR increments its (H

Hc) counter by the difference between a remote L2 hit and a local L2 hit. When the SPR replication level
increases, ASR clears the current replication bits because the bits no longer correspond to the new replica-

tion level.

Triggering a Cost-Benefit AnalysisLike all adaptive systems, ASR should respond quickly, but not

too quickly, to changes in workload behavior. ASR does this using a two-step process. First, ASR waits
until it observes enough events to ensure a fair cost/benefit comparison. Specifically, ASR triggers an eval-
uation when the number of local L2 replications or NLHB allocations exceed the size monitored by the
VTBs and LRU counters—1 K entries. Thus, the time interval between replication evaluations is not fixed,
nor do the evaluations require chip-wide coordination. Rather, the evaluation intervals depend only on the
frequency of local replication opportunities. Upon triggering an evaluation, ASR performs the comparison
described in Section 6.3.2 to determine if and how the replication level should be changed. Second, ASR
provides hysteresis by waiting until four consecutive evaluation intervals predict the same change before

making an actual change to the replication level. After each evaluation, all four counters are cleared.



98
TABLE 6-2. ASR Storage Overhead

K Entries K Bytes
Overhead Bits 4 MB CMP 16 MB CMP 4 MB CMP 16 MB CMP
per L1 block 1 4 16 0.5 2
per L2 block 2 64 256 16 64
NLHBs 8 128 128 128 128
VTBs 16 8 8 16 16
Total KBytes—including counter 161.5 211
% increase of On-chip Cache Capaqty 3.7% 1.2%
Consumed Area (technology generatiqn) ~ ~ 32r(m nm)| ~1 mrh (45 nm)

6.4.3 Storage and Energy

ASR adds a small storage overhead to the on-chip cache hierarchy and should have minimal impact on
energy consumption. For an eight processor CMP, Table 6-2 breaks down ASR'’s storage requirement for
two cache configurations: a 4 MB aggregate L2 cache with 16 KB L1 caches and a 16 MB aggregate L2
with 64 KB L1s. Table 6-2 demonstrates that ASR scales well to bigger caches because many of its struc-
tures are cache size independent. For instance, between the 4 MB and 16 MB configurations, ASR’s stor-
age overhead only grows by 40 KB. ASR’s size is mostly independent of cache size because it only
monitors the marginal benefits and costs of replication, instead of monitoring replication’s effectiveness
across the entire cache. Later, Section 6.6.4 directly compares ASR'’s storage overhead with the previous

proposals [20, 26, 121].

While ASR costs some bits, it doesn’t consume energy for passing messages between processors for coor-
dinating replication level changes. Each L2 cache makes a local replication decision. SPR’s replication
logic lies on the non-latency critical L1 replacement decision and is a simple probabilistic choice. Addi-
tionally, ASR’s tables and counters are also non-latency critical and are only accessed on L1 and L2

misses. Therefore, ASR’s logic will be accessed relatively infrequently and can use high-Vt low-leakage



99
transistors [83]. Also, ASR'’s cost-benefit model could be extended to account for the dynamic power con-

sumed by local versus remote L2 hits. We leave this for future work.

6.5 Methodology

Similar to Chapter 5, we use full-system simulation based on Simics [109] and the GEMS toolset [114] to
evaluate ASR against alternative cache designs. This section describes the alternative caches, system

parameters, and workloads that we use in our simulation study.

6.5.1 Alternative Cache Designs

Section 6.6.4 compares ASR against two baseline configurations—shared L2 and private L2 caches—and
the previous replication proposals: Victim Replication [121], CMP-NuRapid [26], and Cooperative Cach-

ing [20].

CMP-Shared. As illustrated in Figure 6-5, the CMP-Shared design assumes an 8-banked Non-Uniform
Cache Architecture (NUCA) [58]. CMP-Shared statically maps the addresses across all on-chip L2 banks,
thus forming a shared cache with non-uniform latency. On an L1 miss, a processor sends its request to the
appropriate L2 bank which may forward the request to L1 sharers or memory. By disallowing L2 replica-
tion, the CMP-Shared achieves the best capacity, but by not exploiting the distance locality between pro-

cessors and L2 banks, it incurs the highest average access latency.

CMP-Private. Section 6.2 previously introduced the baseline CMP-Private design (Figure 6-1). CMP-
Private utilizes SPR’s token broadcast protocol, which allows direct cache-to-cache transfers of clean data.
L1 misses and replacements are directed to the local private L2 bank and other processors cannot allocate
into a remote bank. Thus, CMP-Private migrates [15, 48] single requestor data and replicates all shared

data without the storage overhead of home blocks associated with a distributed directory protocol. How-



100

L1 L1
DY L2 L2 ||'$]

CPU3 CPU4
L1 - nk 3| Ban , L1
|$ gs ags D$
L1 L1

CPU 2 DYl L2 L2 ||IS] CPU5
L1 nk 2||Ban L1

| $[= = D3
L1 —L1
DY L2 L2—|!$]
CPU1 [ 7|Bank 1|Bank 6/[ ;| CPU®
1$ D$
L[} ) [
DY L2 L2 || $
1| Bank 0| Bank 7|] ¢
|$ D$

FIGURE 6-5. Layout of CMP-Shared

CPUO CPU7

ever, CMP-Private does not utilize SPR’s ring writeback mechanism, thus replication is unrestricted,

allowing shared data replicas to increase off-chip misses and coherence invalidations.

In addition to supporting ASR, SPR’s selective replication framework can support previously proposed

replication policies with relatively simple changes.

SPR-VR. Victim Replication [121] targeted an on-chip directory protocol and statically assigned blocks
home nodes (like CMP-Shared). Non-home nodes replicated blocks locally, except when a L2 cache set
was filled with home blocks with remote sharers. Using a random replacement policy, hon-shared home
blocks were evicted before replicas. SPR-VR implements Victim Replication’s replication policy by add-
ing 1-bit per L2 cache block to identify replicas and disallowing replications when the local cache set is
filled with owner blocks with identified sharers. Victim Replication’s distributed directory protocol wasted
significant storage by forcing home nodes to store cache blocks regardless if the home node actually used
the block. Thus, replicating shared data overlapped with migrating single requestor data away from its
home bank. Though requiring more bandwidth, SPR-VR should perform strictly better than the original
Victim Replication implementation because its token broadcast protocol [76] removes the home node stor-

age overhead.



101

TABLE 6-3. Comparison of Configuration Parameters

Parameters Current CMP Future CMP
processor model / cycle time in-order / 1.4 GHz out-of-order / 5.0 GHz
splitL1 | & D caches 16 KB each, 4-way, 2 cycles 64 KB each, 4-way, 3 cydes
aggregate L2 cache sizes 4 MB 16-way pseudoLRU [95] 16 MB 16-way pseudoLRY [95]
avg. shared L2/ local L2 / remote L2 latengy 25/12 /33 cycles 44 /20 /52 cycles
memory latency 150 cycles 250 & 500 cycles
memory bandwidth 28 GB/s 50 GB/s

SPR-NR.CMP-NuRapid [26] maintained coherence using a shared bus and per-processor decoupled tag
arrays with indirect data block pointers (6% overhead). CMP-NuRapid’s replication policy allocated a
local L2 tag after the first request and then locally allocated the actual L2 data block upon a second request.
SPR-NR removes the shared bus overhead and incorporates CMP-NuRapid’s replication policy by storing
a 1-bit counter per remote processor for each L2 block (1.4% overhead). The first request by a processor
sets its associated bit so when that processor’s subsequent requests notice the bit set, it will locally allocate

the L2 block.

SPR-CC.Cooperative Caching (CC) [20] used a centralized duplicate tag structure to identify single on-
chip L2 block copies, i.e. singlets, and used biased replacements to evict non-singlets first. Cooperative
Caching attempts to retain globally active singlets by spilling them to a remote L2 cache. SPR-CC models

the centralized tag structure using an idealized distributed tag structure.

6.5.2 System Parameters

The evaluation studies two different SPARC V9 8-processor CMP configurations targeting current and
future technology. The Sun Niagara [62, 67] inspired the first CMP configuration, (the second column of
Table 6-3), and the second configuration presents a CMP assuming 2010 technology [39] (column 3 of

Table 6-3). The out-of-order processors have the same parameters as the out-of-order processors used in



102
Chapter 5. Also, the intra-chip and inter-chip protocols are the same as Chapter 5, as well as the strided

prefetcher.

6.6 Evaluation

This section demonstrates ASR dynamically adapts replication to match different workload behaviors and
system constraints. First, Section 6.6.1 advocates for an adaptive policy by illustrating how the optimal
replication level changes depending on the workload and system configuration. Next, Section 6.6.2 shows
that ASR can dynamically identify these different situations and adjust replication accordingly. Then,
Section 6.6.3 illustrates how ASR balances reducing on-chip latency with minimizing off-chip misses.
Finally, Section 6.6.4 compares ASR with previously proposed replication schemes and demonstrates ASR
achieves robust performance across three different system configurations: the Current CMP configuration,

the Future CMP configuration, and the Future CMP configuration with longer memory latency.

6.6.1 Replication Capacity and Memory Cycles

The optimal replication point shifts depending on workload behavior and CMP configuration. Figure 6-6
displays the L2 hit cycles-per-instruction, L2 miss cycles-per-instruction, and the Total cycles-per-instruc-
tion curves for both CMP configurations. Each point on the curve corresponds to a static SPR replication

level.

For Current CMP, 6 of 8 workloads prefer either minimum or maximum replication, while Apache and
Oltp prefer intermediate replication. The first row of graphs (Figure 6-6a-c) presents the results for the
Current CMP configuration with a 4 MB aggregate L2 cache capacity. The L2 hit cycles-per-instruction
curves for the workloads: Apache, Jbb, Oltp, Zeus, and Barnes (Figure 6-6a) demonstrate how selective
replication can exploit the request locality of shared read-only data. The slopes of these five convex curves

show that limited replication attains most of the latency reduction possible with unlimited replication. For



103

. aln
8,

K —o— gpache ——apxhe . —o— gpache
i ~-o- jbb B - jbb i ~-o- jbb
T -2 0ltp Z 6 -s-oltp Z -s-oltp
g —+- 7608 8 -+ Z8US 38 -+ Z8US
Py —o—apg 9 —o—q)g J4 —o—q)g
0
= —-o--art g‘l’M —o-art g e —o—-art
5 0.5 —+-harnes s I —-harnes E . — - hanes
- q —+-0cean 2,;"—“-"*"—* —-+— 0cean T bmmege———a-am L ocgan

\‘\\\.D__ . e —a-m

s 0O ?1__—._-::5-53 5.5 .:----D-D--D-D-G

00 T T T 0 T T T T | M*A'A\ T T
0 20 40 60 0 20 40 60 0 20 40 60
% L2 Capacity for Replication % L2 Capacity for Replication % L2 Capacity for Replication
FIGURE 6-6. a) FIGURE 6-6. b) FIGURE 6-6. ¢)
Current CMP: Current CMP: Current CMP:

L2 Hit Cycles / Instr.

L2 Miss Cycles / Instr.

Total Cycles / Instr.

o —o— apache . ——apache —o— apache
z ~-o- jbb ‘g —-o-jbb g ~-o- jbb
= -+-oltp =z -+-0ltp =z -+-0ltp
g —-zs 8 —+- Z8US 821 -+ Z8US
3 —o—apg 8 —o—q)s 8, >\\\\A —o—q)s
= —o-at y —o-at = TTTees—ede-cr--s —oeat
L 054 -+-bames = -=-banes S —=- barnes
3 2 F 13
-+ —+- ocean B —+- ocean
i"D'-\:»----n...u....n i
00 Aﬂk—--ﬁ-—AT-—A ‘ ‘ 0 Mg —te — -t — A—-—A ‘
0 20 40 60 0 20 40 60
% L2 Capacity for Replication % L2 Capacity for Replication % L2 Capacity for Replication
FIGURE 6-6. d) FIGURE 6-6. e) FIGURE 6-6. f)
Future CMP: Future CMP: Future CMP:

L2 Hit Cycles / Instr.

L2 Miss Cycles / Instr.

Total Cycles / Instr.

instance in Apache, devoting 10% of L2 capacity to replication reduces L2 hit cycles-per-instruction by
0.3, but allowing replicas to consume 30% more capacity provides less than a 0.2 additional reduction. In
contrast, Figure 6-6b illustrates the L2 miss cycles-per-instruction curves have a more consistent slope. For
example, Apache’s miss cycles-per-instruction curve roughly increases by 0.2 for every 10% increase in
replication capacity. The resulting total cycles-per-instruction curves (Figure 6-6¢) reveal the optimal point
of replication for each workload using the Current CMP configuration. Replication has little effect on the

scientific workloads Apsi, Art, and Ocean, while the workloads Jbb, Zeus, and Barnes prefer maximum



104
replication. The most interesting cases, Apache and Oltp, prefer a replication capacity between the mini-

mum and maximum.

For the Future CMP configuration, the second row of memory curves (Figure 6-6d-f) show that the optimal
level of replication changes as compared to the Current CMP configuration. For most workloads, the nor-
malized L2 hit cycle curves (Figure 6-6d) maintain the same basic shape as those of Figure 6-6a. However,
Art demonstrates how balancing replication becomes more important with larger caches [50] because its
8 MB working set (Chapter 4) now fits in Future CMP’s larger cache. Figure 6-6e illustrates Future CMP’s
slower memory latency causes the L2 miss cycle slopes to increase with respect to those in Figure 6-6b.
The result is the miss cycle curves have a greater impact on the total cycle curves. For instance the optimal
replication level for Apache and Zeus shifted from 16% and 47%, respectively, for the Current CMP con-

figuration, to 10% and 20% for the Future CMP configuration.



