
MANAGING WIRE DELAY IN CHIP MULTIPROCESSOR CACHES

by

Bradford M. Beckmann

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

2006

i

Abstract
igning

apacity

slow

work-

n partic-

p trans-

lower-

cessor,

ip wire

cache

aseline

SR).

e ben-

ation

storage.

private

ission

mbina-

to a
Increasing on-chip wire delay and growing off-chip miss latency, present two key challenges in des

large Level-2 (L2) CMP caches. Currently, some CMPs use a shared L2 cache to maximize cache c

and minimize off-chip misses. Others use private L2 caches, replicating data to limit the delay from

on-chip wires and minimize cache access time. Ideally, to improve performance for a wide variety of

loads, CMPs prefer both the capacity of a shared cache and the access latency of private caches.

In this thesis, we propose three techniques that combine the benefits of shared and private caches. I

ular, to reduce access latency in a shared cache, we investigate cache block migration and on-chi

mission lines. Migration reduces access latency by moving frequently used blocks towards the

latency banks. We show migration successfully reduces latency to blocks requested by only one pro

but doesn’t reduce the latency to shared blocks. In contrast, transmission lines can reduce on-ch

delay by an order of magnitude versus conventional wires and provide low latency to all shared

banks. We demonstrate on-chip transmission lines consistently improve performance versus a b

shared cache, but bandwidth contention can limit them from reaching their full potential.

To improve the effective capacity of private caches, we propose Adaptive Selective Replication (A

ASR dynamically monitors workload behavior and replicates cache blocks only when it estimates th

efit of replication (lower L2 hit latency) exceeds the cost (more L2 misses). When ASR detects replic

is less beneficial, processors coordinate writebacks with remote on-chip caches to conserve cache

ASR provides a robust CMP cache hierarchy: improving performance versus both shared and

caches. Additionally, ASR can leverage the fast remote cache access latency provided by transm

lines and reduce off-chip misses versus a design using conventional wires. We demonstrate the co

tion of transmission lines and ASR outperforms either isolated technique and preforms similarly

shared cache using four times the transmission line bandwidth.

ii

iiiAcknowledgments
hough

wever,

grateful

not

break

hours

school

other

His

thank

: Guri

fac-

ry Ver-

lly

Danny

very-

sure

ughts,

sion-
I dedicate this thesis to my wife, Jennifer. Her support over these six years has been invaluable. T

God has tremendously blessed me throughout my entire life, no gift has been greater than her. Ho

the space in this section is better spent acknowledging others, because words cannot describe how

I am of her.

I’m forever thankful to my advisor David Wood. I could not had asked for a better advisor. David is

only incredibly brilliant, but one of the most admirable people I have ever met. He taught me how to

down data and to write research papers that provided intuition and insight. I really appreciate all the

he spent working with me and my research. Furthermore, I appreciate him making my graduate

experience very enjoyable. Now it is my job to remember what he has taught me.

I would like to thank the other members of my defense and preliminary exam committees, as well as

Wisconsin faculty members. First, I would like thank Mark Hill for his advice and helpful suggestions.

feedback certainly has improved both my research and presentation skills. Second, I would like to

the other members of my defense and preliminary exam committees for their objective feedback

Sohi, Mikko Lipasti, Mike Swift, and Charlie Chen. Also, I would like to thank some other Wisconsin

ulty members that taught me: Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Ras Bodik, and Ma

non.

Similarly, I would like to thank all of the former and current members of Multifacet: Dan Sorin for initia

encouraging me to pursue architecture research and allowing me to tag along with him to watch

Heatly and the 2000-2001 Badger hockey team; Milo Martin for showing me how to do just about e

thing research-wise including the proper way to program; Carl Mauer for answering what I am

seemed to be an infinite number of questions; Alaa Alameldeen for listening to my concerns and tho

and providing me very useful feedback; Min Xu for always being a pleasant guy to talk to both profes

e to

cuss

Jarrod

good

timu-

asked;

scuss

f four

never

en a

long I

eer;

en’s

oad-

fe has

y kids,

men-

with

ounda-

Sun
iv
ally and personally; Pacia Harper for acquainting me with Multifacet; Ross Dickson for introducing m

the Multifacet code base; Kevin Moore for being a good friend, giving me an outlet at work to dis

baseball and college basketball, and helping me professionally to communicate my ideas clearer;

Lewis for being a great intramural football quarterback; Bhavesh Mehta; Michael Marty for being a

friend, providing me some competition on the golf course, and for giving me helpful feedback that s

lated my research; Luke Yen for maintaining the Opal code base and helping me out whenever I

Jayaram Bobba; Michelle Moravan; Dan Gibson for being a fun guy to have a beer with and di

ostriches; and Andy Phelps.

There are many other friends I thank as well. First I want to thank my good friend and roommate o

years, Tim Denehy. Despite the fact that Tim consistently dominated me on the golf course, he

gloated. Tim’s talent both intellectually and athletically is only equaled by his modesty. Tim has be

great friend and a great asset professionally. Also I thank my other friends in Madison—the list is so

fear to forget someone. Additionally, I thank the other things in Wisconsin that I’ll miss: Lake Louie b

Etes-Vous-Prets (EVP) coffee; Wisconsin Football, Women’s Volleyball, Men’s Basketball, and M

Hockey teams; and the Big Ten Pub. Finally, I thank all my friends back in Ohio and woxy.com for br

casting over the internet so I’d miss home a little less.

My family deserves a special thank you, especially my parents. Through my parents hard work, my li

been full of great opportunities and experiences. I hope one day to be as great of a role model to m

as they have been to me. Also I want to thank my sisters—Ellen, Jill, and Tricia—who have been tre

dously supportive and my Uncle Mike who probably doesn’t realize how much I enjoy spending time

him.

Finally, my research has been financially supported these different sources: the National Science F

tion with grants CCR-0324878, CNS-0205286, and EIA-9971256 and donations from IBM, Intel and

Microsystems.

v

 . . 3

 . . 4

 . . 6

1

. . 11

 . .

 . . 14

 . . 14

. . 15

 . .

 . . 17

 . . 18

. . 20

. .
Table of Contents

Abstract i

Acknowledgments iii

Table of Contents v

List of Figures xi

List of Tables xv

Chapter 1 Introduction 1

1.1 On-chip Global Wire Technology .

1.2 Multithreaded Workload Behavior .

1.3 Wire Delay Management Techniques for Different Sharing Types

1.4 Thesis Contributions 8

1.5 Dissertation Structure 9

Chapter 2 Background: On-Chip Wire Technology 1

2.1 Conventional RC Communication .

2.1.1 Propagation Delay . 11

2.1.2 Physical Requirements .

2.1.3 Power Consumption .

2.2 On-chip Transmission Line Communication .

2.2.1 Propagation Delay . 15

2.2.2 Physical Requirements .

2.2.3 Power Consumption .

2.3 Comparison: Conventional RC Wires versus On-chip Transmission Lines

2.3.1 Latency . 20

2.3.2 Bandwidth Density . 21

vi

. .

 . 23

25

. . 25

. . 27

. . 30

 . 32

 . . 34

. . . 34

 . . 35

 . . 3

 . .

 . .

. . 44

 .

 . 48

 52

 . 5

 . 5

. 57

 . 5
2.3.3 Dynamic Power . 22

2.4 Attractive Alternative Technologies .

2.5 Summary . 24

Chapter 3 Global Wires and Large On-chip Caches

3.1 Wire Delay and Cache Partitioning .

3.2 CIM: Cache Investigative Model .

3.2.1 CIM: Cache Partitioning .

3.2.2 CIM: Wire Technology .

3.3 Cache Organization and Memory System Performance .

3.3.1 Shared CMP Cache .

3.3.2 Private CMP Caches .

3.4 Summary . 36

Chapter 4 Exploiting Workload Behavior 37

4.1 Characterizing Sharing Types .7

4.1.1 Requests . 40

4.1.2 Cache Capacity . 42

4.1.3 Sharing Behavior . 43

4.1.4 Request vs. Cache Block Locality .

4.1.5 Cache Hit Ratio .. 47

4.1.6 Probability Distribution Functions .

4.2 Exploiting Workload Behavior Through Migration .

4.2.1 Modelling Migration .2

4.2.2 Evaluating Migration .6

4.3 Exploiting Workload Behavior Through Replication .

4.3.1 Modelling Replication .8

vii

. . 6

. . 72

. .

. 79

 . 81

7

 . . 88

. . 8

 . . 89

 . 91

.

. . 93

 . .

. . .

 . . 99

. . 10
4.3.2 Evaluating Replication . 2

4.4 Summary . 70

Chapter 5 Cache Block Migration 71

5.1 Motivation . 71

5.2 Baseline: CMP-SNUCA .

5.3 CMP-DNUCA .. 74

5.3.1 Overview . 74

5.3.2 Implementation . 74

5.4 Methodology . 77

5.5 Evaluation . 78

5.5.1 Block Movement in CMP-DNUCA .

5.5.2 Searching in CMP-DNUCA .

5.6 Summary . 85

Chapter 6 Adaptive Selective Replication 8

6.1 Motivation . 87

6.2 Baseline: Private CMP Caches .

6.3 Adaptive Selective Replication . 9

6.3.1 Replication and CMP Cache Performance .

6.3.2 Balancing Replication via ASR .

6.4 Implementing ASR . 92

6.4.1 Selective Probabilistic Replication .

6.4.2 ASR Hardware . 94

6.4.3 Storage and Energy . 98

6.5 Methodology . 99

6.5.1 Alternative Cache Designs .

6.5.2 System Parameters . 1

viii

. 102

 105

. 106

 . 108

. 113

. . 114

 . 115

9

 .

.

.

.

. 133

 135

. 136

 . 140
6.6 Evaluation . 102

6.6.1 Replication Capacity and Memory Cycles .

6.6.2 Adapting to Workload Behavior .

6.6.3 Sharing Type Latency vs. Off-chip Misses .

6.6.4 Comparison of Replication Schemes .

6.7 Related Work . 113

6.7.1 Multiprocessor Memories .

6.7.2 Uniprocessor Caches .

6.7.3 Chip Multiprocessor Caches .

6.8 Summary . 117

Chapter 7 Transmission Line Caches 11

7.1 Motivation . 119

7.2 Shared CMP-TLC . 121

7.2.1 Overview . 121

7.2.2 Methodology . 124

7.2.3 Evaluation . 125

7.3 Private CMP-TLC . 130

7.3.1 Overview . 130

7.3.2 Methodology . 132

7.3.3 Evaluation: Baseline Private CMP Protocol .

7.3.4 Evaluation: Interaction with ASR .

7.3.5 Sharing Type Latency vs. Off-chip Misses .

7.4 Comparing Best Performing Designs .

7.5 Related Work . 142

7.6 Summary . 143

ix

5
Chapter 8 Conclusions and Future Work 14

8.1 Conclusions . 145

8.2 Future Work . 146

References 149

x

. . 16

 . .

 . .

. . 26

. . 27

. . 31

 . 33

Shared

. . 45

. . 45

. . 46

. .

. 48

. 49

. 49

. 50

. 50

 . 51

. 51

 . 56

 . 62

 . 62

 . 64

. 65

 . 66

. 67

. 68
xi
List of Figures

2-1 Sample Output Waveform of a 10 mm On-chip Transmission Line

2-2 Stripline Transmission Lines .. . 18

2-3 Latency Comparison . 20

2-4 Cross-sectional Wire Comparison .21

2-5 Dynamic Power Comparison . 22

3-1 NUCA Cache Network for an 8 Processor CMP .

3-2 Diagram of the Cache Investigation Model .

3-3 CIM: Cache Partitioning - Cache Access Time vs. Bandwidth Demand

3-4 CIM: Wire Technology - Cache Access Time vs. Bandwidth Demand

4-1 L2 Cache Shared Requests Breakdown (1: Single Requestor, RO: Shared Read-only, RW:

Read-write) . 41

4-2 Request to Block Distribution: Single Requestor Data .

4-3 Request to Block Distribution: Shared Read-only Data .

4-4 Request to Block Distribution: Shared Read-write Data .

4-5 Normalized L2 Cache Hit Ratios . 47

4-6 Probability Distribution Function HLb|1R - F(x) .

4-7 Probability Distribution Function HLb|S - M(x) .

4-8 Probability Distribution Function HRb|S - N(x) .

4-9 Probability Distribution Function HLb|SRO - G(x) .

4-10 Probability Distribution Function HLb|SRW - H(x) .

4-11 Probability Distribution Function HRb|SRO - P(x) .

4-12 Probability Distribution Function HRb|SRW - Q(x) .

4-13 Migration Model: All Workloads Default Parameters .

4-14 Replication Model: All Workloads Default Parameters .

4-15 Replication Model: All Workloads Except Art Default Parameters

4-16 Replication Model: Apache Cache Capacity vs. Probability of Replication

4-17 Replication Model: OLTP Cache Capacity vs. Probability of Replication

4-18 Replication Model: Cache Capacity vs. Probability of Replication

4-19 Replication Model: Apache Miss Latency vs. Probability of Replication

4-20 Replication Model: OLTP Miss Latency vs. Probability of Replication

. 69

 73

 79

 .

P-

P-

 83

 .

 . 92

. . 96

 103

 103

. 103

 103

. 103

. 103

 105

 105

. 105

. 105

 107
xii
4-21 Replication Model: Miss Latency vs. Probability of Replication .

5-1 16 MB CMP-NUCA Layout with CMP-DNUCA Bankcluster Regions

5-2 CMP-DNUCA: L2 Hit Distribution .

5-3 a) Oltp DNUCA Distribution .. 80

5-3 b) Ocean DNUCA Distribution .80

5-4 CMP-DNUCA: Average L2 Hit Latency (S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CM

DNUCA) . 81

5-5 Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S: CMP-SNUCA, D: CM

DNUCA, pD: perfect CMP-DNUCA) .

5-6 CMP-DNUCA: Speedup (S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA) .

84

5-7 CMP-DNUCA: Normalized Memory Cycles (S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect

CMP-DNUCA) . 84

6-1 Private CMP Cache . 89

6-2 a) Replication Benefit . 90

6-2 b) Replication Cost . 90

6-2 c) Replication Effectiveness . 90

6-3 ASR Decision Table for Adjusting Replication .

6-4 Binary Tree Position Translation to LRU Rank .

6-5 Layout of CMP-Shared . 100

6-6 a) Current CMP: L2 Hit Cycles / Instr. .

6-6 b) Current CMP: L2 Miss Cycles / Instr. .

6-6 c) Current CMP: Total Cycles / Instr. .

6-6 d) Future CMP: L2 Hit Cycles / Instr. .

6-6 e) Future CMP: L2 Miss Cycles / Instr.

6-6 f) Future CMP: Total Cycles / Instr. .

6-7 a) Future CMP: ASR Adaptability Apache .

6-7 b) Future CMP: ASR Adaptability Oltp .

6-8 a) Future CMP: ASR Adaptability Apache—Processor 0 .

6-8 b) Future CMP: ASR Adaptability Apache—Processors 1-7 .

6-9 Future CMP: Normalized L1 Miss Latency to Sharing Types and Off-chip Misses

(S: CMP-Shared, P: CMP-Private, A: SPR-ASR) .

-CC,

:

 . 1

 110

 110

-VR,

. 111

V:

 111

 123

P-

 125

W:

 126

 127

,

 .

P-

 129

, R:

 133
xiii
6-10 Current CMP: Speedups (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR

A: SPR-ASR) . 109

6-11 Current CMP: Memory Cycles (S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C

SPR-CC, A: SPR-ASR) .09

6-12 Future CMP: Speedups

(S: CMP Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR) . .

6-13 Future CMP: Memory Cycles

(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR) . .

6-14 Future CMP 500 cycle memory latency: Speedups (S: CMP-Shared, P: CMP-Private, V: SPR

N: SPR-NR, C: SPR-CC, A: SPR-ASR) .

6-15 Future CMP 500 cycle memory latency: Memory Cycles (S: CMP-Shared, P: CMP-Private,

SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR) .

7-1 Shared CMP-TLC . 121

7-2 Uncontended Latency Comparison Between CMP-SNUCA and Shared CMP-TLC

7-3 CMP-SNUCA . 124

7-4 Shared CMP-TLC: Average Remote L1 Cache Hit Latency (S: CMP-SNUCA, T: Shared CM

TLC, W: Shared CMP-TLC-WDM) .

7-5 Shared CMP-TLC: Average L2 Cache Hit Latency (S: CMP-SNUCA, T: Shared CMP-TLC,

Shared CMP-TLC-WDM) .

7-6 Shared CMP-TLC: L1 Miss Cycles Breakdown (S: CMP-SNUCA, T: Shared CMP-TLC, W:

Shared CMP-TLC-WDM) .

7-7 Shared CMP-TLC: Speedup (S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-

WDM) . 128

7-8 Shared CMP-TLC Transceiver Sensitivity: Speedup (S: CMP-SNUCA, T: Shared CMP-TLC

+1: Shared CMP-TLC with one extra transceiver delay cycle, +2: Shared CMP-TLC with two

extra transceiver delay cycles) . 129

7-9 Shared CMP-TLC-WDM Transceiver Sensitivity: Speedup (S: CMP-SNUCA, W: Shared CM

TLC-WDM, +1: Shared CMP-TLC-WDM with one extra transceiver delay cycle, +2: Shared

CMP-TLC-WDM with two extra transceiver delay cycles) .

7-10 Private CMP-TLC . 131

7-11 Private CMP-TLC: Private L2 Miss Cycles Breakdown (P: CMP-Private, T: Private CMP-TLC

Private CMP-TLC-Request W: Private CMP-TLC-WDM) .

 134

,

35

136

P-

 137

LC-

 138

 .

A,

 140

-

 141
xiv
7-12 Private CMP-TLC: Speedup (P: CMP-Private, T: Private CMP-TLC, R: Private CMP-TLC-

Request W: Private CMP-TLC-WDM) .

7-13 Private CMP-TLC w/ASR: L1 Miss Cycles Breakdown (A: ASR, T: Private CMP-TLC w/ASR

O: Private CMP-TLC-Request w/ASR, W: Private CMP-TLC-WDM w/ASR) 1

7-14 Private CMP-TLC w/ASR: Speedup (A: ASR, T: Private CMP-TLC w/ASR, O: Private CMP-

TLC-Request w/ASR W: Private CMP-TLC-WDM w/ASR) .

7-15 Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S: CMP-Shared, P: CM

Private, R: Private CMP-TLC-Request, A: ASR, O: Private CMP-TLC-Request w/ ASR) .

7-16 Combination of Techniques: Speedup (S: CMP-Shared, P: CMP-Private, R: Private CMP-T

Request, A: ASR, O: Private CMP-TLC-Request w/ ASR) .

7-17 Private CMP-TLC-Request with ASR Transceiver Sensitivity: Speedup (S: CMP-Shared,

O: Private CMP-TLC-Request with ASR,

+1: Shared CMP-TLC with one extra transceiver delay cycle, +2: Shared CMP-TLC with two

extra transceiver delay cycles) . 139

7-18 Best Performing Comparison: L1 Miss Cycles Breakdown (8: CMP-Shared, 64: CMP-SNUC

O: Private CMP-TLC-Request w/ASR, T: Shared CMP-TLC) .

7-19 Best Performing Comparison: Speedup (8: CMP-Shared, 64: CMP-SNUCA, O: Private CMP

TLC-Request w/ASR T: Shared CMP-TLC) .

. . . 13

 .

 . . .

 . .

 . . . 39

. . .

 .

. . . 101

 .

. . 122
xv
List of Tables

2-1 ITRS Projections for Conventional Global Wires .

2-1 Bandwidth Density Comparison . 22

3-1 CIM: Cache Bank Partitioning Parameters .30

3-2 CIM: Wire Technology Parameters . 32

4-1 Workload Descriptions . 38

4-2 Evaluation Methodology . 38

4-3 Percentage of Cache Blocks Profiled at L2 Eviction. .

4-4 L2 Cache Request Profile . 40

4-5 L2 Cache Capacity and Allocation Profile . 42

4-6 L2 Cache Block Sharing Behavior .. . 44

5-1 2010 System Parameters . 72

6-1 SPR Replication Levels . 94

6-2 ASR Storage Overhead . 98

6-3 Comparison of Configuration Parameters .

6-4 Storage Overhead Comparison .. . 112

7-1 Shared CMP-TLC Cache Interface Unit Height Breakdown .

xvi

1

Chapter 1
nomic

ne of

work-

ecause

cessor

tipro-

5, 77].

ation

CMP

ch pro-

te-sized

caches.

mpact

ance.

quire-

uch as

capac-
Introduction

Over the past decade, computer-driven productivity and efficiency gains have lead to strong eco

growth [51]. At the heart of this new computer infrastructure lie the servers that provide the backbo

electronic commerce and information distribution. In particular, these servers improve commercial

load efficiency by increasing throughput. Multiprocessor systems can increase server throughput b

commercial workloads contain abundant parallelism.

With the increasing number of transistors available on a chip per process generation [82], multipro

systems have shifted from multi-chip systems to single-chip implementations. Specifically, chip mul

cessors (CMPs) containing 2-8 processors have recently became commercially available [53, 62, 6

In order to improve CMP performance, these CMPs require high-bandwidth low-latency communic

between processors and their associated instructions and data.

By quickly providing processors with instructions and data, on-chip caches can significantly improve

performance. Small private high-level caches integrated closely with the processor cores provide ea

cessor quick access to their most recently requested instructions and data. However, these fini

caches satisfy only a portion of requests, and many other requests must access larger lower-level

These large on-chip caches should both store a lot of data, thus minimizing off-chip miss latency’s i

on performance, and quickly retrieve requested data to reduce global wire delay’s effect on perform

Low-level cache management presents a key challenge, especially in the face of the conflicting re

ments of reducing off-chip misses and managing slow global on-chip wires. Current CMP systems, s

the IBM Power 5 [53] and Sun Niagara [62], employ shared caches to maximize the on-chip cache

, they

anks. In

close to

ache

Cache

er to a

e cache

ansmis-

tantial

e most

, these

ission

apac-

s the

nes in

gether

r tech-

trans-

ocuses

tech-

readed
2
ity by storing only unique cache block copies. While shared caches usually minimize off-chip misses

have high access latencies since many requests must cross global wires to reach distant cache b

contrast, private caches [65, 77] reduce average access latency by migrating and replicating blocks

the requesting processor, but sacrifice effective on-chip capacity and incur more misses.

An attractive alternative to mitigating slow global wires with private caches, is improving shared c

access latency with technologies such as dynamic block migration and on-chip transmission lines.

block migration can improve shared cache performance by exploiting the fact that cache banks clos

processor can be accessed more rapidly than distant banks. In particular, migration reduces averag

access time by moving frequently requested data to the closer cache banks. In contrast, on-chip tr

sion lines replace slow conventional wires with a high speed alternative. However, despite their subs

speed advantage—up to a factor of 10 by the end of the decade—transmission lines will not replac

conventional on-chip wires because they have over a factor of 10 lower bandwidth density. Instead

sparse wires must be used carefully in order to improve shared cache performance.

In comparison, private cache performance can be improved using selective replication and transm

lines. In particular, selective replication strives to balance the latency benefit of replication with the c

ity benefit of storing more unique block copies. By limiting replicas, selective replication increase

probability a hit is satisfied by a remote on-chip cache. Complementary, integrating transmission li

the on-chip communication network can substantially reduce remote cache hit latency. Thus, to

selective replication and transmission line can provide better private CMP performance than eithe

nique in isolation.

Overall, this dissertation examines the performance impact of migration, selective replication, and

mission lines in the context of both shared and private CMP caches. Specifically, the dissertation f

on CMPs with Level-2 (L2) cache banks comprising the lowest level of the cache hierarchy, but these

niques also apply to caches with greater depth. The dissertation not only evaluates important multith

fferent

ork-

previ-

lication

jority

rther-

ount of

emon-

ws that

on 1.2

ails the

isserta-

ning,

ons to

t intra-

erfor-

rescott

, 93].

1 cm
3
commercial workloads, but also selected multithreaded scientific workloads to demonstrate the di

techniques’ sensitivity to workload behavior. Due to the significant sharing that exists in commercial w

loads, the dissertation illustrates that block migration is less effective for a shared CMP cache than

ous results have shown for uniprocessors. Instead, the dissertation advocates for selective rep

within a private CMP cache. By only allowing a few replications, selective replication can attain a ma

of the benefit (reduce latency) without encountering most of the cost (increase off-chip misses). Fu

more, the dissertation proposes an adaptive selective replication mechanism because the optimal am

replication varies depending on workload behavior and system constraints. Finally, the dissertation d

strates on-chip transmission lines improve both shared and private cache performance and sho

transmission lines can work in concert with other techniques.

In the remainder of this chapter, Section 1.1 introduces on-chip global wire technology and Secti

describes the multithreaded workload behavior that influences CMP cache design. Section 1.3 det

three wire delay management techniques analyzed in this dissertation. Section 1.4 presents the d

tion’s main contributions, and Section 1.5 provides a roadmap for this document.

1.1 On-chip Global Wire Technology

On-chip wire delay plays an increasingly significant role in integrated circuit design. Design partitio

the integration of more metal layers, and higher repeater density allow conventional wire dimensi

decrease slower than transistor dimensions. Thus, wire delay remains relatively constant for shor

partition distances [46, 104]. However, on-chip wire delay between separate partitions is a growing p

mance bottleneck. For instance, global wire delay increased the L2 cache access latency for Intel’s P

processor [91] from 23 cycles to 27 cycles when its L2 cache size increased from 1 MB to 2 MB [71

In the future, conventional global wire delay will become even worse. For example, transmitting data

ology

lines

speed

large

on lines

to the

nsmis-

luding

mini-

ate in

hese

hose

t, and

e con-

n con-

mission

ace on

mmer-
4
requires about 3 cycles in current (2006) technology, but will necessitate over 8 cycles in 2010 techn

assuming a cycle time of 20 fanout-of-three delays [38].

An emerging alternative approach to conventional slow global wires is to use on-chip transmission

[21]. Transmission lines exhibit much lower latencies than conventional wires since their signalling

is dominated by a relatively short inductive-capacitance (LC) delay rather than a series of a relatively

resistive-capacitance (RC) delays. In layman’s terms, one can compare the latencies of transmissi

and conventional RC wires by comparing the speed of a ripple moving across water in a bathtub

speed of changing a bathtub’s water level. While this gross analogy provides some insight behind tra

sion line’s latency advantage, it ignores the key issues of realistic on-chip transmission lines, inc

attenuation.

In order to communicate the incident wave across on-chip global wires, signal attenuation must be

mized. In particular, transmission lines require very wide, thick wires and dielectric spacing to oper

the LC range, which are only available in a chip’s uppermost interconnection metal layers. T

extremely sparse metal layers are best utilized for the few long distance communication links w

latency can have a significant impact on overall system performance.

By targeting transmission lines to long cross-chip communication, they can facilitate compact layou

reduce power consumption. Chapter 2 describes why transmission lines don’t require repeaters lik

ventional wires. Also, using first-order equations, Chapter 2 demonstrates that transmission lines ca

sume less dynamic power than conventional interconnect. Later, Chapter 7 proposes using trans

lines to improve the layout and performance of several different CMP caches.

1.2 Multithreaded Workload Behavior

In order to improve CMP cache performance, it is important to understand the demand workloads pl

them. In particular, this dissertation focuses on CMP cache designs that improve multithreaded co

e split

3.

er of

fferent

oth

ty of

ost all

ir data

ks. In

these

ingle

rcial

L2

with

ks is

d-only

-only

quently

ore L2

t local-
5
cial and scientific workload throughput. The on-chip cache blocks of multithreaded workloads can b

into three different sharing types that exhibit distinct behavior: 1.Single Requestorblocks are accessed by

a single processor, 2.Shared Read-Onlyblocks are read, but not written, by multiple processors, and

Shared Read-Writeblocks are accessed by multiple processors, with at least one write. The remaind

this section summarizes each sharing type’s unique behavior. Later, Section 1.3 will describe how di

techniques can exploit these behaviors to improve CMP cache performance.