105

S_L,MW.”“ - B RO 0 AR
() ©
5 4 e mEEmEEE A O H A HHH 5 4+
- -
§ 3™ 537
g 2 | nm - I D - g 2 -
g‘ 1 e e S é‘ 1
e e
04 FF o+ o+ o+ 04
100 200 300 400 50 100 150 200
Cycles (M) Cycles (M)
FIGURE 6-7. a) Future CMP: FIGURE 6-7. b) Future CMP:
ASR Adaptability Apache ASR Adaptability Oltp
54 S—L-Hmmm—ll-«um- W e
() ©
5 4% 5 [ um A R A
- -
537 5 1
g 2 — " + g 2+ E - -
g‘ I I bt é‘ 1
e e
04 FF o+ o+ 4 04
RERRRRANAS SRR AR AR LR ARE
100 200 300 400 100 200 300 400
Cycles (M) Cycles (M)
FIGURE 6-8. a) Future CMP: FIGURE 6-8. b) Future CMP:

ASR Adaptability Apache—Processor O ASR Adaptability Apache—Processors 1-7

6.6.2 Adapting to Workload Behavior

By dynamically monitoring the changes in L2 hit and miss cycles, ASR matches the level of replication
within each private L2 cache to the behavior of each individual processor. Figure 6-7 illustrates SPR-
ASR'’s dynamic adjustment of each private L2 cache’s replication level over the runtime of the workload.
Both Figure 6-7a and Figure 6-7b use the future CMP configuration and each processor’s replication level

is initialized to level 4. Each point on the plots indicates when an SPR-ASR evaluated of its counters.



106
For the workload Apache (Figure 6-7a), SPR-ASR reduces the replication level to achieve the lower repli-

cation capacity preferred by the workload. In order to illustrate the benefit of ASR’s local adaptability,
Figure 6-8a plots the ASR level of the one processor that executes almost exclusively OS code—processor
0—and Figure 6-8b plots the ASR levels of the seven other processors. Interestingly, processor 0's ASR
detects very little replication benefit and drops the replication level to levels 0 and 1 for majority of the run.

In contrast, after the first 250 million cycles, the replication levels of processors 1 through 7 hover between
levels 2 and 3 for the remainder of the execution. Overall, SPR-ASR dynamically identifies the improve-
ment provided by selective replication in Apache and reduces the average L2 capacity consumed by repli-

cas to 5%.

For the workload Oltp, which has an optimal point of replication capacity near the maximum, SPR-ASR
adjusts replication to level 5 for all processors. Figure 6-7b illustrates that each processor's SPR-ASR
mechanism quickly detects a benefit for replicating Oltp’s large instruction footprint and moves all eight
L2 caches to level 5, or 100% probability of replication, within the first 10 million cycles. The result is that

on average 52% of L2 capacity is consumed by replicas.

As Figure 6-7a exemplifies, SPR-ASR can require well over a 100 million cycles to reach steady state,
which equates to several hours of simulation. Therefore, in order to evaluate SPR-ASR during steady state

execution, the remainder of this section initializes the replication levels to their steady state value.

6.6.3 Sharing Type Latency vs. Off-chip Misses

This subsection illustrates how SPR-ASR sacrifices shared block latency in order to reduce off-chip misses
and improve performance. Similar to Chapter 5, Figure 6-9 displays the L1 miss latency to on-chip single
requestor, shared read-only, and shared read-write blocks, as well as, off-chip misses. As expected, the pri-
vate cache designs exploit their faster local L2 banks and reduce single requestor latency by roughly 55%

versus CMP-Shared. For shared data, CMP-Private replicates all shared L2 blocks, resulting in an average



Norm. On-chip Latency Norm. On-chip Latency Norm. On-chip Latency

Normalized Misses

Single Requestor

1.0
"1 ] ] ] ]
00-s%A sSPA SPA SPA SPA SPA SPA SPA

apache jbb oltp zeus apsi art barnes ocean

Shared Read-only

1.0 = |
054 N
0.0 S P A S PA S P A S P A S P A S P A S P A S P A

apache jbb oltp zeus apsi art barnes ocean

Shared Read-write

1.0

0.5+

005+ A SPA SPA SPA SPA SPA SPA SPA
apache jbb oltp zeus apsi art barnes ocean

Off-chip

15+ M

1.0

05H

0.0-5%2A SPA SPA SPA SPA SPA SPA SPA
apache jbb oltp zeus apsi art barnes ocean

FIGURE 6-9. Future CMP: Normalized L1 Miss Latency to
Sharing Types and Off-chip Misses
(S: CMP-Shared, P: CMP-Private, A: SPR-ASR)

107



108
46% reduction in shared read-only latency and an average 30% reduction in shared read-write latency. In

contrast, SPR-ASR limits shared read-only replication based on workload behavior and disallows shared
read-write replication across all workloads. The result is SPR-ASR’s Apache shared read-only latency
increases by as much as 45% versus CMP-Private, and SPR-ASR’s average shared read-write latency
increases by 15% versus CMP-Private. Finally, Figure 6-9's off-chip miss plot displays the benefit of
restricting replication. For all workloads except Apsi and Ocean, SPR-ASR encounters noticeably fewer
off-chip misses than CMP-Private, with the greatest reduction being 32% for Apache. Overall, for certain
workloads, SPR-ASR tradeoffs on-chip shared block latency for fewer off-chip misses. The next subsec-

tion displays how this tradeoff translates into better CMP performance.

6.6.4 Comparison of Replication Schemes

Performance.For workloads where replication interferes with the active working set, SPR-ASR outper-
forms the alternative CMP cache designs. For workloads where replication capacity has little effect, SPR-
ASR performs at least as well as the other designs. Figure 6-10 shows the normalized runtime of each
CMP design executing the eight workloads. The two SPR-CC bars represent the worst and best performing
Cooperative Caching percentadesve refer to these as worst and best SPR-CC. For all workloads except
Oltp, the private cache designs (excluding worst SPR-CC) exploit the relatively fast memory latency of the
Current CMP configuration and improve performance by 0-30% versus CMP-Shared. For Oltp, SPR-ASR
and best SPR-CC improve performance by 6% and 9%, respectively, versus CMP-Shared, while the other
private cache designs degrade performance by 3-7%. SPR-ASR limits replication to 43% of L2 capacity,
resulting in only a 43% increase in off-chip cycles versus CMP-Shared. In contrast, the other private CMP
designs devote as much as 66% of L2 capacity to replicas causing at most a 99% increase in off-chip cycles

versus CMP-Shared. Overall, the best performing SPR-CC percentage achieves competitive performance

1.Reminder: Cooperative Caching 100% always evicts replicas before singlets and allows all singlets to spill into one remote
cache. In contrast, Cooperative Caching 0% treats replicas and singlets equally and disallows singlet spilling.



109

Speedup

CA SPVN

X
3

CA SPVNCCA SPVN
R

¢ ¢
§ § 8o
jbb oltp aps at barnes ocean

FIGURE 6-10. Current CMP: Speedups
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

SPVNCCA SPVNCCA SPVN SPVN

@
L
8

2 0%0
D 70% 0

apaci

k|

[&]

Q ==loca L1

@) — Loca/Shrd L2
& == Remote

= mm Off-chip

e

S

pd

S PV N C C A S PV N C C A
0% 70% 0% 70%

apache oltp

FIGURE 6-11. Current CMP: Memory Cycles
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

to that of SPR-ASR. However, the particular SPR-CC percentage varies between workloads, thus exempli-

fying the need for an adaptive policy.

To provider further insight, Figure 6-11 shows the memory system cycle breakdown for the Apache and
Oltp workloads to indicate where the time is spent in the memory system. The ‘Local L1 and ‘Local/Shrd
L2’ segments display the fraction of the average memory access time contributed by local L1 and L2 hits
respectively (for CMP-Shared ‘Local/Shrd L2’ indicates shared L2 hits). The ‘Remote’ bar segment repre-
sents the cycles spent on requests satisfied by remote L1 or L2 caches. Finally, the ‘Off-chip’ bar segment

indicates the cycles spent on off-chip misses.

As forecast by the total cycles-per-instruction curve (Figure 6-6¢) the four private cache designs that
restrict replication (SPR-VR, SPR-NR, SPR-CC, and SPR-ASR) attain better performance for Apache

than CMP-Private, which allows all replication. Specifically, SPR-ASR achieves the greatest performance



110

E3 B -
) =
o 1.0- |
=
0.6 L
SPVNCCA SPVNCCA SPVNCCA SPVNCCA SPVNCCA SPVNCCA SPVNCCA SPVNCCA
S IR SR SR XX IR XX SR
oS . BR SR s° =S R R S°
apache  jbb oltp zeus apsi at barnes ocean

FIGURE 6-12. Future CMP: Speedups
(S: CMP Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

== loca L1

= Local/Shrd L2
== Remote

mm Off-chip

Norm. Memory Cycles

S PV N C C A S PV N C C A
0% 100% 100% 70%

apache oltp

FIGURE 6-13. Future CMP: Memory Cycles
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

improvement (26% and 19% versus CMP-Shared and CMP-Private respectively) by restricting replication
to only 5% of L2 capacity, while SPR-VR and SPR-NR allow replicas to consume more than 38% of

capacity. Figure 6-11 shows the limited replication capacity enforced by SPR-ASR exploits the strong
locality of shared read-only requests. Specifically, SPR-ASR achieves almost as many local L2 hits as

SPR-NR (82%), while SPR-ASR'’s greater effective cache capacity reduces off-chip miss cycles by 20%.

SPR-ASR also improves the Future CMP configuration despite the fact that larger cache sizes and out-of-
order processors [84] change the performance tradeoff between shared and private caches. For Apache,
Apsi, and Barnes, the maximum performance advantage the private cache designs exhibit over CMP-
Shared diminishes to only 4-13%, while the private caches’ performance advantage increases to 18% for
Oltp and Ocean. Figure 6-13 breaks down the memory cycles for Apache and Oltp. Because Oltp’s work-

ing set better fits in Future CMP'’s larger cache, the private cache organizations utilize replication to exploit



111

I ] i 1 ]
5 E -
* - T 5 - - - —
o 10 =
=
g 08- i i i i : i : -
0.6 u u u u n u n —
-§PVNCgA SPVNCCA SPVNCCA SPVNCCA SPVNCCA SPVNCCA SPVNCCA SPVNCCA
S5 =8 S5 S8 =8 S8 S5 S8
apache  jbb oltp zeus aps at barnes ocean

FIGURE 6-14. Future CMP 500 cycle memory latencypeedups
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

3 : —“* = Loca/Shrd L2
% 0.5 == Remote

£ ] mm Off-chip

o ]

Z 0.0-

S PV NCC A S PV NCC A
0% 100% 0% 100%

apache oltp

FIGURE 6-15. Future CMP 500 cycle memory latenciviemory Cycles
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

the faster private L2 caches. Oltp’s frequently requested shared read-only data (Chapter 4) especially bene-
fits from replication, enabling the private cache designs to improve performance by 13-18% versus CMP-
Shared, with SPR-CC achieving the greatest improvement. However, Apache’s larger working set (Chapter
4) exposes Future CMP’s slower memory latency. For instance, CMP-Private and SPR-VR suffer a perfor-
mance degradation versus CMP-Shared of 3% and 1%, respectively, while SPR-ASR achieves a perfor-

mance improvement of 9%.

Finally, illustrates SPR-ASR also improves performance when the memory latency in the Future CMP
configuration is increased to 500 cycle, thus demonstrating ASR will provide good performance within a
multiple-chip CMP system with a longer memory access latency [55]. Specifically, Apache’s larger work-
ing set conflicts with the 500 cycle memory latency and all private cache designs except SPR-CC and SPR-

ASR suffer substantial performance degradation versus CMP-Shared. In particular, CMP-Private, SPR-VR



112
TABLE 6-4. Storage Overhead Comparison

Replication Mechanism Adaptive Mechanism
SPR Cache Design Current CMP | Future CMP | Current CMP | Future CMP
Victim Replication 8 KB 32 KB Not Applicable Not Applicabld
CMP-NuRapid 56 KB 224 KB Not Applicable Not Applicablg
Cooperative Caching 255 KB 886 KB Not Applicable Not Applicalje
ASR 8.5 KB 34 KB 153 KB 177 KB

and SPR-NR suffer a performance degradation of 7-13% versus CMP-Shared, while SPR-ASR achieves
the greatest performance improvement versus CMP-Shared—5%. Figure 6-15 breaks down the memory
cycles for Apache and Oltp. By limiting replicas to consuming only 1% of L2 cache capacity, SPR-ASR

does not suffer the off-chip cycle increase like some of other private cache designs. Instead, SPR-ASR

fully utilizes its remote cache capacity, attaining 88% more remote hit cycles than CMP-Private.

Performance Summary.Overall, SPR-ASR significantly improves performance for workloads where
shared read-only replication conflicts with the active working set, e.g. Apache and Oltp. For other work-
loads, SPR-ASR usually performs at least as well as, if not better than, the best alternative. SPR-ASR'’s

performance stability ensures CMP caches will provide good performance to a wider variety of workloads.

Storage Overhead SPR-ASR achieves better performance for less storage overhead than the previous
hybrid cache designs because it relies on SPR’s probabilistic filtering rather than a more hardware inten-
sive replication mechanism, such as those used by CMP-NuRapid and Cooperative Caching. Instead, SPR-
ASR targets its storage overhead to dynamically monitoring replication’s cost and benefit. For the Current
and Future CMP configurations, Table 6-4 compares the storage overhead of SPR-VR, SPR-NR, SPR-CC,
and SPR-ASR. SPR-VR’s and SPR-ASR'’s replication mechanisms add only one bit per L2 cache block for
respectively identifying replica and shared blocks. Thus, these mechanisms scale well with increased the
aggregate L2 cache size. In comparison, CMP-NuRapid’'s SPR implementation adds 7-bits per L2 block—
a 1-bit counter for each remote L2 cache—and Cooperative Caching’s SPR implementation requires a

duplicate tag per L2 cache block.



113
6.7 Related Work

6.7.1 Multiprocessor Memories

Much previous work has analyzed migrating and replicating data between multi-chip multiprocessors to
reduce the effect off-chip latency had on performance. Some of the earliest migration work was done at the
memory level in hierarchical multiprocessor networks. For instance, in the early 1990’s two developed
Cache Only Memory Architectures (COMA) systems used a hierarchical directory structure [40, 43] and
turned the memory modules within the directory structure into logical caches, called Attraction Memories.
Another study by Mizrahet al. [81] evaluated the benefits of migration within switches of a hierarchical
multiprocessor network. The paper advocates for migrating data directly to the processors and initiating a
series of writebacks back to the root switch to create space. In contragttkin58] and myself advocate

for gradual migrations because multiple writebacks consume power and bandwidth.

A larger body of work exists evaluating the performance of data migration and replication assuming a flat
multiprocessor network. Specifically, throughout the previous decade, significant work has compared com-
pletely hardware solutions such as CC-NUMA and Flat COMA architectures [100, 122], along with soft-
ware [19, 108] and hybrid hardware/software combinations [35, 97]. The Flat COMA protocol [97, 100]
removed the slow ordered network of Hierarchal COMA machines and allowed data to directly migrate
towards the requesting processor on an unordered network similar to CMP-DNUCA. Another study by
Vergheseet al.[108] proposed allowing the OS to migrate and selectively replicate pages to a processor’s
local memory to reduce the miss penalty in the Stanford Flash CC-NUMA machine. Analogous to ASR'’s
replication levels, their scheme utilized a “Trigger threshold” to indicate the number of misses until a page
was considered hot and available for migration/replication. Similarly, Falsafi and Wood [35] utilized
“Reactive Counters” on pages to determine when to relocate a page to the node’'s S-COMA Page Cache.

Comparable to Chapter 4, Zhang and Torrellas [122] broke down working sets into three cases, Replication



114
data, Migration read only data, and Migrating read/write data in their performance comparison of a NUMA

system with a Remote Cache (NUMA-RC) and a COMA-Flat system. Also similar to Chapter 4’s run
length characterization, Gupta and Weber [42] extensively analyzed invalidations patterns in a directory-

based SMP. Finally, Dahlgren and Torrellas [27] provided a cohesive survey of COMA architectures.

6.7.2 Uniprocessor Caches

As previous discussed, Kimt al. [58] were the first to study data migration in wire-delay dominated on-

chip caches. They showed migrating frequently requested data to the closer cache banks of a uniprocessor
cache significantly improved performance over a typical monolithic cache. Additional researchers have
proposed optimizations to the uniprocessor NUCA cache. For instance, Kodama and Sato [61] proposed a
NUCA cache composed of fully associative CAMs as storage banks and proposed a pre-promotion scheme
to prefetch the i+1 block after a request for block i. The extra freedom of movement provided by the fully-
associative 128 KB banks (with 5 cycle bank access time) enabled significant performance improvement,
but the power implications were not evaluated. Also, Foglia, Mangano, and Prete [36] proposed two D-
NUCA variations, called the Triangular D-NUCA caches, that were optimized for embedded applications.
By exploiting D-NUCA's triangular access behavior, Fogtzal. reduced the NUCA cache size—and it’s

static power—by two, while achieving most of the performance of the rectangular D-NUCA cache.

By utilizing indirect tag pointers to access the data array, Chishti, Powell, and Vijaykumar [25] further
improved block migration performance in a uniprocessor cache. The extra level of indirection provided by
NuRapid’s indirect tags, reduced conflicts in the nearest cache banks, allowing more of the critical working

set to be located in the closest banks.

In contrast to these uniprocessor studies, this dissertation studies migration and replication within a CMP

cache.



115
6.7.3 Chip Multiprocessor Caches

Recently, researchers have evaluated the effectiveness of migration and replication within CMP caches. In
particular, some researchers have proposed using migration and replication within a shared CMP cache by
dynamically changing its logical mapping. For instance, Liu, Sivasubramaniam, and Kandemir [70] evalu-
ated dynamically remapping within a bus-based CMP. Specifically, their focus was to reduce cache trash-
ing between processors operating on different data, while allowing processors accessing the same data to
share storage. They utilized profile information to determine the optimal cache configuration for each
dynamic unit of time, called an epoch, and their scheme achieved significant performance improvement
versus the baseline shared and private CMP cache design. Another, similar remapping proposattoy Huh
al. [48], investigated dynamic partitioning within the CMP-DNUCA cache design. They confirmed results
that data sharing between processors limits migration’s performance benefit with the CMP-DNUCA cache.
To combat this problem, they proposed logically sharing only subsections of cache banks between proces-

SOrs.

Complementary to the CMP-DNUCA remapping proposal, other researchers have improved CMP-
DNUCA using bloom filters or innovative 3D integration technology. For example, Rici. [92] signif-

icantly reduce CMP-DNUCA's “smart search” mechanism storage overhead by replacing the centralized
6-bit partial tag structure—1.5 MB—uwith 128 distributed bloom filters—160 KB. A set of 16 1-bit entry
bloom filters is managed locally by a particular processor and a bloom filter is cleared once its false posi-
tive rate exceeds 50%. Ricet al. show that this bloom filter design achieves better than 85% accuracy for

a set of scientific workloads, but their scheme had to deal with false negatives. Another studgtia/. Li

[69], demonstrated migration performs significantly better within a novel three-dimensional L2 cache than

a typical two-dimensional L2 cache because more cache banks can be integrated closer to more processors.
While three-dimensional integration adds costly manufacturing steps, its multi-dimensional locality prop-

erties increase the importance of migration and replication.



116
Other researchers have analyzed migration and replication within private CMP cache hierarchies. For

example, Harris’s Synergistic Caching [44] investigated logically grouping L1 caches in a 64-processor
CMP to exploit inter-processor sharing. Harris proposed three cache block movement modes: beg, borrow,
and steal, which are similar to three block movements we analyzed: replicating blocks between multiple
cache banks, writing back blocks to remote cache banks, and migrating blocks to the requesting cache
bank. Because no single mode was always the best, Harris advocated for an adaptive configuration mecha-
nism, but did not evaluate such a mechanism. Another study by Yeh and Reinman [118] proposed the Per-
formance Driven Adaptive Sharing (PDAS) cache architecture for embedded systems. PDAS dynamically
adapted cache partitioning within a private CMP cache hierarchy to improve multiprogrammed workload
guality-of-service. PDAS'’s software algorithm utilized hardware counters and ran for 10,000 cycles every
100 millionth interval. In contrast, ASR’s algorithm is simple enough for hardware and is focused on mul-

tithreaded workload performance.

Other recent work focused on operating system interaction within CMP caches. For instance, Kim, Chan-
dra, and Solihin [59] analyzed fair CMP cache sharing and partitioning while executing a mixture of co-
scheduled threads within a multiprogrammed environment. While their technique focused avoiding OS
scheduler problems, they did propose a hardware cache monitoring scheme similar to ASR. The important
differences are their algorithm strictly concentrates on cache storage allocation and relies on profile infor-
mation. Similarly, Chandrat al.[18] proposed three models to predict the L2 miss rates when co-sched-
uled threads share the L2 cache and Suh, Devadas, and Rudolph [101] proposed the Stack Distance
Competition (SDC) model that used LRU distance hit counters to estimate how working sets will merged

together. Both envision their models can help guide the operating system scheduler.

Analogous to ASR’s replication cost monitoring, Zhang and Asanovic [120] used a miss tag buffer to track
what cache misses could have been hits if the cache was full sized. The difference isZzakbsmiss tag

buffer stored full size tags and was used to save energy in a automatically resizable cache.



117
Similar to SPR’s ring writeback mechanism, Speightal. [98] presented two mechanisms to manage

cache hierarchies in a Power4-like CMP connected with a ring intra-chip connection network. The first
mechanism, Write Back History Table (WBHT), saved bandwidth on the intra-chip network by not writing
back clean L2 data when the L2 believed that the L3 already has a copy. The second mechanism, the L2
Snarf Table, reduced latency by deciding when to keep critical blocks in other fast access L2 caches
instead of writing them back to the slower L3 cache. The difference between these mechanisms and SPR’s

ring writeback mechanism is that SPR uses the ring to avoid replication instead of to save latency.

The most closely related proposals to Adaptive Selective Replication are the previously discussed Victim
Replication [121], CMP-NuRapid [26], and Cooperative Caching [20] proposals. All three designs reduce
replica blocks, but their static mechanisms tend to favor certain workloads and do not dynamically adjust
to changes in workload behavior and system constraints. Cooperative Caching does introduce using proba-
bility to control replication, but does not propose a mechanism to actually adjust the probability. Through
slight modification, ASR monitoring hardware could provide such a mechanism. Specifically, ASR’s
NLHB could be modified to determine the cost of the evicted replica blocks and ASR’s VTB could be
modified to determine the cost of the evicted singlet blocks. By comparing these costs to the estimated
benefits of storing the current singlet and replica blocks, one could design an adaptive Cooperative Cach-

ing algorithm.

6.8 Summary

Managing on-chip wire delay, while limiting off-chip misses, is essential in order to improve future CMP
performance. A private CMP cache hierarchy offers lower access latency than a shared cache, but uncon-
trolled replication may cause significant performance degradation due to increased off-chip misses. This
chapter proposes Adaptive Selective Replication, which dynamically adapts shared read-only data replica-

tion to exploit the latency advantage of private caches without wasting cache capacity due to excessive rep-



118
lication. By performing an opportunity analysis, ASR adjusts the degree of replication to match the current

workload behavior and system configuration. This chapter showed ASR usually performs as well as the

best alternative design and improves performance for commercial workloads with large working sets.



119

Chapter 7

Transmission Line Caches

This chapter investigates how transmission lines can improve CMP cache performance. Specifically, the
chapter demonstrates transmission lines consistently improve performance for both shared and private
caches. This chapter also shows that transmission lines can work in concert with techniques, such as Adap-

tive Selective Replication, to improve performance beyond what can be achieved by either technique alone.

The chapter begins with Section 7.1 motivating the benefits of using on-chip transmission lines with
CMPs. Next, Section 7.2 and Section 7.3 evaluate how transmission lines improve a shared and private
cache hierarchy, respectively. Then, Section 7.4 compares the performance of a shared transmission line
cache with the performance of a private transmission line cache combined with ASR. Finally, Section 7.5

summarizes related work and Section 7.6 concludes.

7.1 Motivation

By utilizing on-chip transmission lines, Transmission Line Caches (TLCs) can substantially improve upon
conventional cache designs. As previously described in Chapter 2, on-chip transmission lines reduce com-
munication latency by an order of magnitude versus conventional wires. Additionally, transmission lines
can travel long distances without repeaters, thus allowing TLCs to implement more efficient cache layouts
that are not possible with standard repeated wires. For instance, the shared CMP-TLC design (Shared
CMP-TLC), described in Section 7.2, provides fast access to L2 cache banks located on a CMP’s perime-
ter, while also facilitating fast L1 cache transfers between centrally located processors. However, on-chip

transmission lines sacrifice considerable bandwidth density because they require very thick wires and



120
intermetal dielectrics that are only available in a chip’s uppermost metal layers. Thus, TLCs can be signifi-

cantly faster and more efficient than traditional caches, but restricted transmission line bandwidth may

limit their overall performance benefit.

TLC's performance depends on both the latency and bandwidth of transmission lines. Previously, the high-
level model in Chapter 3 showed that under low contention, a 64-banked cache utilizing thin-fast wires
attains significantly lower average cache access latency than a cache using wide-slow wires. Using full sys-
tem simulation, Section 7.2 confirms those results and shows that TLC designs can attain up to a 15% per-
formance improvement over a shared 64-banked cache using conventional wide-slow wires. However, for
the 64-banked Shared CMP-TLC design, attaining this sizeable speedup requires abundant bandwidth

from a global on-chip network exclusively composed of transmission lines.

In contrast, the 8-banked Private CMP-TLC design requires less transmission line bandwidth because it
efficiently combines all three latency management techniques. Unlike Shared CMP-TLC, Private CMP-
TLC does not rely on an exclusive transmission line network to enable its layout. Instead, Private CMP-
TLC places its private cache banks in the die’s center so its interconnection network can combine a 2-D
mess of conventional wires with point-to-point transmission lines. In particular, Section 7.3 demonstrates
communicating only request messages across transmission lines and sending data over conventional wires
can achieve 95-99% of the performance attained by an exclusive transmission line network with 20 times
the link bandwidth. Also, Section 7.3 shows Private CMP-TLC combines migration, replication, and trans-
mission lines to reduce single requestor, shared read-only, and shared read-write latency, respectively. Fur-
thermore, Section 7.3 shows that ASR leverages Private CMP-TLC's lower latency to reduce off-chip
misses. Finally, Section 7.4 illustrates Private CMP-TLC achieves equivalent average performance to

Shared CMP-TLC despite using four times fewer transmission lines and slower cache banks.



121

[

;
Y

‘/
2

‘/\\‘
1
)
Y

»
I

i
]

\
l
IE!

[ Cache Interface Unit

y
\
¥

y
\
¥

L e L]
i -1
L L1
[ ] ! DY
[L1]
| $

;
|

1
1
H
\/
N/
T

)

1

L1
1$
1]
D$
i}
S
D$
L1
R
=
D3
L1
1$
L1
D$

|

FIGURE 7-1. Shared CMP-TLC

7.2 Shared CMP-TLC

7.2.1 Overview

The Shared CMP-TLC design (Figure 7-1) not only provides fast access to the entire shared L2 cache by
utilizing transmission lines, but also facilitates fast L1 cache transfers. Shared CMP-TLC'’s unique layout
places the processors in the center of the die so that all processors have fast access to the Cache Interface
Unit (CIU) that communicates with the 64 L2 cache banks on the periphery of the die. Another secondary
advantage of placing the processors in close proximity to each other is it minimizes the impact of global
wire delay on remote L1 cache hit latency. Because transmission lines do not require repeaters, Shared
CMP-TLC creates a fast, direct connection between the centrally located CIU and the peripherally located
storage arrays by routing directly over the processors. Four banks (2 adjacent groups of 2 banks) share a
common pair of thin 8-byte wide unidirectional transmission line links to the CIU. To mitigate the conten-

tion for the thin transmission line links, the Shared CMP-TLC design provides 16 separate links to differ-



122

TABLE 7-1. Shared CMP-TLC Cache Interface Unit Height Breakdown

Link Type Total Links Used Total Links per Side Total Side Width

TL 9 mm 4 2 1.28 mm

TL 10 mm 4 2 1.54

TL 11 mm 4 2 1.79

TL 13 mm 4 2 2.05
Cache Interface Unit Total Height (assuming 0.67 track utilizatjon) 9.94

ent segments of the L2 cache. These links provide sufficient bandwidth for most workloads, but for certain

workloads they become a bottleneck.

For those workloads that require significant bandwidth, Wave Division Multiplexing (WDM) can increase
the effective bandwidth of transmission lines. Currently, the on-chip transmission lines implemented in test
chips perform no bit multiplexing [21, 52]. Assuming no multiplexing, Shared CMP-TLC can only use 8-
byte wide links before requiring multiple dedicated interconnect metal layers. However, in the future, on-
chip optical communication using a polymer waveguide layer and Wave Division Multiplexing (WDM)
[23] could achieve 80-byte wide links with similar manufacturing costs. Therefore, this section explores
the architectural ramifications WDM technology may have on Shared CMP-TLC by also analyzing Shared

CMP-TLC with 80-byte wide links—referred to as Shared CMP-TLC-WDM.