Single Requestor Blocks.Single requestor blocks consume the majority of cache capacity for b

commercial and scientific workloads. However, single requestor blocks only satisfy the majori

requests in scientific workloads. In general, data blocks and not instruction blocks account for alm

single requestor blocks stored in CMP caches. Because scientific algorithms successfully split the

sets into multiple independent segments, these workloads frequently utilize single requestor bloc

contrast, commercial workloads often share L2 blocks between multiple threads, in part because

workloads have much larger instruction footprints [12]. Thus, techniques improving the latency to s

requestor L2 blocks are more effective in improving scientific workload performance than comme

workload performance.

Shared Read-only Blocks.Shared read-only blocks consume relatively little capacity in a shared

cache, but satisfy a disproportionally large number of L2 requests. For commercial workloads,

instruction footprints that often spill into the L2 cache, the high utilization of shared read-only L2 bloc

especially evident. Interestingly, shared read-only requests exhibit high locality for these shared rea

L2 blocks. Specifically, for the evaluated commercial workloads, less than 300 KB of shared read

data satisfies at least 70% of all shared read-only L2 requests. Some scientific workloads also fre

access shared read-only blocks, but these requests display significantly less locality and consume m

capacity than the commercial workloads. Therefore, techniques exploiting shared read-only reques

ity can improve commercial workload performance more than scientific workload performance.

ice-

re, for

verage

d-write

writes.

work-

type’s

uition.

ng

n-chip

be pre-

rger,

cifi-

er than

ynamic

ecause

uneven

uction.

ssor’s
6
Shared Read-write Blocks.For most commercial workloads, shared read-write blocks satisfy a not

able proportion of requests, but for scientific workloads, they satisfy very few requests. Furthermo

these commercial workloads, shared read-write blocks exhibit migratory sharing behavior [99] and a

less than 2 intervening requests between writes. Therefore, a CMP cache that disallows shared rea

replication, could facilitate faster cache-to-cache transfers by removing coherence invalidations on

Overall, techniques that reduce shared read-write request latency would likely improve commercial

load performance more than scientific workload performance.

1.3 Wire Delay Management Techniques for Different Sharing Types

By utilizing different wire delay management techniques, CMP caches can exploit each sharing

unique behavior. This section introduces three such techniques and provides their high-level int

These techniques will be described in greater detail through the dissertation’s remaining chapters.

Migration for Single Requestor Blocks.By moving single requestor blocks closer to their requesti

processor, migration can potentially reduce access latency without adversely affecting the other o

processors. Migration can be implemented statically by using a private CMP cache design, or can

formed dynamically within a shared CMP cache. Dynamic migration was first proposed by Kim, Bu

and Keckler [58] within the context of a uniprocessor Non-Uniform Cache Architecture (NUCA). Spe

cally, Kim et al. exploited the fact that cache banks closer to the processor could be accessed fast

further banks and migrated frequently requested blocks to these closer banks. The resulting d

migration policy achieved substantial performance improvements for the uniprocessor.

In contrast, for a shared CMP cache, this dissertation demonstrates that migration is less effective b

shared blocks tend to congregate in the middle of the cache. Furthermore, migration can create

cache bank utilization, thus, increasing cache conflict misses and negating migration’s latency red

Using a high-level model, Chapter 4 examines directly migrating blocks to the last requesting proce

ance

l work-

ulation,

hows a

l cache

apacity

affect-

time.

cently,

ncy and

tion

rative

pter 6

e Prob-

oes so

m that

rfor-

at least

-

request

ll L2 hit
7
closest cache bank. The model’s results show migration could improve scientific workload perform

because of frequent use of single requestor blocks, but migration potentially degrades commercia

load performance because of repeated requests to shared blocks. Then, using full system sim

Chapter 5 demonstrates that a more gradual migration policy is also ineffective. Instead, Chapter 6 s

private CMP cache that statically allocates single requestor blocks to the requesting processor’s loca

banks is more effective. However, replication between private caches can reduce effective cache c

and negate migration’s latency benefit.

Selective Replication for Shared Read-only Blocks.By intelligently replicating data between pri-

vate L2 caches, selective replication can reduce shared read-only request latency, without adversely

ing cache capacity. By migrating and replicating data, private caches minimize cache access

However, excessive replication sacrifices on-chip capacity and incurs more off-chip misses. Re

researchers have proposed three different selective replication schemes that strive to balance late

capacity [20, 26, 121]. Two of these previous proposals—CMP-NuRapid [26] and Victim Replica

[121] use static rules that can not adjust to changes in workload behavior, while the third—Coope

Caching [20]—controls replication capacity via a parameterized value. Section 6.5.1 of Cha

describes these proposals in detail. Similar to Cooperative Caching, Chapter 6 proposes the Selectiv

abilistic Replication (SPR) mechanism that also controls replication via a parameterized value, but d

with less hardware. Also, Chapter 6 proposes the Adaptive Selective Replication (ASR) mechanis

dynamically monitors workload behavior to control SPR’s replication parameter. ASR improves pe

mance versus the recent hybrid proposals and provides performance stability by always performing

comparably to the best alternative.

Transmission Lines for Shared Read-write Blocks.Transmission lines’ significant speed advan

tage over conventional wires can reduce shared read-write request latency, as well as overall

latency. For a shared CMP cache, Chapter 7 demonstrates transmission lines can reduce overa

hap-

, trans-

quest

ial

ly data,

behav-

for

anism,

—Jbb,

r four

lly-dis-

ed L2

uires

[20],
8
latency versus conventional wires, but bandwidth contention limits their overall effectiveness. Also C

ter 7 shows transmission lines can improve private CMP cache performance. For the private cache

mission lines are most effective when they target low-bandwidth latency-critical signals such as re

messages.

1.4 Thesis Contributions

The main contributions of the dissertation are:

• Multithreaded Workload Characterization. The dissertation breaks the working sets of commerc

and scientific workloads into three different sharing types: single requestor data, shared read-on

and shared read-write data. The characterization shows that each sharing type displays distinct

ior that can be exploited using different caching techniques.

• Block Migration in CMP Caches. The dissertation illustrates that block migration is less effective

CMPs than previous results have shown for uniprocessors. Even with a perfect search mech

migration alone only improves performance versus a shared cache baseline for four workloads

Art, Barnes, and Ocean—by a maximum of 2%, while degrading the performance of the othe

workloads by as much as 7%. This is in part because shared blocks migrate to the middle equa

tant cache banks, accounting for 55-83% of L2 hits for the commercial workloads.

• Selective Probabilistic Replication (SPR).The dissertation presentsSelective Probabilistic Replica-

tion (SPR), a simple replication mechanism that exploits the fact that the most frequently request

blocks are also the most frequently evicted L1 blocks. By using probabilistic filtering, SPR req

significantly less hardware than previous proposals CMP-NuRapid [26] and Cooperative Caching

and equivalent hardware to the Victim Replication proposal [121].

d to

by as

erhead

ache

ansmis-

15%

ns-

shared

band-

previ-

istic

avid

s on-

cache

te cache

rization

g the
9
• Adaptive Selective Replication (ASR).The dissertation proposes theAdaptive Selective Replication

(ASR)mechanism that dynamically controls replication within a private CMP cache. When applie

SPR, ASR provides a dynamically adaptive CMP cache hierarchy that improves performance

much as 12% versus previous replication policies. Furthermore, ASR adds only 1.2% storage ov

to a future on-chip cache hierarchy.

• Transmission Line Caches.The dissertation demonstrates transmission lines reduce on-chip c

access latency for both a shared and private CMP cache by as much as 30%. Overall, these Tr

sion Line Caches (TLC) improve performance up to 8% using single bit transmission lines and

for transmission lines using wave division multiplexing.

• Combination of Techniques.The dissertation shows the combination of migration, ASR, and tra

mission lines achieves 14% average performance improvement over an 8-banked baseline

cache and performs competitively with a 64-banked TLC using four times the transmission line

width.

Prior versions of the block migration and transmission line cache work described here have been

ously published in conjunction with my advisor David Wood [14, 15]. The work of Selective Probabil

Replication and Adaptive Selective Replication was developed jointly with Michael Marty and D

Wood and will be published soon [13].

1.5 Dissertation Structure

The thesis begins with Chapter 2 summarizing future on-chip wire technologies with a focus toward

chip transmission lines. Next, using an analytical model, Chapter 3 analyzes how wires impact CMP

design and presents equations describing memory system performance for both shared and priva

hierarchies. Chapter 4 characterizes multithreaded workload behavior and then uses the characte

data to explore the potential performance benefits of migration and selective replication. Followin

block

mech-

and.

prove

rtation
10
high-level exploration, Chapter 5 use full system simulation and performs detailed analysis of cache

migration within a shared CMP cache. Then Chapter 6 proposes the Adaptive Selective Replication

anism that dynamically regulates replication within a private CMP cache to match workload dem

Chapter 7 presents a multitude of cache organizations that utilize on-chip transmission lines to im

performance, including a private cache design utilizing ASR. Finally, Chapter 8 concludes the disse

and provides several avenues for future work.

11

Chapter 2
ibe the

nd on-

three

hnolo-

n-chip

itance

mption

rapher’s

onduc-
Background: On-Chip Wire Technology

This chapter presents an overview of on-chip wire technology. Section 2.1 and Section 2.2 descr

delay, physical requirements, and power characteristics of conventional on-chip communication a

chip transmission line technology, respectively. Then, Section 2.3 quantitatively compares these

characteristics for both wire technologies. Finally, Section 2.4 discusses how other potential wire tec

gies—such as package level interconnects and on-chip optical communication—appear similar to o

transmission lines from an architectural perspective.

2.1 Conventional RC Communication

The vast majority of on-chip communication is best described using conventional resistive-capac

(RC) models. This section describes the propagation delay, physical requirements, and power consu

of these wires.

2.1.1 Propagation Delay

Resistance, capacitance, and inductance determine wire delay. Equation 2.1 presents the teleg

equation that describes voltage propagation across any type of wire as a function of time assuming c

tance is negligible:

 (2.1)
∂2V

∂x2
----------- RC

∂V

∂t
------- LC∂2V

∂t2
-----------+=

,

nd is

opor-

e dis-

out.

es. In

dis-

y propor-

ak long

n qua-

ictate

roper

t the

only

lude the

wing

termine
12
wherex is the distance along the wire,t is time, V is voltage, andR, C, andL represent the resistance

capacitance, and inductance of the wire. Wire resistance is directly proportional wire length a

inversely proportional to a wire’s cross-sectional area. Meanwhile, wire capacitance is directly pr

tional to a wire’s surface area and intermetal dielectric constant, and is inversely proportional to th

tance between wires. Finally, wire inductance depends on the rate of current change and circuit lay

For conventional on-chip wires, with relatively small cross-sectional area, the first RC term dominat

other words, voltagediffusionacross the wire determines signaling speed [28]. Furthermore, as wire

tance increases, both wire resistance and capacitance increases because both terms are directl

tional to wire length. The result is conventional wire delay grows quadratically with distance.

To control wire delay across long on-chip distances, designers insert repeaters, e.g. inverters, to bre

wires into multiple shorter segments. For these segmented links, wire delay grows linearly rather tha

dratically with distance [116]. However, increasing wire density and operational frequencies d

increasing number of repeaters, leading to three key problems [46]:

• Repeaters require a substantial amount of area for their large transistors.

• Repeaters necessitate disciplined floorplanning to allocate the necessary substrate area at the p

locations.

• Repeaters need many via cuts from the upper metal layers down to the substrate, which conges

interconnection layers below and reduce the overall wire bandwidth.

Due to repeater insertion, determining the RC delay for conventional global communication not

requires determining the resistance and capacitance of their actual wire segments, but also must inc

parasitic terms of their intermediate drivers and receivers. Amrutur and Horowitz [4] present the follo

a simple approximation equation (Equation 2.2) that incorporates these parasitic capacitances to de

the total delay of a signal traveling across a single wire segment:

nd

ally, as

as pre-

at this

density

ance-

r cycle

admap

over 5

must
13

 (2.2)

whereRd andRw are the driver and wire resistances,Cw andCr are the wire and receiver capacitances, a

p is the intrinsic delay of the driver due to its junction capacitance.

The performance of global wires using repeaters doesn’t scale compared to transistors. Specific

transistors become smaller and faster, wire pitch is forced to scale to smaller geometries. However,

viously mentioned, reducing a wire’s cross-sectional area, increases the wire’s RC delay. To comb

problem, manufacturers integrate an additional metal layer per process technology to reduce wire

demand and utilize lower-k dielectrics to reduce wire capacitance [39]. These manufacturing enh

ments have allowed global wire delay to stay relatively constant in terms of reachable transistors pe

across technology generations [104]. However, Table 2-1 shows the International Technology Ro

for Semiconductors (ITRS) [39] projects the reachable absolute distance per cycle will increase by

times by 2010 for global RC wires. To make communication delay scale with transistors, designers

look beyond conventional wires.

Conventional RC Communication DelayRd Cr Cw+() p Rw

Cw

2
-------- Cr+

 + +=

TABLE 2-1. ITRS Projections for Conventional Global Wires

Year 2006 2007 2008 2009 2010

Technology (nm) 78 68 59 52 45

Reachable Distance per cycle (mm) 2.3 1.6 0.9 0.6 0.4

Delay / 10 mm (ns) 1.65 2.09 3.16 4.10 5.23

Minimum wire pitch (nm) 250 210 177 156 135

Intermetal dielectric constant () 2.7 2.4 2.4 2.2 2.2κ

cessi-

scales

ow-

dwidth

require

ubstrate

en [66]

using

ll, the

l inter-

capaci-

hows

ge,

s. For

80%

rassad,
14
2.1.2 Physical Requirements

Conventional global wire pitch scales relatively well, but their intermediate repeaters and latches ne

tate significant substrate area. Table 2-1 shows the minimum wire pitch of conventional global wires

well with transistor dimensions, with both shrinking by approximately 45% over the next five years. H

ever, as improving technology integrates more processor cores on chip, global interconnect ban

must increase. Furthermore, as frequency increases and wire dimensions decrease, global wires

higher repeater density. Frequently repeated global interconnect requires substantial dedicated s

area and thus cannot be routed over other large structure. For instance, Kumar, Zyuban, and Tulls

demonstrated for an eight processor CMP implemented in 65 nm technology, global interconnect

conventional wires consumes the equivalent die area of three IBM Power4-like [106] cores. Overa

substrate area dominates the physical requirements of conventional global interconnect.

2.1.3 Power Consumption

Due to large wire capacitance, dynamic power dominates the total power consumed by conventiona

connect. Conventional RC interconnect consumes dynamic power by charging and discharging the

tance of each wire segment from one voltage value to another. Specifically, Equation 2.3 s

conventional RC communication dynamic power equals the power required to change the voltaV,

across the wire’s total capacitance,C, for a given frequency,f, and data activity factor, [103]:

 (2.3)

Technology and microarchitecture innovations affect each term of Equation 2.3 to different degree

example, Intel’s Foxton technology [86] dynamically adjusts the voltage and frequency by 50% and

respectively to ensure the Montecito processor stays within its power and thermal envelope. Ramp

α

Conventional RC Communication Dynamic Powerα C V2 f×××=

ctor by

S [39]

only

2.3) to

elay.

nsmis-

years

How-

MOS

ck dis-

test

er-k

ill be

ements,

Going

s wires

naling
15
Shanbhag, and Hajj [90] present a source-coding framework that reduces the average activity fa

36% for address and data buses, resulting in a 36% reduction in dynamic power. In contrast, ITR

(Table 2-1) projects the intermetal dielectric constant (and wire capacitance) will

decrease by at most 23% over the next 5 years. Meanwhile, capacitance dependence on distance (d) cannot

be reduced. Consequently, wire capacitance remains the hardest dynamic power term (Equation

optimize for conventional global interconnect.

2.2 On-chip Transmission Line Communication

Transmission lines are an alternative wire technology with potentially lower communication d

Printed-circuit board and other off-chip wire technologies are commonly designed to behave as tra

sion lines [28]. Conversely, although on-chip transmission lines have been explored for over 20

[107], most on-chip wires using CMOS technology are designed to operate as lossy RC lines [112].

ever, with improving fabrication technology, on-chip transmission lines are starting to emerge in C

circuits. For example, several current high performance chips use 7.5 mm transmission lines for clo

tribution [80, 110, 117]. Longer (> 10 mm) transmission lines have been shown to work on CMOS

chips using very wide wires [21, 52] or low operating temperatures [31]. With the introduction of low

dielectrics [17] and increasing on-chip frequencies [47], more practical on-chip transmission lines w

available before the end of the decade. This section describes the propagation delay, physical requir

and power demands of on-chip transmission lines.

2.2.1 Propagation Delay

Ideally, the inductance-capacitance (LC) product of transmission line wires determine their delay.

back to the telegrapher’s equation (Equation 2.1), this means that the second, LC term dominate

with low resistance and high operating frequency. In other words, wave propagation determines sig

C κd Area⁄=

peed

line

a vac-

river to

t phe-

eter of

mpos-

f on-

rted by

capac-
16

speed [28]. Specifically, if signal frequency is greater than the cutoff frequency (), only the s

of light in the intermetal dielectric () limits signal speed, where equals the transmission

resistance, and depicts the transmission line inductance, represents the speed of light in

uum, corresponds to the intermetal dielectric’s relative dielectric constant [49].

The resistance across an on-chip transmission line attenuates the incident wave traveling from the d

receiver. In addition, the resistance is frequency-dependent due to the “skin effect”. The skin effec

nomenon arises because at high frequencies, magnetic repulsion forces current towards the perim

the conductor, thereby reducing the wire’s effective cross section. The higher frequency sinusoids co

ing a digital pulse cause the received signal to appear rounded and stretched out.

We utilized a two-dimensional field-solver program and circuit simulation to determine the delay o

chip transmission lines because simple equations cannot model the skin effect accurately. We sta

using Linpar [33], a two-dimensional field-solver program, to extract the inductance, resistance and

0.2R L⁄

c0 εr⁄ R

L c0

εr

Symbol Wave

D0:tr0:v(130)

D0:tr0:v(4)

Vo
lta

ge
s

(li
n)

-150m

-100m

-50m

0

50m

100m

150m

200m

250m

300m

350m

400m

450m

500m

550m

600m

650m

700m

750m

800m

850m

900m

950m

1

1.05

Time (lin) (TIME)
1.7n 1.75n 1.8n 1.85n 1.9n

DeltaX=5.38e-11 DeltaX=4.62e-11

rlkc transmission-line of 10 mm wire

FIGURE 2-1. Sample Output Waveform of a 10 mm On-chip Transmission Line

ICE to

smis-

simu-

itions.

latency

good

quire

sitate

ed the

l layers

rs, they

vias

ents. On

estion

n lines.

nk. To

minated

r full

while
17
itance characteristics of on-chip transmission lines. Using the resulting RLC matrices, we used HSP

simulate 5 GHz pulses travelling across the transmission lines [7]. Specifically, we modeled the tran

sion line’s frequency dependent attenuation with HSPICE’s W element transmission line model. We

lated four signal wires with shielding wires separating each of them under worst case signalling cond

For example, Figure 2-1 illustrates that a 10 mm on-chip transmission line achieves about a 50 ps

between the driver and receiver. The driver and receiver add an additional 110 ps of delay [21].

2.2.2 Physical Requirements

The on-chip transmission lines require wide metal pitch and dielectric spacing in order to achieve

incident wave propagation qualities. Specifically, due to their long length, transmission lines re

thicker and wider metal tracks to maintain low wire resistance. Additionally, transmission lines neces

thicker intermetal dielectrics to reduce their capacitance. While transmission line dimensions exce

dimensions proposed for future conventional interconnect, they actually compare to the upper meta

of previous high performance processors [16] and current silicon microwave chips [88].

Because transmission lines can quickly communicate across long distances without using repeate

facilitate more efficient layout. As previously mentioned, conventional RC communication requires

and substrate area to access repeaters that amplify a signal as it travels across multiple wire segm

the other hand, transmission lines do not require repeaters, and their lack of intermetal layer cong

and intermediate substrate area partially compensates for their greater routing dimensions.

We propose using single-ended voltage-mode signaling to communicate across on-chip transmissio

Single-ended voltage-mode signalling propagates voltage pulses across a single point-to-point li

reduce reflection noise across these relatively low loss transmission lines, we assumed source-ter

drivers with digitally-tuned resistance [28]. Receivers use a large input impedance termination fo

wave reflection of the received signal. This design allows for the signal to significantly attenuate

r this

area.

] lines

ripline

resis-

vides

uctive

cur-

and

ingle-

als the

pears

river is
18

travelling across the wire, while the receiver can still receive a full signal swing (Figure 2-1). Howeve

design does sacrifice noise immunity.

Single-ended voltage-mode signaling’s increased susceptibility to noise requires additional routing

To reduce the noise susceptibility, we propose using alternating power and ground shielding [57

between each transmission line (Figure 2-2). Also these transmission lines must be laid out in st

fashion with a reference plane both above and below the transmission line metal layer to provide low

tance return paths for inductive induced currents [87]. Laying out the lines in this manner not only pro

several individual low-resistive return paths, but also isolates each line from most capacitive and ind

cross-coupling noise. Additional enhancements such as low-swing differential signalling [119] and

rent-mode signalling [73] further improve noise immunity, but cost routing area, circuit complexity,

static power.

2.2.3 Power Consumption

Similar to conventional RC interconnect, dynamic power dominates the total power consumed by s

ended voltage-mode signaling. In voltage-mode transmission line signalling, the dynamic power equ

power required to create the incident wave (to the first-order). At the driver, the transmission line ap

as a resistor equal to the characteristic impedance of the line. Therefore, the power supplied by the d

TL Shield TL Shield TL Shield

FIGURE 2-2. Stripline Transmission Lines

ic

,

ower

uency.

ata. In

ower

educe

nce. In

-utilized
19
determined by voltage across its internal resistance,RD, in series with the transmission line’s characterist

impedance,Z0, for the duration of the signal pulse,tb [28]:

 (2.4)

For source-terminated transmission lines,RD = Z0, and for 50% duty cycle communication

. Thus, to the first-order, single-ended voltage-mode transmission line dynamic p

depends only on voltage, characteristic impedance, and the activity factor, and is independent of freq

Furthermore, these transmission lines only consume substantial power when actively transmitting d

contrast, low-swing differential signalling [119] and current-mode signalling [73] always consume p

for reference or bias voltages. Powering down these transceivers during periods of inactivity could r

their constant power consumption [96]. However, these complicated techniques sacrifice performa

this thesis, we assume single-ended voltage-mode transmission lines because they best match low

on-chip global signals.

Single-ended Voltage-mode Transmission Line Dynamic Powerα t× b
V2

RD Z0+()
--------------------------× f×=

tb 1 2 f×()⁄=

unica-

um-

rmance

eaters
20

2.3 Comparison: Conventional RC Wires versus On-chip Transmission Lines

2.3.1 Latency

On-chip transmission lines offer a 6-19 times latency improvement versus conventional RC comm

tion for global distances—4-10 mm—in 45 nm technology. Figure 2-3 plots the latency of minim

pitched global RC interconnect, RC interconnect with 3x minimum-pitched dimensions1, and on-chip

transmission lines across global distances. Transmission lines achieve such a tremendous perfo

improvement not only due to their faster signaling speed, but also their lack of intermediate rep

removes significant overhead compared to conventional RC interconnect.

1. Three times the minimum-pitch is often the largest permitted scale-up factor [104].

 0

 1

 2

 3

 4

 5

 6

 4 5 6 7 8 9 10

La
te

nc
y

(n
s)

Distance (mm)

RC min-pitch
RC 3x-pitch

Transmission Line

FIGURE 2-3. Latency Comparison

o con-

n wire

th ver-

s the

den-

stance

verall,
21

2.3.2 Bandwidth Density

On-chip transmission lines demand significantly wider wires and intermetal spacing as compared t

ventional communication. Figure 2-4 illustrates transmission lines require a substantial increase i

area versus conventional interconnect and Table 2-1 compares transmission line bandwidth per wid

sus conventional RC communication. Specifically, on-chip transmission lines sacrifice 36-57 time

bandwidth density versus minimum-pitch global RC communication and 12-38 times the bandwidth

sity versus 3x-pitch global communication. The degree of bandwidth density lost depends on di

because longer transmission lines require larger dimensions in-order to operate in the LC range. O

these projected transmission line dimensions compare to current test chips dimensions [21, 52].

1.5 um

SignalVDDSignalSignal

1.
75

 u
m

3.
0

um
3.

0
um

200 nm

VSS

1.5 um

VSS

70 nm

���
���
���

���
���
���

Reference Plane

Reference Plane

10 mm
Transmission Line

Conventional RC

Conventional RC

3x−pitch

min−pitch

FIGURE 2-4. Cross-sectional Wire Comparison

e less

e sees

than
22

2.3.3 Dynamic Power

For long global on-chip communication, source-terminated voltage-mode transmission lines consum

dynamic power than conventional RC interconnect. By comparing Equation 2.3 to Equation 2.4, on

that when , source-terminated transmission lines will consume less dynamic power

conventional interconnect. Figure 2-5 graphically shows for a 5 GHz clock frequency, this relationship

TABLE 2-1. Bandwidth Density Comparison

Wire Type Width Spacing Height Thickness
Normalized
Bandwidth

Density

min-pitch RC 35 nm 35 nm 70 nm 70 nm 1

3x-pitch RC 105 nm 105 nm 200 nm 200 nm 0.33

TL (9 mm) 1.25 m 1.25 m 1.75 m 3.0 m 0.056

TL (10 mm) 1.50 m 1.50 m 1.75 m 3.0 m 0.047

TL (11 mm) 1.75 m 1.75 m 1.75 m 3.0 m 0.040

TL (13 mm) 2.00 m 2.00 m 1.75 m 3.0 m 0.035

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

 0

 5

 10

 15

 20

 4 5 6 7 8 9 10

P
ow

er
 (

m
W

)

Distance (mm)

RC min-pitch
RC 3x-pitch

Transmission Line

FIGURE 2-5. Dynamic Power Comparison

tb 2 Z0×()⁄ C<

rlap

ation,

edia.

stead

bove

t. Both

hip

logies,

, but

uni-

tched

Mul-

om-

n is

tercon-

ation’s

y

23
holds for global links beyond ~5 mm in length. (Note the RC min-pitch and RC 3x-pitch lines ove

because both have nearly the same capacitance and use the same repeater sizing rules [10])

2.4 Attractive Alternative Technologies

On-chip transmission lines are not the only technology to provide ultra-fast cross-chip communic

package level [9, 30, 29] and optical [23, 54, 60, 79] interconnects offer attractive alternative fast m

Package-level interconnect, like on-chip transmission lines, utilize transmission line signalling, but in

of implementing the wires within the on-chip metal layers, they utilize wires in a die-sized substrate a

the processor die. The major advantage of package-level transmission lines is manufacturing cos

Wafer Level Package (WLP) [9] and Multi-chip Module (MCM) [29, 30] technology provide cross-c

transmission line propagation without adding costly die manufacturing steps. However, both techno

sacrifice at least twice the bandwidth density as compared to on-chip transmission lines.