The size of the centralized CIU significantly impacts the performance of Shared CMP-TLC. The widths of

the transmission lines used in Shared CMP-TLC determine CIU’s size. In 45nm technology, the CIU must

be approximately 1 cm tall to accommodate all the transmission lines. Using the transmission line links
specified in Table 2-1 of Chapter 2, Table 7-1 shows that the total height of Shared CMP-TLC’s CIU is
9.94 mm assuming a track utilization efficiency of 0.67 [39]. To reduce contention, the Shared CMP-TLC
cache interface uses 80-byte wide conventional wires to communicate between the transmission line trans-
ceivers located on its edges and the eight processor access points. Overall, messages encounter 2-10 cycles

of communication latency within the cache interface unit depending on their source and destination.



123

]
o

50
@

8

S

ORI — CMP-SNUCA

g ----- Shared CMP-TLC
®

|

[EEN
o

0 20 4 6 8 10
% of On-Chip Cache Storage

FIGURE 7-2. Uncontended Latency Comparison Between CMP-SNUCA
and Shared CMP-TLC

Figure 7-2 compares the uncontended L2 cache hit latency between the 64-banked CMP-SNUCA
(Figure 7-3) design introduced in Chapter 5 and Shared CMP-TLC. The plotted hit latency includes L1
miss latency, i.e. it plots the load-to-use latency for L2 hits. While Shared CMP-TLC achieves a much
lower average hit latency than CMP-SNUCA, CMP-SNUCA exhibits slightly lower latency to the closest 1
MB to each processor. For instance, Figure 7-2 shows all processors in the CMP-SNUCA design can
access their local bankcluster (6.25% of the entire cache) in 18 cycles or less. Previously, in Chapter 5,
CMP-DNUCA attempted to maximize the hits to this closest 6.25% of the NUCA cache through migra-

tion, while Shared CMP-TLC utilizes a much simpler logical design and provides fast access for all banks.



CPU 2 CPU 3 o
L1]L1 L1]L1 3
D3I $ D3I $ i
02 or
Ja P
—
o)
[
© o
o)
C
— & !
02 or
Jo PR
o
S L1]L1 L1]L1
o 1$|DY 1$[D$
O CcPU 7 CPU6

FIGURE 7-3. CMP-SNUCA

7.2.2 Methodology

Similar to Chapter 5 and Chapter 6, this chapter uses full-system simulation based on Simics [109] and the
GEMS toolset [114] to evaluate Shared CMP-TLC. The only differences is the on-chip transmission lines

input buffers are extended to hold 10 entries. This is because the limited bandwidth provided by these links

results in greater contention.

To fully take advantage of Shared CMP-TLC's fast data transfers between L1 caches, the token broadcast
protocol, previously evaluated in Chapter 5 and Chapter 6, must be altered. Specifically, by broadcasting
local L1 misses instead of relying on the L2 cache to forward requests to other on-chip L1 sharers, the

token protocol allows direct L1 cache-to-cache transfers at the cost of requiring more L1 cache snoop

bandwidth. Similarly, a traditional broadcast snooping protocol [22] would provide comparable latency

characteristics at the cost of implementing the Shared CMP-TLC'’s cache interface unit as an ordered

crossbar.

124



125

204

Cycles

10-H

STW STW STW STW STW STW STW STW
apache jbb oltp zeus apsi at barnes ocean

FIGURE 7-4. Shared CMP-TLC: Average Remote L1 Cache Hit Latency
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

7.2.3 Evaluation

Shared CMP-TLC’s combination of fast L1 cache transfers and fast access to its L2 banks allows it to sig-
nificantly reduce on-chip latency versus the baseline CMP-SNUCA design. Figure 7-4 compares the aver-
age remote L1 hit latency of Shared CMP-TLC and Shared CMP-TLC-WDM to CMP-SNUCA and shows
that the Shared CMP-TLC designs roughly cut remote L1 hit latency in half. Since both Shared CMP-TLC
designs use the same high-bandwidth cache interface unit, both designs achieve virtually the same remote

L1 latency.



126

1 contended
Il uncontended

STW STW STW STW STW STW STW STW

apache  jbb oltp zeus apsi at  banes  ocean

FIGURE 7-5. Shared CMP-TLC: Average L2 Cache Hit Latency
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

Figure 7-5 plots the average L2 hit latencies for the three designs and illustrates that the L2 latency reduc-
tion provided by Shared CMP-TLC depends on transmission line bandwidth. The high-bandwidth net-
works of CMP-SNUCA and Shared CMP-TLC-WDM provide sufficient bandwidth and largely eliminate
contention. In particular, for all workloads except Art, CMP-SNUCA and Shared CMP-TLC-WDM incur

no more than one cycle of delay due to contention. Conversely, the limited bandwidth of Shared CMP-TLC
results in contention that adds 1-9 delay cycles to L2 hits with Apsi and Ocean exhibiting the highest delay.
Finally, for Art, all three designs encounter at least 8 extra contention cycles. However, these cycles are not
due to bandwidth contention, but rather protocol contention. Specifically, for Art, processors frequently
issue simultaneous requests for the same block, causing many of these requests to be queued up at the L2

cache controller.



127

@ Shared L2
O Remote L1
I Off-chip

Norm. L1 Miss Cycles

0.0-

STW STW STW STW STW STW STW STW
apache jbb oltp zeus apsi art barnes  ocean

FIGURE 7-6. Shared CMP-TLC: L1 Miss Cycles Breakdown
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

Though Shared CMP-TLC reduces remote L1 latency far greater than L2 latency, it's L2 latency reduction
accounts for most of it's performance improvement. Figure 7-6 breaks down the cycles spent on L1 misses
into three categories: the average memory access time contributed by L2 hits ‘Shared L2’, by remote L1
hits ‘Remote L1’, and by Off-chip misses ‘Off Chip’. The Shared L2 bars display that Shared TLC's L2
latency reduction supplies most of its benefit. As forecast by Figure 7-5, the reduction of L2 hit cycles
depends on the transmission line bandwidth, with the scientific workloads Apsi [6] and Ocean [94] exhib-
iting the greatest dependence on bandwidth because their data streaming behavior. Meanwhile, Shared
CMP-TLC not only reduces Remote L1 cycles, but Off Chip bars indicate that Shared CMP-TLC reduces

off chip cycles by reducing the on-chip latency between the L2 cache banks and the memory interface.



128

[EY
o
HH
HH
i

STW STW STW STW STW STW STW STW
apache jbb oltp zeus aps art barnes ocean

FIGURE 7-7. Shared CMP-TLC: Speedup
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

Overall, Shared CMP-TLC consistently outperforms the baseline CMP-SNUCA design, but bandwidth
contention prevents Shared CMP-TLC from achieving its full performance potential. Specifically,
Figure 7-7 shows that Shared CMP-TLC and Shared CMP-TLC-WDM improve performance by 2-8% and
2-15% versus CMP-SNUCA, respectively. The workloads that show the greatest performance disparity
between Shared CMP-TLC and Shared CMP-TLC-WDM are Oltp, Apsi, and Ocean. Apsi’s and Ocean’s
performance disparity is caused by the previously mentioned bandwidth contention issues. Meanwhile,
Oltp’s performance disparity is attributed to the fact that Shared CMP-TLC-WDM reduces L2 hit latency
by 3 cycles versus Shared CMP-TLC (Figure 7-5), which leads to a 9% reduction in performance critical

L1 instruction cache miss latency [89] versus Shared CMP-TLC.



129

ST+I+2 ST+I1+2 ST+I+2 STH+I+2 ST+I+2 ST+1+2 ST+I+2 S T+1+2
apache jbb oltp zeus aps art barnes ocean

FIGURE 7-8. Shared CMP-TLC Transceiver SensitivitySpeedup
(S: CMP-SNUCA, T: Shared CMP-TLC,
+1: Shared CMP-TLC with one extra transceiver delay cycle,
+2: Shared CMP-TLC with two extra transceiver delay cycles)

1.5

Speedup
=
<
o
]
H
H

]
|
]
]

0.5

SW+1+2 SW+1+2 SW+1+2 SW+I1+2 SW+I1+2 SW+I+2 SW+I+2 SW+1+2
apache jbb oltp zeus aps art barnes ocean

FIGURE 7-9. Shared CMP-TLC-WDM Transceiver SensitivitySpeedup
(S: CMP-SNUCA, W: Shared CMP-TLC-WDM,
+1: Shared CMP-TLC-WDM with one extra transceiver delay cycle,
+2: Shared CMP-TLC-WDM with two extra transceiver delay cycles)

Transceiver Delay Sensitivity AnalysisBased on the transmission line transceivers implemented in
test chips [21, 52], the previous subsections assumed single-cycle transmission line transceiver delay.
However, due to increasing noise susceptibility or the integration of WDM, future transmission line trans-
ceiver circuits may require multiple cycle delays. Therefore, this subsection analyzes Shared CMP-TLC’s

sensitivity to transceiver delay. Figure 7-8 and Figure 7-9 compare the performance of single-cycle trans-



130
ceivers to transceivers with an additional one and two cycles of delay for Shared CMP-TLC and Shared

CMP-TLC-WDM, respectively. As expected, the extra transceiver delay causes consistent performance
loss, with all workloads except Barnes experiencing noticeable performance degradation. For Shared
CMP-TLC, one extra cycle of transceiver delay results in an average 1% performance degradation and two
extra cycles results in an average 3% performance degradation. Where as for Shared CMP-TLC-WDM,
one extra transceiver delay cycle results in an average 2% performance degradation and two extra cycles
results in an average 4% performance degradation. Thus, transmission lines’ benefit not only relies on fast

wires, but also fast transceivers, especially when bandwidth contention is decreased.

7.3 Private CMP-TLC

7.3.1 Overview

On-chip transmission lines also improve private CMP cache performance, but the improvement is substan-
tially less than for the shared CMP cache. Though the Private CMP-TLC design doesn’t achieve as impres-
sive of a performance improvement over its baseline as Shared CMP-TLC, Private CMP-TLC can
effectively use thinner transmission lines. Furthermore, Private CMP-TLC can utilize the other two latency
management techniques, migration and selective replication, to perform competitively with Shared CMP-
TLC. This section begins with the description of Private CMP-TLC. Later the section discusses how trans-
mission lines and Adaptive Selective Replication (ASR) interact to provide better performance than what

is possible by either technique alone.

The Private CMP-TLC design improves performance over the baseline private cache design by using trans-
mission lines to reduce remote cache hit latency. Identical to the private CMP cache evaluated in Chapter 6,
Private CMP-TLC (Figure 7-10) splits the L2 into eight private 2 MB caches and allows each processor to

lookup the L2 cache tags in parallel with an L1 cache accesses [49]. When a request misses in a local pri-



131

||51$ Prjvate| | Private :‘%

CPU3 E’ags <! > tags 1 CPU 4
L L2 Ips
L1 ‘ L1

Pr"vate Pri:\/ te
CPU2 D—$tags *:F*— re- b= \aga|$ CPU5

L1 I L1

| $ D$
S el
—tagsf<<*+ - - []|* - - *={tags

CPU1 L1 Lé L2 L1 CPUG6
| $ ; : D$
||51$ Private| |Private :‘%

CPUO ——] tags | = 1= tag CPU7
L1 L1
sl 2 k2 pg

FIGURE 7-10. Private CMP-TLC

vate L2 cache, the request is broadcast across the transmission line network to the other remote L1 and L2
caches. Specifically, transmission lines decrease remote L1 and L2 cache hit latency from 33 and 52

cycles, respectively, for the baseline to 23 and 42 cycles, respectively, for Private CMP-TLC.

Private CMP-TLC reduces transmission line network overhead versus Shared CMP-TLC. In particular,
eight 8-byte wide transmission lines connect each of the eight private L2 cache banks with a centralized
switch. In comparison, the 64-banked Shared CMP-TLC design required 16 8-byte wide links to connect
with its more distributed 64-banked shared cache. Furthermore, the maximum distance between Private
CMP-TLC’s L2 cache tags and the center switches is shorter (approximately 9 mm) than the maximum
transmission line distance in Shared CMP-TLC (approximately 13 mm). The result is Private CMP-TLC’s
transmission line network consumes 62% less substrate area and 69% less interconnect area than Shared

CMP-TLC's transmission line network.

Private CMP-TLC can further reduce transmission line overhead by combining a thin 4-byte wide trans-
mission lines network exclusively dedicated to request messages with a conventional network used for

sending all other messages. Unlike Shared CMP-TLC, Private CMP-TLC doesn't rely on transmission



132
lines to route over large on-chip processors. Instead, Private CMP-TLC routes the transmission lines over

centrally located L2 cache banks. Since the L2 cache banks are smaller and more regular shaped, a 2-
dimensional mesh interconnect using conventional wires can be placed between the L2 banks underneath
the transmission line network. The combination network allows large 72-byte wide writeback and response

messages to be off-loaded onto a high-bandwidth conventional wire network and only requests are broad-

cast across the transmission line network. This design is referred to as Private CMP-TLC-Request.

Though Private CMP-TLC reduces transmission line overhead versus Shared CMP-TLC, transmission line
bandwidth contention still prevents Private CMP-TLC from reaching its full performance potential. Simi-
lar to Shared CMP-TLC, Private CMP-TLC is also evaluated using the 80-byte wide links possible with
WDM [23]. Because only private L2 misses access the transmission line network, the performance impact
of wider transmission line links is less than Shared CMP-TLC. However, those workloads that significantly

utilize remote caches or have bursty request behavior, the wider links still provide noticeable improvement.

Finally, Private CMP-TLC can be amended with other latency tolerant techniques, such as Adaptive Selec-
tive Replication (ASR), to provide better performance than what is possible from either technique alone.
Previously, Chapter 6 demonstrated ASR can adaptively restrict replication and sacrifice higher shared
block latency for fewer off-chip misses. By dynamically monitoring workload demand, ASR only restricts
replication when fewer off-chip misses is more beneficial than higher on-chip latency. Transmission lines
reduce the cost of remote cache hits and the overall impact of on-chip latency. Therefore, ASR can use
transmission line to not only decrease on-chip latency, but ASR can also leverage transmission lines’ lower

remote latency to further reduce off-chip misses beyond what is beneficial when using conventional wires.

7.3.2 Methodology

The methodology used to evaluate the Private CMP-TLC design matches that of Section 7.2. This includes

the 10-entry transmission lines input buffers used to isolate queuing delay from the thin transmission line



133

0 1.0
°
6)
8
Z I Remote L1
;'_, 0.5 [0 Remote L2
I W Off-chip
£
£
o] |
4
0.0-

PTRW PTRW PTRW PTRW PTRW PTRW PTRW PTRW
apache jbb oltp zeus aps art barnes  ocean

FIGURE 7-11. Private CMP-TLC: Private L2 Miss Cycles Breakdown
(P: CMP-Private, T: Private CMP-TLC, R: Private CMP-TLC-Request
W: Private CMP-TLC-WDM)

links. The cache coherence protocol utilized by Private CMP-TLC is the same token protocol used in
Chapter 6. While requiring more bandwidth, the token protocol removes the home node storage overhead
of a distributed directory protocol [121] and the duplicate tag storage overhead centralized directory proto-
col [20]. Furthermore, the token protocol allows Private CMP-TLC to fully exploit the fast point-to-point

connections between the on-chip processors.

7.3.3 Evaluation: Baseline Private CMP Protocol

Due to the low percentage of remote cache hits, transmission lines provide only marginal benefit to the
baseline CMP-Private cache. Figure 7-11 breaks down the cycles spent on private L2 misses into three cat-
egories: the average memory access time contributed by remote L1 hits ‘Remote L1’, by remote L2 hits
‘Remote L2’, and by Off-chip misses ‘Off Chip’. The Private CMP-TLC designs attain a 0-7% reduction

in private L2 miss cycles. The three commercial workloads that exhibit the highest remote cache usage—
Apache, Oltp, and Zeus—encounter a larger cycle reduction with the higher bandwidth networks—~Private
CMP-TLC-Request and Private CMP-TLC-WDM. Also the scientific workload Ocean encounters a large

cycle reduction with the higher bandwidth network because of its bursty request behavior.



134

Speedup
o
®

0.6

PTRW PTRW PTRW PTRW PTRW PTRW PTRW PTRW
apache jbb oltp zeus aps art barnes ocean

FIGURE 7-12. Private CMP-TLC: Speedup
(P: CMP-Private, T: Private CMP-TLC, R: Private CMP-TLC-Request
W: Private CMP-TLC-WDM)

Figure 7-12 compares the performance of the Private CMP-TLC designs to that of baseline private CMP
design and illustrates that for all workloads except Ocean, Private CMP-TLC improves performance by
less than 4%. Interestingly, for six of the eight workloads, Private CMP-TLC-Request matches or exceeds
the performance of Private CMP-TLC despite the fact that it uses transmission line links of half the width.
Private CMP-TLC-Request’'s comparable performance exemplifies that even very narrow transmission line
links can improve performance if they target critical low-bandwidth communication. Overall, the average
performance improvement provided by Private CMP-TLC, Private CMP-TLC-Request, and Private CMP-

TLC-WDM is 1%, 1%, and 3%, respectively.



135

@ Private L2

O Remote L1
B Remote L2
W Off-chip

Norm. L1 Miss Cycles

ATOW ATOW ATOW ATOW ATOW ATOW ATOW ATOW
apache jbb oltp zeus aps art barnes  ocean

FIGURE 7-13. Private CMP-TLC w/ASR L1 Miss Cycles Breakdown
(A: ASR, T: Private CMP-TLC w/ASR, O: Private CMP-TLC-Request w/ASR,
W: Private CMP-TLC-WDM w/ASR)

7.3.4 Evaluation: Interaction with ASR

Combining ASR with Private CMP-TLC requires some slight modifications to ASR. To account for the
lower remote cache hit latency provided by transmission lines, ASR reduces the local hit benefit in its
monitoring functions. Specifically, ASR with Private CMP-TLC and Private CMP-TLC-Request reduce
the local hit benefit by 4 cycles and ASR with Private CMP-TLC-WDM reduces the local hit benefit by 10
cycles. Similarly, the off-chip miss cost is reduced by 10 cycles for Private CMP-TLC and Private CMP-

TLC-Request and 15 cycles for Private CMP-TLC-WDM.

Since ASR utilizes remote on-chip caches more than the previous baseline CMP-Private design, transmis-
sion lines improve ASR'’s performance by a larger percentage. Figure 7-13 plots the normalized L1 miss
cycles and displays transmission lines reduce L1 miss cycles by 0-10% for all workloads except for Private
CMP-TLC running Apache. For Apache, ASR adapts replication to allow only a few replicas to exist on-
chip, thus increasing remote cache utilization and transmission line bandwidth contention. The result is
Private CMP-TLC exhibits 32% slower remote L2 hit latency than the baseline design, causing a signifi-

cant performance degradation.



136

1.0

i
H
—H
H
|
[}
|
|

Speedup
o
©

0.6

ATOW ATOW ATOW ATOW ATOW ATOW ATOW ATOW
apache jbb oltp zeus aps art barnes ocean

FIGURE 7-14. Private CMP-TLC w/ASR Speedup
(A: ASR, T: Private CMP-TLC w/ASR, O: Private CMP-TLC-Request wW/ASR
W: Private CMP-TLC-WDM w/ASR)

Figure 7-14 relates the performance of the Private CMP-TLC designs to that of ASR using conventional
wires and shows that transmission lines can provide up to an additional 6% performance improvement to
ASR. Similar to the previously evaluated transmission line designs, the Private CMP-TLC with ASR
designs with higher bandwidth perform better. Specifically, the average performance improvement pro-
vided by Private CMP-TLC, Private CMP-TLC-Request, and Private CMP-TLC-WDM is 0%, 2%, 4%,
respectively. In comparison, the average performance improvement provided by Private CMP-TLC, Private
CMP-TLC-Request, and Private CMP-TLC-WDM without ASR was 1%, 1%, 3%. Therefore, as long as
the transmission line network provides sufficient bandwidth, the combination of ASR and transmission

lines performs better than either technique alone.

7.3.5 Sharing Type Latency vs. Off-chip Misses

This subsection shows more precisely why the combination of ASR and transmission lines performs better
than either isolated technique. Specifically, the subsection provides further detail about the interaction
between the ASR and transmission line by correlating on-chip latency with off-chip misses. Figure 7-15

illustrates the L1 miss latency to on-chip single requestor, shared read-only, and shared read-write blocks,



137
Single Requestor

1.0

05-H

Norm. On-chip Latency

0.0-spRrRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO
apache jbb oltp zeus apsi art barnes ocean

Shared Read-only

SE ,

1.0 E3
® ]

— ]

o ]

= ]

2 0.5

o

= ]

S 0.0

b " SPRAO SPRAO SPRAO SPRAO SPR_AO SPRAO SPRAO SPRAO

apache jbb oltp zeus apsi art barnes ocean

Shared Read-write

g _

2 1.0_

- |

o 4

= |

@ 0.5

o |

o

£ _

2 0.0-"SFRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO
apache jbb oltp zeus apsi art barnes ocean

Off-chip

g 15

=

T 10

N

2 o5

(]

=

0.0-spRrRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO
apache jbb oltp zeus apsi art barnes ocean

FIGURE 7-15. Normalized L1 Miss Latency to Sharing Types and Off-chip Misses
(S: CMP-Shared, P: CMP-Private, R: Private CMP-TLC-Request, A: ASR,
O: Private CMP-TLC-Request w/ ASR)



138

1.2
1.0 o T & B B B u
o
g
& 0.8
0.6
-EPRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO SPRAO
apache jbb  oltp zeus aps art barnes ocean

FIGURE 7-16. Combination of Techniques: Speedup
(S: CMP-Shared, P: CMP-Private, R: Private CMP-TLC-Request,
A: ASR, O: Private CMP-TLC-Request w/ ASR)

as well as, off-chip misses. Since virtually all single requestor hits are to a processor’s local L2 cache, sin-
gle requestor latency is unaffected by ASR or transmission lines. However, shared block latency increases
or decreases depending on how Private CMP-TLC-Request with ASR (bars labeled *) chooses to exploit
the lower latency of transmission lines. In particular, for the workloads Jbb, Oltp, Barnes and Ocean, ASR
decreases replication, resulting in a 2-25% increase in shared read-only latency versus ASR without trans-
mission lines (bars labeled A). The benefit of this decrease in replication is that off-chip misses reduce by
1-17% for these four workloads. On the other hand, ASR uses transmission lines to reduce the shared read-
only latency for Apache, Zeus, Art, and Ocean, as well as, reduce shared read-write latency for all work-
loads. Overall, Figure 7-16 displays the combination of ASR and transmission lines always improves per-

formance versus either technique alone.



139

SO+1+2 SO+1+2 S O+1+2 SO+1+2 SO+1+2 S O+1+2 SO+1+2 S O+1+2
apache jbb oltp zeus aps art barnes ocean

FIGURE 7-17. Private CMP-TLC-Request with ASR Transceiver SensitivitySpeedup
(S: CMP-Shared, O: Private CMP-TLC-Request with ASR,
+1: Shared CMP-TLC with one extra transceiver delay cycle,
+2: Shared CMP-TLC with two extra transceiver delay cycles)

Transceiver Delay Sensitivity Analysis.Similar to the previous Shared CMP-TLC analysis, this sub-
section evaluates the sensitivity of Private CMP-TLC-Request with ASR to an extra one and two cycles of
transceiver delay. The sensitivity analysis focuses on Private CMP-TLC-Request with ASR because it was
the best performing Private CMP-TLC design that didn’t rely upon wave division multiplexing. For Private
CMP-TLC-Request with ASR, the local hit benefit and off-chip miss cost are adjusted to match the longer
latencies associated with the slower transceivers. Figure 7-17 plots how transceiver delay affects the per-
formance of Private CMP-TLC-Request with ASR, and similar to Shared CMP-TLC, the extra transceiver
delay causes consistent performance loss for all workloads except Barnes. However, the performance deg-
radation of Private CMP-TLC with ASR is less because fewer requests communicate across the transmis-
sion lines. Specifically, while two extra transceiver delay cycles resulted in an average 3% performance
degradation for Shared CMP-TLC, the average performance degradation for Private CMP-TLC-Request

with ASR is 2%.



140

1.0

i
HH

@ Priv/Shrd L2
O Remote L1
B Remote L2
W Off-chip

Norm. L1 Miss Cycles

8640T 8640T 8640T 8640T 8640T 8640T 8640T 8640T
apache jbb oltp zeus aps art barnes  ocean

FIGURE 7-18. Best Performing Comparison: L1 Miss Cycles Breakdown
(8: CMP-Shared, 64: CMP-SNUCA, O: Private CMP-TLC-Request w/ASR,
T. Shared CMP-TLC)

7.4 Comparing Best Performing Designs

Though Private CMP-TLC-Request with ASR combines all three wire management techniques, Shared
CMP-TLC achieves better performance for half the workloads because it uses smaller and faster L2 banks.
This section compares the best two designs that don't require wide transmission line links: Private CMP-
TLC-Request with ASR and Shared CMP-TLC, with the two conventional shared CMP designs: CMP-
Shared and CMP-SNUCA. The difference between the two shared cache designs is CMP-Shared use 8
banks each with a 20-cycle access time, and CMP-SNUCA uses 64 banks each with 9-cycle access time
[1]. First, Figure 7-18 compares the designs’ L1 miss cycles. For the four workloads with the least amount
of remote cache hit cycles: Jbb, Apsi, Barnes, and Ocean, Private CMP-TLC-Request with ASR achieves
equivalent if not lower L1 misses cycles than Shared CMP-TLC. However, for the four remaining work-
loads that stress remote cache access latency: Apache, Oltp, Zeus, and Art, Shared CMP-TLC significantly
reduces the L1 miss cycles versus the other three designs. Most of Shared CMP-TLC's cycle reduction is

attributed to the latency benefit provided by its 64-banked L2 cache. By comparing the ‘Shared L2’ bars of



141

8640T 8640T 8640T 8640T 8640T 8640T 8640T 8640T
apache jbb oltp zeus aps art barnes ocean

FIGURE 7-19. Best Performing Comparison: Speedup
(8: CMP-Shared, 64: CMP-SNUCA, O: Private CMP-TLC-Request w/ASR
T. Shared CMP-TLC)

CMP-Shared and CMP-SNUCA, one can observe the latency benefit of the 64-banked L2 cache. In partic-
ular, for hits in its shared L2 cache, CMP-SNUCA encounters approximately 27% less cycles than CMP-

Shared.

Overall, both designs achieve equivalent average performance, but Private CMP-TLC-Request with ASR
requires more storage overhead, while Shared CMP-TLC demands more upper layer metal tracks.
Figure 7-19 shows both Private CMP-TLC-Request with ASR and Shared CMP-TLC improves perfor-
mance by 14%, on average, versus CMP-Shared. To attain this performance, Private CMP-TLC-Request
with ASR needs 211 KB of storage to support ASR’s dynamic monitoring and 8 4-byte wide transmission
line links traveling a maximum distance of 9 mm. In contrast, Shared CMP-TLC’ rather simple architec-
ture needs no extra storage, but demands 16 8-byte wide transmission line links between 9-13 mm. One
could imagine Private CMP-TLC-Request’s thinner transmission line network could be integrated into
existing upper metal layers, while Shared CMP-TLC'’s wider transmission line network probably necessi-
tates an additional metal layer. In the end, the CMP designer must decide whether the performance pro-
vided by on-chip transmission lines and ASR justify their respective cost in upper-layer wire tracks and

substrate area.



142
7.5 Related Work

Other researchers have also studied the architectural impact of fast on-chip global communication. For
instance, Balasubramonianal.[10] and Chengpt al. [24] recently applied heterogeneous interconnect to
global communication within a clustered processor and CMP, respectively. Heterogeneous interconnection
networks are composed of multiple sets of physical wires, with each set implemented to a different point in
the energy/delay/bandwidth spectrum. Both of these studies optimize global messages to utilize one of four
networks—delay optimal, bandwidth optimal, power optimal, and power-bandwidth optimal—depending

on the message’s characteristics. In contrast, the cache designs discussed in this chapter use only conven-

tional wires and transmission lines and thus don’t require muxing four different physical channels.