Similarly, optical communication [23, 54, 60, 79] offers near speed-of-light communication latency

their waveguide requirements and power consumption limit their applicability. On-chip optical comm

cation relies on approximately 1 m wavelength light propagating through an approximate 4 m-pi

on-chip waveguide. While these waveguide sizes are twice that of transmission lines, Wave Division

tiplexing (WDM) may provide higher bandwidth density than even conventional RC interconnect for c

munication links greater than 5 mm [23, 60]. Another current limitation of optical communicatio

power. Current optical transmitters consume more than 20 times the power than conventional RC in

nect [23]. However, future technology enhancements may substantially reduce optical communic

power consumption. Specifically, Chenet al. [23] project optical communication will consume less energ

than conventional RC communication for 10 mm links in 45 nm technology.

µ µ

on-

sed in

f-light,

nal RC

educ-

ectural

n lines

ibutions
24
2.5 Summary

While only time will tell what wire technology will be integrated into future CMPs, the deficiency of c

ventional wires communicating long distances is clear. All potential replacement technologies discus

this section have the same general characteristics. All offer communication latency near the speed-o

none require intermediate vias or repeaters, and all offer potential power savings versus conventio

communication for long distances. However, all suffer from different degrees of bandwidth density r

tion, greater integration complexity, and higher manufacturing cost. Chapter 7 focuses on the archit

implications of these technologies with a specific focus on single-ended voltage-mode transmissio

because they have attained the most success in test chips. However, many of the Chapter 7’s contr

apply to all mentioned alternative communication technologies.

25

Chapter 3
cusses

erfor-

Cache

y and

aniza-

. Cur-

indi-

into

omes a

inde-

m cache

]. Kim

A)

dress-
Global Wires and Large On-chip Caches

This chapter investigates wire technology’s impact on large on-chip caches. First, Section 3.1 dis

how the growing disproportionate relationship between on-chip wire performance and transistor p

mance increases cache partitioning. Then, Section 3.2 uses a simple analytic model, called the

Investigative Model (CIM) to demonstrate how partitioning and wire technology affects cache latenc

bandwidth. Finally, Section 3.3 introduces equations that relate the two baseline CMP cache org

tions—shared and private—with overall memory system performance.

3.1 Wire Delay and Cache Partitioning

Both localized (< 1 mm) and global (> 1 mm) wire delays impact the design of large on-chip caches

rently level-2/level-3 on-chip caches are divided into multiple banks and sub-arrays to optimize the

vidual bank’s area/delay tradeoff [64, 78]. In the future, large on-chip caches will be partitioned

smaller banks so that local wires [113] match increasing SRAM density [8].

As cache organizations move towards smaller banks, global wire delay between cache banks bec

more dominant performance bottleneck. Currently, designers split large caches into 3 [53] to 4 [63]

pendently addressable cache banks and use a crossbar to provide the on-chip processors unifor

access time. However, crossbar latency and bandwidth will not scale to future generation CMPs [66

et al. [58] addressed this problem by defining a family of Non-Uniform Cache Architecture (NUC

designs. Similar to Figure 3-1, all practical NUCA designs assume a 2D array of independently ad

ith each

ssing.

l wire

band-

atency.

102],

gura-

ssion

width
26

able cache banks accessed via a switch interconnect. Thus, cache access latency is non-uniform w

on-chip processor observing varying latency depending on the distance to the cache bank it’s acce

The optimal NUCA network configuration depends on the relationship between cycle time and globa

latency and bandwidth. For example, conventional RC wires provide relatively high latency and

width. Assuming an aggressive 8 FO4 cycle time [47] for the 45 nm technology, Kimet al. [58] deter-

mined a 256 banked NUCA cache provided the optimal balance between intra-bank and inter-bank l

However, due to recent studies advocating that power constraints will limit future frequency scaling [

We assume a slower 20 FO3 [38] cycle time. The slower frequency moves the optimal NUCA confi

tion using conventional RC interconnect to a design with fewer banks. Additionally, on-chip transmi

lines further move the optimal NUCA configuration to even fewer partitions because their lower band

density limits network connectivity.

L1
I $
L1

D$
L1

I $
L1

D$

L
1

I $ L
1

D
$

L
1

I $ L
1

D
$

L
1

I $L
1

D
$

L
1

I $L
1

D
$

CPU 7

L1
I $ D

L1
$

L1
I $

L1
D$

CPU 6C
P

U
 0

C
P

U
 1

CPU 2 CPU 3 C
P

U
 4

C
P

U
 5

FIGURE 3-1. NUCA Cache Network for an 8 Processor CMP

lobal

obal

nves-

aver-

cache

e 3-2).

ork from

hes are

e aver-
27

The next section illustrates this relationship between the optimal NUCA network configuration and g

wire latency and bandwidth using a high-level analytic model.

3.2 CIM: Cache Investigative Model

This section provides a closed Approximate Mean Value Analysis (AMVA) model to illustrate the gl

wire’s impact on the optimal cache design. The model, called the Cache Investigative Model (CIM), i

tigates how cache bank partitioning in conjunction with global wire latency and bandwidth affects the

age access time of a large on-chip cache. CIM does not strive to accurately predict the actual

performance, but instead CIM captures the high-level cache design tradeoffs.

CIM uses three queuing centers and one delay center to model a simplified cache network (Figur

The three queuing centers represent the network from the processors to the cache banks, the netw

the cache banks back to the processors, and the actual cache banks. All network links and switc

assumed to be fully pipelined. Therefore, the service time for the network queuing centers equals th

toNetwork cacheBanks fromNetwork

Processors

pa
ra

lle
l b

an
ks

pa
ra

lle
l li

nk
s

pa
ra

lle
l li

nk
s

FIGURE 3-2. Diagram of the Cache Investigation Model

enters

he delay

th, the

ocessor

ndwidth

losed

Equa-

sidence

-

r

k,
28
age number of link-switch pairs traversed times two. The service time for the cache bank queuing c

equals the bank access time. CIM assumes a uniform demand for the networks and cache banks. T

center approximates the time between processor cache requests.

The model’s customers represent round-trip cache messages. To account for writeback bandwid

number of customers equals the number of processors multiplied by the maximum requests per pr

times 2. Since the bandwidth required by a request and subsequent response is similar to the ba

required by a writeback and subsequent acknowledgement, CIM treats them equivalently. CIM’s c

model captures the dependence between cache access time and throughput.

CIM’s overall goal is determining the average cache access latency of a large multi-banked cache.

tion 3.1 shows that the average cache access latency equals the summation of the calculated re

times at the three service centers:

 (3.1)

Equation 3.2 determines the residence time at each service center:

 (3.2)

WhereDk equals the inputted service time of the delay or queuing center andAk equals the calculated aver

age number of customers seen at center k when a new customer arrives [68]. Specifically,Dprocessorequals

the average think time at the processor delay center,DtoNetworkandDfromNetworkequal the average numbe

of link and switch pairs crossed (avg. # of link-switch pairs) to/from the processor from/to the cache ban

andDcacheBank equals the average bank access time.

Average Cache Access LatencyRtoNetwork RcacheBanks RfromNetwork+ +=

Rk

Dprocessor (processor delay center)

Dk 1 Ak+() (queuing centers)

=

r,

,

ations
29
Equation 3.3 estimatesAk using the calculated average number of customers at each queuing centeQk,

and N equals the inputted total number of customers:

 (3.3)

Equation 3.4 applies Little’s Law to the whole queuing network to compute total system throughput X:

 (3.4)

Wherek ranges through allK service centers including the processor delay center.

Equation 3.5 applies Little’s law to each queuing center individually to calculateQk:

 (3.5)

Then, the AMVA model iterates between Equation 3.2 through Equation 3.5 until successive calcul

of Qk agree within a tolerance of 0.1%.

Finally, Equation 3.6 presents the average time between processor requests:

 (3.6)

, wherek ranges only through theJ queuing centers,

Ak
N 1–

N
------------- Qk=

X N

Rk
k

K

∑
---------------=

Qk X Rk=

Average Time Between Processor Requests
Dprocessor

N Qk
k

J

∑–

-----------------------------=

y under

, aver-

There-

tency

putted

etween

re wide

of each

r,
30

Equation 3.7 provides the saturation point whereDmaxequals the maximum ofDprocessor, DtoNetwork, and

DfromNetwork, using the inputted number of parallel servers.

 (3.7)

3.2.1 CIM: Cache Partitioning

This subsection demonstrates how increasing CMP cache partitioning affects cache access latenc

high bandwidth demands. Specifically, for a level-2 CMP cache servicing eight on-chip processors

age inter-arrival times for L2 requests can be as low as 2 cycles for bursts as long as 1000 cycles.

fore, the number of customers (N) vary between 2 and 256 in-order to analyze average cache access la

(Equation 3.6) under periods of high demand. The non-shaded rows of Table 3-1 present CIM’s in

parameters for an eight-processor CMP cache partitioned into 8 to 256 cache banks. The network b

processors and banks represents the average number of links-switch pairs traversed where links a

enough to transmit any message in a single cycle. Increasing bank partitioning reduces the size

individual bank, and thus bank service time (Dbank) deceases from 20 cycles to 4 cycles [1]. Howeve

 Satruation point
Dmax

of parallel servers
--=

TABLE 3-1. CIM: Cache Bank Partitioning Parameters

Parameter 8
Banks

16
Banks

32
Banks

64
Banks

128
Banks

256
Banks

Parallel Links 8 8 8 8 8 8

Avg. # of link-switch pairs 3 3 4 4 5 5

Dbank (cycles) 20 15 12 9 6 4

Dprocessor (cycles) 100 100 100 100 100 100

N 2-256 2-256 2-256 2-256 2-256 2-256

Saturation pt. (cycles) 2.5 0.94 1.0 1.0 1.25 1.25

31

om

s and

e versus

ycles—

ank con-

e cache

64 bank

uration

point of
more banks increase theaverage number of link-switch pairstraversed between processors and banks fr

3 to 5.

CIM’s investigation of cache partitioning exhibits the balance between the number of cache bank

average cache access time. For each cache design, Figure 3-3 plots the average cache access tim

bandwidth demand. Under high bandwidth demand—average time between requests less than 8 c

the 8 bank configuration encounters a dramatic increase in average cache access latency due to b

tention. In contrast, the other bank configurations encounter less than 15% increase in their averag

access latency until the average time between requests reaches 4 cycles. Between 2-4 cycles, the

configuration achieves the lowest latency. Also the bottom shaded row of Table 3-1 presents the sat

point for each cache design. All cache designs except for the 8-banked design achieve a saturation

1.25 cycles or less.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

A
vg

. C
ac

he
 A

cc
es

s
La

te
nc

y
(c

yc
le

s)

Avg. Time Between Requests (cycles)

8 Banks
16 Banks
32 Banks
64 Banks

128 Banks
256 Banks

FIGURE 3-3. CIM: Cache Partitioning -
Cache Access Time vs. Bandwidth Demand

access

a 64-

t inter-

onnect

ip trans-

eters.

h con-

eased

ion to

ccupy

erse 4
32

3.2.2 CIM: Wire Technology

This sub-section demonstrates on-chip communication innovations will improve average cache

latency unless bandwidth limitations become a bottleneck. Specifically, the sub-section compares

banked cache using wide and slow interconnect (wide-slow) to a 64-banked cache using thin and fas

connect (thin-fast). The wide-slow configuration approximates a cache using conventional RC interc

and the thin-fast configuration approximates a cache using an advanced technology such as on-ch

mission lines. The non-shaded rows of Table 3-2 break down the two configurations’ input param

Due to the fact CIM ignores many details, the model cannot accurately recreate the high inter-switc

tention that exists in the thin-fast network. Therefore, in order to reproduce the thinner network’s incr

bandwidth contention, the parallel links parameter reduces from 8 links for the wide-slow configurat

3 links for the thin-fast configuration. Though thin-fast links provide single cycle latency, messages o

the links for 5 cycles because of their limited bandwidth. In comparison, wide-slow messages trav

link-switch pairs on average, but only occupy the links for a single cycle.

TABLE 3-2. CIM: Wire Technology Parameters

Parameter Wide-Slow Thin-Fast

Parallel Links 8 5

Avg. # of link-switch pairs 4 1

Link + switch latency (cycles) 1 + 1 5 + 1

Dbank (cycles) 9 9

Dprocessor (cycles) 100 100

N 2-256 2-256

Saturation pt. (cycles) 1.0 2.0

rfor-

access

ile the

en pro-

w as 22

cycles.

ide-

e, and

config-

ache

nce.
33

CIM’s investigation of wire technology indicates advanced wire technology will improve cache pe

mance until bandwidth demand exceeds a certain threshold. Figure 3-4 plots the average cache

latency of both the wide-slow and thin-fast cache configurations versus bandwidth demand. Wh

wide-slow configuration provides a consistent 26 cycle access latency until the average time betwe

cessor requests reduces below 10 cycles, the thin-fast configuration attains access latency as lo

cycles, but its latency significantly increases as the average time between requests shrinks below 15

Therefore, under periods of low bandwidth demand, the thin-fast configuration will outperform the w

slow configuration. However, high bandwidth demand diminishes thin-fast’s performance advantag

extreme bandwidth demand causes the thin-fast configuration to perform worse than the wide-slow

uration.

Replacing wide and slow wires with thinner and faster wires is not the only way to improve CMP c

access latency. The next section discusses how CMP cache organization can also impact performa

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

A
vg

. C
ac

he
 A

cc
es

s
La

te
nc

y
(c

yc
le

s)

Avg. Time Between Requests (cycles)

Wide-Slow
Thin-Fast

FIGURE 3-4. CIM: Wire Technology -
Cache Access Time vs. Bandwidth Demand

iously,

barely

onse-

equa-

ncy to

uences

rmance.

the on-

ss in the

ote L1

gories:

ormal-

,

34
3.3 Cache Organization and Memory System Performance

This section focuses on how CMP cache organization impacts memory system performance. Prev

Section 3.2 showed moderate bandwidth demand (> 10 cycles between processor requests)

impacted cache access latency for highly partitioned caches (64 banks) utilizing wide links. C

quently, when modelling caches using thin and fast links, first-order memory system performance

tions provide insight by just considering latency. This section relates average cache access late

overall memory system performance for both a shared and private CMP cache design. The conseq

of these models illustrate how variations in cache latencies and usage affect memory system perfo

3.3.1 Shared CMP Cache

The shared CMP cache organization [32, 62] assumes each processor has private L1 caches, while

chip L2 cache is shared among all processors. Ignoring cache coherence details, requests that mi

local L1 cache are sent to the shared L2 cache where the request could hit, be forwarded to rem

caches, or be sent off-chip. For a CMP utilizing a shared cache, memory requests split into four cate

local L1 cache hits, remote L1 hits, L2 cache hits, and off-chip misses. Equation 3.8 presents the n

ized memory cycles per instruction for a shared CMP cache organization. In Equation 3.8,Px is the proba-

bility of a memory request being satisfied by the entityx, wherex is a local L1 cache, a remote L1 cache

the shared L2 cache, or main memory andLx equals the latency of each entity.

 (3.8)

Assuming uniform utilization of L2 cache banks,LL2 equals the average L2 cache access latency.

≥

Shared Cache
Memory Cycles

Instruction

PlocalL1 LlocalL1×() PremoteL1 LremoteL1×() PL2 LL2×() Pmiss Lmiss×()+ + +

Instructions
--=

equests

rded to

uests

s, and

CMP

st

ote

uation
35
3.3.2 Private CMP Caches

The private CMP cache organization assumes each processor has both private L1 and L2 caches. R

that miss in the local L1 cache are sent to the local L2 cache where the request could hit, be forwa

remote L1 and L2 caches, or be sent off-chip. For a CMP utilizing private L2 caches, memory req

split into five categories: local L1 cache hits, remote L1 hits, local L2 cache hits, remote L2 cache hit

off-chip misses. Equation 3.9 presents the normalized memory cycles per instruction for this private

cache organization. Similar to Equation 3.8,Px in Equation 3.9 is the probability of a memory reque

being satisfied by the entityx, wherex is a local L1 cache, a remote L1 cache, a local L2 cache, a rem

L2 cache, or main memory andLx equals the latency of each entity.

 (3.9)

In general, when comparing the shared cache equation (Equation 3.8) with the private cache eq

(Equation 3.9), one can suspect similar L1 cache terms, but Equation 3.8’sLL2 term will be approximately

2x Equation 3.9’sLlocalL2 term and only slightly less than Equation 3.9’sLremoteL2term. However, to com-

pensate for it’s slower latency, the shared cache can expect Equation 3.8’sPL2 term to be roughly 1.2x the

sum of Equation 3.9’sPlocalL2 andPremoteL2terms depending on the workload.

Next, Chapter 4 discusses how migration and replication can improve the relationship betweenPlocalL2,

PremoteL2, andPmissby exploiting workload behavior.

Private Cache
Memory Cycles

Instruction

PlocalL1 LlocalL1×() PremoteL1 LremoteL1×()+

Instructions
--- +=

PlocalL2 LlocalL2×() PremoteL2 LremoteL2×() Pmiss Lmiss×()+ +

Instructions
--

ance.

ncy and

cache

global

ch to

next

cache
36
3.4 Summary

This chapter illustrated how wire technology and cache organization affects memory system perform

The chapter showed cache partitioning reduces local wire delay’s impact on cache bank access late

improves cache bandwidth. However, as cache partitioning increases, global wire delay between

banks becomes a more dominant performance bottleneck. Advances in wire technology will reduce

wire latency, but high bandwidth demands will diminish their latency advantage. A different approa

managing wire latency relies on exploiting workload behavior via migration and replication. The

chapter discusses how migration and replication reduces latency with both a shared and private CMP

hierarchy.

37

Chapter 4
delay.

CMP.

n and

anding

odel

es that

ing all

cy sig-

ection

9 pro-

iming

ng the

scribes

arks

). To

hput
Exploiting Workload Behavior

This chapter demonstrates the potential of exploiting workload behavior to reduce on-chip wire

First, Section 4.1 characterizes commercial and scientific workload behavior for an 8-processor

Then, Section 4.2 and Section 4.3 present analytical models describing how cache block migratio

replication impact memory system performance. These abstract models provide high-level underst

of the interaction between workload behavior and migration/replication. For instance, the migration m

shows that inter-processor sharing limits migration’s benefit, and the replication model demonstrat

selectively replicating frequently requested blocks provides better performance than naively replicat

shared blocks. Furthermore, the replication model illustrates that cache capacity and memory laten

nificantly impact the optimal amount of replication.

4.1 Characterizing Sharing Types

In order to investigate the performance impact of migration and replication in a CMP cache, this s

focuses on understanding workload behavior. Specifically, this section examines an eight SPARC V

cessor CMP using the full system simulator Simics [72] extended with the GEMS memory system t

model [75]. Each processor’s L1 caches are split and store 64 KB with 4-way set associativity. Runni

Solaris 9 operating system, both commercial and scientific workloads are evaluated. Table 4-1 de

the four studied commercial workloads. The four scientific workloads include two SpecOMP benchm

[6]: Apsi and Art and two Splash2 benchmarks [115]: Barnes (128k-particles) and Ocean (

address multithreaded workload variability [3], all workload evaluations use a work-related throug

514 514×

plash2

loads

Instead,

r than
38

metric. Thus for the commercial workloads, run lengths equal transactions completed and for the S

workloads, runs completed after the warm-up period indicated in Table 4-2. For the SpecOMP work

using the reference input sets, runs were too long to be completed in a reasonable amount of time.

these loop-based benchmarks were split by main loop completion. Thus throughput metrics, rathe

TABLE 4-1. Workload Descriptions

Static Web Serving: Apache.We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locks and
minimal logging as the web server. We use SURGE [11] to generate web requests. We use a repository of
20,000 files (totalling ~500 MB), and disable Apache logging for high performance. We simulate 3200 clients
each with 25 ms think time between requests, and warm-up for ~2 million requests.

Java Server Workload: SPECjbb.SPECjbb2000 is a server-side java benchmark that models a 3-tier system,
focusing on the middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our experiments
use 1.5 threads and 1.5 warehouses per processor, a warm-up interval of 200,000 transactions, a data size of
~44 MB.

Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload.The TPC-C benchmark models
the database activity of a wholesale supplier, with many concurrent users performing transactions. Our OLTP
workload is based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management system. We
use a 5 GB database with 25,000 warehouses stored on eight raw disks and an additional dedicated database log
disk. We reduced the number of districts per warehouse, items per warehouse, and customers per district to
allow more concurrency provided by a larger number of warehouses. There are 128 simulated users, and the
database is warmed up for 100,000 transactions before taking measurements.

Static Web Serving: Zeus.Zeus is another static web serving workload driven by SURGE. Zeus uses an event-
driving server model. Each processor of the system is bound by a Zeus process, which is waiting for web serving
event (e.g., open socket, read file, send file, close socket, etc.). The rest of the configuration is the same as
Apache (20,000 files of ~500 MB total size, 3200 clients, 25 ms think time, ~2 million requests for warm-up).

TABLE 4-2. Evaluation Methodology

Benchmark Fast Forward Warm-up Executed

Commercial Workloads (unit = transactions)

apache 500000 2000 1000

jbb 1000000 15000 10000

oltp 100000 300 200

zeus 500000 2000 2000

Scientific Workloads (unit = billion instructions)

apsi 89 4.6 loop completion

art 121 3.2 loop completion

barnes 17.3 1.9 run completion

ocean None 2.4 run completion

hapter

s, the

from

ith 16-

es run

refore,

com-

he.

is dis-

s-

cache

plica-
39

IPC, measure workload performance. Finally, the workload characterization data presented in this c

is based on five runs of each workload.

The workload analysis focuses on the behavior of cache blocks during their on-chip lifetime; that i

interval from when a miss brings a block on chip until it is replaced. To isolate the sharing activity

access latency, the simulation model assumes a single-banked 16 MB inclusive shared L2 cache w

way associativity and a uniform access time. To mitigate cold start effects, all workloads except Barn

long enough so that L2 cache misses outnumber physical L2 cache blocks by at least 4 times. The

most blocks are profiled at the completion of theirL2 cache lifetimes, i.e. when they are evicted from the

L2 cache, but some blocks have very long L2 cache lifetimes and are profiled when the simulation

pletes. Table 4-3 shows the percentage of L2 blocks profiled when they are evicted from the L2 cac

The cost and benefit of migration and replication depend on the cache block’s sharing behavior. Th

sertation identifies three distinct sharing types: 1.Single Requestorblocks are accessed by a single proce

sor, 2.Shared Read-Onlyblocks are read, but not written, by multiple processors, and 3.Shared Read-

Write blocks are accessed by multiple processors, with at least one write. Assuming a private CMP

using a broadcast protocol, single requestor blocks benefit from migration, but cannot benefit from re

TABLE 4-3. Percentage of Cache Blocks Profiled at L2 Eviction

Benchmark % Profiled at L2 Eviction

apache 94%

jbb 82

oltp 85

zeus 92

apsi 81

art 99

barnes 61

ocean 97

read-

ctions

rder to

charac-

ns.

h sharing

een the

ds (42-

ds to

loads

er five
40

tion. Shared read-only and shared read-write blocks can benefit from both, but replicating shared

write data will incur extra delay on writes due to coherence invalidations.

Within a CMP cache, each of these three sharing types exhibit distinct behavior. The following subse

begin by identifying the request, capacity, and sharing behavior of the three sharing types. Then, in o

provide the details required by the models in Section 4.2 and Section 4.3, the section concludes by

terizing the three sharing type’s request locality, working set size, and probability distribution functio

4.1.1 Requests

To understand the usage of L2 cache blocks, this subsection analyzes the requests satisfied by eac

type. The subsection shows the percentage of requests to each sharing type varies significantly betw

workloads. Table 4-4 shows that shared read-only requests dominate the four commercial workloa

71% of requests), while Art and Barnes (44% and 74% respectively) are the only scientific workloa

make more than 1% of its requests to shared read-only blocks. Additionally, the commercial work

Apache, Oltp, and Zeus, issue many requests to shared read-write blocks (25-43%), while the oth

TABLE 4-4. L2 Cache Request Profile

Bench

Single Requestor Shared Read-Only Shared Read-Write

% of
Requests

Avg.
Active
Time

(M cycles)

Avg.
Requests
/ Block

% of
Requests

Avg.
Active
Time

(M cycles)

Avg.
Requests
/ Block

% of
Requests

Avg.
Active
Time

(M cycles)

Avg.
Requests
/ Block

apache 13% > 1 2 44% 8 44 43% 5 12

jbb 57 2 4 42 12 42 1 9 32

oltp 4 1 2 71 11 104 25 7 18

zeus 20 > 1 2 55 6 64 26 3 8

apsi > 99 2 4 < 1 1 9 < 1 2 39

art 56 4 14 44 8 28 < 1 13 22

barnes 20 30 7 74 120 330 7 87 8

ocean 94 7 5 1 3 11 5 15 47

ccount

 rest.

tive life-

active

lar L2

uest to

erage

d read-

sts in

com-

loads

y bias

4% of
41

workloads issue no more than 7% of shared read-write requests. Finally, single-requestor blocks a

for nearly all the requests by Apsi and Ocean, nearly half for Jbb and Art, and relatively little for the

The high percentage of shared read-only requests causes shared read-only blocks to have longer ac

times and higher average utilizations than the other block types. In particular, Table 4-4‘s average

time columns display the average number of cycles between the first and last request to a particu

block. Meanwhile, Table 4-4‘s average requests per block columns show the average number of req

a particular L2 block. Across practically all workloads, shared read-only blocks exhibit the longest av

active lifetimes and highest average requests, while shared read-write blocks rank between share

only blocks and single requestor blocks. Though single requestor blocks satisfy a majority of reque

certain workloads, they average only 2-14 requests during their on-chip lifetimes.

In terms of L2 request types, the commercial and scientific workloads exhibit distinct behavior. For

mercial workloads, Figure 4-1 indicates that single requestor requests roughly evenly split between

and stores. In contrast, for all scientific workloads except Apsi, single requestor requests highl

towards loads. For the commercial workloads, instruction fetches contribute between 58% to 8

0

20

40

60

80

100
%

 o
f

R
e
q
u
e
st

 T
y
p
e

Stores
Loads
Instrs.

1 R W
apache

1 R W
jbb

1 R W
oltp

1 R W
zeus

1 R W
apsi

1 R W
art

1 R W
barnes

1 R W
ocean

FIGURE 4-1. L2 Cache Shared Requests Breakdown
(1: Single Requestor, RO: Shared Read-only, RW: Shared Read-write)

read-

n split

hared

s must

ork-

city con-

ests, sin-

uestor

Apsi,

ely little

alloca-

ibution,

y com-
42

shared read-only requests, while for the scientific workloads, loads account for the majority of shared

only requests. Finally, for the commercial workloads, shared read-write requests exhibit an eve

between loads and stores, while for the scientific workloads, loads contribute at least 59% of all s

read-write requests. By combining the data of Table 4-4 with Figure 4-1, one observes CMP cache

manage commercial workload’s large instruction footprints to improve performance, while scientific w

load performance improvement more closely depends on reducing load latency.