Also Peh and Dally [85] proposed using a fast on-chip control message network to configure a slower,
high-bandwidth data network to improve throughput. By scheduling switches ahead of data arrival,
enabled buffers to only be held during actual buffer usage and reduced routing and arbitration latency.
While utilizing fast on-chip wires, their flit-reservation flow control technique deals with low-level inter-
connect design issues, while the evaluated TLC designs deal with high-level interactions between coher-

ence protocol and the wire technology.



143
7.6 Summary

On-chip transmission lines offer a significant latency advantage to conventional interconnect for long dis-
tance communication. One attractive application of transmission lines is utilizing them to access large
CMP caches. This chapter showed transmission lines supply the best performance improvement to a
shared CMP cache, but transmission lines can also improve private CMP cache performance. The chapter
demonstrated transmission lines can work in harmony with other latency management techniques, such as
Adaptive Selective Replication, to improve performance beyond what can be achieved by either technique
alone. Finally, the chapter illustrated the Private CMP-TLC design that combined all three latency manage-
ment techniques performs competitively with the Shared CMP-TLC design despite using larger and slower

cache banks.



144



145

Chapter 8

Conclusions and Future Work

This chapter provides the dissertation’s conclusions and discusses some possible areas of future work.

8.1 Conclusions

The on-chip cache hierarchy significantly impacts overall CMP performance. The conflicting requirements

of reducing off-chip misses and managing slow global on-chip wires makes CMP cache design particularly
challenging. Currently, CMPs utilize either a shared cache to reduce off-chip misses, or private caches to
minimize on-chip latency. Ideally, architects desire a hybrid CMP cache that achieves both, but the tradeoff
between the reducing off-chip misses and minimizing on-chip latency depends on workload behavior and

system characteristics.

In order to improve CMP cache performance, this dissertation first characterized multithreaded workloads
and then examined three techniques that exploited different workload behavior. In particular, this disserta-
tion evaluated both commercial and scientific workloads and identified three sharing types that existed in
these workloads: single requestor, shared read-only, and shared read-write. The characterization showed
that improving scientific workload performance mostly depended on improving single requestor latency,
while improving commercial workload performance more depended on improving shared read-only and
shared read-write latency. Furthermore, for the commercial workloads, the characterization showed shared
read-only data exhibited a very high request locality in and shared read-write data displayed migratory

sharing behavior.



146
The first technique the dissertation investigated was migrating cache blocks within a shared CMP cache.

While previous results showed block migration reduced wire delay in uniprocessor caches, this dissertation
discovered block migration’s capability to improve CMP performance relies on a difficult to implement
smart search mechanism. Furthermore, the large amount of inter-processor sharing that exists in some

workloads fundamentally limits block migration’s benefit.

The second technique the dissertation proposed was Adaptive Selective Replication, which dynamically
adapted shared read-only data replication to exploit the latency advantage of private caches without wast-
ing cache capacity due to excessive replication. By performing an opportunity analysis, ASR adjusted the
degree of replication to match the current workload behavior and system configuration. The dissertation
demonstrated ASR improves performance versus other hybrid designs and provides performance stability

by always performing at least comparatively to the best alternative design.

The third technique the dissertation presented was using transmission lines to reduce on-chip latency in
both a shared and private CMP cache. These Transmission Line Caches consistently improved perfor-
mance, but bandwidth contention prevent some TLCs from achieving their full potential. By isolating
transmission lines to only low-bandwidth latency-critical messages, thin transmission line links where able
to achieve most of the performance improvement provided by much wider transmission line links. How-
ever, if the transmission line links were over-subscribed communicating wide messages, their latency

advantage was partially, if not fully, negated by bandwidth contention.

8.2 Future Work
For the ideas proposed in the dissertation, this section outlines potential directions of future work.
Energy Evaluation. This dissertation did not evaluate the energy impact migration, selective replication,

and transmission lines will have in a CMP cache. However, other results have shown cache block migra-

tion increases CMP energy consumption [15, 48]. Selective replication could increase or decrease energy



147
consumption depending on the energy consumption ring writebacks have compared to off-chip communi-

cation. One would suspect ring writebacks require less energy than utilizing the power-hungary off-chip
drivers, but such a suspicion necessitates further investigation. While Chapter 7 showed, using first-order
eqguations, that on-chip transmission lines demand less energy than conventional wires, this dissertation did

not compare the TLCs’ overall energy demand to conventional cache designs.

Bloom Filters for ASR. Replacing ASR’s partial tag structures with bloom filters, could reduce its stor-
age overhead. Chapter 6 demonstrated that ASR’s Next-Level Hit Buffer and Victim Tag Buffer accounted
for the majority of its storage overhead. Both buffers stored the low-order bits of cache tags to estimate the
benefit of increasing or decreasing replication. Instead, the buffers could be implemented as non-counting
bloom filters and use false positive feedback to determine when the filters should be reset. Such bloom fil-
ters have been shown to significantly reduce storage overhead versus partial tags in other similar applica-

tions [92]. However, an open question for ASR bloom filters is determining false positives.

ASR for Lower Power. The current ASR proposal adjusts replication to achieve lower memory cycles,
however, ASR could adapt replication for lower power. While it is unclear if ASR’s power savings would
justify its costs, the changes required for a “power aware” ASR would be straightforward. One would sim-
ply change ASR'’s local hit cycle benefit and off-chip miss cycle cost constants to local hit power benefit

and off-chip miss power cost constants, respectively.

Multithreaded Cores. The CMP cores evaluated in this dissertation are all single-threaded. However,
future CMP cores are likely to be multithreaded. Multithreaded cores would likely place additional band-
width demands on a CMP cache and could potentially tolerate slower L2 caches. Because the techniques
evaluated in this dissertation are sensitive to bandwidth demand and L2 latency tolerance, future research

should explore multithreaded cores.



148



[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

149

References

Vikas Agarwal, Stephen W. Keckler, and Doug Burger. The Effect of Technology Scaling on
Microarchitectural Structure3echnical Report TR-00-02, Department of Computer Sciences,
University of Texas at AustiMay 2001.

Ardsher Ahmed, Pat Conway, Bill Hughes, and Fred Weber. AMD Opteron Shared Memory MP
Systems. IrProceedings of the 14th HotChips Symposiaogust 2002.

Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E. Moore, Min Xu, Daniel J. Sorin,
Mark D. Hill, and David A. Wood. Simulating a $2M Commercial Server on a $2KEEE

Computer 36(2):50-57, February 2003.

Bharadwaj S. Amrutur and Mark A. Horowitz. Speed and Power Scaling of SRERE. Trans-
actions on Solid-State Circujt85(2):175-185, February 2000.

Tom M. Apostol.Calculus Ginn (Blaisdell), 1969.

Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley Jones, and Bodo Parady.
SPEComp: A New Benchmark Suite for Measuring Parallel Computer Performanterkshop

on OpenMP Applications and Topfzages 1-10, July 2001.

Avanti. Star-Hspice Manualdan 1999.

Peng Bai and et al. A 65nm Logic Technology Featuring 35 nm Gate Length, Enhanced Channel
Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57 m SRAMEetltron Devices Meeting,

IEDM Technical Digest. InternationaDecember 2004.

J. Balachandran, S. Brebels, G. Carchon, T. Webers, W. De Raedt, B. Nauwelaers, and E. Beyne.
Package Level Interconnect Optionsliternational Workshop on System level Interconnect Pre-
diction, pages 21-27, April 2005.

Rajeev Balasubramonian, Naveen Muralimanohar, Karthik Ramani, and Venkatanand Venkatacha-
lapathy. Microarchitectural Wire Management for Performance and Power in Partitioned Architec-
tures. InProceedings of the 11th IEEE Symposium on High-Performance Computer Archjtecture
February 2005.

Paul Barford and Mark Crovella. Generating Representative Web Workloads for Network and
Server Performance Evaluation.Rmoceedings of the 1998 ACM Sigmetrics Conference on Mea-

surement and Modeling of Computer Systgrages 151-160, June 1998.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Luiz A. Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory System Chara%:tSeQization
of Commercial Workloads. IRroceedings of the 25th Annual International Symposium on Com-
puter Architecturepages 3-14, June 1998.

Bradford M. Beckmann, Michael R. Marty, and David A. Wood. ASR: Adaptive Selective Repli-
cation for CMP Caches. IAroceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture December 2006.

Bradford M. Beckmann and David A. Wood. TLC: Transmission Line Caché&sobeedings of

the 36th Annual IEEE/ACM International Symposium on MicroarchitecReeember 2003.

Bradford M. Beckmann and David A. Wood. Managing Wire Delay in Large Chip-Multiprocessor
Caches. IfProceedings of the 37th Annual IEEE/ACM International Symposium on Microarchi-
tecture December 2004.

Bradley J. Benschneider and et al. A 300-MHz 64-b Quad-Issue CMOS RISC Microprocessor.
IEEE Journal of Solid-State Circujt80(11):1203—-1214, Nov 1995.

A. S. Brown. Fast FIIm4dEEE Spectrum20(2):36-40, February 2003.

Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting Inter-Thread Cache Con-
tention on a Chip Multi-Processor Architecture Pimceedings of the 11th IEEE Symposium on
High-Performance Computer Architectyufeebruary 2005.

Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Scheduling
and Page Migration for Multiprocessor Compute ServerBrdoeedings of the 6th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS) October 1994,

Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiproces$tmxdad-

ings of the 33nd Annual International Symposium on Computer Architedtume 2006.

Richard T. Chang, Niranjan Talwalkar, C. Patrick Yue, and S. Simon Wong. Near Speed-of-Light
Signaling Over On-Chip Electrical Interconne¢EEE Journal of Solid-State Circujts
38(5):834-838, May 2003.

Alan Charlesworth. Starfire: Extending the SMP EnveltipEE Micro, 18(1):39-49, Jan/Feb

1998.

Guoqing Chen, Hui Chen, Mikhail Haurylau, Nicholas Nelson, Philippe M. Fauchet, and Eby G.
Friedman. Predictions of CMOS Compatible On-Chip Optical Interconnelcttdimational

Workshop on System level Interconnect Predicpages 13—20, April 2005.



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ligun Cheng, Naveen Muralimanohar, Karthik Ramani, Rajeev Balasubramonian, andl‘JS(}hn B.
Carter. Interconnect-Aware Coherence Protocols for Chip Multiprocessémdeedings of the
33nd Annual International Symposium on Computer Architeciuree 2006.

Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Distance Associativity for High-Perfor-
mance Energy-Efficient Non-Uniform Cache Architecture®roceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitectubecember 2003.

Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing Replication, Communica-
tion, and Capacity Allocation in CMPs. Rroceedings of the 32nd Annual International Sympo-
sium on Computer Architectyréune 2005.

Fredrik Dahlgren and Josep Torrellas. Cache-Only Memory Architectiies. Computer
32(6):72—79, June 1999.

William J. Dally and John W. Poultoigital Systems Engineerin@ambridge University Press,
1998.

Evan E. Davidson. Large chip vs. MCM for a High-Performance Sys$kHai Micro, 18(4):33—

41, July/Aug 1998.

Evan E. Davidson, Bradley D. McCredie, and Walter V. Vilkelis. Long Lossy Lines (L/sup 3/) and
Their Impact Upon Large Chip PerformanlfeEE Transactions on Components, Packaging and
Manufacturing Technology, Part B: Advanced Packagiii{4):361-375, November 1997.

Alina Deutsch. Electrical Characteristics of Interconnections for High-Performance SyRtems.
ceedings of the IEEB6(2):315-355, February 1998.

Keith Diefendorff. Power4 Focuses on Memory Bandwititttroprocessor Reportt3(13):1-8,
October 1999.

Antonije R. Djordjevic, Miodrag B. Bazdar, Tapan K. Sarkar, and Roger F. Harringstnx
Parameters for Multiconductor Transmission Lines: Software and User’'s Mafiiath House,
1989.

Susan J. Eggers and Randy H. Katz. A Characterization of Sharing in Parallel Programs and its
Application to Coherency Protocol Evaluation Aroceedings of the 15th Annual International
Symposium on Computer Architectyrages 373-382, May 1988.

Babak Falsafi and David A. Wood. Reactive NUMA: A Design for Unifying S-COMA and CC-
NUMA. In Proceedings of the 24th Annual International Symposium on Computer Architecture
pages 229-240, June 1997.



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

Pierfrancesco Foglia, Daniele Mangano, and Cosimo Antonio Prete. A NUCA Model f%rSI%mbed—
ded Systems Cache Design3nd IEEE 2005 Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMEDIA)September 2005.

International Technology Roadmap for Semiconductors. ITRS 2003 Edition. Semiconductor
Industry Association, 2003. http://public.itrs.net/Files/2003ITRS/Home2003.htm.

International Technology Roadmap for Semiconductors. ITRS 2004 Update. Semiconductor
Industry Association, 2004. http://www.itrs.net/Common/2004Update/2004Update.htm.
International Technology Roadmap for Semiconductors. ITRS 2005 Edition. Semiconductor
Industry Association, 2005. http://www.itrs.net/Common/2005ITRS/Home2005.htm.

Steven Frank, Henry Burkhardt, Ill, and James Rothnie. The KSR1: Bridging the Gap Between
Shared Memory and MPPs. Rroceedings of the 38th Annual IEEE Computer Society Computer
Conference (COMPCONpages 285-295, February 1993.

S. W. GolumbShift Register Sequencdsegean Park Press, revised edition, 1982.

Anoop Gupta and Wolf-Dietrich Weber. Cache Invalidation Patterns in Shared-Memory Multipro-
cessorslEEE Transactions on Computersl(7):794—-810, July 1992.

Erik Hagersten, Anders Landin, and Seif Haridi. DDM—A Cache-Only Memaory Architecture.
IEEE Computer25(9):44-54, September 1992.

Sarah L. HarrisSynergistic Caching in Single-chip Multiprocessd®hlD thesis, Department of
Electrical Engineering, Stanford University, 2005.

Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU CachHE&E Transactions on
Computers38(12):1612-1630, December 1989.

Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The Future of WiRreceedings of the IEEE
89(4):490-504, April 2001.

M. S. Hrishikesh, Norman P. Jouppi, Keith I. Farkas, Doug Burger, Stephen W. Keckler, and
Premkishore Shivakumar. The Optimal Logic Depth Per Pipeline Stage is 6 to 8 Inverter Delays. In
Proceedings of the 29th Annual International Symposium on Computer Architétay@002.
Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and Stephen W. Keckler.
A NUCA Substrate for Flexible CMP Cache SharingPtoceedings of the 19th International
Conference on Supercomputjdgine 2005.

Nathan IdaEngineering ElectromagneticSpringer, 2000.

Aamer Jaleel, Matthew Mattina, and Bruce Jacob. Last Level Cache (LLC) Performance of Data
Mining Workloads On a CMP: A Case Study of Parallel Bioinformatics Workload&olreed-

ings of the 12th IEEE Symposium on High-Performance Computer Architdetlreiary 2006.



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Dale W. Jorgenson, Mun S. Ho, and Kevin J. Stitaformation Technology and the Amer%c%%
Growth ResurgenceMIT Press, 2005.

Anup P. Jose, George Pataunakis, and K. L. Shepard. Near speed-of-light on-chip interconnects
using pulsed current-mode signalling.Aroceedings of the 2005 Symposium on VLSI Circuits
pages 108-111, 2005.

Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 Chip: A Dual Core Multi-
threaded Process®EEE Micro, 24(2):40-47, Mar/Apr 2004.

Pawan Kapur and Krishna C. Saraswat. Comparison Between Electrical and Optical Interconnects
for On-chip Signaling. pages 89-91, 2002.

Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, and Pat Conway. The AMD Opteron
Processor for Multiprocessor ServdEsEE Micro, 23(2):66—76, March-April 2003.

R. E. Kessler, Richard Jooss, Alvin Lebeck, and Mark D. Hill. Inexpensive Implementations of
Set-Associativity. IrProceedings of the 16th Annual International Symposium on Computer
Architecture May 1989.

Sunil P. Khatri and et al. A Novel VLSI Layout Fabric for Deep Sub-Micron Applications. In
Design Automation Conferengeages 491-496, June 1999.

Changkyu Kim, Doug Burger, and Stephen W. Keckler. An Adaptive, Non-Uniform Cache Struc-
ture for Wire-Dominated On-Chip Caches Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASRdDer

2002.

Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture. IRroceedings of the 2004 International Conference on Parallel
Architectures and Compilation Techniqupages 111-222, 2004.

Mauro J. Kobrinsky, Bruce A. Block, Jun-Fei Zheng, Brandon C. Barnett, Edris Mohammed, Mir-
iam Reshotko, Frank Robertson, Scott List, lan Young, and Kenneth Cadien. On-Chip Optical
Interconnectsintel Technology JournaMay 2004.

Akio Kodama and Toshinori Sato. A Non-Uniform Cache Architecture on Networks-on-Chip: A
Fully Associative Approach with Pre-Promotion.10th International Symposium on Integrated
Circuits, Devices and Systengeptember 2004.

Poonacha Kongetira. A 32-way Multithreaded SPARC/ Procesdamdeedings of the 16th
HotChips Symposiumugust 2004.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-Way Multi-
threaded Sparc Procesd®EE Micro, 25(2):21-29, Mar/Apr 2005.



[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]
[75]

[76]

Georgios K. Konstadinidis and et al. Implementation of a Third-Generation 1.1-GHz 6&%%
MicroprocessonEEE Journal of Solid-State Circujt87(11):1461-1469, Nov 2002.

Kevin Krewell. UltraSPARC IV Mirrors Predecesshticroprocessor Reporpages 1-3, Novem-
ber 2003.

Rakesh Kumar, Victor Zyuban, and Dean Tullsen. Interconnections in multi-core architectures:
Understanding Mechanisms, Overheads and Scalirigyolceedings of the 32nd Annual Interna-
tional Symposium on Computer Architeciulene 2005.

James Laudon. Performance/Watt: The New Server FocUgrkshop on Design, Architecture

and Simulation of Chip Multi-Processoidov 2005.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. SeQei&ntitative System Performance
Prentice Hall, 1984.

Feihui Li, Chrysostomos Nicopoulos, Thomas Richardson, Yuan Xie, Vijaykrishnan Narayanan,
and Mahmut Kandemir. Design and Management of 3D Chip Multiprocessors Using Network-in-
Memory. InProceedings of the 33nd Annual International Symposium on Computer Architecture
June 2006.

Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. Organizing the Last Line of Defense
before Hitting the Memory Wall for CMPs. IRroceedings of the Tenth IEEE Symposium on High-
Performance Computer Architectyuféebruary 2004.

LostCircuits. Intel Pentium4 600 Series. http://www.lostcircuits.com/cpu/p4-600/, Feb 21, 2005.
Peter S. Magnusson et al. Simics: A Full System Simulation Platfast Computer35(2):50—

58, February 2002.

Atul Maheshwari and Wayne Burleson. Current Sensing Techniques for Global Interconnects in
Very Deep Submicron (VDSM) CMOS. IAroceedings of the IEEE 2001 Computer Society Work-
shop on VLSIpages 66-70, April 2001.

Milo M. K. Martin. Token CoherencéhD thesis, University of Wisconsin, 2003.

Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R.
Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’'s General Execution-
driven Multiprocessor Simulator (GEMS) Tools€omputer Architecture Newpages 92—99,
September 2005.

Michael R. Marty, Jesse D. Bingham, Mark D. Hill, Alan J. Hu, Milo M. K. Martin, and David A.
Wood. Improving Multiple-CMP Systems Using Token Coherenc@rbteedings of the Eleventh
IEEE Symposium on High-Performance Computer Architeckebruary 2005.



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

155
Cameron McNairy and Rohit Bhatia. Montecito: A Dual-Core Dual-Thread Itanium Processor.

IEEE Micro, 25(2):10-20, March/April 2005.

Carmeron McNairy and Don Soltis. Itanium 2 Processor Microarchite¢EE& Micro,

23(2):44-55, March/April 2003.

David A. B. Miller. Ratioinale and Challenges for Optical Interconnects to Electronic Gps.
ceedings of the IEEB8(6):728—-749, June 2000.

Masayuki Minzuno, Kenichiro Anjo, Yoshikazu Sumi, Muneo Fukaishi, Hitoshi Wakabayashi,
Tohru Mogami, Tadahiko Horiuchi, and Masakazu Yamashina. Clock Distribution Networks with
On-Chip Transmission Lines. Proceedings of the IEEE 2000 International Interconnect Tech-
nology Conferengepages 3-5, 2000.

Haim E. Mizrahi, Jean-Loup Baer, Edward D. Lazowska, and John Zahorjan. Introducing Memory
into the Switch Elements of Multiprocessor Interconnection NetworkBraiweedings of the 16th
Annual International Symposium on Computer ArchitectMizy 1989.

Gordon E. Moore. Cramming More Components onto Integrated Cir&tléstronics pages 114—
117, April 1965.

Shin’ichiro Mutoh and et al. 1-V Power Supply High-Speed Digital Circuit Technology with Mul-
tithreshold-Voltage CMOSSEEE Journal of Solid-State Circujt80(8):847—-854, Aug 1995.

Vijay S. Pai.Exploiting Instruction-Level Parallelism for Memory System PerformaPkB the-

sis, Rice University, 2000.

Li-Shiuan Peh and William J. Dally. Flit-Reservation Flow ControPtaceedings of the Sixth
IEEE Symposium on High-Performance Computer Architeciarguary 2000.

Christopher Poirer, Richard McGowen, Christopher Bostak, and Samuel Naffziger. Power and
temperature control on a 90nm Itanium-family processd?raiceedings of the IEEE 2005 Inter-
national Solid-State Circuits Conferengages 304—305, 2005.

Donald A. Priore. Inductance on Silicon for Sub-micron CMOS VLSIPnceedings of the 1993
Symposium on VLSI Circujtsages 17-18, 1993.

M. Racanelli and et al. Ultra High Speed SiGe NPN for Advanced BiCMOS Techndibggtron
Devices Meeting, IEDM Technical Digest. Internatiorelges 15.3.1-15.3.4, 2001.

Alex Ramirez, Oliverio J. Santana, Josep L. Larriba-Pey, and Mateo Valero. Fetching instruction
streams. IProceedings of the 35th Annual IEEE/ACM International Symposium on Microarchi-
tecture pages 371-382, November 2002.

Sumant Ramprasad, Naresh R. Shanbhag, and Ibrahim N. Hajj. A Coding Framework for Low-
Power Address and Data Busd&EE Transactions on VLS| Systemig):212—-2, June 1999.



[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

156
Intel Press Release. Intel Desktop Processors Get 64-Bit Support. http://www.intel.com/press-

room/archive/releases/20050221comp.htm, Feb 21, 2005.

Robert Ricci, Steve Barrus, Dan Gebhardt, and Rajeev Balasubramonian. Managing Complexity
in the Piranha Server-Class Processor Desigrithiworkshop on Complexity-Effective Design

held in conjunction with the 33rd International Symposium on Computer Architedtune 2006.
Anand Lal Shimpi and Derek Wilson. Intel Pentium4 600 Series. http://www.anandtech.com/
printarticle.aspx?i=2353, Feb 21, 2005.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Appli-
cations for Shared Memor@€omputer Architecture New20(1):5-44, March 1992.

Kimming So and Rudolph N. Rechtschaffen. Cache Operations by MRU ChBEgeTransac-

tions on Computers87(6):700—709, June 1988.

Vassos Soteriou and Li-Shiuan Peh. Design Space Exploration of Power-Aware On/Off Intercon-
nection Networks. IfProceedings of Internationl Conference on Computer Design (ICCDP’04)
October 2004.

Vijayaraghavan Soundararajan, Mark Heinrich, Ben Verghese, Kourosh Gharachorloo, Anoop
Gupta, and John Hennessy. Flexible Use of Memory for Replication/Migration in Cache-Coherent
DSM Multiprocessors. IProceedings of the 25th Annual International Symposium on Computer
Architecture pages 342-355, June 1998.

Evan Speight, Hazim Shafi, Lixin Zhang, and Ram Rajamony. Adaptive Mechanisms and Policies
for Managing Cache Hierarchies in Chip Multiprocessor®roteedings of the 32nd Annual
International Symposium on Computer Architectdimne 2005.

Per Stenstrom, Mats Brorsson, and Lars Sandberg. Adaptive Cache Coherence Protocol Optimized
for Migratory Sharing. IProceedings of the 20th Annual International Symposium on Computer
Architecture pages 109-118, May 1993.

Per Stenstrom, Truman Joe, and Anoop Gupta. Comparative Performance Evaluation of Cache-
Coherent NUMA and COMA Architectures. Proceedings of the 19th Annual International Sym-
posium on Computer Architectyféay 1992.

G. Edward Suh, Srinivas Devadas, and Larry Rudolph. A New Memory Monitoring Scheme for
Memory-Aware Scheduling and Partitioning.Rroceedings of the Eighth IEEE Symposium on
High-Performance Computer Architectufeebruary 2002.

Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Sditware.
Dobb’s Journa) 30(3), March 2005.



[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]
[112]

[113]

[114]

[115]

[116]

[117]

Dennis Sylvester, William Jiang, and Kurt Keutzer. BACPAC - Berkeley Advanced Chi%%?erfor—
mance Calculator website. http://www-device.eecs.berkeley.edu/ dennis/bacpac/.

Dennis Sylvester and Kurt Keutzer. Getting to the Bottom of Deep Submicron 1I: a Global Wiring
Paradigm. IfProceedings of the 1999 International Symposium on Physical Dgsigas 193—

200, 1999.

Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram Sinharoy. POWER4 System
Microarchitecture. IBM Server Group Whitepaper, October 2001.

Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram Sinharoy. POWER4 System
MicroarchitecturelBM Journal of Research and Developmet@(1), 2002.

Frank F. Tsui. JSP - A Research Signal Processor in Josephson TecHBdlbodgyurnal of

Research and DevelopmeB4(2):243—-252, March 1980.

Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating System Support
for Improving Data Locality on CC-NUMA Compute ServersPhoceedings of the 7th Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS)October 1996.

Virtutech AB. Simics Full System Simulator. http://www.simics.com/.

J. D. Warnock and et al. The Circuit and Physical Design of the POWER4 Microprotigssor.
Journal of Research and Developmet@(1):27-51, January 2002.

Fred Weber. AMD’s Next Generation Microprocessor Architecture, October 2001.

N. Weste and K. Eshragiairinciples of CMOS VLSI Design: A Systems Perspediggison-

Wesley Publishing Co., 1982.

Steven J.E. Wilton and Norman P. Jouppi. An enhanced access and cycle time model for on-chip
cachesTech report 93/5, DEC Western Research, L1&94.

Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/gems/.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The
SPLASH-2 Programs: Characterization and Methodological Consideratiorgdaedings of the

22nd Annual International Symposium on Computer Architecpages 24-37, June 1995.

Chung-Yu Wu and Ming-Chuen Shiau. Delay Models and Speed Improvement Techniques for RC
Tree Interconnections Among Small-Geometry CMOS Invert&iSE Journal of Solid-State Cir-

cuits, 25(5):1247-1256, Oct 1990.

Thucydides Xanthopoulos, Daniel W. Bailey, Michael K. Gowan Atul K. Gangwar, Anil K. Jain,
and Brian K. Prewitt. The Design and Analysis of the Clock Distribution Network for a 1.2 GHz



[118]

[119]

[120]

[121]

[122]

Alpha Microprocessor. IRroceedings of the IEEE 2001 International Solid-State Circuit155(§on—
ference pages 402—-403, 2001.

Thomas Y. Yeh and Glenn Reinman. Fast and Fair: Data-stream Quality of Sericeded-

ings of the 2005 International Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASESeptember 2005.

Hui Zhang, Varghese George, and Jan M. Rabaey. Low-Swing On-Chip Signaling Techniques:
Effectiveness and RobustneHsEE Transactions on VLSI Syster@€3):264—272, June 2000.

Michael Zhang and Krste Asanovic. Miss Tags for Fine-Grain CAM-Tag Cache Resiz#g- In
ceedings of the International Symposium on Low Power Electronics and D&sggurst 2002.

Michael Zhang and Krste Asanovic. Victim Replication: Maximizing Capacity while Hiding Wire
Delay in Tiled Chip Multiprocessors. IRroceedings of the 32nd Annual International Symposium

on Computer Architecturgune 2005.

Zheng Zhang and Josep Torrellas. Reducing Remote Conflict Misses: NUMA with Remote Cache
versus COMA. IrProceedings of the Third IEEE Symposium on High-Performance Computer
Architecture February 1997.