4.1.2 Cache Capacity

To understand the cache pressure placed on the L2 cache, this subsection analyzes the cache capa

sumed by each sharing type. The subsection demonstrates that though shared data dominates requ

gle-requestor blocks consume the majority of the cache capacity. Table 4-5 shows that single-req

blocks account for over 50% of average L2 cache capacity for all workloads and over 90% for Jbb,

Barnes, and Ocean. In comparison, shared read-only and shared read-write data consume relativ

capacity, with the maximum being less than 50%. Table 4-5 also presents the percentage of block

tions for each sharing type. While the average percentage of capacity indicates cache storage distr

the percentage of allocations correlates to the number of off-chip requests for each sharing type. B

TABLE 4-5. L2 Cache Capacity and Allocation Profile

Single Requestor Shared Read-Only Shared Read-Write

Benchmark Avg. % of
Capacity

% of
Allocations

Avg. % of
Capacity

% of
Allocations

Avg. % of
Capacity

% of
Allocations

apache 51% 63% 21% 8% 28% 29%

jbb 91 93 9 7 < 1 < 1

oltp 53 48 20 18 27 35

zeus 72 76 11 5 16 19

apsi > 99 > 99 < 1 < 1 < 1 < 1

art 77 74 24 26 < 1 < 1

barnes 92 73 4 6 3 22

ocean 99 99 < 1 < 1 1 1

capacity

ercial

pacity.

ingle

in pri-

long L2

ree of

he next

espe-

work-

to the

arers for

apac-

to 4.5

crease

alance

.

read-

ntrast,

costly

shared
43
paring the capacity and allocations columns, one observes allocations match or exceed consumed

for all sharing types except shared read-only data in commercial workloads. Instead, for these comm

workloads, shared read-only data allocations are significantly lower relative to their consumed ca

This reduction is due to the fact that shared read-only L2 block lifetimes are twice as long as s

requestor blocks and at least 20% longer than shared read-write blocks. Replicating shared blocks

vate caches to reduce access latency is attractive, since they are accessed frequently and have

cache lifetimes yet consume relatively little cache capacity.

4.1.3 Sharing Behavior

While replicating shared read-only data is attractive, blind replication is dangerous, since the deg

sharing suggests that the capacity could increase significantly. Table 4-6 shows the probability that t

processor to request a L2 block usually differs from the last requesting processor. This behavior is

cially true for shared read-only blocks where the different requestor probability exceeds 0.83 for all

loads except Barnes. Therefore, replicating rather than migrating shared read-only data close

multiple requesting processors appears advantageous. However, the high average number of sh

shared read-only data indicates allowing all replication will significantly reduce the effective cache c

ity. Specifically, shared read-only blocks in Apache, Jbb, Oltp, Zeus, and Art are requested by 3.0

processors, on average, during their on-chip cache lifetime. Fully replicating these blocks could in

the effective working set by 25-74%. Therefore, for shared read-only blocks, CMP caches must b

replication’s on-chip latency reduction benefit with replication’s decrease of effective cache capacity

In comparison, replicating shared read-write data is less advantageous. Allowing multiple shared

write copies permits faster read latency by moving shared copies close to multiple processors. In co

storing a single shared read-write block facilitates quicker cache-to-cache transfers by reducing

coherence invalidations. Table 4-6 displays shared read-write blocks are shared less widely than

d fre-

nts the

e aver-

essors

l work-

rvening

replica-

while

ulative

terest-

ally,

single

single
44

read-only blocks. However, for the commercial workloads, shared read-write blocks are still share

quently enough that their next requestor is likely not to be their last requestor. Also, Table 4-6 prese

average run lengths of these blocks. Inspired by Eggers and Katz write run characterization [34], th

age run length is the average combination of reads to a L2 block between writes from different proc

and remote reads to a L2 block between writes from the same processor. For the three commercia

loads that issue many shared read-write requests—apache, oltp, and zeus—, only 1.1-1.3 inte

requests occur between writes. Thus, for the evaluated workloads, allowing shared read-write data

tion appears less advantageous.

4.1.4 Request vs. Cache Block Locality

Fortunately, shared read-only blocks exhibit strong locality, especially for commercial workloads,

single requestor and shared read-write blocks demonstrate less locality. Figure 4-2 plots the cum

distribution of single requestor requests across the cumulative percent of single requestor blocks. In

ingly, three of the four commercial workloads exhibit little locality for single requestor data. Specific

the top 20% of single requestor blocks in OLTP, Apache, and Zeus account for less than 60% of the

requestor requests. The scientific workloads demonstrate more locality, with the top 20% of

TABLE 4-6. L2 Cache Block Sharing Behavior

Shared Read-Only Shared Read-Write

Benchmark Different
Requestor Prob.

Avg. # of
Sharers

Different
Requestor Prob.

Avg. # of
Sharers Run Length

apache .90 3.6 .61 2.8 1.2

jbb .91 3.4 .62 2.4 1.1

oltp .83 4.5 .53 3.6 1.4

zeus .88 3.0 .56 2.3 1.3

apsi .91 7.2 .58 2.7 1.5

art .85 3.0 .25 2.3 3.1

barnes .66 3.2 .41 2.1 4.2

ocean .83 4.7 .36 2.1 4.6

er, fur-

s, and

re 4-3

t distri-
45

requestor blocks in Art, Barnes, and Ocean satisfying 55-80% of single requestor requests. Howev

ther observation reveals the data footprint of the top 20% of single requestor blocks in Art, Barne

Ocean is at least 3 MB.

In contrast, shared read-only data displays tremendous locality in the commercial workloads. Figu

plots the cumulative percent distribution of shared read-only requests across the cumulative percen

20 40 60 80 100
Cum. % of Single Requestor Blocks

0

20

40

60

80

100

C
u

m
.

%
 o

f
S

in
g

le
 R

eq
u

es
to

r
R

eq
u

es
ts

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-2. Request to Block Distribution: Single Requestor Data

20 40 60 80 100
Cum. % of Shared R Only Blocks

0

20

40

60

80

100

C
u

m
.

%
 o

f
S

h
ar

ed
 R

 O
n

ly
 R

eq
u

es
ts

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-3. Request to Block Distribution: Shared Read-only Data

46

over

als the

Due

duce

uestor

-60%

tageous

he lack

s, this
bution of shared read-only blocks. For all commercial workloads, the top 20% of blocks account for

90% of requests and the top 3% of blocks account for over 70% of requests. Further observation reve

data footprint of the top 3% of shared read-only blocks in JBB, OLTP, and Zeus is only 100-300 KB.

to their small footprints, selectively replicating only the most frequently requested blocks can re

shared read-only request latency without risking significantly decreasing effective cache capacity.

Finally, Figure 4-4 reveals shared read-write data have locality characteristics between single req

data and shared read-only data. The top 3% of shared read-write blocks (1 KB-1 MB) account for 20

of shared read-write requests. Therefore, selectively replicating shared read-write data is less advan

than selectively replicating shared read-only data. Also, as previously discussed in Section 4.1.3, t

of intervening reads between writes does not justify replicating shared read-write data.

Because shared read-only data exhibit tremendous locality and don’t suffer coherence invalidation

dissertation focuses on selectively replicating shared read-only blocks.

20 40 60 80 100
Cum. % of Shared RW Blocks

0

20

40

60

80

100

C
u

m
.

%
 o

f
S

h
ar

ed
 R

W
 R

eq
u

es
ts

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-4. Request to Block Distribution: Shared Read-write Data

plicas

illus-

4.1.

he, it

g the

ll of the

oads
47

4.1.5 Cache Hit Ratio

While replicating blocks can reduce L2 hit latency, it also decreases the effective L2 cache size. If re

displace too much of a workload’s working set, performance may degrade significantly. Figure 4-5

trates this risk by plotting the normalized hit ratios for fully-associative caches up to 32 MB, Equation

 (4.1)

While the L2 Hit Ratio doesn’t show the exact change in hits for a practical set-associative L2 cac

demonstrates the sensitivity that many workloads have to small changes in cache size.

For example, Ocean and Art have critical working set sizes of 4 MB and 8 MB, respectively. Increasin

available cache capacity above those thresholds has a dramatic negative impact on performance. A

scientific workloads exhibit clearly identifiable working set boundaries, while the commercial workl

Normalized L2 Cache Hit Ratio Hits within cache sizeα
Hits within a 32 MB L2 cache
--=

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 L
2

H
it

 R
at

io apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-5. Normalized L2 Cache Hit Ratios

ce the

plica-

tions

DFs

e fol-

These

pes of

rease

: the
48

have less pronounced transitions. Ideally, a replication policy for private CMP caches would balan

latency benefits against the capacity and miss rate costs.

4.1.6 Probability Distribution Functions

This subsection presents the probability distribution functions required by both the migration and re

tion analytic models. Similar to the previous normalized cache hit ratio, Probability Distribution Func

(PDFs) illustrate the probability a request will hit in a given sized cache. Furthermore, conditional P

can determine the hit probability for a certain type of request. In particular, the analytical models of th

lowing sections require discrete conditional PDFs to determine the hit rate for certain request types.

PDF plots illustrate the hits to both the local and remote LRU stacks. Interestingly, the general sha

the local hit curves for the scientific workloads exhibit noticeable steps, while the other curves inc

gradually.

Section 4.2‘s migration model requires three discrete conditional probability distribution functions

probability of a local hit given the request is for a single requestor block—PHLb|1R—(Figure 4-6), the

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b.
 H

L
b|

1R
 -

 F
(x

) apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-6. Probability Distribution Function HLb|1R - F(x)

unc-
49

probability of a local hit given the request is for a shared block—PHLb|S—(Figure 4-7), and the probability

of a remote hit given the request is for a shared block—PHRb|S—(Figure 4-8).

Meanwhile, Section 4.3‘s replication model requires five discrete conditional probability distribution f

tions: the probability of a local hit given the request is for a single requestor block—PHLb|1R—(Figure 4-

6), the probability of a local hit given the request is for a shared read-only block—PHLb|SRO—(Figure 4-9),

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b.
 H

L
b|

S
 -

 M
(x

) apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-7. Probability Distribution Function HLb|S - M(x)

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b.
 H

R
b|

S
 -

 M
(x

) apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-8. Probability Distribution Function HRb|S - N(x)

ented

sim-
50

the probability of a local hit given the request is for a shared read-only block—PHLb|SRW—(Figure 4-10),

the probability of a local hit given the request is for a shared read-only block—PHRb|SRO—(Figure 4-

11),and the probability of a remote hit given the request is for a shared block—PHRb|SRW—(Figure 4-12).

However, one should note one key difference between the empirical probability distributions pres

here and a true distribution function [5]. These empirical probability distributions are limited by finite

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
.

H
L

b
|S

R
O

 -
 G

(x
) apache

jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-9. Probability Distribution Function HLb|SRO - G(x)

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
.

H
L

b
|S

R
W

 -
 H

(x
) apache

jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-10. Probability Distribution Function HLb|SRW - H(x)

Instead,

2 MB
51

ulation times and memory capacity, and thus cannot approach 1 as cache size increases to infinity.

the probability distribution functions presented in this section stop at the 32 MB. Those hits beyond 3

are assumed to be compulsory misses [45].

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
.

H
R

b
|S

R
O

 -
 P

(x
) apache

jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-11. Probability Distribution Function HRb|SRO - P(x)

<1/8 1/4 1/2 1 2 4 8 16 32
L2 Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
.

H
R

b
|S

R
W

 -
 Q

(x
) apache

jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-12. Probability Distribution Function HRb|SRW - Q(x)

next

ing the

g L2

proves

3.9 to

ectively.

a pri-

ration

apped

oth

n driven

ter 5.

cache.

erfor-

he last

ration.

t access

ns, the
52
In order to better understand the benefit of both migration and replication within a CMP cache, the

two sections (Section 4.2 and Section 4.3) present and evaluate two different analytical models us

data presented in this section.

4.2 Exploiting Workload Behavior Through Migration

This section illustrates the potential performance impact of migration in a CMP cache. By movin

cache blocks closer to the requesting processors, migration removes on-chip wire delay and im

memory system performance. Previously, Section 3.3 introduced Equation 3.8 and Equation

describe the memory system performance of a shared CMP cache and a private CMP cache, resp

Neglecting cache coherence optimizations, a statically shared CMP cache allows no migration and

vate CMP cache can implement various migration policies. In particular, one easy to examine mig

policy moves L2 cache blocks directly to the last requesting processor’s private L2 cache with the sw

out block moving into the migrated block’s previous location. Other migration policies exist, for b

shared and private caches, but cannot be easily modeled analytically and instead require executio

simulation. Therefore, further discussion of these more complicated policies is delayed until Chap

The remainder of this section focuses on understanding direct migration’s benefit in a private CMP

Section 4.2.1 proposes a model for the direct migration policy, then Section 4.2.2 illustrates that the p

mance benefit of direct migration depends on the probability of the requesting processor being t

requestor.

4.2.1 Modelling Migration

This section constructs an abstract model to analyze the high-level benefits and limitations of mig

Specifically, the model assumes an 8-processor private CMP cache with each processor having fas

to its local L2 cache bank and slower access to the remote L2 cache banks. For simplification reaso

perfect

rated

’s local

e result

ome

ks last

ed on the

or to
53
model assumes migration has no effect on the L2 miss rate and all caches are fully associative with

LRU replacement. Also when a block is migrated from one cache bank to another, not only is the mig

block assumed to be within both the previous owner processor’s and the current owner processor

MRU stacks, but also the subsequent swapped block is assumed to be within both MRU stacks. Th

is the effective on-chip cache size (b) can be greater than the local private L2 cache size because s

shared blocks may exist in other processor’s local cache banks. In particular, the shared bloc

requested by other processors are assumed to be in remote on-chip cache banks. Therefore, bas

previous Equation 3.9,PlocalL2 equals the probability a requesting processor was the last process

request a given cache block that lies within the local Most Recently Used (MRU) stack of sizeb:

 (4.2)

where:

 (4.3)

 (4.4)

 (4.5)

PlocalL2 PLR HLb prob. last requestor given window local MRU stack size b= =

P1R PHLb 1R× PS PLR S× PHLb S×+=

P1R PSingleRequestor prob. of a request being for single requestor data= =

PS PShared prob. of a request being for shared data= =

PLR S probability of Last Requestor given S=

given

aches:
54

 (4.6)

 (4.7)

 (4.8)

Similarly, PremoteL2equals the probability a requesting processor was the last requesting processor

the shared cache block is within the local MRU size ofb:

 (4.9)

where:

 (4.10)

Finally, Pmiss equals the probability a request misses both in the local L2 cache and the remote L2 c

 (4.11)

PHLb 1R F 0 X b≤ ≤() f x()
0

b

∑ prob. of first requestor hit in local MRU stack of size b= = =

PHLb S M 0 X b≤ ≤() m x()
0

b

∑ prob. of shared hit in local MRU stack of size b= = =

b
Private Cache Size

1 PS P
LR S

×()–()
---=

PremoteL2 PS P
LR S

PHRb S×× prob. not last requestor & hits in remote MRU stack size b= =

PHRb S N 0 X b≤ ≤() n x() xd

0

b

∑ prob. of S hit in 7 remote MRU stacks of size b= = =

Pmiss 1 P1R PHLb 1R× PS PLR S× PHLb S×+() PS P
LR S

PHRb S××––=

rms of

uming a
55
In order to isolate migration’s effect on L2 cache access latency, Equation 4.12 drops the L1 cache te

Equation 3.9. The result is the following memory system performance equation for L1 misses:

 (4.12)

In comparison, Equation 4.13 presents the memory system performance equation for L1 misses ass

shared CMP cache that disallows migration:

 (4.13)

where:

 (4.14)

Private Cache
L1 Miss Cycles

Instruction

PlocalL2 LlocalL2×() PremoteL2 LremoteL2×() Pmiss Lmiss×()+ +

Instructions L1misses⁄()
--=

Shared Cache
L1 Miss Cycles

Instruction

PsharedL2 LsharedL2×() Pmiss Lmiss×()+

Instructions L1misses⁄()
--=

PsharedL2 PAggregateStackHit prob. of hit in aggregate MRU stack of size total L2 capacity= = =

havior.

h-level

ed in

). For

mance

ncoun-

4) with

es on-
56

4.2.2 Evaluating Migration

This section demonstrates migration’s performance improvement highly depends on the sharing be

The evaluated model is not accurate enough to project absolute performance, but does provide hig

understanding of migration’s benefits and limitations. The model uses the empirical data provid

Section 4.1 and setsLlocalL2 to 20 cycles,LremoteL2to 50 cycles,LsharedL2to 44 cycles, andLmiss to 300

cycles. Figure 4-13 plots the total L1 miss cycles of a 8 MB private CMPcache using direct migration

(Equation 4.12) normalized to the total L1 miss cycles of a 8 MB shared CMP cache (Equation 4.13

the commercial workloads, migration reduces Jbb’s total L1 miss cycles by 3%, but degrades perfor

for the other three commercial workloads by as much as 11%. These three commercial workloads e

ter performance degradation because the majority of their requests are for shared data (Table 4-

high probability a different processor was the last requestor (Table 4-6). Thus migration exacerbat

chip latency because many shared requests hit in remote cache banks.

0.0

0.5

1.0
N

o
rm

al
iz

ed
 T

o
ta

l
L

1
 M

is
s

C
y
cl

es

Benchmarks

Shared
Migration

apache jbb oltp zeus apsi art barnes ocean

FIGURE 4-13. Migration Model: All Workloads Default

ove-

e, Apsi

and thus

ean-

espec-

ely).

ration

h lit-

aring.

ance

llows

poli-

ng all

ue to

d read-

ce. As

blocks

. The

ry sys-

perfor-
57
In contrast, migration improves performance for all four scientific workloads, with the degree of impr

ment directly corresponding to the percentage of single requestor requests (Table 4-4). For instanc

and Ocean exhibit the largest percentage of single requestor requests (99% and 94% respectively)

they encounter the most significant reduction in total L1 miss cycles (12% and 11% respectively). M

while, Art and Barnes exhibit a smaller percentage of single requestor requests (53% and 19% r

tively) and thus they encounter only a small reduction in total L1 miss cycles (6% and 1% respectiv

Overall, the migration model demonstrates the performance improvement provided by direct mig

directly corresponds to a workload’s sharing behavior. Migration significantly benefits workloads wit

tle temporal sharing, but migration can degrade performance for workloads with a large amount of sh

4.3 Exploiting Workload Behavior Through Replication

Similar to the previous migration evaluation, this section focuses on illustrating the potential perform

impact of replication in a CMP cache. Analogous to migration, a statically shared CMP cache disa

replication, where a private CMP cache can implement various replication policies. These replication

cies range from replicating all shared L2 cache blocks to disallowing replication and instead migrati

L2 cache blocks. Because replicating shared read-write blocks will incur extra delay on writes d

coherence invalidations, the model focuses on replicating shared read-only data and migrating share

write and single requestor data.

The degree of shared read-only replication will have a significant impact on CMP cache performan

demonstrated in Section 4.1, selectively replicating the most frequently requested shared read-only

may provide most of replication’s benefit without significantly decreasing the effective cache size

model proposed in Section 4.3.1, evaluates how adjusting the amount of replication impacts memo

tem performance. Also the model analyzes how CMP cache size and memory latency relate to the

mance benefit of selective replication.

cation.

umption

grate to

local

ation

haring
58
4.3.1 Modelling Replication

This section constructs an abstract model to analyze the benefits and limitations of selective repli

The model assumes the same parameters as the model proposed in Section 4.2.1 including the pres

that single requestor, shared read-write, and any non-replicated shared read-only blocks always mi

the last requestor’s L2 cache with the swapped out block lying within the new owning processor’s

MRU stack. Since only shared read-only data will be selectively replicated, the model begins (Equ

4.15) by splitting the memory cycles spent on L1 misses in a private CMP cache into the three s

types:

 (4.15)

where:

 (4.16)

 (4.17)

 (4.18)

Next, Equation 4.19 introduces the probability of shared read-only block replication:

 (4.19)

Private Caches
L1 Miss Cycles

Instruction

P1R L1R×() PSRO LSRO×() PSRW LSRW×()+ +

Instructions L1misses⁄()
---=

P1R PSingleRequestor prob. of a request being for single requestor data= =

PSRO PSharedReadOnly prob. of a request being for shared read-only data= =

PSRW PSharedReadWrite prob. of a request being for shared read-write data= =

PRep PReplication prob. that a shared read-only block is replicated= =

MRU

59

and Equation 4.20-4.24 present the probability requests of each sharing type hit in a local or remote

stack of size b:

 (4.20)

 (4.21)

 (4.22)

 (4.23)

 (4.24)

where b equals the effective private cache size:

 (4.25)

PHLb 1R F 0 X b≤ ≤() f x()
0

b

∑ prob. of first requestor hit in local MRU stack of size b= = =

PHLb SRO G 0 X b≤ ≤() g x()
0

b

∑ prob. of shared read-only hit in local MRU stack of size b= = =

PHLb SRW H 0 X b≤ ≤() h x()
0

b

∑ prob. of shared read-write hit in local MRU stack of size b= = =

PHRb SRO P 0 X b≤ ≤() p x()
0

b

∑ prob. of SRO hit in 7 remote MRU stacks of size b= = =

PHRb SRW Q 0 X b≤ ≤() q x()
0

b

∑ prob. of SRW hit in 7 remote MRU stacks of size b= = =

b Private Cache Size
1 PSRW P

LR SRW
× PSRO P

LR SRO
× 1 PRep–()×+()–()

--=

ation

ock

of the

lective
60
To model the accuracy of selectively replicating frequently requested shared read-only blocks, Equ

4.27 introduces the functionlocalitySRO(x), where x is the percentage of L2 cache capacity devoted to

shared read-only replicas,CapRep. The function returns the probability a requested shared read-only bl

would have been replicated for the given replication capacity. The function assumes perfect selection

most frequently requested blocks. Therefore, the value oflocalitySRO(x) directly corresponds to the shared

read-only locality plot in Figure 4-3: (4.26)

 (4.27)

 (4.28)

Equation 4.29 useslocalitySRO(x) in combination withPHLb|SROandPLR|SROto determine the probability

of a local stack hit for a shared read-only request:

 (4.29)

Finally, Equation 4.30 calculates the total cycles spent on L1 misses in a private CMP cache using se

replication:

localitySRO x() = the locality of SRO hits for x% capacity for replicas

CapRep % Capacity for Replicas PSRO P
LR SRO

PRep××= =

PLSH SRO PHLb SRO PLR SRO P
LR SRO

localitySRO CapRep()×+()×=

61

 (4.30)

Private Caches
L1 Miss Cycles

Instruction

P1R PHLb 1R Llocal× 1 PHLb 1R–() Lmiss×+()×

Instructions L1misses⁄()
--- +=

PSRO PLSH SRO× Llocal×

Instructions L1misses⁄()
-- +

PSRO 1 PLSH SRO–() PHRb SRO×()× Lremote×

Instructions L1misses⁄()
-- +

PSRO 1 PLSH SRO–() 1 PHRb SRO–()×()× Lmiss×

Instructions L1misses⁄()
-- +

PSRW PLR SRW PHLb SRW×() Llocal× PSRW P
LR SRW

PHRb SRW×()×() Lremote×+()×

Instructions L1misses⁄()
-- +

PSRW 1 PLR SRW PHLb SRW× P
LR SRW

PHRb SRW×––()× Lmiss×

Instructions L1misses⁄()
--

system

gh to

under-
62

4.3.2 Evaluating Replication

This section demonstrates the optimal amount of replication depends on workload behavior and

configuration. Similar to the previous migration model, the replication model is not accurate enou

project absolute performance. Instead, the model incorporates enough detail to convey high-level

0 20 40 60
% Capacity for Replicas

0

5

10

15

20

25

T
ot

al
 L

1
M

is
s

C
yc

le
s/

In
st

r.

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 4-14. Replication Model:All Workloads Default Parameters

0 20 40 60
% Capacity for Replicas

0

1

2

3

4

5

T
ot

al
 L

1
M

is
s

C
yc

le
s/

In
st

r.

apache
jbb
oltp
zeus
apsi
barnes
ocean

FIGURE 4-15. Replication Model: All Workloads Except ArtDefault Parameters

ation,

ation

model.

ation

kloads.

ata as

s per-

quests

shared

signifi-

capac-

easing

to 30%

bserve

rking

1 miss-

tantial

. Thus,

y-axis

ly data

cles

pacity
63
standing of how selective replication impacts performance. Later, using execution driven simul

Chapter 6 analyzes replication’s performance impact for a particular implementation. The replic

model uses the data provided in Section 4.1, along with the same input parameters as the migration

Figure 4-14 plots the total L1 miss cycles of the private CMP cache using selective replication (Equ

4.30) versus the percent of capacity for replicas (Equation 4.28) across the eight evaluated wor

Because Art’s high miss rate skews the y axis of Figure 4-14, Figure 4-15 presents the same d

Figure 4-14 with Art excluded.

For all four commercial workloads, the percentage of capacity devoted to replicas significantly affect

formance. For these commercial workloads, Table 4-4 previously showed shared read-only re

accounted for at least 42% of all L2 cache requests. By replicating the most frequently requested

read-only blocks close to each processor, the memory cycles consumed by on-chip communication

cantly decreases without substantially increasing off-chip misses. For instance, by devoting 10% of

ity to replicas, the total L1 miss-cycles-per-instruction decreases by at least 0.4 cycles. Further incr

the replica capacity beyond 10% has varied results. Increasing the percent capacity for replicas

reduces Oltp’s total L1 miss-cycles-per-instruction by an additional 0.2 cycles, while Jbb and Zeus o

less than a 0.1 additional reduction. In contrast, due to replication conflicting with Apache’s large wo

set (Figure 4-5), increasing the percent capacity for replicas beyond 10% increases Apache’s total L

cycles-per-instruction by as much as 1.3 cycles.

For the scientific workloads, replication has little performance benefit and instead can lead to subs

performance degradation. For example, Apsi and Ocean have little shared read-only data activity

replication has no effect on performance causing these workloads to be indistinguishable from the

on Figure 4-14 or Figure 4-15. On the other hand, Barnes has some highly localized shared read-on

activity. Thus, increasing replication initially reduces total L1 miss-cycles-per-instruction by 0.2 cy

and then further replication increase has no performance impact. Finally, increasing Art’s replica ca

used by

igh-

nd L2

n and

plica-

rious

ache’s
64

beyond 4% leads to a 17 cycle performance degradation. This large performance degradation is ca

replication evicting Art’s critical 8 MB working set (Figure 4-5). Art’s abrupt change in performance h

lights replication’s impact on effective cache capacity.

The optimal amount of replication shifts depending on the relationship between working set size a

cache capacity. Figure 4-16, Figure 4-17, and Figure 4-18 provide 3D surface plots of how replicatio

cache size interact to affect performance. The amount of replication is shown as the probability of re

tion (Equation 4.19), instead of the percent capacity for replicas, in-order to directly compare va

cache sizes with different relative amounts of replicated data. For small (< 1 MB) private caches, Ap

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Private Cache Bank Size (MB)
Probability of Replication

To
ta

l L
1

M
is

s
C

yl
es

FIGURE 4-16. Replication Model: ApacheCache Capacity vs. Probability of Replication

bene-

rivate

MB,

se to

.2-0.4

ore can
65

optimal probability of replication is less than 0.1 (Figure 4-16). Then as the cache size increases, the

fit provided by replication increases, and Apache’s optimal probability of replication nears 0.5.

Oltp (Figure 4-17) demonstrates more diverse behavior than Apache. For very small (< 0.25 MB) p

caches, Oltp’s optimal probability of replication is near 0.1. Then, for private caches between 0.5-1

Oltp prefers replication between 0.4-0.6 in order to move its critical shared read-only working set clo

multiple processors. Finally, for private caches between 1-2 MB, Oltp prefers replication between 0

because it requires less replication to keep its critical shared read-only working set close and theref

utilize more capacity for unique data.

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.5

2

2.5

3

3.5

4

Private Cache Bank Size (MB)
Probability of Replication

To
ta

l L
1

M
is

s
C

yc
le

s

FIGURE 4-17. Replication Model:OLTP Cache Capacity vs. Probability of Replication

66

0
0.5

1
1.5

2

0
0.2

0.4
0.6

0.8
1

3

3.5

4

4.5

5

5.5

6

6.5

Private Cache Bank Size (MB)
Probability of Replication

T
ot

al
 L

1
M

is
s

C
yc

le
s

0
0.5

1
1.5

2

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20

25

30

35

40

45

50

Private Cache Bank Size (MB)
Probability of Replication

T
ot

al
 L

1
M

is
s

C
yc

le
s

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0.2

0.3

0.4

0.5

0.6

0.7

Private Cache Bank Size (MB)
Probability of Replication

T
ot

al
 L

1
M

is
s

C
yc

le
s

0
0.5

1
1.5

2

0
0.2

0.4
0.6

0.8
1

1

1.5

2

2.5

3

3.5

Private Cache Bank Size (MB)
Probability of Replication

T
ot

al
 L

1
M

is
s

C
yc

le
s

0
0.5

1
1.5

2

0
0.2

0.4
0.6

0.8
1

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Private Cache Bank Size (MB)
Probability of Replication

T
ot

al
 L

1
M

is
s

C
yc

le
s

0
0.5

1
1.5

2

0
0.2

0.4
0.6

0.8
1

2

4

6

8

10

12

Private Cache Bank Size (MB)
Probability of Replication

T
ot

al
 L

1
M

is
s

C
yc

le
s

FIGURE 4-18. Replication Model: Cache Capacity vs. Probability of Replication

Jbb Zeus

OceanBarnes

Apsi Art

s, Art

cache

havior

plica-

lots nor-

atency

500

ication,
67

Figure 4-18 presents the remaining six workloads’ surface plots. The four surface plots or Jbb, Zeu

and Barnes exhibit dynamic shape and the optimal probability of replication shifts depending on

size. Conversely, Apsi and Ocean show no change in their optimal probability of replication.

The optimal amount of replication also shifts depending on the relationship between workload be

and miss latency. Figure 4-19, Figure 4-20, and Figure 4-21 illustrate that the optimal amount of re

tion increases as miss latency decreases. In order to observe the relative performance trends, the p

malize total L1 miss-cycles-per-instruction to the zero replication case for each separate miss l

value. Also both plots utilize an 8 MB aggregate L2 cache. For Apache (Figure 4-19) with the long

cycle miss latency, maximum replication encounters a 30% performance degradation versus no repl

100

200

300

400

500

00.10.20.30.40.50.60.70.80.91

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Miss Latency (cycles)Probability of Replication

N
o

rm
a

li
z
e

d
 T

o
ta

l
L

1
 M

is
s
 C

y
c
le

s

FIGURE 4-19. Replication Model:Apache Miss Latency vs. Probability of Replication

t point

lica-

ility

ncy.

arnes

es as

lways
68

while at 100 cycles maximum replication achieves a 7% speedup. Furthermore, Apache’s lowes

shifts from 0.1 probability of replication for the 500 cycle miss latency to 0.25-0.45 probability of rep

tion for the 100 cycle miss latency. Similarly, Oltp’s (Figure 4-20) lowest point shifts from 0.5 probab

of replication for the 500 cycle miss latency to maximum replication for the 100 cycle miss late

Finally, Figure 4-21 presents the remaining six workload’s surface plots. In particular, Zeus, and B

demonstrate similar dynamic shape, with the optimal probability of replication shifting to smaller valu

latency increases. Meanwhile, Jbb, Apsi, Art, and Ocean show little sensitivity to miss latency and a

prefer maximum replication.

100

200

300

400

500

00.10.20.30.40.50.60.70.80.91

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Miss Latency (cycles)Probability of Replication

N
o

rm
a

li
z
e

d
 T

o
ta

l
L

1
 M

is
s
 C

y
c
le

s

FIGURE 4-20. Replication Model:OLTP Miss Latency vs. Probability of Replication

69

100
200

300
400

500

0
0.2

0.4
0.6

0.8
1

0.5

0.6

0.7

0.8

0.9

1

Miss Latency (cycles)
Probability of Replication

N
or

m
al

iz
ed

 T
ot

al
 L

1
M

is
s

C
yc

le
s

100
200

300
400

500 0
0.2

0.4
0.6

0.8
1

0.7

0.75

0.8

0.85

0.9

0.95

1

Probability of Replication
Miss Latency (cycles)

N
or

m
al

iz
ed

 T
ot

al
 L

1
M

is
s

C
yc

le
s

100
200

300
400

500

0
0.2

0.4
0.6

0.8
1

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

Miss Latency (cycles)
Probability of Replication

N
or

m
al

iz
ed

 T
ot

al
 L

1
M

is
s

C
yc

le
s

100

200

300

400

500

0
0.2

0.4
0.6

0.8
1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Miss Latency (cycles)

Probability of Replication

N
or

m
al

iz
ed

 T
ot

al
 L

1
M

is
s

C
yc

le
s

100

200

300

400

500

0
0.2

0.4
0.6

0.8
1

0.5

0.6

0.7

0.8

0.9

1

Probability of ReplicationMiss Latency (cycles)

N
or

m
al

iz
ed

 T
ot

al
 L

1
M

is
s

C
yc

le
s

100
200

300
400

500

0
0.2

0.4
0.6

0.8
1

0.975

0.98

0.985

0.99

0.995

1

1.005

Miss Latency (cycles)
Probability of Replication

N
or

m
al

iz
ed

 T
ot

al
 L

1
M

is
s

C
yc

le
s

FIGURE 4-21. Replication Model: Miss Latency vs. Probability of Replication

Jbb

OceanBarnes

Art

Zeus

Apsi

y. The

llected

urately

rfor-

erfor-

cond

erfor-

tween

ignifi-

iden-
70
4.4 Summary

This chapter demonstrated the potential of exploiting workload behavior to reduce on-chip wire dela

chapter first characterized commercial and scientific workload behavior, and then applied the co

characterization data to two abstract analytical models. The models are not detailed enough to acc

predict absolute performance, but do provide high-level intuition of migration’s and replication’s pe

mance impact. For instance, the first model showed migration can improve scientific workload p

mance, but inter-processor sharing limits migration’s benefit in commercial workloads. The se

replication model revealed that selectively replicating frequently requested blocks provides better p

mance than naively replicating all shared blocks, and that the optimal amount of replication varies be

workloads. Furthermore, the replication model illustrated that cache capacity and memory latency s

cantly impact the optimal replication amount. Thus, an adaptive selective replication policy that can

tify and adjust to changes in replication’s benefit, can provide more robust performance.

71

Chapter 5
rkload

ificant

tion’s

off-chip

ating

ins the

imula-

anks.

er

proved

anks.

esigns.

across

lose to
Cache Block Migration

Using an analytical model, the previous chapter estimated migration may substantially improve wo

performance where little data sharing exists, but may degrade workload performance where sign

sharing exists. Using full system simulation, this chapter confirms that indeed sharing limits migra

performance benefit. Also this chapter demonstrates other aspects, such as smart searches and

misses, further limit migration’s performance benefit. The chapter begins with Section 5.1 motiv

dynamic migration and Section 5.2 describing the shared cache design. Then Section 5.3 expla

migrating cache design, Section 5.4 details the evaluation methodology, and Section 5.5 provides s

tion results. Finally, Section 5.6 concludes the chapter.

5.1 Motivation

Increasing wire delay makes it difficult to provide uniform access latencies to all on-chip L2 cache b

One alternative is Kimet al.’sNon-Uniform Cache Architecture (NUCA) design [58], which allow near

cache banks to have lower access latencies than further banks. For a uniprocessor, Kimet al.demonstrated

that dynamically migrating frequently requested blocks to these nearer cache banks significantly im

performance by effectively exploiting the distance locality between the processor and close cache b

However, supporting multiple processors (e.g., 8) places additional demands on NUCA cache d

First, simple geometry dictates that eight regular-shaped processors must be physically distributed

the 2-dimensional die. A cache bank that is physically close to one processor cannot be physically c

wo fac-

clu-

lly, the

ections,

its uni-

lly, this

rsus the

echa-

, and

much

ounting

in 2010

imately

ed)
72

all the others. Second, an 8-way CMP requires eight times the sustained cache bandwidth. These t

tors strongly suggest a physically distributed, multi-port NUCA cache design.

While block migration works uniformly well for uniprocessors, this chapter confirms Chapter 4’s con

sion that shared CMP cache migration performance depends on inter-processor sharing. Additiona

chapter exposes that, because processors pull frequently requested cache blocks in multiple dir

migration’s effectiveness in a shared CMP cache is more dependent on “smart searches” [58] than

processor counterpart, yet smart searches are harder to implement in a CMP environment. Specifica

chapter shows that CMP migration without a smart search mechanism degrades performance ve

baseline CMP cache for all workloads except Barnes. Furthermore, even with an perfect search m

nism, block migration alone only improves the performance of four workloads—Jbb, Art, Barnes

Ocean—by a maximum of 2%, while degrading the performance of the other four workloads by as

as 7%. This is in part because shared blocks migrate to the middle equally-distant cache banks, acc

for 55-83% of L2 hits for the commercial workloads.

5.2 Baseline: CMP-SNUCA

The chapter targets eight-processor CMPs assuming the 45 nm technology generation projected

[37]. Table 5-1 specifies the system parameters for all designs. Each CMP design assumes approx

TABLE 5-1. 2010 System Parameters
Memory System Dynamically Scheduled Processor

split L1 I & D caches 64 KB, 4-way, 3 cycles clock frequency 5.0 GHz

unified L2 cache 16 MB, 16-way pseudoLRU[95] reorder buffer / scheduler 128 / 64 entries

L1/L2 cache block size 64 Bytes pipeline width 4-wide fetch & issue

memory latency 250 cycles + on-chip delay pipeline stages 15

memory bandwidth 50 GB/s direct branch predictor 3.5 KB YAGS

memory size 4 GB of DRAM return address stack 64 entries

outstanding memory requests/CPU 16 indirect branch predictor 256 entries (cascad

ccupy

the

itioned

. This

ed

ptimal

quency

er fre-
73

300 mm2 of available die area [37]. We estimate eight 4-wide superscalar processors would o

120 mm2 [64] and 16 MB of L2 cache storage would occupy 64 mm2 [37]. The on-chip interconnection

network and other miscellaneous structures occupy the remaining area.

Figure 5-1 illustrates the baseline design derived from Kim,et al.’sS-NUCA-2 design [58]. The baseline is

denoted CMP-SNUCA because it utilizes static block placement. The CMP-NUCA layout differs from

original uniprocessor NUCA design in several important ways:

• To correspond to the data presented in Section 3.2.1 of Chapter 3, the 16 MB L2 cache is part

into 64 banks to control bank access latency [1] and to provide sufficient bandwidth to support

configuration differs from the original NUCA [58] and CMP-NUCA [15] proposals, which assum

an aggressive 8 FO4 cycle time [47] and thus splitted the cache into 256 banks to provide the o

balance between intra-bank and inter-bank latency. Due to recent studies advocating that fre

scaling is slowing down due to power constraints [102], We assume a 20 FO3 delay. The slow

quency allows for less pipelining and partitioning in the NUCA network.

Local

Bankcluster Key

Center

L1
I $
L1

D$
L1

I $
L1

D$

L
1

I $ L
1

D
$

L
1

I $ L
1

D
$

L
1

I $L
1

D
$

L
1

I $L
1

D
$

CPU 7

L1
I $ D

L1
$

L1
I $

L1
D$

CPU 6C
P

U
 0

C
P

U
 1

CPU 2 CPU 3 C
P

U
 4

C
P

U
 5

FIGURE 5-1. 16 MB CMP-NUCA Layout with CMP-DNUCA Bankcluster Regions

pands

essor

t pol-

chip

1 illus-

these

CMP-

CA

itially

r

cient

i-
74
• Second, the evaluated CMP-NUCA implementation connects four banks to each switch and ex

the link width to 64 bytes. Each 2.2 mm link has a latency of 2 cycles and each switch has a 1 cycle

latency. The wider CMP-NUCA network provides the additional bandwidth needed by an 8-proc

CMP.

• Third, all CMP cache banks utilize 16-way set-associative banks with a pseudo-LRU replacemen

icy [95] to reduce contention from different processors’ working sets [70].

• Finally, we assume an idealized off-chip communication controller to provide consistent off-

latency for all processors.

5.3 CMP-DNUCA

5.3.1 Overview

CMP-DNUCA migrates frequently accessed blocks to reduce cache access latency. Section 4.1.

trated a majority of requests are for a small percentage of blocks. CMP-DNUCA strives to move

most frequently requested blocks towards the requesting processor. Specifically, this dissertation’s

DNUCA implementation employs block migration within the previously described baseline CMP-NU

layout. Three essential design aspects of a cache employing block migration are: 1. the policy for in

allocatingblocks into the cache, 2. the policy formigratingblocks within the cache, and 3. the policy fo

searchingthe cache. CMP-DNUCA strives to reduce additional state, while providing correct and effi

allocation, migration, and search policies.

5.3.2 Implementation

Allocation. CMP-DNUCA permits block migration by utilizing logical and physical organizations sim

lar to the uniprocessor D-NUCA design [58]. CMP-DNUCA permits block movement bylogically sepa-

n reside

ouped

. The

my

d limit

ssive

migra-

ents a

in the

evenly

others.

e dis-

same

t static

entire

licy

’s ana-

local
75
rating the L2 cache banks into 4 unique banksets, where an address maps to a bankset and ca

within any bank of the bankset. CMP-DNUCAphysicallyseparates the cache banks into 16 differentbank-

clusters, each containing one bank from every bankset in a two-by-two array. The bankclusters are gr

into two equal regions: local—lightly shaded in Figure 5-1—and center—darker shaded in Figure 5-1

unique local bankcluster closest to each processor is identified the processor’smy localbankcluster. Simi-

larly, the unique center bankcluster closets to each processor is defined as the processor’smy centerbank-

cluster. From the perspective of each processor, the remaining bankclusters are identified asother localand

other centerbankclusters. Ideally, block migration would maximize L2 hits within each processor’s

local bankcluster where the uncontended L2 hit latency (i.e., load-to-use latency) is the lowest an

hits to other local and center bankclusters, where the uncontended latency is significantly higher.

The allocation policy seeks an efficient initial placement for a cache block, without creating exce

cache conflicts. While 16-way set-associative banks help reduce conflicts, the interaction between

tions, replications, and allocations can still cause unnecessary replacements. CMP-DNUCA implem

simple, static allocation policy that uses the low-order bits of the cache tag to select a bank with

block’s bankset (i.e., the bankcluster). This simple scheme is non-optimal because allocations are

distributed across all bankclusters despite the fact that some bankclusters are more utilized than

However, bankcluster utilization varies depending on the workload and movement policy, so the wid

tribution of allocations often avoids the pathological case where the majority of allocations are to the

bankcluster storing the most valuable data. While not studied in this document, we conjecture tha

allocation also works well for heterogeneous workloads, because all active processors will utilize the

L2 cache storage.

Movement. We investigated several different movement policies for CMP-DNUCA. A movement po

should maximize the proportion of L2 hits satisfied by the banks closest to a processor. Section 4.2

lytical model assumed a simple policy where blocks directly migrated to a requesting processor’s

ache

reases

ple-

mak-

ank, if

y one

sors tend

arch.

limit-

nine

fore the

nkclus-

ankset.

for 16

smart

icated

ck was
76
bankcluster. This direct migration policy increases the number of local bankcluster hits, if most c

blocks are private to a particular processor. However, if blocks are shared, direct migration also inc

the proportion of costly remote hits satisfied by other local bankclusters. Instead CMP-DNUCA im

ments a simple gradual migration policy that moves blocks along the four bankcluster chain:

The policy separates the different block types without requiring extra state or complicated decision

ing. Only the current bank location and the requesting processor id is needed to determine which b

any, a block should be moved to. The gradual migration policy allows blocks frequently accessed b

processor to congregate near that particular processor, however, blocks accessed by many proces

to move within the center banks.

Search. The best performing uniprocessor D-NUCA search policy used a two-phase multicast se

CMP-DNUCA uses a similar two-phase search policy that strives to maximize first phase hits while

ing the number of messages. Under the gradual migration policy, hits most likely occur in one of

bankclusters: the requesting processor’s local bankcluster, or the eight center bankclusters. There

first phase of our search policy broadcasts a request to the appropriate banks within these nine ba

ters. If all nine initial bank requests miss, the request is sent to the remaining seven banks of the b

Only after a request misses in all 16 banks of the bankset will a request be sent off chip. Waiting

replies over two phases adds significant latency to cache misses.

To reduce the latency of detecting a cache miss, the uniprocessor D-NUCA design utilized a “

search” [58] mechanism using a partial tag array. The centrally-located partial tag structure [56] repl

the low-order bits of each bank’s cache tags. If a request missed in the partial tag structure, the blo

other
local

other
center

my
center

my
local

⇒ ⇒ ⇒

allowed

ickly

res (as

por-

location

to this

.5.

e

ce [74,

herence,

equent

. We

le pro-

fferent

rations

tocol

n L1

nowl-

arers.
77
guaranteed not to be in the cache, i.e. false negatives equaled zero. This smart search mechanism

nearly all cache misses to be detected without searching the entire bankset.

In CMP-DNUCA, adopting a partial tag structure appears impractical. All processors cannot qu

access a centralized partial tag structure due to wire delays. Fully replicated 6-bit partial tag structu

used in uniprocessor D-NUCA [58]) require 1.5 MB of state, an extremely high overhead. More im

tantly, separate partial tag structures require a complex coherence scheme that updates address

state in the partial tags with block migrations. However, because architects may invent a solution

problem, we evaluate CMP-DNUCA both with and without a perfect search mechanism in Section 5

A unique problem of CMP-DNUCA is the potential forfalse misses, where L2 requests fail to find a cach

block because it is in transit from one bank to another. Because CMP-DNUCA uses token coheren

76], false misses don’t create a correctness problem. False misses, like other data races in token co

will activate the persistent request mechanism. However, persistent request activation is slow and fr

false misses could be a performance problem.

We significantly reduced the frequency of false misses by implementing a lazy migration mechanism

observed that almost all false misses occur for a few hot blocks that are rapidly accessed by multip

cessors. By delaying block migrations by a thousand cycles, and canceling migrations when a di

processor accesses the same block, CMP-DNUCA still performs at least 75% of all scheduled mig

with only a 2-14% increase in persistent requests.

5.4 Methodology

Both the CMP-SNUCA and CMP-DNUCA designs implement a CMP-Token cache-coherence pro

[76] with sequential memory consistency. The intra-chip protocol allows for migratory sharing betwee

caches. The L2 cache is “mostly” inclusive with the L1 caches and maintains up-to-date L1 sharer k

edge. The L2 cache is not strictly inclusive because an L2 block replacement will not invalidate L1 sh

r-chip

which

e data,

ol, all

imeout

as well

issues

ement

ed in

t the

off-chip

ited

for the

ertur-

ssed

ding to

n 5.5.1

anks.
78
This optimization saves bandwidth and allows the L2 cache to have no transient states. The inte

coherence protocol maintains directory state at the off-chip memory controllers and only tracks

CMP nodes contain valid block copies. To facilitate fast cache-to-cache transfers of shared read-writ

the protocol implements migratory sharing [99]. To deal with races that exist in a CMP-Token protoc

designs utilize a distributed persistent request mechanism [76] that activates after a 400-cycle t

latency. All evaluated designs also incorporate strided prefetchers between the L1 and L2 caches,

between the L2 caches and memory. The prefetcher is based on the IBM Power 4 [105], except it

prefetches for both stores, as well as loads, due to the stronger memory consistency model.

The intra-chip and inter-chip networks are modeled in detail, including all messages required to impl

the coherence protocol. The on-chip links are 64-bytes wide and the off-chip bandwidth is specifi

Table 5-1. Network routing is performed using a virtual cut-through scheme with finite buffering a

switches. Most buffers are constrained to three messages. The buffers between the on-chip and

networks are infinitely sized to decouple the on-chip network from off-chip queueing delay due to lim

off-chip bandwidth.

The workloads evaluated in this chapter are the same as those in Chapter 4. However, to account

non-determinism that exists in multi-threaded workloads [3], all simulations contain small random p

bations in the memory latency and the error bars indicate the 95% confidence interval.

5.5 Evaluation

Dynamic block migration strives to reduce the NUCA cache hit latency by moving frequently-acce

blocks. However, migration’s unbalanced cache bank utilization increases the off-chip miss rate, lea

a nominal overall performance benefit even with a perfect smart search mechanism. First, Sectio

illustrates dynamic block migration’s success in moving blocks to the quickly accessible cache b

e lower

In

nefit.

oads.

ads—

lot

t indi-

the 8

distri-

proces-

lly, each

fy 10%
79

Then Section 5.5.2 demonstrates CMP-DNUCA relies upon a smart search mechanism to achiev

L2 hit latency and to avoid inflating the miss penalty.

5.5.1 Block Movement in CMP-DNUCA

CMP-DNUCA’s migration policy significantly affects the hit clustering within the CMP-NUCA cache.

particular, the high degree of sharing in the commercial workloads restricts block migration’s be

Figure 5-2 shows the center bankclusters satisfy 55-83% of L2 hits for the four commercial workl

The high number of central hits directly relates to the increased sharing in the commercial worklo

Section 4.1.3. Figure 5-3a graphically illustrates CMP-DNUCA’s L2 hit distribution for Oltp. The top p

of Figure 5-3a displays the L2 hit distribution for all processors. The dark grey squares in the top plo

cate the majority of hits are satisfied by blocks that congregate in the center. Specifically for Oltp,

center bankclusters satisfy over 83% of all L2 hits. The lower 8 plots of Figure 5-3a separate the hit

bution on a per processor basis. The light grey squares on the periphery of the cache indicate each

sor’s local bankcluster satisfies a more than requests than the seven remote bankclusters. Specifica

processor’s local bankcluster satisfies 8% of Oltp misses, while the seven remote bankclusters satis

of Oltp misses.

0

20

40

60

80

100

%
 o

f
T

o
ta

l
L

2
 H

it
s

Other 7 Bankclusters
Center 8 Bankclusters
Local Bankcluster

apache jbb oltp zeus apsi art barnes ocean

FIGURE 5-2. CMP-DNUCA: L2 Hit Distribution

The

little

local

able

to split

pec-

tra-

88%

tion

uring

ndi-
indi-

ure
80

Conversely, CMP-DNUCA designs exhibit very different behavior for the four scientific workloads.

scientific workload Ocean iterates over a column-blocked 2D matrix resulting in good locality and

sharing. Figure 5-2 indicates that CMP-DNUCA successfully migrates 74% of Ocean’s L2 hits to the

bankclusters. The dark colored squares of Figure 5-3b graphically display how well CMP-DNUCA is

to split Ocean’s data set into the local bankclusters. To a lesser degree, CMP-DNUCA is also able

Art’s and Barnes’s working set, with the local bankclusters satisfying 40% and 34% of L2 hits, res

tively. Meanwhile, Apsi experiences virtually no improvement from CMP-DNUCA, which starkly con

dicts migration‘s projected improvement modeled in Chapter 4. The main reason for this disparity is

of L2 blocks allocate in Apsi are requested only twice. Therefore, CMP-DNUCA’s distributed alloca

policy and gradual migration policy don’t move blocks to the requesting processor’s local bank d

All CPUs

CPU 0 CPU 1 CPU 0 CPU 1

CPU 5

CPU 2 CPU 3

CPU 6 CPU 7CPU 4 CPU 5

CPU 2

CPU 6 CPU 7

CPU 3

CPU 4

All CPUs

FIGURE 5-3. a) Oltp DNUCA Distribution FIGURE 5-3. b) Ocean DNUCA Distribution

The figures illustrate the distribution of cache hits across the L2 cache banks. The large squares i
cate the bankclusters and the smaller shaded squares represent the individual banks. The shading
cates the fraction of all L2 hits to be satisfied by a given bank, with darker being greater. The top fig
illustrates all hits, while the 8 smaller figures illustrate each CPU’s hits.

olicy

anks,

re 5-4

Art,

ving L2

Ocean,

or the

n of a

remote

CA L2
81

their brief active lifetimes. Instead, Chapter 4’s private cache allocation policy and direct migration p

better matches Apsi’s request behavior.

5.5.2 Searching in CMP-DNUCA

While block migration has the potential to reduce hit latency by moving blocks to the closer cache b

the slow two-phase search policy actually causes L2 hit latency to increase for some workloads. Figu

shows that CMP-DNUCA reduces L2 hit latency versus CMP-SNUCA for the four workloads, Jbb,

Barnes, and Ocean. The degree of latency reduction directly relates to the success DNUCA has mo

hits to the local bankclusters. For instance, Figure 5-2 shows DNUCA greatest success exists in

which also is the workload that encounters the most significant L2 latency reduction in Figure 5-4. F

other four workloads: Apache, Oltp, Zeus, and Apsi, the latency increase results from a combinatio

much lower percentage of local bankcluster hits and a higher percentage of second phase hits in the

bankclusters. Specifically, second phase hits encounter 31 to 51 more delay cycles than CMP-SNU

hits because of the delay waiting for miss responses from the first phase requests.

0

10

20

30

40

C
yc

le
s

S D pD

apache

S D pD

jbb

S D pD

oltp

S D pD

zeus

S D pD

apsi

S D pD

art

S D pD

barnes

S D pD

ocean

FIGURE 5-4. CMP-DNUCA: Average L2 Hit Latency
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

ed by

tly to

ersus

ates

fect

re [92].

tential

per-

miss

igration

ffect

-write

ing to

more

cks are

ration

set of

ocks

s for

ork-
82
A smart search mechanism would solve this problem. Figure 5-4 shows the L2 hit latency attain

CMP-DNUCA with perfect search (perfect CMP-DNUCA), where a processor sends a request direc

the cache bank storing the block. Perfect CMP-DNUCA reduces L2 hit latency by 0-13 cycles v

CMP-SNUCA. Furthermore, when the block isn’t on chip, perfect CMP-DNUCA immediately gener

an off-chip request, allowing its L2 miss latency to match that of CMP-SNUCA. Although the per

search mechanism is infeasible, architects may develop practical smart search schemes in the futu

The rest of this section evaluates CMP-DNUCA with and without perfect searches to examine the po

benefits of dynamic block migration in CMP-NUCA.

With perfect searches, CMP-DNUCA achieves lower L2 hit latencies than CMP-SNUCA, however,

fect CMP-DNUCA encounters more off-chip misses than CMP-SNUCA. Figure 5-5 presents the L1

latency to on-chip single requestor, shared read-only, and shared read-write blocks. As expected, m

significantly reduces single requestor latency—up to 46% for perfect CMP-DNUCA—, but is less e

reducing shared block latency—maximum 23%. Interestingly, migration decreases shared read

latency by 5-23%, while migration has virtually no effect on shared read-only latency. Correspond

Chapter 4’s workload characterization, the reason for the disparity is shared read-only blocks are

finely shared between processors than shared read-write blocks. Therefore, shared read-only blo

more likely to congregate in the center than shared read-write blocks. Figure 5-5 also displays mig

increases off-chip misses. In particular, by moving the most frequently requested blocks to a sub

banks (Figure 5-2), CMP-DNUCA’s static allocation policy is more likely to displace active cache bl

than CMP-SNUCA. Specifically, all workloads except Apsi encounter 4-21% more off-chip misse

CMP-DNUCA than CMP-SNUCA. This behavior directly corresponds to Figure 5-2 where, for all w

loads except Apsi, certain bankclusters satisfied a larger than average percentage of L2 hits.