	Abstract
	Acknowledgments
	Table of Contents

	Chapter 1 Introduction 1
	Chapter 2 Background: On-Chip Wire Technology 11
	Chapter 3 Global Wires and Large On-chip Caches 25
	Chapter 4 Exploiting Workload Behavior 37
	Chapter 5 Cache Block Migration 71
	Chapter 6 Adaptive Selective Replication 87
	Chapter 7 Transmission Line Caches 119
	Chapter 8 Conclusions and Future Work 145
	List of Figures
	List of Tables

	Chapter 1
	Introduction
	1.1 On-chip Global Wire Technology
	1.2 Multithreaded Workload Behavior
	Single Requestor Blocks
	Shared Read-only Blocks
	Shared Read-write Blocks

	1.3 Wire Delay Management Techniques for Different Sharing Types
	Migration for Single Requestor Blocks
	Selective Replication for Shared Read-only Blocks
	Transmission Lines for Shared Read-write Blocks

	1.4 Thesis Contributions
	1.5 Dissertation Structure


	Chapter 2
	Background: On-Chip Wire Technology
	2.1 Conventional RC Communication
	2.1.1 Propagation Delay
	(2.1)
	(2.2)
	TABLE 2-1. ITRS Projections for Conventional Global Wires

	2.1.2 Physical Requirements
	2.1.3 Power Consumption
	(2.3)

	2.2 On-chip Transmission Line Communication
	2.2.1 Propagation Delay
	FIGURE 2-1.� Sample Output Waveform of a 10 mm On-chip Transmission Line

	2.2.2 Physical Requirements
	FIGURE 2-2.� Stripline Transmission Lines

	2.2.3 Power Consumption
	(2.4)

	2.3 Comparison: Conventional RC Wires versus On-chip Transmission Lines
	2.3.1 Latency
	FIGURE 2-3.� Latency Comparison

	2.3.2 Bandwidth Density
	FIGURE 2-4.� Cross-sectional Wire Comparison

	2.3.3 Dynamic Power
	TABLE 2-1. Bandwidth Density Comparison
	FIGURE 2-5.� Dynamic Power Comparison


	2.4 Attractive Alternative Technologies
	2.5 Summary


	Chapter 3
	Global Wires and Large On-chip Caches
	3.1 Wire Delay and Cache Partitioning
	FIGURE 3-1.� NUCA Cache Network for an 8 Processor CMP

	3.2 CIM: Cache Investigative Model
	FIGURE 3-2.� Diagram of the Cache Investigation Model
	(3.1)
	(3.2)
	(3.3)
	(3.4)
	(3.5)
	(3.6)
	(3.7)


	3.2.1 CIM: Cache Partitioning
	TABLE 3-1. CIM: Cache Bank Partitioning Parameters
	FIGURE 3-3.� CIM: Cache Partitioning - Cache Access Time vs. Bandwidth Demand


	3.2.2 CIM: Wire Technology
	TABLE 3-2. CIM: Wire Technology Parameters
	FIGURE 3-4.� CIM: Wire Technology - Cache Access Time vs. Bandwidth Demand


	3.3 Cache Organization and Memory System Performance
	3.3.1 Shared CMP Cache
	(3.8)

	3.3.2 Private CMP Caches
	(3.9)

	3.4 Summary


	Chapter 4
	Exploiting Workload Behavior
	4.1 Characterizing Sharing Types
	TABLE 4-1. Workload Descriptions
	Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier s...
	Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models ...
	Static Web Serving: Zeus. Zeus is another static web serving workload driven by SURGE. Zeus uses ...

	TABLE 4-2. Evaluation Methodology
	TABLE 4-3. Percentage of Cache Blocks Profiled at L2 Eviction

	4.1.1 Requests
	TABLE 4-4. L2 Cache Request Profile
	FIGURE 4-1.� L2 Cache Shared Requests Breakdown (1:�Single�Requestor,�RO: Shared Read-only, RW: S...


	4.1.2 Cache Capacity
	TABLE 4-5. L2 Cache Capacity and Allocation Profile

	4.1.3 Sharing Behavior
	TABLE 4-6. L2 Cache Block Sharing Behavior

	4.1.4 Request vs. Cache Block Locality
	FIGURE 4-2.� Request to Block Distribution: Single Requestor Data
	FIGURE 4-3.� Request to Block Distribution: Shared Read-only Data
	FIGURE 4-4.� Request to Block Distribution: Shared Read-write Data

	4.1.5 Cache Hit Ratio
	(4.1)
	FIGURE 4-5.� Normalized L2 Cache Hit Ratios

	4.1.6 Probability Distribution Functions
	FIGURE 4-6.� Probability Distribution Function HLb|1R - F(x)
	FIGURE 4-7.� Probability Distribution Function HLb|S - M(x)
	FIGURE 4-8.� Probability Distribution Function HRb|S - N(x)
	FIGURE 4-9.� Probability Distribution Function HLb|SRO - G(x)
	FIGURE 4-10.� Probability Distribution Function HLb|SRW - H(x)
	FIGURE 4-11.� Probability Distribution Function HRb|SRO - P(x)
	FIGURE 4-12.� Probability Distribution Function HRb|SRW - Q(x)

	4.2 Exploiting Workload Behavior Through Migration
	4.2.1 Modelling Migration
	(4.2)
	(4.3)
	(4.4)
	(4.5)
	(4.6)
	(4.7)
	(4.8)
	(4.9)
	(4.10)
	(4.11)
	(4.12)
	(4.13)
	(4.14)

	4.2.2 Evaluating Migration
	FIGURE 4-13.� Migration Model: All Workloads Default Parameters

	4.3 Exploiting Workload Behavior Through Replication
	4.3.1 Modelling Replication
	(4.15)
	(4.16)
	(4.17)
	(4.18)
	(4.19)
	(4.20)
	(4.21)
	(4.22)
	(4.23)
	(4.24)
	(4.25)
	To model the accuracy of selectively replicating frequently requested shared read-only blocks, Eq...
	(4.27)
	(4.28)
	(4.29)
	(4.30)

	4.3.2 Evaluating Replication
	FIGURE 4-14.� Replication Model: All Workloads Default Parameters
	FIGURE 4-15.� Replication Model: All Workloads Except Art Default Parameters
	FIGURE 4-16.� Replication Model: Apache Cache Capacity vs. Probability of Replication
	FIGURE 4-17.� Replication Model: OLTP Cache Capacity vs. Probability of Replication
	FIGURE 4-18.� Replication Model: Cache Capacity vs. Probability of Replication
	FIGURE 4-19.� Replication Model: Apache Miss Latency vs. Probability of Replication
	FIGURE 4-20.� Replication Model: OLTP Miss Latency vs. Probability of Replication
	FIGURE 4-21.� Replication Model: Miss Latency vs. Probability of Replication

	4.4 Summary


	Chapter 5
	Cache Block Migration
	5.1 Motivation
	5.2 Baseline: CMP-SNUCA
	TABLE 5-1. 2010 System Parameters
	FIGURE 5-1.� 16 MB CMP-NUCA Layout with CMP-DNUCA Bankcluster Regions


	5.3 CMP-DNUCA
	5.3.1 Overview
	5.3.2 Implementation
	Allocation.
	Movement.
	Search.

	5.4 Methodology
	5.5 Evaluation
	5.5.1 Block Movement in CMP-DNUCA
	FIGURE 5-2.� CMP-DNUCA: L2 Hit Distribution
	FIGURE 5-3.� a) Oltp DNUCA Distribution

	5.5.2 Searching in CMP-DNUCA
	FIGURE 5-4.� CMP-DNUCA: Average L2 Hit Latency (S:�CMP�SNUCA,�D:�CMP-DNUCA, pD: perfect CMP-DNUCA)
	FIGURE 5-5.� Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S:�CMP-SNUCA, D: CM...
	FIGURE 5-6.� CMP-DNUCA: Speedup (S:�CMP�SNUCA,�D:�CMP�DNUCA,�pD:�perfect�CMP-DNUCA)
	FIGURE 5-7.� CMP-DNUCA: Normalized Memory Cycles (S:�CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

	5.6 Summary


	Chapter 6
	Adaptive Selective Replication
	6.1 Motivation
	6.2 Baseline: Private CMP Caches
	FIGURE 6-1.� Private CMP Cache

	6.3 Adaptive Selective Replication
	6.3.1 Replication and CMP Cache Performance
	(6.1)
	FIGURE 6-2.� a) Replication Benefit

	6.3.2 Balancing Replication via ASR
	FIGURE 6-3.� ASR Decision Table for Adjusting Replication

	6.4 Implementing ASR
	6.4.1 Selective Probabilistic Replication
	TABLE 6-1. SPR Replication Levels

	6.4.2 ASR Hardware
	Benefit of Increasing Replication (HC - HH)
	Cost of Increasing Replication (MH - MC)
	FIGURE 6-4.� Binary Tree Position Translation to LRU Rank

	Benefit of Decreasing Replication (MC - ML)
	Cost of Decreasing Replication (HL - HC)
	Triggering a Cost-Benefit Analysis

	6.4.3 Storage and Energy
	TABLE 6-2. ASR Storage Overhead

	6.5 Methodology
	6.5.1 Alternative Cache Designs
	CMP-Shared
	CMP-Private
	FIGURE 6-5.� Layout of CMP-Shared

	SPR-VR
	SPR-NR
	SPR-CC

	6.5.2 System Parameters
	TABLE 6-3. Comparison of Configuration Parameters

	6.6 Evaluation
	6.6.1 Replication Capacity and Memory Cycles
	FIGURE 6-6.� a) Current�CMP: L2�Hit�Cycles / Instr.

	6.6.2 Adapting to Workload Behavior
	FIGURE 6-7.� a) Future CMP: ASR�Adaptability Apache
	FIGURE 6-8.� a) Future CMP: ASR�Adaptability Apache—Processor 0

	6.6.3 Sharing Type Latency vs. Off-chip Misses
	FIGURE 6-9.� Future CMP: Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S:�CMP�...

	6.6.4 Comparison of Replication Schemes
	Performance.
	FIGURE 6-10.� Current CMP: Speedups (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR�VR, N:�SPR-NR, C: SPR-...
	FIGURE 6-11.� Current CMP: Memory Cycles (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR-VR, N: SPR-NR, C:...
	FIGURE 6-12.� Future CMP: Speedups (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR�VR,�N:�SPR�NR,�C:�SPR�C...
	FIGURE 6-13.� Future CMP: Memory Cycles (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR�VR,�N:�SPR�NR,�C:�...
	FIGURE 6-14.� Future CMP 500 cycle memory latency: Speedups (S:�CMP�Shared,�P:�CMP-Private, V: SP...
	FIGURE 6-15.� Future CMP 500 cycle memory latency: Memory Cycles (S:�CMP�Shared,�P:�CMP-Private, ...

	Performance Summary
	Storage Overhead.
	TABLE 6-4. Storage Overhead Comparison

	6.7 Related Work
	6.7.1 Multiprocessor Memories
	6.7.2 Uniprocessor Caches
	6.7.3 Chip Multiprocessor Caches
	6.8 Summary


	Chapter 7
	Transmission Line Caches
	7.1 Motivation
	7.2 Shared CMP-TLC
	7.2.1 Overview
	FIGURE 7-1.� Shared CMP-TLC
	TABLE 7-1. Shared CMP-TLC Cache Interface Unit Height Breakdown
	FIGURE 7-2.� Uncontended Latency Comparison Between CMP-SNUCA and Shared CMP-TLC


	7.2.2 Methodology
	FIGURE 7-3.� CMP-SNUCA

	7.2.3 Evaluation
	FIGURE 7-4.� Shared CMP-TLC: Average Remote L1 Cache Hit Latency (S: CMP-SNUCA, T: Shared CMP-TLC...
	FIGURE 7-5.� Shared CMP-TLC: Average L2 Cache Hit Latency (S:�CMP-SNUCA, T: Shared CMP-TLC, W: Sh...
	FIGURE 7-6.� Shared CMP-TLC: L1 Miss Cycles Breakdown (S:�CMP�SNUCA, T: Shared CMP-TLC, W: Shared...
	FIGURE 7-7.� Shared CMP-TLC: Speedup (S:�CMP�SNUCA,�T:�Shared�CMP-TLC, W: Shared CMP-TLC-WDM)
	Transceiver Delay Sensitivity Analysis
	FIGURE 7-8.� Shared CMP-TLC Transceiver Sensitivity: Speedup (S:�CMP�SNUCA, T: Shared CMP-TLC, +1...
	FIGURE 7-9.� Shared CMP-TLC-WDM Transceiver Sensitivity: Speedup (S:�CMP�SNUCA, W:�Shared CMP-TLC...


	7.3 Private CMP-TLC
	7.3.1 Overview
	FIGURE 7-10.� Private CMP-TLC

	7.3.2 Methodology
	7.3.3 Evaluation: Baseline Private CMP Protocol
	FIGURE 7-11.� Private CMP-TLC: Private L2 Miss Cycles Breakdown (P: CMP-Private, T: Private CMP-T...
	FIGURE 7-12.� Private CMP-TLC: Speedup (P:�CMP�Private,�T:�Private�CMP�TLC,�R: Private CMP-TLC-Re...

	7.3.4 Evaluation: Interaction with ASR
	FIGURE 7-13.� Private CMP-TLC w/ASR: L1 Miss Cycles Breakdown (A:�ASR,�T: Private CMP-TLC w/ASR, ...
	FIGURE 7-14.� Private CMP-TLC w/ASR: Speedup (A:�ASR,�T:�Private�CMP-TLC w/ASR, O: Private CMP-TL...

	7.3.5 Sharing Type Latency vs. Off-chip Misses
	FIGURE 7-15.� Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S:�CMP-Shared, P:�...
	FIGURE 7-16.� Combination of Techniques: Speedup (S:�CMP�Shared, P:�CMP-Private, R:�Private CMP-T...
	Transceiver Delay Sensitivity Analysis.
	FIGURE 7-17.� Private CMP-TLC-Request with ASR Transceiver Sensitivity: Speedup (S:�CMP�Shared, O...


	7.4 Comparing Best Performing Designs
	FIGURE 7-18.� Best Performing Comparison: L1 Miss Cycles Breakdown (8:�CMP-Shared, 64:�CMP-SNUCA,...
	FIGURE 7-19.� Best Performing Comparison: Speedup (8:�CMP�Shared,�64:�CMP-SNUCA, O: Private CMP-T...

	7.5 Related Work
	7.6 Summary


	Chapter 8
	Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	Energy Evaluation.
	Bloom Filters for ASR.
	ASR for Lower Power.
	Multithreaded Cores.


	References