83

0.0

0.5

1.0

1.5

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Single Requestor

S D pD
apache

S D pD
jbb

S D pD
oltp

S D pD
zeus

S D pD
apsi

S D pD
art

S D pD
barnes

S D pD
ocean

0

1

2

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Shared Read-only

S D pD
apache

S D pD
jbb

S D pD
oltp

S D pD
zeus

S D pD
apsi

S D pD
art

S D pD
barnes

S D pD
ocean

0

1

2

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Shared Read-write

S D pD
apache

S D pD
jbb

S D pD
oltp

S D pD
zeus

S D pD
apsi

S D pD
art

S D pD
barnes

S D pD
ocean

0.0

0.5

1.0

N
or

m
al

iz
ed

 M
is

se
s

Off-chip

S D pD
apache

S D pD
jbb

S D pD
oltp

S D pD
zeus

S D pD
apsi

S D pD
art

S D pD
barnes

S D pD
ocean

FIGURE 5-5. Normalized L1 Miss Latency to Sharing Types and Off-chip Misses
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

per-

UCA

d the

other

CA.

nce by

d L2
84

CMP-DNUCA’s off-chip miss increase cancels its reduction in L2 hit latency, leading to little overall

formance improvement. Figure 5-6 displays the speedup of CMP-DNUCA and perfect CMP-DN

over that of CMP-SNUCA. The maximum speedup achieved by CMP-DNUCA is 1% for Barnes an

maximum speedup by perfect CMP-DNUCA is 2% for the workloads Jbb and Ocean. For most

workloads, both CMP-DNUCA and perfect CMP-DNUCA experience a slowdown versus CMP-SNU

Apache encounters the largest performance degradations, with CMP-DNUCA degrading performa

18% and perfect CMP-DNUCA degrading performance by 7%. While perfect CMP-DNUCA reduce

0.6

0.8

1.0

Sp
ee

du
p

S D pD

apache

S D pD

jbb

S D pD

oltp

S D pD

zeus

S D pD

apsi

S D pD

art

S D pD

barnes

S D pD

ocean

FIGURE 5-6. CMP-DNUCA: Speedup
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

0.0

0.5

1.0

N
or

m
. M

em
or

y
C

yc
le

s

Local L1
Shared L2
Remote
Off-chip

S D pD

apache
S D pD

jbb
S D pD

oltp
S D pD

zeus
S D pD

apsi
S D pD

art
S D pD

barnes
S D pD

ocean

FIGURE 5-7. CMP-DNUCA: Normalized Memory Cycles
(S: CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

in off-

eaking

erage

pent on

aches.

ycles

, L2 hit

ance,

ks. By

hout

wires

ically

cache

d that

tion’s

cache

ore,

private

oes not
85
hit latency by 4 cycles in Apache, the reduction was not enough to compensate for the 16% increase

chip misses. Figure 5-7 summarizes the benefits and cost migration in the CMP-NUCA cache by br

down the cycles spent in the memory hierarchy. The ‘L1 Cache’ bars display the fraction of the av

memory access time contributed by L1 cache hits. The ‘Shared L2’ category presents the cycles s

L2 hits. The ‘Remote’ category represents the cycles spent on requests that hit in remote L1 c

Finally, the ‘Memory’ bar exposes the cycles spent on memory accesses.

Overall, prefect CMP-DNUCA reduces the cycles spent on L2 hits at the cost of increasing the c

spent on memory requests. To achieve substantial performance improvement over the baseline

latency must be reduced without significantly affecting the amount of off-chip misses. For inst

Section 4.1.4 revealed the majority of read-only requests where to a small fraction of read-only bloc

carefully replicating a small number of L2 blocks, one could obtain most of replication’s benefit wit

significantly increasing off-chip misses (Chapter 6). Another solution is to replace slow conventional

with fast on-chip transmission lines (Chapter 7).

5.6 Summary

This chapter demonstrated that inter-processor sharing limits the performance benefit of dynam

migrating cache blocks within a shared CMP cache. Additionally, the chapter showed that CMP

migration is more dependent on “smart searches” [58] than the original uniprocessor proposal, an

migration can increase off-chip misses, thus cancelling its on-chip latency benefit. In general, migra

meager performance benefit does not justify its implementation complexity. Instead, a private CMP

can statically incorporate migration’s latency benefit without CMP-DNUCA’s complexity. Furtherm

through replication, a private cache can decrease hit latency to shared L2 blocks. However, for

caches to be overall beneficial, one must ensure replication’s reduction in effective cache capacity d

cancel its benefit.

86

87

Chapter 6
ntered

cache

pli-

ehav-

tween

e ASR

vides

good

ccess

ing the

nt rep-

ly repli-

have
Adaptive Selective Replication

By allowing multiple L2 cache block copies, replication can minimize the cache access time encou

by separate on-chip processors. However, too much replication can significantly reduce effective

capacity, thus increasing off-chip misses. To attack these conflicting trends, this chapter describesAdaptive

Selective Replication (ASR), a mechanism that dynamically monitors workload behavior to control re

cating cache blocks within a private CMP cache hierarchy.

This chapter begins with Section 6.1 motivating the need to adapt L2 cache replication to workload b

ior. Next, Section 6.2 introduces the baseline private CMP cache design that allows replication be

different local L2 caches. Then Section 6.3 describes the ASR algorithm and Section 6.4 presents th

implementation. Section 6.5 follows with details of the evaluation methodology and Section 6.6 pro

simulation results. Finally, Section 6.7 discusses related work and Section 6.8 concludes.

6.1 Motivation

L2 cache block replication presents both a key opportunity and a significant challenge to provide

CMP performance for a wide variety of workloads. In particular, replication can reduce cache a

latency by copying data close to multiple processors, but can increase off-chip misses by decreas

effective cache capacity. Currently CMP systems either employ shared L2 caches [32, 62] that preve

lication, or private L2 caches [65, 77] that allow all shared data to be replicated.

Recent hybrid cache proposals seek to achieve a balance between latency and capacity by selective

cating cache blocks. Cooperative Caching [20], CMP-NuRapid [26], and Victim Replication [121]

erform

r, CMP-

adapt

lity to

ability.

on 4.3

tion.

level

y, some

s and

ti-

n level

cache

to rep-

tains

sions.

ted in

-chip

Though

coarse-

d of 64,
88
nominally private L2 caches, but replicate data blocks under certain fixed criteria. These schemes p

better than private and shared caches for selected workloads and system configurations. Howeve

NuRapid and Victim Replication each have a single static replication policy that cannot dynamically

to different workload and data set behavior. Cooperative Caching uses a configurable probabi

tradeoff replication with effective cache capacity, but does not propose a method to adjust the prob

Previously, Chapter 4 advocated the need for an adaptive replication policy. Specifically, Secti

showed through its analytical model that different workloads preferred different amounts of replica

Furthermore, the 3D plots of Section 4.3.2 illustrated that for some workloads the optimal replication

changes depending on the interaction between workload behavior and system constraints. Clearl

adaptive policy is needed to determine the best replication level for given combinations of workload

systems.

This chapter describes AdaptiveSelective Replication (ASR), a hardware mechanism that dynamically es

mates the cost (extra misses) and benefit (lower hit latency) of replication and adjusts the replicatio

to minimize average access time. ASR monitors hits to remote L2 cache banks and (pseudo-)LRU

blocks, to estimate the benefits and costs, respectively, of additional replication. ASR monitors hits

lica blocks and a novel Victim Tag Buffer to estimate the benefit of reducing replication. ASR main

per-processor summaries of the costs and benefits, allowing independent localized replication deci

6.2 Baseline: Private CMP Caches

This chapter evaluates replication within a private CMP cache composed of eight banks as illustra

Figure 6-1. Similar to the 8-processor Sun Niagara CMP [62], the private CMP layout groups the 8 on

processors into two equal groups and places each processor group on opposite edges of the chip.

the private cache uses larger and slower cache banks than Chapter 5’s shared NUCA cache, the

grained cache has several advantages. For instance, splitting the private cache into 8 banks, instea

fecting

ium 2

sors to

banks

ing the

costs.

n 6.3.2

es the

aver-
89

reduces the mesh network’s area and wire demand. To prevent bank contention from significantly af

cache hit latency, the private L2 banks are further subbanked into 8 smaller units. Similar to the Itan

microprocessor [78], each private L2 cache is closely integrated to a processor, allowing the proces

directly query their local L2 cache tags in parallel with an L1 cache access. Also having fewer cache

cuts down on the area overhead for the cache controller logic and reduces complexity by decreas

number of locations searched on a local cache bank miss.

6.3 Adaptive Selective Replication

ASR seeks the optimum replication level by balancing the benefits of replication against the

Section 6.3.1 introduces the simple memory system performance model underlying ASR and Sectio

describes ASR’s replication algorithm.

6.3.1 Replication and CMP Cache Performance

To the first order, L2 cache block replication improves memory system performance when it reduc

average L1 miss latency. The following equation—previously introduced in Chapter 4—describes the

age cycles for L1 cache misses normalized by instructions executed:

Private
tags

Private

Private Private

Private Private

tags

tags

tags tags

tags

tags

Private Private

L2

L2

L2

L2 L2

L2

L2

L2

tags

I $
L1

L1
D$

I $
L1

CPU 2

L1
D$

I $
L1

L1
D$

I $
L1

CPU 0

L1
D$

CPU 1

CPU 3 CPU 4

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

CPU 6

CPU 5

CPU 7

FIGURE 6-1. Private CMP Cache

a-

third

that L1

e

ect of

evotes

of L2

will

re, bal-

presen
epre-
90

 (6.1)

wherePx is the probability of a memory request being satisfied by the entityx, andx is a local L2 cache,

the remote L2 caches, or main memory andLx equals the latency of each entity. Therefore, the combin

tion of thelocalL2 andremoteL2terms represent the memory cycles spent on L2 cache hits and the

term depicts the memory cycles spent on L2 cache misses. Replication increases the probability

misses hit in the local L2 cache, thus thePlocalL2 term increases and thePremoteL2term decreases. Becaus

the latency of a local L2 cache hit is tens of cycles faster than a remote L2 cache hit, the net eff

increasing replication is a reduction in cycles spent on L2 cache hits. However, more replication d

more capacity to replica blocks, thus fewer unique blocks exist on-chip, increasing the probability

cache misses,Pmiss. If the probability of a miss increases significantly due to replication, the miss term

dominate, as the latency of memory is hundreds of cycles greater than the L2 hit latencies. Therefo

ancing these three terms is necessary to improve memory system performance.

Private Cache
L1 Miss Cycles

Instruction

PlocalL2 LlocalL2×() PremoteL2 LremoteL2×() Pmiss Lmiss×()+ +

Instructions L1misses⁄()
--=

H

H

CL H

C

H

H
L

L C H

L
2

 M
is

s
 C

y
c
le

s
 /

 I
n

s
tr

.

M
L

M
C

M
H

HCL

optimal

T
o

ta
l
C

y
c
le

s
 /

 I
n

s
tr

.

L
2

 H
it
 C

y
c
le

s
 /

 I
n

s
tr

.

% Replicas% Replicas % Replicas

FIGURE 6-2. a)
Replication Benefit

FIGURE 6-2. b)
Replication Cost

FIGURE 6-2. c)
Replication Effectiveness

The figures above illustrate the replication benefit, cost, and effectiveness curves. The L marks ret
the next lower replication level, the C marks represent the current replication level, and the H marks r
sents the next high replication level.

picts

ion

e of L2

local

cks on-

p-

benefit

ective-

of the

level

mem-

n

ent repli-

asing

deci-

es:

miss
91
Optimal performance often arises from an intermediate replication level. Figure 6-2 graphically de

this tradeoff. TheReplication Benefitcurve, Figure 6-2a, illustrates the trend that increasing replicat

reduces L2 cache hit cycles. Due to the strong locality of shared read-only requests, a small degre

replication can significantly reduce L2 hit cycles by moving many previous remote L2 hits into the

cache. In contrast, increased replication gradually reduces L2 hit cycles because fewer unique blo

chip lead to fewer total L2 hits. TheReplication Costcurve, Figure 6-2b, illustrates that increasing L2 re

lication increases the memory cycles spent on off-chip misses. TheReplication Effectivenesscurve,

Figure 6-2c, combines the benefit and cost curves and plots the total memory cycles. Because the

and cost curves are generally convex and have opposite slopes, the minimum of the Replication Eff

ness curve often lies between allowing all replications and no replications. ASR estimates the slopes

benefit and cost curves to approximate the optimal replication level.

6.3.2 Balancing Replication via ASR

By dynamically monitoring the benefit and cost of replication, ASR attempts to achieve the optimal

of replication. ASR identifies discrete replication levels and makes a piecewise approximation of the

ory cycle slope. Thus ASR simplifies the analysis to alocal decision of whether the amount of replicatio

should be increased, decreased, or remain the same. Figure 6-2 illustrates the case where the curr

cation level, labeled C, results in HC hit cycles-per-instruction and MC miss cycles-per-instruction. ASR

considers three alternatives: (i) increasing replication to the next higher level, labeled H, (ii) decre

replication to the next lower level, labeled L, or (iii) leaving the replication unchanged. To make this

sion, ASR not only needs HC and MC, but also four additional hit and miss cycles-per-instruction valu

HH and MH for the next higher level and HL and ML for the next lower level.

To simplify the collection process, ASR estimates only the four differences between the hit and

cycles-per-instruction: (1) the benefit of increasing replication(decrease in L2 hit cycles,HC - HH); (2) the

-

replica-

um-

ication,

s the

pera-

cture.

istrib-

eded to
92

cost of increasing replication(increase in L2 miss cycles,MH - MC); (3) the benefit of decreasing replica

tion, (decrease in L2 miss cycles,MC - ML); and (4) the cost of decreasing replication(increase in L2 hit

cycles,HL - HC).

By comparing these cost and benefit counters, ASR will increase, decrease, or leave unchanged the

tion level. Figure 6-3 presents ASR’s decision table for adjusting replication. and s

marize the cost and benefit counters: positive values indicate that increasing or decreasing repl

respectively, will improve performance. When both and are positive, ASR choose

direction with the greater predicted benefit.

6.4 Implementing ASR

Implementing ASR requires a CMP cache framework that supports multiple replication levels. Coo

tive Caching [20] is one possibility, but this scheme requires an expensive central tag stru

Section 6.4.1 introduces the simpler Selective Probabilistic Replication (SPR) design which uses d

uted state to make local replication decisions. Section 6.4.2 describes the additional hardware ne

implement ASR. Finally, Section 6.4.3 summarizes ASR’s storage and energy overhead.

∆Increase ∆Decrease

∆Increase ∆Decrease

In
cr

ea
se

In
cr

ea
se

Decrease Decrease

Definitions

C

C

H

L L

HIncrease

Decrease

= (H − H) − (M − M)C

= (M − M) − (H − H)C

<= 0> 0
<=

 0
>

0 if (> DecreaseIncrease)

else

Replication

Decrease Do

Nothing

Increase

Decrease Replication

Increase Replication

Replication

FIGURE 6-3. ASR Decision Table for Adjusting Replication

ication

backs

e node

dent

Hyper-

back to

llo-

ote L2

h for an

ly data.

nation

equest

is not

idered

plify

vel has

per-

found

ecifi-

ares to

, the
93
6.4.1 Selective Probabilistic Replication

Like most earlier replication proposals, SPR assumes private L2 caches and selectively limits repl

on L1 evictions. SPR uses a non-inclusive Token Coherence broadcast protocol [76] and ring write

[98] to eliminate the need for a central tag structure (like Cooperative Caching) or a designated hom

(like Victim Replication). While token coherence simplified SPR’s implementation, SPR is not depen

on token coherence and instead could have used a non-home-node directory protocol, e.g. AMD’s

Transport cache coherence protocol [2, 111]. On an L1 cache eviction, SPR writes a shared block

its local L2 if (i) a the block was already allocated in the local L2 or (ii) the replication policy (below) a

cates a new block. Otherwise, SPR uses a ring writeback to merge the block with an existing rem

copy. Specifically, L1 writeback messages are passed clockwise between private L2 caches to searc

already allocated copy or an empty L2 block.

To avoid extra delay on writes due to coherence invalidations, SPR only replicates shared read-on

To identify which cache blocks are shared and read-only, SPR uses the per-block dirty bit in combi

with an extra per-block shared bit. The L1 and L2 cache tags set the shared bit when receiving a r

from a processor different than the current sharer. Similar to the dirty bit, once the shared bit set, it

reset until the block is replaced. When the dirty bit is not set and shared bit is set, the block is cons

shared read-only.

On L1 cache writebacks, SPR uses probabilistic filtering to decide when to replicate a block. To sim

the replication process, SPR supports six discrete replication levels (Table 6-1). Each replication le

a unique probability that a shared read-only block will be replicated, with the lower replication levels

mitting very few replications. When an L1 cache evicts a shared read-only block and the block is not

in the local L2 cache, the replication probability determines whether to replicate the block locally. Sp

cally, a linear feedback shift register [41] generates an 8-bit pseudo-random number which it comp

the current replication threshold (i.e., if random threshold, then replicate). Like all SPR logic<

ly on L1

e most

, at the

ost

repli-

umber

er and

level i

at the

mecha-

n,

icated

L2

te L2

n was
94

pseudo-random number generator does not impact L2 cache access latency and is accessed on

replacements. The probabilistic policy biases replications to frequently requested blocks because th

frequently requested L2 blocks are also those most frequently evicted from the L1 caches. Therefore

lower replication levels, SPR will devote the majority of its limited replication capacity to storing the m

frequently requested shared read-only data.

6.4.2 ASR Hardware

Determining whether to increase or decrease replication requires knowing whether a block would be

cated at the next higher or next lower level. ASR identifies these blocks by comparing the random n

not just against the current replication threshold, but also against the thresholds for the next high

lower levels. Note that because the thresholds are monotonic, all decisions to replicate a block at

will also be made at level i+1. ASR uses the information about whether a block should be replicated

current, next lower, or next higher levels to maintain the mechanisms described below.

ASR uses four separate mechanisms to estimate the costs and benefits of replication and another

nism to trigger a replication analysis that could change the replication level.

Benefit of Increasing Replication (HC - HH). To determine the benefit of increasing replicatio

ASR identifies the blocks not replicated at the current replication level, but that would have been repl

with the next higher level. Specifically, ASR adds a Next Level Hit Buffer (NLHB) to each private

cache to track the replications of the next higher replication level. When a request hits in a remo

cache, the local NLHB is checked to determine if the request could have been a local hit if replicatio

TABLE 6-1. SPR Replication Levels

Level 0 1 2 3 4 5

Probability 0 1/64 1/16 1/4 1/2 1

Threshold 0 4 16 64 128 256

y a

16 K

s that

ork-

eplica

have

s to be

ce each

ork-

el

ue L2

K of

to the

d the

y

, ASR

storage

rder L2

ASR

for a
95
increased. If so, ASR increments its (HC - HH) counter by the number of cycles that would be saved b

local L2 hit versus a remote L2 hit.

In order to approximate the lifetimes of current replica blocks, each processor’s NLHB is sized to a

entry, 16-way set-associative buffer. Therefore, hits to NLHB entries roughly indicate those local hit

would have been possible with the next higher replication level. In particular, for the commercial w

loads, the average NLHB entry exist for 6 million cycles, which approximates the average current r

lifetime of 9 million cycles.

To reduce storage overhead, the NLHBs store only 8-bit partial tags [56] of the blocks that would

been replicated with the next higher replication level. Through exhaustive investigation, 8-bits seem

the best tradeoff between storage overhead and reducing false positives. Specifically, 8-bits redu

NLHB’s storage cost to 16 KB, while maintaining a false positive rate below 0.05 for all evaluated w

loads.

Cost of Increasing Replication (MH - MC). ASR estimates the cost of increasing the replication lev

by estimating the utilization of soon-to-be-evicted L2 cache blocks. In other words, these are the uniq

blocks that would exist off-chip if replication was increased. Specifically, ASR monitors the last 1

least recently used L2 blocks. A monitor size greater than 1 K provides little additional benefit due

low locality of these blocks. If a local request hits an L2 block not identified as a current replica an

block lies within the last 1 K of LRU blocks, the (MH -MC) counter is incremented by the off-chip memor

latency.

Because precisely determining the recently used cache blocks is prohibitively expensive in hardware

uses way and set counters [101] to estimate which blocks are least recently used. To reduce the

overhead of the set counters, ASR breaks the L2 sets into 256 separate groups using the high o

cache index bits. By combining a L2 block’s way and set-group pseudo-lru binary tree position [95],

determines a requested block’s LRU rank. Figure 6-4 illustrates the LRU rank calculation ASR uses

ansla-

R

repli-

ld not

cation

s only

in the

vel

w lower

ks in a

TB’s

n a 16-
4 and
96

cache way’s 15-bit pseudo-lru tree. The cache set-group’s 255-bit pseudo-lru tree follows a similar tr

tion.

Benefit of Decreasing Replication (MC - ML). To predict the benefit of decreasing replication, AS

uses Victim Tag Buffers (VTBs) to track which L2 misses could have been avoided by reducing the

cation level. The VTB only stores tags that were evicted due to the current replication level, but wou

have been evicted with the next lower level. When a replication associated with the current repli

level causes an L2 eviction, the VTB allocates the evicted tag. The VTB stores other L2 eviction tag

if they replace an existing valid entry. Subsequent off-chip misses from the local processor that hit

VTB, increment the (MC - ML) counter by the off-chip miss latency. When the SPR replication le

decreases, ASR clears the VTB because the tags currently stored no longer correspond to the ne

replication level.

To reduce storage overhead, each VTB stores 16-bit partial tags of the most recently evicted bloc

1 K entry 16-way set associative buffer. Similar to the NLHBs, the 16-bit partial tags reduce each V

storage cost to 2 KB, while maintaining a false positive rate below 0.07 for all evaluated workloads.

0 1 6 13 154 118 92

= 1 bit

MSB

LSB

3 5 7 10 12 14 ID #
Way

FIGURE 6-4. Binary Tree Position Translation to LRU Rank
The figure above describes how the Pseudo-LRU binary tree determines the LRU rank of each way i
way cache set. By xoring a way’s four associated bits (ex. the figure highlights the four bits for way 1
15) with a way’s 4-bit identification number, a way’s lru rank can be determined.

n-

lower

se-

urrent

H

level

replica-

ot

waits

n eval-

y the

fixed,

on the

rison

, ASR

before

.

97
Cost of Decreasing Replication (HL - HC). To estimate the cost of decreasing replication, ASR ide

tifies blocks that are replicated at the current replication level, but would not be replicated at the next

level. Specifically, an extracurrent replicationbit marks these blocks in the local L2 cache tags. If a sub

quent writeback indicates that a block would have been replicated at a lower replication level, the c

replication bit is reset. For local L2 hits that find the current replication bit set, ASR increments its (L -

HC) counter by the difference between a remote L2 hit and a local L2 hit. When the SPR replication

increases, ASR clears the current replication bits because the bits no longer correspond to the new

tion level.

Triggering a Cost-Benefit Analysis.Like all adaptive systems, ASR should respond quickly, but n

too quickly, to changes in workload behavior. ASR does this using a two-step process. First, ASR

until it observes enough events to ensure a fair cost/benefit comparison. Specifically, ASR triggers a

uation when the number of local L2 replications or NLHB allocations exceed the size monitored b

VTBs and LRU counters—1 K entries. Thus, the time interval between replication evaluations is not

nor do the evaluations require chip-wide coordination. Rather, the evaluation intervals depend only

frequency of local replication opportunities. Upon triggering an evaluation, ASR performs the compa

described in Section 6.3.2 to determine if and how the replication level should be changed. Second

provides hysteresis by waiting until four consecutive evaluation intervals predict the same change

making an actual change to the replication level. After each evaluation, all four counters are cleared

act on

ent for

ate L2

struc-

’s stor-

it only

eness

revious

for coor-

cation

ddi-

nd L2

kage
98

6.4.3 Storage and Energy

ASR adds a small storage overhead to the on-chip cache hierarchy and should have minimal imp

energy consumption. For an eight processor CMP, Table 6-2 breaks down ASR’s storage requirem

two cache configurations: a 4 MB aggregate L2 cache with 16 KB L1 caches and a 16 MB aggreg

with 64 KB L1s. Table 6-2 demonstrates that ASR scales well to bigger caches because many of its

tures are cache size independent. For instance, between the 4 MB and 16 MB configurations, ASR

age overhead only grows by 40 KB. ASR’s size is mostly independent of cache size because

monitors the marginal benefits and costs of replication, instead of monitoring replication’s effectiv

across the entire cache. Later, Section 6.6.4 directly compares ASR’s storage overhead with the p

proposals [20, 26, 121].

While ASR costs some bits, it doesn’t consume energy for passing messages between processors

dinating replication level changes. Each L2 cache makes a local replication decision. SPR’s repli

logic lies on the non-latency critical L1 replacement decision and is a simple probabilistic choice. A

tionally, ASR’s tables and counters are also non-latency critical and are only accessed on L1 a

misses. Therefore, ASR’s logic will be accessed relatively infrequently and can use high-Vt low-lea

TABLE 6-2. ASR Storage Overhead

Overhead Bits

K Entries K Bytes

4 MB CMP 16 MB CMP 4 MB CMP 16 MB CMP

per L1 block 1 4 16 0.5 2

per L2 block 2 64 256 16 64

NLHBs 8 128 128 128 128

VTBs 16 8 8 16 16

Total KBytes—including counters 161.5 211

% increase of On-chip Cache Capacity 3.7% 1.2%

Consumed Area (technology generation) ~ 3 mm2 (90 nm) ~ 1 mm2 (45 nm)

r con-

14] to

system

s—and

ach-

iform

banks,

t to the

lica-

n pro-

MP-

n data.

allocate

shared

How-
99
transistors [83]. Also, ASR’s cost-benefit model could be extended to account for the dynamic powe

sumed by local versus remote L2 hits. We leave this for future work.

6.5 Methodology

Similar to Chapter 5, we use full-system simulation based on Simics [109] and the GEMS toolset [1

evaluate ASR against alternative cache designs. This section describes the alternative caches,

parameters, and workloads that we use in our simulation study.

6.5.1 Alternative Cache Designs

Section 6.6.4 compares ASR against two baseline configurations—shared L2 and private L2 cache

the previous replication proposals: Victim Replication [121], CMP-NuRapid [26], and Cooperative C

ing [20].

CMP-Shared.As illustrated in Figure 6-5, the CMP-Shared design assumes an 8-banked Non-Un

Cache Architecture (NUCA) [58]. CMP-Shared statically maps the addresses across all on-chip L2

thus forming a shared cache with non-uniform latency. On an L1 miss, a processor sends its reques

appropriate L2 bank which may forward the request to L1 sharers or memory. By disallowing L2 rep

tion, the CMP-Shared achieves the best capacity, but by not exploiting the distance locality betwee

cessors and L2 banks, it incurs the highest average access latency.

CMP-Private. Section 6.2 previously introduced the baseline CMP-Private design (Figure 6-1). C

Private utilizes SPR’s token broadcast protocol, which allows direct cache-to-cache transfers of clea

L1 misses and replacements are directed to the local private L2 bank and other processors cannot

into a remote bank. Thus, CMP-Private migrates [15, 48] single requestor data and replicates all

data without the storage overhead of home blocks associated with a distributed directory protocol.

icted,

osed

cks

he set

home

add-

set is

ted

lly used

om its

iginal

e stor-
100

ever, CMP-Private does not utilize SPR’s ring writeback mechanism, thus replication is unrestr

allowing shared data replicas to increase off-chip misses and coherence invalidations.

In addition to supporting ASR, SPR’s selective replication framework can support previously prop

replication policies with relatively simple changes.

SPR-VR.Victim Replication [121] targeted an on-chip directory protocol and statically assigned blo

home nodes (like CMP-Shared). Non-home nodes replicated blocks locally, except when a L2 cac

was filled with home blocks with remote sharers. Using a random replacement policy, non-shared

blocks were evicted before replicas. SPR-VR implements Victim Replication’s replication policy by

ing 1-bit per L2 cache block to identify replicas and disallowing replications when the local cache

filled with owner blocks with identified sharers. Victim Replication’s distributed directory protocol was

significant storage by forcing home nodes to store cache blocks regardless if the home node actua

the block. Thus, replicating shared data overlapped with migrating single requestor data away fr

home bank. Though requiring more bandwidth, SPR-VR should perform strictly better than the or

Victim Replication implementation because its token broadcast protocol [76] removes the home nod

age overhead.

Bank 3
L2

L2

L2

L2 L2

L2

L2

L2

Bank 5Bank 2

Bank 1

Bank 0 Bank 7

Bank 6

Bank 4

tags

tags tags

tagstags

tags

tags tags
I $
L1

L1
D$

I $
L1

CPU 2

L1
D$

I $
L1

L1
D$

I $
L1

CPU 0

L1
D$

CPU 1

CPU 3 CPU 4

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

CPU 6

CPU 5

CPU 7

FIGURE 6-5. Layout of CMP-Shared

led tag

ed a

equest.

storing

cessor

allocate

e on-

erative

odels

t and

mn of

n 3 of

used in
101

SPR-NR.CMP-NuRapid [26] maintained coherence using a shared bus and per-processor decoup

arrays with indirect data block pointers (6% overhead). CMP-NuRapid’s replication policy allocat

local L2 tag after the first request and then locally allocated the actual L2 data block upon a second r

SPR-NR removes the shared bus overhead and incorporates CMP-NuRapid’s replication policy by

a 1-bit counter per remote processor for each L2 block (1.4% overhead). The first request by a pro

sets its associated bit so when that processor’s subsequent requests notice the bit set, it will locally

the L2 block.

SPR-CC.Cooperative Caching (CC) [20] used a centralized duplicate tag structure to identify singl

chip L2 block copies, i.e. singlets, and used biased replacements to evict non-singlets first. Coop

Caching attempts to retain globally active singlets by spilling them to a remote L2 cache. SPR-CC m

the centralized tag structure using an idealized distributed tag structure.

6.5.2 System Parameters

The evaluation studies two different SPARC V9 8-processor CMP configurations targeting curren

future technology. The Sun Niagara [62, 67] inspired the first CMP configuration, (the second colu

Table 6-3), and the second configuration presents a CMP assuming 2010 technology [39] (colum

Table 6-3). The out-of-order processors have the same parameters as the out-of-order processors

TABLE 6-3. Comparison of Configuration Parameters

Parameters Current CMP Future CMP

processor model / cycle time in-order / 1.4 GHz out-of-order / 5.0 GHz

split L1 I & D caches 16 KB each, 4-way, 2 cycles 64 KB each, 4-way, 3 cycles

aggregate L2 cache sizes 4 MB 16-way pseudoLRU [95] 16 MB 16-way pseudoLRU [95]

avg. shared L2 / local L2 / remote L2 latency 25 / 12 / 33 cycles 44 / 20 / 52 cycles

memory latency 150 cycles 250 & 500 cycles

memory bandwidth 28 GB/s 50 GB/s

strided

rs and

ptimal

shows

hen,

sses.

s ASR

ration,

e 6-6

struc-

ication

and

or the

ction

lective

curves

. For
102
Chapter 5. Also, the intra-chip and inter-chip protocols are the same as Chapter 5, as well as the

prefetcher.

6.6 Evaluation

This section demonstrates ASR dynamically adapts replication to match different workload behavio

system constraints. First, Section 6.6.1 advocates for an adaptive policy by illustrating how the o

replication level changes depending on the workload and system configuration. Next, Section 6.6.2

that ASR can dynamically identify these different situations and adjust replication accordingly. T

Section 6.6.3 illustrates how ASR balances reducing on-chip latency with minimizing off-chip mi

Finally, Section 6.6.4 compares ASR with previously proposed replication schemes and demonstrate

achieves robust performance across three different system configurations: the Current CMP configu

the Future CMP configuration, and the Future CMP configuration with longer memory latency.

6.6.1 Replication Capacity and Memory Cycles

The optimal replication point shifts depending on workload behavior and CMP configuration. Figur

displays the L2 hit cycles-per-instruction, L2 miss cycles-per-instruction, and the Total cycles-per-in

tion curves for both CMP configurations. Each point on the curve corresponds to a static SPR repl

level.

For Current CMP, 6 of 8 workloads prefer either minimum or maximum replication, while Apache

Oltp prefer intermediate replication. The first row of graphs (Figure 6-6a-c) presents the results f

Current CMP configuration with a 4 MB aggregate L2 cache capacity. The L2 hit cycles-per-instru

curves for the workloads: Apache, Jbb, Oltp, Zeus, and Barnes (Figure 6-6a) demonstrate how se

replication can exploit the request locality of shared read-only data. The slopes of these five convex

show that limited replication attains most of the latency reduction possible with unlimited replication

n by

ion. In

pe. For

ase in

point

n the

imum
103

instance in Apache, devoting 10% of L2 capacity to replication reduces L2 hit cycles-per-instructio

0.3, but allowing replicas to consume 30% more capacity provides less than a 0.2 additional reduct

contrast, Figure 6-6b illustrates the L2 miss cycles-per-instruction curves have a more consistent slo

example, Apache’s miss cycles-per-instruction curve roughly increases by 0.2 for every 10% incre

replication capacity. The resulting total cycles-per-instruction curves (Figure 6-6c) reveal the optimal

of replication for each workload using the Current CMP configuration. Replication has little effect o

scientific workloads Apsi, Art, and Ocean, while the workloads Jbb, Zeus, and Barnes prefer max

0 20 40 60
% L2 Capacity for Replication

0.0

0.5

1.0

1.5

L
2
 H

it
 C

y
c
le

s
/

In
st

r. apache
jbb
oltp
zeus
apsi
art
barnes
ocean

0 20 40 60
% L2 Capacity for Replication

0

1

2

M
is

s
C

y
cl

es
 /

 I
n
st

r.

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

0 20 40 60
% L2 Capacity for Replication

0

1

2

3

T
o
ta

l
C

y
cl

es
 /

 I
n
st

r.

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

0 20 40 60
% L2 Capacity for Replication

0.0

0.5

1.0

1.5

L
2
 H

it
 C

y
c
le

s
/

In
st

r. apache
jbb
oltp
zeus
apsi
art
barnes
ocean

0 20 40 60
% L2 Capacity for Replication

0

2

4

6

8

M
is

s
C

y
cl

es
 /

 I
n
st

r.

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

0 20 40 60
% L2 Capacity for Replication

0

2

4

6

8

T
o
ta

l
C

y
cl

es
 /

 I
n
st

r.

apache
jbb
oltp
zeus
apsi
art
barnes
ocean

FIGURE 6-6. a)
Current CMP:

L2 Hit Cycles / Instr.

FIGURE 6-6. b)
Current CMP:

L2 Miss Cycles / Instr.

FIGURE 6-6. c)
Current CMP:

Total Cycles / Instr.

FIGURE 6-6. d)
Future CMP:

L2 Hit Cycles / Instr.

FIGURE 6-6. e)
Future CMP:

L2 Miss Cycles / Instr.

FIGURE 6-6. f)
Future CMP:

Total Cycles / Instr.

mini-

timal

e nor-

wever,

use its

MP’s

e 6-6b.

optimal

con-
104
replication. The most interesting cases, Apache and Oltp, prefer a replication capacity between the

mum and maximum.

For the Future CMP configuration, the second row of memory curves (Figure 6-6d-f) show that the op

level of replication changes as compared to the Current CMP configuration. For most workloads, th

malized L2 hit cycle curves (Figure 6-6d) maintain the same basic shape as those of Figure 6-6a. Ho

Art demonstrates how balancing replication becomes more important with larger caches [50] beca

8 MB working set (Chapter 4) now fits in Future CMP’s larger cache. Figure 6-6e illustrates Future C

slower memory latency causes the L2 miss cycle slopes to increase with respect to those in Figur

The result is the miss cycle curves have a greater impact on the total cycle curves. For instance the

replication level for Apache and Zeus shifted from 16% and 47%, respectively, for the Current CMP

figuration, to 10% and 20% for the Future CMP configuration.

ation

SPR-

load.

n level

s.
105

6.6.2 Adapting to Workload Behavior

By dynamically monitoring the changes in L2 hit and miss cycles, ASR matches the level of replic

within each private L2 cache to the behavior of each individual processor. Figure 6-7 illustrates

ASR’s dynamic adjustment of each private L2 cache’s replication level over the runtime of the work

Both Figure 6-7a and Figure 6-7b use the future CMP configuration and each processor’s replicatio

is initialized to level 4. Each point on the plots indicates when an SPR-ASR evaluated of its counter

100 200 300 400
Cycles (M)

0

1

2

3

4

5

R
ep

li
ca

ti
on

 L
ev

el

50 100 150 200
Cycles (M)

0

1

2

3

4

5

R
ep

li
ca

ti
on

 L
ev

el

FIGURE 6-7. a) Future CMP:
ASR Adaptability Apache

FIGURE 6-7. b) Future CMP:
ASR Adaptability Oltp

100 200 300 400
Cycles (M)

0

1

2

3

4

5

R
ep

li
ca

ti
on

 L
ev

el

100 200 300 400
Cycles (M)

0

1

2

3

4

5
R

ep
li

ca
ti

on
 L

ev
el

FIGURE 6-8. a) Future CMP:
ASR Adaptability Apache—Processor 0

FIGURE 6-8. b) Future CMP:
ASR Adaptability Apache—Processors 1-7

repli-

ility,

cessor

’s ASR

run.

tween

rove-

y repli-

ASR

-ASR

eight

that

state,

y state

misses

single

the pri-

ly 55%

average
106
For the workload Apache (Figure 6-7a), SPR-ASR reduces the replication level to achieve the lower

cation capacity preferred by the workload. In order to illustrate the benefit of ASR’s local adaptab

Figure 6-8a plots the ASR level of the one processor that executes almost exclusively OS code—pro

0—and Figure 6-8b plots the ASR levels of the seven other processors. Interestingly, processor 0

detects very little replication benefit and drops the replication level to levels 0 and 1 for majority of the

In contrast, after the first 250 million cycles, the replication levels of processors 1 through 7 hover be

levels 2 and 3 for the remainder of the execution. Overall, SPR-ASR dynamically identifies the imp

ment provided by selective replication in Apache and reduces the average L2 capacity consumed b

cas to 5%.

For the workload Oltp, which has an optimal point of replication capacity near the maximum, SPR-

adjusts replication to level 5 for all processors. Figure 6-7b illustrates that each processor’s SPR

mechanism quickly detects a benefit for replicating Oltp’s large instruction footprint and moves all

L2 caches to level 5, or 100% probability of replication, within the first 10 million cycles. The result is

on average 52% of L2 capacity is consumed by replicas.

As Figure 6-7a exemplifies, SPR-ASR can require well over a 100 million cycles to reach steady

which equates to several hours of simulation. Therefore, in order to evaluate SPR-ASR during stead

execution, the remainder of this section initializes the replication levels to their steady state value.

6.6.3 Sharing Type Latency vs. Off-chip Misses

This subsection illustrates how SPR-ASR sacrifices shared block latency in order to reduce off-chip

and improve performance. Similar to Chapter 5, Figure 6-9 displays the L1 miss latency to on-chip

requestor, shared read-only, and shared read-write blocks, as well as, off-chip misses. As expected,

vate cache designs exploit their faster local L2 banks and reduce single requestor latency by rough

versus CMP-Shared. For shared data, CMP-Private replicates all shared L2 blocks, resulting in an

107

0.0

0.5

1.0

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Single Requestor

S P A
apache

S P A
jbb

S P A
oltp

S P A
zeus

S P A
apsi

S P A
art

S P A
barnes

S P A
ocean

0.0

0.5

1.0

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Shared Read-only

S P A
apache

S P A
jbb

S P A
oltp

S P A
zeus

S P A
apsi

S P A
art

S P A
barnes

S P A
ocean

0.0

0.5

1.0

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Shared Read-write

S P A
apache

S P A
jbb

S P A
oltp

S P A
zeus

S P A
apsi

S P A
art

S P A
barnes

S P A
ocean

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 M
is

se
s

Off-chip

S P A
apache

S P A
jbb

S P A
oltp

S P A
zeus

S P A
apsi

S P A
art

S P A
barnes

S P A
ocean

FIGURE 6-9. Future CMP: Normalized L1 Miss Latency to
Sharing Types and Off-chip Misses

(S: CMP-Shared, P: CMP-Private, A: SPR-ASR)

ncy. In

shared

tency

latency

fit of

fewer

ertain

bsec-

per-

SPR-

f each

orming

cept

of the

-ASR

e other

acity,

CMP

cycles

rmance

remote
108
46% reduction in shared read-only latency and an average 30% reduction in shared read-write late

contrast, SPR-ASR limits shared read-only replication based on workload behavior and disallows

read-write replication across all workloads. The result is SPR-ASR’s Apache shared read-only la

increases by as much as 45% versus CMP-Private, and SPR-ASR’s average shared read-write

increases by 15% versus CMP-Private. Finally, Figure 6-9‘s off-chip miss plot displays the bene

restricting replication. For all workloads except Apsi and Ocean, SPR-ASR encounters noticeably

off-chip misses than CMP-Private, with the greatest reduction being 32% for Apache. Overall, for c

workloads, SPR-ASR tradeoffs on-chip shared block latency for fewer off-chip misses. The next su

tion displays how this tradeoff translates into better CMP performance.

6.6.4 Comparison of Replication Schemes

Performance.For workloads where replication interferes with the active working set, SPR-ASR out

forms the alternative CMP cache designs. For workloads where replication capacity has little effect,

ASR performs at least as well as the other designs. Figure 6-10 shows the normalized runtime o

CMP design executing the eight workloads. The two SPR-CC bars represent the worst and best perf

Cooperative Caching percentages1—we refer to these as worst and best SPR-CC. For all workloads ex

Oltp, the private cache designs (excluding worst SPR-CC) exploit the relatively fast memory latency

Current CMP configuration and improve performance by 0-30% versus CMP-Shared. For Oltp, SPR

and best SPR-CC improve performance by 6% and 9%, respectively, versus CMP-Shared, while th

private cache designs degrade performance by 3-7%. SPR-ASR limits replication to 43% of L2 cap

resulting in only a 43% increase in off-chip cycles versus CMP-Shared. In contrast, the other private

designs devote as much as 66% of L2 capacity to replicas causing at most a 99% increase in off-chip

versus CMP-Shared. Overall, the best performing SPR-CC percentage achieves competitive perfo

1.Reminder: Cooperative Caching 100% always evicts replicas before singlets and allows all singlets to spill into one
cache. In contrast, Cooperative Caching 0% treats replicas and singlets equally and disallows singlet spilling.

empli-

e and

Shrd

2 hits

epre-

gment

s that

pache

ance
109

to that of SPR-ASR. However, the particular SPR-CC percentage varies between workloads, thus ex

fying the need for an adaptive policy.

To provider further insight, Figure 6-11 shows the memory system cycle breakdown for the Apach

Oltp workloads to indicate where the time is spent in the memory system. The ‘Local L1’ and ‘Local/

L2’ segments display the fraction of the average memory access time contributed by local L1 and L

respectively (for CMP-Shared ‘Local/Shrd L2’ indicates shared L2 hits). The ‘Remote’ bar segment r

sents the cycles spent on requests satisfied by remote L1 or L2 caches. Finally, the ‘Off-chip’ bar se

indicates the cycles spent on off-chip misses.

As forecast by the total cycles-per-instruction curve (Figure 6-6c) the four private cache design

restrict replication (SPR-VR, SPR-NR, SPR-CC, and SPR-ASR) attain better performance for A

than CMP-Private, which allows all replication. Specifically, SPR-ASR achieves the greatest perform

0.6

0.8

1.0

1.2
Sp

ee
du

p

S PVN

0%

C

 7
0%

CA

apache

S PVN

10
0%

C

0%

CA

jbb

S PVN

0%

C

 7
0%

CA

oltp

S PVN

10
0%

C

 3
0%

CA

zeus

S PVN

10
0%

C

0%

CA

apsi

S PVN

 3
0%

C

0%

CA

art

S PVN

10
0%

C

0%

CA

barnes

S PVN

 7
0%

C

0%

CA

ocean

FIGURE 6-10. Current CMP: Speedups
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

0.0

0.5

1.0

N
or

m
. M

em
or

y
C

yc
le

s

Local L1
Local/Shrd L2
Remote
Off-chip

S P V N
 0%

C
 70%

C A

apache

S P V N
 0%

C
 70%

C A

oltp

FIGURE 6-11. Current CMP: Memory Cycles
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

cation

% of

trong

its as

20%.

out-of-

Apache,

CMP-

8% for

work-

xploit
110

improvement (26% and 19% versus CMP-Shared and CMP-Private respectively) by restricting repli

to only 5% of L2 capacity, while SPR-VR and SPR-NR allow replicas to consume more than 38

capacity. Figure 6-11 shows the limited replication capacity enforced by SPR-ASR exploits the s

locality of shared read-only requests. Specifically, SPR-ASR achieves almost as many local L2 h

SPR-NR (82%), while SPR-ASR’s greater effective cache capacity reduces off-chip miss cycles by

SPR-ASR also improves the Future CMP configuration despite the fact that larger cache sizes and

order processors [84] change the performance tradeoff between shared and private caches. For

Apsi, and Barnes, the maximum performance advantage the private cache designs exhibit over

Shared diminishes to only 4-13%, while the private caches’ performance advantage increases to 1

Oltp and Ocean. Figure 6-13 breaks down the memory cycles for Apache and Oltp. Because Oltp’s

ing set better fits in Future CMP’s larger cache, the private cache organizations utilize replication to e

0.6

0.8

1.0

Sp
ee

du
p

S PVN

0%

C

10
0%

CA

apache

S PVN

 3
0%

C

 7
0%

CA

jbb

S PVN

10
0%

C

 7
0%

CA

oltp

S PVN

10
0%

C

0%

CA

zeus

S PVN

 7
0%

C

0%

CA

apsi

S PVN

0%

C

 7
0%

CA

art

S PVN

0%

C

 7
0%

CA

barnes

S PVN

10
0%

C

0%

CA

ocean

FIGURE 6-12. Future CMP: Speedups
(S: CMP Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

0.0

0.5

1.0

N
or

m
. M

em
or

y
C

yc
le

s

Local L1
Local/Shrd L2
Remote
Off-chip

S P V N
 0%

C
100%

C A

apache

S P V N
100%

C
 70%

C A

oltp

FIGURE 6-13. Future CMP: Memory Cycles
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

ly bene-

CMP-

hapter

erfor-

perfor-

CMP

thin a

ork-

d SPR-

R-VR
111

the faster private L2 caches. Oltp’s frequently requested shared read-only data (Chapter 4) especial

fits from replication, enabling the private cache designs to improve performance by 13-18% versus

Shared, with SPR-CC achieving the greatest improvement. However, Apache’s larger working set (C

4) exposes Future CMP’s slower memory latency. For instance, CMP-Private and SPR-VR suffer a p

mance degradation versus CMP-Shared of 3% and 1%, respectively, while SPR-ASR achieves a

mance improvement of 9%.

Finally, illustrates SPR-ASR also improves performance when the memory latency in the Future

configuration is increased to 500 cycle, thus demonstrating ASR will provide good performance wi

multiple-chip CMP system with a longer memory access latency [55]. Specifically, Apache’s larger w

ing set conflicts with the 500 cycle memory latency and all private cache designs except SPR-CC an

ASR suffer substantial performance degradation versus CMP-Shared. In particular, CMP-Private, SP

0.6

0.8

1.0
Sp

ee
du

p

S PVN

0%

C

10
0%

CA

apache

S PVN

10
0%

C

0%

CA

jbb

S PVN

0%

C

10
0%

CA

oltp

S PVN

0%

C

 3
0%

CA

zeus

S PVN

10
0%

C

0%

CA

apsi

S PVN

0%

C

 3
0%

CA

art

S PVN

0%

C

10
0%

CA

barnes

S PVN

 7
0%

C

0%

CA

ocean

FIGURE 6-14. Future CMP 500 cycle memory latency: Speedups
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

0.0

0.5

1.0

N
o
rm

al
iz

ed
 M

is
se

s

Local L1
Local/Shrd L2
Remote
Off-chip

S P V N
 0%

C
100%

C A

apache

S P V N
 0%

C
100%

C A

oltp

FIGURE 6-15. Future CMP 500 cycle memory latency: Memory Cycles
(S: CMP-Shared, P: CMP-Private, V: SPR-VR, N: SPR-NR, C: SPR-CC, A: SPR-ASR)

hieves

emory

ASR

R-ASR

ere

work-

-ASR’s

loads.

evious

inten-

d, SPR-

urrent

R-CC,

ck for

ed the

lock—

ires a
112

and SPR-NR suffer a performance degradation of 7-13% versus CMP-Shared, while SPR-ASR ac

the greatest performance improvement versus CMP-Shared—5%. Figure 6-15 breaks down the m

cycles for Apache and Oltp. By limiting replicas to consuming only 1% of L2 cache capacity, SPR-

does not suffer the off-chip cycle increase like some of other private cache designs. Instead, SP

fully utilizes its remote cache capacity, attaining 88% more remote hit cycles than CMP-Private.

Performance Summary.Overall, SPR-ASR significantly improves performance for workloads wh

shared read-only replication conflicts with the active working set, e.g. Apache and Oltp. For other

loads, SPR-ASR usually performs at least as well as, if not better than, the best alternative. SPR

performance stability ensures CMP caches will provide good performance to a wider variety of work

Storage Overhead.SPR-ASR achieves better performance for less storage overhead than the pr

hybrid cache designs because it relies on SPR’s probabilistic filtering rather than a more hardware

sive replication mechanism, such as those used by CMP-NuRapid and Cooperative Caching. Instea

ASR targets its storage overhead to dynamically monitoring replication’s cost and benefit. For the C

and Future CMP configurations, Table 6-4 compares the storage overhead of SPR-VR, SPR-NR, SP

and SPR-ASR. SPR-VR’s and SPR-ASR’s replication mechanisms add only one bit per L2 cache blo

respectively identifying replica and shared blocks. Thus, these mechanisms scale well with increas

aggregate L2 cache size. In comparison, CMP-NuRapid’s SPR implementation adds 7-bits per L2 b

a 1-bit counter for each remote L2 cache—and Cooperative Caching’s SPR implementation requ

duplicate tag per L2 cache block.

TABLE 6-4. Storage Overhead Comparison

SPR Cache Design

Replication Mechanism Adaptive Mechanism

Current CMP Future CMP Current CMP Future CMP

Victim Replication 8 KB 32 KB Not Applicable Not Applicable

CMP-NuRapid 56 KB 224 KB Not Applicable Not Applicable

Cooperative Caching 255 KB 886 KB Not Applicable Not Applicable

ASR 8.5 KB 34 KB 153 KB 177 KB

ors to

at the

loped

] and

ories.

cal

ating a

a flat

d com-

soft-

100]

grate

dy by

ssor’s

SR’s

page

ized

Cache.

lication
113
6.7 Related Work

6.7.1 Multiprocessor Memories

Much previous work has analyzed migrating and replicating data between multi-chip multiprocess

reduce the effect off-chip latency had on performance. Some of the earliest migration work was done

memory level in hierarchical multiprocessor networks. For instance, in the early 1990’s two deve

Cache Only Memory Architectures (COMA) systems used a hierarchical directory structure [40, 43

turned the memory modules within the directory structure into logical caches, called Attraction Mem

Another study by Mizrahiet al. [81] evaluated the benefits of migration within switches of a hierarchi

multiprocessor network. The paper advocates for migrating data directly to the processors and initi

series of writebacks back to the root switch to create space. In contrast Kimet al. [58] and myself advocate

for gradual migrations because multiple writebacks consume power and bandwidth.

A larger body of work exists evaluating the performance of data migration and replication assuming

multiprocessor network. Specifically, throughout the previous decade, significant work has compare

pletely hardware solutions such as CC-NUMA and Flat COMA architectures [100, 122], along with

ware [19, 108] and hybrid hardware/software combinations [35, 97]. The Flat COMA protocol [97,

removed the slow ordered network of Hierarchal COMA machines and allowed data to directly mi

towards the requesting processor on an unordered network similar to CMP-DNUCA. Another stu

Vergheseet al. [108] proposed allowing the OS to migrate and selectively replicate pages to a proce

local memory to reduce the miss penalty in the Stanford Flash CC-NUMA machine. Analogous to A

replication levels, their scheme utilized a “Trigger threshold” to indicate the number of misses until a

was considered hot and available for migration/replication. Similarly, Falsafi and Wood [35] util

“Reactive Counters” on pages to determine when to relocate a page to the node’s S-COMA Page

Comparable to Chapter 4, Zhang and Torrellas [122] broke down working sets into three cases, Rep

UMA

run

ctory-

.

n-

ocessor

have

osed a

cheme

fully-

ement,

wo D-

tions.

s

rther

ed by

rking

CMP
114
data, Migration read only data, and Migrating read/write data in their performance comparison of a N

system with a Remote Cache (NUMA-RC) and a COMA-Flat system. Also similar to Chapter 4’s

length characterization, Gupta and Weber [42] extensively analyzed invalidations patterns in a dire

based SMP. Finally, Dahlgren and Torrellas [27] provided a cohesive survey of COMA architectures

6.7.2 Uniprocessor Caches

As previous discussed, Kimet al. [58] were the first to study data migration in wire-delay dominated o

chip caches. They showed migrating frequently requested data to the closer cache banks of a unipr

cache significantly improved performance over a typical monolithic cache. Additional researchers

proposed optimizations to the uniprocessor NUCA cache. For instance, Kodama and Sato [61] prop

NUCA cache composed of fully associative CAMs as storage banks and proposed a pre-promotion s

to prefetch the i+1 block after a request for block i. The extra freedom of movement provided by the

associative 128 KB banks (with 5 cycle bank access time) enabled significant performance improv

but the power implications were not evaluated. Also, Foglia, Mangano, and Prete [36] proposed t

NUCA variations, called the Triangular D-NUCA caches, that were optimized for embedded applica

By exploiting D-NUCA’s triangular access behavior, Fogliaet al. reduced the NUCA cache size—and it’

static power—by two, while achieving most of the performance of the rectangular D-NUCA cache.

By utilizing indirect tag pointers to access the data array, Chishti, Powell, and Vijaykumar [25] fu

improved block migration performance in a uniprocessor cache. The extra level of indirection provid

NuRapid’s indirect tags, reduced conflicts in the nearest cache banks, allowing more of the critical wo

set to be located in the closest banks.

In contrast to these uniprocessor studies, this dissertation studies migration and replication within a

cache.

hes. In

che by

valu-

trash-

data to

each

ement

Huh

sults

ache.

proces-

CMP-

alized

try

posi-

for

than

cessors.

prop-
115
6.7.3 Chip Multiprocessor Caches

Recently, researchers have evaluated the effectiveness of migration and replication within CMP cac

particular, some researchers have proposed using migration and replication within a shared CMP ca

dynamically changing its logical mapping. For instance, Liu, Sivasubramaniam, and Kandemir [70] e

ated dynamically remapping within a bus-based CMP. Specifically, their focus was to reduce cache

ing between processors operating on different data, while allowing processors accessing the same

share storage. They utilized profile information to determine the optimal cache configuration for

dynamic unit of time, called an epoch, and their scheme achieved significant performance improv

versus the baseline shared and private CMP cache design. Another, similar remapping proposal byet

al. [48], investigated dynamic partitioning within the CMP-DNUCA cache design. They confirmed re

that data sharing between processors limits migration’s performance benefit with the CMP-DNUCA c

To combat this problem, they proposed logically sharing only subsections of cache banks between

sors.

Complementary to the CMP-DNUCA remapping proposal, other researchers have improved

DNUCA using bloom filters or innovative 3D integration technology. For example, Ricciet al. [92] signif-

icantly reduce CMP-DNUCA’s “smart search” mechanism storage overhead by replacing the centr

6-bit partial tag structure—1.5 MB—with 128 distributed bloom filters—160 KB. A set of 16 1-bit en

bloom filters is managed locally by a particular processor and a bloom filter is cleared once its false

tive rate exceeds 50%. Ricciet al.show that this bloom filter design achieves better than 85% accuracy

a set of scientific workloads, but their scheme had to deal with false negatives. Another study by Liet al.

[69], demonstrated migration performs significantly better within a novel three-dimensional L2 cache

a typical two-dimensional L2 cache because more cache banks can be integrated closer to more pro

While three-dimensional integration adds costly manufacturing steps, its multi-dimensional locality

erties increase the importance of migration and replication.

s. For

essor

orrow,

ultiple

cache

mecha-

he Per-

ically

kload

every

mul-

Chan-

f co-

g OS

portant

infor-

hed-

istance

erged

track
116
Other researchers have analyzed migration and replication within private CMP cache hierarchie

example, Harris’s Synergistic Caching [44] investigated logically grouping L1 caches in a 64-proc

CMP to exploit inter-processor sharing. Harris proposed three cache block movement modes: beg, b

and steal, which are similar to three block movements we analyzed: replicating blocks between m

cache banks, writing back blocks to remote cache banks, and migrating blocks to the requesting

bank. Because no single mode was always the best, Harris advocated for an adaptive configuration

nism, but did not evaluate such a mechanism. Another study by Yeh and Reinman [118] proposed t

formance Driven Adaptive Sharing (PDAS) cache architecture for embedded systems. PDAS dynam

adapted cache partitioning within a private CMP cache hierarchy to improve multiprogrammed wor

quality-of-service. PDAS’s software algorithm utilized hardware counters and ran for 10,000 cycles

100 millionth interval. In contrast, ASR’s algorithm is simple enough for hardware and is focused on

tithreaded workload performance.

Other recent work focused on operating system interaction within CMP caches. For instance, Kim,

dra, and Solihin [59] analyzed fair CMP cache sharing and partitioning while executing a mixture o

scheduled threads within a multiprogrammed environment. While their technique focused avoidin

scheduler problems, they did propose a hardware cache monitoring scheme similar to ASR. The im

differences are their algorithm strictly concentrates on cache storage allocation and relies on profile

mation. Similarly, Chandraet al. [18] proposed three models to predict the L2 miss rates when co-sc

uled threads share the L2 cache and Suh, Devadas, and Rudolph [101] proposed the Stack D

Competition (SDC) model that used LRU distance hit counters to estimate how working sets will m

together. Both envision their models can help guide the operating system scheduler.

Analogous to ASR’s replication cost monitoring, Zhang and Asanovic [120] used a miss tag buffer to

what cache misses could have been hits if the cache was full sized. The difference is Zhanget al.’s miss tag

buffer stored full size tags and was used to save energy in a automatically resizable cache.

e

e first

iting

the L2

aches

SPR’s

Victim

duce

adjust

proba-

ough

SR’s

d be

imated

Cach-

MP

uncon-

s. This

eplica-

ive rep-
117
Similar to SPR’s ring writeback mechanism, Speightet al. [98] presented two mechanisms to manag

cache hierarchies in a Power4-like CMP connected with a ring intra-chip connection network. Th

mechanism, Write Back History Table (WBHT), saved bandwidth on the intra-chip network by not wr

back clean L2 data when the L2 believed that the L3 already has a copy. The second mechanism,

Snarf Table, reduced latency by deciding when to keep critical blocks in other fast access L2 c

instead of writing them back to the slower L3 cache. The difference between these mechanisms and

ring writeback mechanism is that SPR uses the ring to avoid replication instead of to save latency.

The most closely related proposals to Adaptive Selective Replication are the previously discussed

Replication [121], CMP-NuRapid [26], and Cooperative Caching [20] proposals. All three designs re

replica blocks, but their static mechanisms tend to favor certain workloads and do not dynamically

to changes in workload behavior and system constraints. Cooperative Caching does introduce using

bility to control replication, but does not propose a mechanism to actually adjust the probability. Thr

slight modification, ASR monitoring hardware could provide such a mechanism. Specifically, A

NLHB could be modified to determine the cost of the evicted replica blocks and ASR’s VTB coul

modified to determine the cost of the evicted singlet blocks. By comparing these costs to the est

benefits of storing the current singlet and replica blocks, one could design an adaptive Cooperative

ing algorithm.

6.8 Summary

Managing on-chip wire delay, while limiting off-chip misses, is essential in order to improve future C

performance. A private CMP cache hierarchy offers lower access latency than a shared cache, but

trolled replication may cause significant performance degradation due to increased off-chip misse

chapter proposes Adaptive Selective Replication, which dynamically adapts shared read-only data r

tion to exploit the latency advantage of private caches without wasting cache capacity due to excess

urrent

as the

s.
118
lication. By performing an opportunity analysis, ASR adjusts the degree of replication to match the c

workload behavior and system configuration. This chapter showed ASR usually performs as well

best alternative design and improves performance for commercial workloads with large working set

119

Chapter 7
lly, the

private

s Adap-

alone.

with

private

ion line

n 7.5

upon

e com-

lines

youts

Shared

erime-

n-chip

s and
Transmission Line Caches

This chapter investigates how transmission lines can improve CMP cache performance. Specifica

chapter demonstrates transmission lines consistently improve performance for both shared and

caches. This chapter also shows that transmission lines can work in concert with techniques, such a

tive Selective Replication, to improve performance beyond what can be achieved by either technique

The chapter begins with Section 7.1 motivating the benefits of using on-chip transmission lines

CMPs. Next, Section 7.2 and Section 7.3 evaluate how transmission lines improve a shared and

cache hierarchy, respectively. Then, Section 7.4 compares the performance of a shared transmiss

cache with the performance of a private transmission line cache combined with ASR. Finally, Sectio

summarizes related work and Section 7.6 concludes.

7.1 Motivation

By utilizing on-chip transmission lines, Transmission Line Caches (TLCs) can substantially improve

conventional cache designs. As previously described in Chapter 2, on-chip transmission lines reduc

munication latency by an order of magnitude versus conventional wires. Additionally, transmission

can travel long distances without repeaters, thus allowing TLCs to implement more efficient cache la

that are not possible with standard repeated wires. For instance, the shared CMP-TLC design (

CMP-TLC), described in Section 7.2, provides fast access to L2 cache banks located on a CMP’s p

ter, while also facilitating fast L1 cache transfers between centrally located processors. However, o

transmission lines sacrifice considerable bandwidth density because they require very thick wire

ignifi-

h may

high-

wires

ull sys-

% per-

er, for

dwidth

ause it

CMP-

CMP-

a 2-D

trates

al wires

times

rans-

ly. Fur-

f-chip

nce to
120
intermetal dielectrics that are only available in a chip’s uppermost metal layers. Thus, TLCs can be s

cantly faster and more efficient than traditional caches, but restricted transmission line bandwidt

limit their overall performance benefit.

TLC’s performance depends on both the latency and bandwidth of transmission lines. Previously, the

level model in Chapter 3 showed that under low contention, a 64-banked cache utilizing thin-fast

attains significantly lower average cache access latency than a cache using wide-slow wires. Using f

tem simulation, Section 7.2 confirms those results and shows that TLC designs can attain up to a 15

formance improvement over a shared 64-banked cache using conventional wide-slow wires. Howev

the 64-banked Shared CMP-TLC design, attaining this sizeable speedup requires abundant ban

from a global on-chip network exclusively composed of transmission lines.

In contrast, the 8-banked Private CMP-TLC design requires less transmission line bandwidth bec

efficiently combines all three latency management techniques. Unlike Shared CMP-TLC, Private

TLC does not rely on an exclusive transmission line network to enable its layout. Instead, Private

TLC places its private cache banks in the die’s center so its interconnection network can combine

mess of conventional wires with point-to-point transmission lines. In particular, Section 7.3 demons

communicating only request messages across transmission lines and sending data over convention

can achieve 95-99% of the performance attained by an exclusive transmission line network with 20

the link bandwidth. Also, Section 7.3 shows Private CMP-TLC combines migration, replication, and t

mission lines to reduce single requestor, shared read-only, and shared read-write latency, respective

thermore, Section 7.3 shows that ASR leverages Private CMP-TLC’s lower latency to reduce of

misses. Finally, Section 7.4 illustrates Private CMP-TLC achieves equivalent average performa

Shared CMP-TLC despite using four times fewer transmission lines and slower cache banks.

che by

ayout

Interface

ndary

lobal

Shared

cated

share a

ten-

iffer-
121

7.2 Shared CMP-TLC

7.2.1 Overview

The Shared CMP-TLC design (Figure 7-1) not only provides fast access to the entire shared L2 ca

utilizing transmission lines, but also facilitates fast L1 cache transfers. Shared CMP-TLC’s unique l

places the processors in the center of the die so that all processors have fast access to the Cache

Unit (CIU) that communicates with the 64 L2 cache banks on the periphery of the die. Another seco

advantage of placing the processors in close proximity to each other is it minimizes the impact of g

wire delay on remote L1 cache hit latency. Because transmission lines do not require repeaters,

CMP-TLC creates a fast, direct connection between the centrally located CIU and the peripherally lo

storage arrays by routing directly over the processors. Four banks (2 adjacent groups of 2 banks)

common pair of thin 8-byte wide unidirectional transmission line links to the CIU. To mitigate the con

tion for the thin transmission line links, the Shared CMP-TLC design provides 16 separate links to d

C
a
c
h

e
 I
n

te
rf

a
c
e
 U

n
it

CPU 4

L1
I $

$D
L1

I $
L1

L1
D$

I $
L1

CPU 2

L1
D$

L1
I $

$D
L1

L1
I $

$D
L1

I $
L1

L1
D$

I $
L1

CPU 0

L1
D$

L1
I $

$D
L1

CPU 1 CPU 6

CPU 5

CPU 3

CPU 7

FIGURE 7-1. Shared CMP-TLC

ertain

ase

in test

e 8-

, on-

M)

lores

hared

hs of

must

links

IU is

-TLC

e trans-

10 cycles

.

122

ent segments of the L2 cache. These links provide sufficient bandwidth for most workloads, but for c

workloads they become a bottleneck.

For those workloads that require significant bandwidth, Wave Division Multiplexing (WDM) can incre

the effective bandwidth of transmission lines. Currently, the on-chip transmission lines implemented

chips perform no bit multiplexing [21, 52]. Assuming no multiplexing, Shared CMP-TLC can only us

byte wide links before requiring multiple dedicated interconnect metal layers. However, in the future

chip optical communication using a polymer waveguide layer and Wave Division Multiplexing (WD

[23] could achieve 80-byte wide links with similar manufacturing costs. Therefore, this section exp

the architectural ramifications WDM technology may have on Shared CMP-TLC by also analyzing S

CMP-TLC with 80-byte wide links—referred to as Shared CMP-TLC-WDM.

The size of the centralized CIU significantly impacts the performance of Shared CMP-TLC. The widt

the transmission lines used in Shared CMP-TLC determine CIU’s size. In 45nm technology, the CIU

be approximately 1 cm tall to accommodate all the transmission lines. Using the transmission line

specified in Table 2-1 of Chapter 2, Table 7-1 shows that the total height of Shared CMP-TLC’s C

9.94 mm assuming a track utilization efficiency of 0.67 [39]. To reduce contention, the Shared CMP

cache interface uses 80-byte wide conventional wires to communicate between the transmission lin

ceivers located on its edges and the eight processor access points. Overall, messages encounter 2-

of communication latency within the cache interface unit depending on their source and destination

TABLE 7-1. Shared CMP-TLC Cache Interface Unit Height Breakdown

Link Type Total Links Used Total Links per Side Total Side Width

TL 9 mm 4 2 1.28 mm

TL 10 mm 4 2 1.54

TL 11 mm 4 2 1.79

TL 13 mm 4 2 2.05

Cache Interface Unit Total Height (assuming 0.67 track utilization) 9.94

NUCA

es L1

much

est 1

n can

pter 5,

igra-

anks.
123

Figure 7-2 compares the uncontended L2 cache hit latency between the 64-banked CMP-S

(Figure 7-3) design introduced in Chapter 5 and Shared CMP-TLC. The plotted hit latency includ

miss latency, i.e. it plots the load-to-use latency for L2 hits. While Shared CMP-TLC achieves a

lower average hit latency than CMP-SNUCA, CMP-SNUCA exhibits slightly lower latency to the clos

MB to each processor. For instance, Figure 7-2 shows all processors in the CMP-SNUCA desig

access their local bankcluster (6.25% of the entire cache) in 18 cycles or less. Previously, in Cha

CMP-DNUCA attempted to maximize the hits to this closest 6.25% of the NUCA cache through m

tion, while Shared CMP-TLC utilizes a much simpler logical design and provides fast access for all b

0 20 40 60 80 100
% of On-Chip Cache Storage

0

10

20

30

40

50

L
a
ta

n
c
y

 (
c
y

c
le

s)
CMP-SNUCA
Shared CMP-TLC

FIGURE 7-2. Uncontended Latency Comparison Between CMP-SNUCA
and Shared CMP-TLC

nd the

lines

e links

adcast

asting

rs, the

snoop

ency

rdered
124

7.2.2 Methodology

Similar to Chapter 5 and Chapter 6, this chapter uses full-system simulation based on Simics [109] a

GEMS toolset [114] to evaluate Shared CMP-TLC. The only differences is the on-chip transmission

input buffers are extended to hold 10 entries. This is because the limited bandwidth provided by thes

results in greater contention.

To fully take advantage of Shared CMP-TLC’s fast data transfers between L1 caches, the token bro

protocol, previously evaluated in Chapter 5 and Chapter 6, must be altered. Specifically, by broadc

local L1 misses instead of relying on the L2 cache to forward requests to other on-chip L1 share

token protocol allows direct L1 cache-to-cache transfers at the cost of requiring more L1 cache

bandwidth. Similarly, a traditional broadcast snooping protocol [22] would provide comparable lat

characteristics at the cost of implementing the Shared CMP-TLC’s cache interface unit as an o

crossbar.

L1
I $
L1

D$
L1

I $
L1

D$

L1
I $ L1

D
$

L1
I $ L1

D
$

L1
I $L1

D
$

L1
I $L1

D
$

CPU 7

L1
I $ D

L1
$

L1
I $

L1
D$

CPU 6C
P

U
 0

C
P

U
 1

CPU 2 CPU 3 C
P

U
 4

C
P

U
 5

FIGURE 7-3. CMP-SNUCA

to sig-

e aver-

ows

-TLC

remote
125

7.2.3 Evaluation

Shared CMP-TLC’s combination of fast L1 cache transfers and fast access to its L2 banks allows it

nificantly reduce on-chip latency versus the baseline CMP-SNUCA design. Figure 7-4 compares th

age remote L1 hit latency of Shared CMP-TLC and Shared CMP-TLC-WDM to CMP-SNUCA and sh

that the Shared CMP-TLC designs roughly cut remote L1 hit latency in half. Since both Shared CMP

designs use the same high-bandwidth cache interface unit, both designs achieve virtually the same

L1 latency.

0

10

20

30

C
yc

le
s

S T W

apache

S T W

jbb

S T W

oltp

S T W

zeus

S T W

apsi

S T W

art

S T W

barnes

S T W

ocean

FIGURE 7-4. Shared CMP-TLC: Average Remote L1 Cache Hit Latency
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

reduc-

net-

ate

cur

-TLC

delay.

are not

ently

at the L2
126

Figure 7-5 plots the average L2 hit latencies for the three designs and illustrates that the L2 latency

tion provided by Shared CMP-TLC depends on transmission line bandwidth. The high-bandwidth

works of CMP-SNUCA and Shared CMP-TLC-WDM provide sufficient bandwidth and largely elimin

contention. In particular, for all workloads except Art, CMP-SNUCA and Shared CMP-TLC-WDM in

no more than one cycle of delay due to contention. Conversely, the limited bandwidth of Shared CMP

results in contention that adds 1-9 delay cycles to L2 hits with Apsi and Ocean exhibiting the highest

Finally, for Art, all three designs encounter at least 8 extra contention cycles. However, these cycles

due to bandwidth contention, but rather protocol contention. Specifically, for Art, processors frequ

issue simultaneous requests for the same block, causing many of these requests to be queued up

cache controller.

0

10

20

30
C

yc
le

s

contended
uncontended

S T W

apache

S T W

jbb

S T W

oltp

S T W

zeus

S T W

apsi

S T W

art

S T W

barnes

S T W

ocean

FIGURE 7-5. Shared CMP-TLC: Average L2 Cache Hit Latency
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

uction

misses

ote L1

L2

ycles

xhib-

Shared

uces

ce.
127

Though Shared CMP-TLC reduces remote L1 latency far greater than L2 latency, it’s L2 latency red

accounts for most of it’s performance improvement. Figure 7-6 breaks down the cycles spent on L1

into three categories: the average memory access time contributed by L2 hits ‘Shared L2’, by rem

hits ‘Remote L1’, and by Off-chip misses ‘Off Chip’. The Shared L2 bars display that Shared TLC’s

latency reduction supplies most of its benefit. As forecast by Figure 7-5, the reduction of L2 hit c

depends on the transmission line bandwidth, with the scientific workloads Apsi [6] and Ocean [94] e

iting the greatest dependence on bandwidth because their data streaming behavior. Meanwhile,

CMP-TLC not only reduces Remote L1 cycles, but Off Chip bars indicate that Shared CMP-TLC red

off chip cycles by reducing the on-chip latency between the L2 cache banks and the memory interfa

0.0

0.5

1.0

N
or

m
. L

1
M

is
s

C
yc

le
s

Shared L2
Remote L1
Off-chip

S T W

apache

S T W

jbb

S T W

oltp

S T W

zeus

S T W

apsi

S T W

art

S T W

barnes

S T W

ocean

FIGURE 7-6. Shared CMP-TLC: L1 Miss Cycles Breakdown
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

width

ally,

and

parity

ean’s

while,

ency

ritical
128

Overall, Shared CMP-TLC consistently outperforms the baseline CMP-SNUCA design, but band

contention prevents Shared CMP-TLC from achieving its full performance potential. Specific

Figure 7-7 shows that Shared CMP-TLC and Shared CMP-TLC-WDM improve performance by 2-8%

2-15% versus CMP-SNUCA, respectively. The workloads that show the greatest performance dis

between Shared CMP-TLC and Shared CMP-TLC-WDM are Oltp, Apsi, and Ocean. Apsi’s and Oc

performance disparity is caused by the previously mentioned bandwidth contention issues. Mean

Oltp’s performance disparity is attributed to the fact that Shared CMP-TLC-WDM reduces L2 hit lat

by 3 cycles versus Shared CMP-TLC (Figure 7-5), which leads to a 9% reduction in performance c

L1 instruction cache miss latency [89] versus Shared CMP-TLC.

0.6

0.8

1.0
Sp

ee
du

p

S T W

apache

S T W

jbb

S T W

oltp

S T W

zeus

S T W

apsi

S T W

art

S T W

barnes

S T W

ocean

FIGURE 7-7. Shared CMP-TLC: Speedup
(S: CMP-SNUCA, T: Shared CMP-TLC, W: Shared CMP-TLC-WDM)

in

delay.

rans-

TLC’s

trans-
129

Transceiver Delay Sensitivity Analysis.Based on the transmission line transceivers implemented

test chips [21, 52], the previous subsections assumed single-cycle transmission line transceiver

However, due to increasing noise susceptibility or the integration of WDM, future transmission line t

ceiver circuits may require multiple cycle delays. Therefore, this subsection analyzes Shared CMP-

sensitivity to transceiver delay. Figure 7-8 and Figure 7-9 compare the performance of single-cycle

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

S T +1+2

apache

S T +1+2

jbb

S T +1+2

oltp

S T +1+2

zeus

S T +1+2

apsi

S T +1+2

art

S T +1+2

barnes

S T +1+2

ocean

FIGURE 7-8. Shared CMP-TLC Transceiver Sensitivity: Speedup
(S: CMP-SNUCA, T: Shared CMP-TLC,

+1: Shared CMP-TLC with one extra transceiver delay cycle,
+2: Shared CMP-TLC with two extra transceiver delay cycles)

0.5

1.0

1.5

Sp
ee

du
p

S W+1+2

apache

S W+1+2

jbb

S W+1+2

oltp

S W+1+2

zeus

S W+1+2

apsi

S W+1+2

art

S W+1+2

barnes

S W+1+2

ocean

FIGURE 7-9. Shared CMP-TLC-WDM Transceiver Sensitivity: Speedup
(S: CMP-SNUCA, W: Shared CMP-TLC-WDM,

+1: Shared CMP-TLC-WDM with one extra transceiver delay cycle,
+2: Shared CMP-TLC-WDM with two extra transceiver delay cycles)

hared

mance

hared

nd two

WDM,

cycles

on fast

bstan-

mpres-

can

tency

CMP-

trans-

what

trans-

pter 6,

sor to

cal pri-
130
ceivers to transceivers with an additional one and two cycles of delay for Shared CMP-TLC and S

CMP-TLC-WDM, respectively. As expected, the extra transceiver delay causes consistent perfor

loss, with all workloads except Barnes experiencing noticeable performance degradation. For S

CMP-TLC, one extra cycle of transceiver delay results in an average 1% performance degradation a

extra cycles results in an average 3% performance degradation. Where as for Shared CMP-TLC-

one extra transceiver delay cycle results in an average 2% performance degradation and two extra

results in an average 4% performance degradation. Thus, transmission lines’ benefit not only relies

wires, but also fast transceivers, especially when bandwidth contention is decreased.

7.3 Private CMP-TLC

7.3.1 Overview

On-chip transmission lines also improve private CMP cache performance, but the improvement is su

tially less than for the shared CMP cache. Though the Private CMP-TLC design doesn’t achieve as i

sive of a performance improvement over its baseline as Shared CMP-TLC, Private CMP-TLC

effectively use thinner transmission lines. Furthermore, Private CMP-TLC can utilize the other two la

management techniques, migration and selective replication, to perform competitively with Shared

TLC. This section begins with the description of Private CMP-TLC. Later the section discusses how

mission lines and Adaptive Selective Replication (ASR) interact to provide better performance than

is possible by either technique alone.

The Private CMP-TLC design improves performance over the baseline private cache design by using

mission lines to reduce remote cache hit latency. Identical to the private CMP cache evaluated in Cha

Private CMP-TLC (Figure 7-10) splits the L2 into eight private 2 MB caches and allows each proces

lookup the L2 cache tags in parallel with an L1 cache accesses [49]. When a request misses in a lo

and L2

nd 52

icular,

ralized

nnect

Private

imum

LC’s

n Shared

trans-

ed for

ission
131

vate L2 cache, the request is broadcast across the transmission line network to the other remote L1

caches. Specifically, transmission lines decrease remote L1 and L2 cache hit latency from 33 a

cycles, respectively, for the baseline to 23 and 42 cycles, respectively, for Private CMP-TLC.

Private CMP-TLC reduces transmission line network overhead versus Shared CMP-TLC. In part

eight 8-byte wide transmission lines connect each of the eight private L2 cache banks with a cent

switch. In comparison, the 64-banked Shared CMP-TLC design required 16 8-byte wide links to co

with its more distributed 64-banked shared cache. Furthermore, the maximum distance between

CMP-TLC’s L2 cache tags and the center switches is shorter (approximately 9 mm) than the max

transmission line distance in Shared CMP-TLC (approximately 13 mm). The result is Private CMP-T

transmission line network consumes 62% less substrate area and 69% less interconnect area tha

CMP-TLC’s transmission line network.

Private CMP-TLC can further reduce transmission line overhead by combining a thin 4-byte wide

mission lines network exclusively dedicated to request messages with a conventional network us

sending all other messages. Unlike Shared CMP-TLC, Private CMP-TLC doesn’t rely on transm

Private
tags

Private

Private Private

Private Private

tags

tags

tags tags

tags

tags

Private Private

L2

L2

L2

L2 L2

L2

L2

L2

tags

I $
L1

L1
D$

I $
L1

CPU 2

L1
D$

I $
L1

L1
D$

I $
L1

CPU 0

L1
D$

CPU 1

CPU 3 CPU 4

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

L1
I $

$D
L1

CPU 6

CPU 5

CPU 7

FIGURE 7-10. Private CMP-TLC

s over

ed, a 2-

erneath

ponse

broad-

on line

imi-

with

impact

antly

ment.

Selec-

lone.

shared

ricts

lines

an use

’ lower

l wires.

cludes

n line
132
lines to route over large on-chip processors. Instead, Private CMP-TLC routes the transmission line

centrally located L2 cache banks. Since the L2 cache banks are smaller and more regular shap

dimensional mesh interconnect using conventional wires can be placed between the L2 banks und

the transmission line network. The combination network allows large 72-byte wide writeback and res

messages to be off-loaded onto a high-bandwidth conventional wire network and only requests are

cast across the transmission line network. This design is referred to as Private CMP-TLC-Request.

Though Private CMP-TLC reduces transmission line overhead versus Shared CMP-TLC, transmissi

bandwidth contention still prevents Private CMP-TLC from reaching its full performance potential. S

lar to Shared CMP-TLC, Private CMP-TLC is also evaluated using the 80-byte wide links possible

WDM [23]. Because only private L2 misses access the transmission line network, the performance

of wider transmission line links is less than Shared CMP-TLC. However, those workloads that signific

utilize remote caches or have bursty request behavior, the wider links still provide noticeable improve

Finally, Private CMP-TLC can be amended with other latency tolerant techniques, such as Adaptive

tive Replication (ASR), to provide better performance than what is possible from either technique a

Previously, Chapter 6 demonstrated ASR can adaptively restrict replication and sacrifice higher

block latency for fewer off-chip misses. By dynamically monitoring workload demand, ASR only rest

replication when fewer off-chip misses is more beneficial than higher on-chip latency. Transmission

reduce the cost of remote cache hits and the overall impact of on-chip latency. Therefore, ASR c

transmission line to not only decrease on-chip latency, but ASR can also leverage transmission lines

remote latency to further reduce off-chip misses beyond what is beneficial when using conventiona

7.3.2 Methodology

The methodology used to evaluate the Private CMP-TLC design matches that of Section 7.2. This in

the 10-entry transmission lines input buffers used to isolate queuing delay from the thin transmissio

ed in

erhead

proto-

oint

to the

ree cat-

2 hits

tion

age—

rivate

large
133

links. The cache coherence protocol utilized by Private CMP-TLC is the same token protocol us

Chapter 6. While requiring more bandwidth, the token protocol removes the home node storage ov

of a distributed directory protocol [121] and the duplicate tag storage overhead centralized directory

col [20]. Furthermore, the token protocol allows Private CMP-TLC to fully exploit the fast point-to-p

connections between the on-chip processors.

7.3.3 Evaluation: Baseline Private CMP Protocol

Due to the low percentage of remote cache hits, transmission lines provide only marginal benefit

baseline CMP-Private cache. Figure 7-11 breaks down the cycles spent on private L2 misses into th

egories: the average memory access time contributed by remote L1 hits ‘Remote L1’, by remote L

‘Remote L2’, and by Off-chip misses ‘Off Chip’. The Private CMP-TLC designs attain a 0-7% reduc

in private L2 miss cycles. The three commercial workloads that exhibit the highest remote cache us

Apache, Oltp, and Zeus—encounter a larger cycle reduction with the higher bandwidth networks—P

CMP-TLC-Request and Private CMP-TLC-WDM. Also the scientific workload Ocean encounters a

cycle reduction with the higher bandwidth network because of its bursty request behavior.

0.0

0.5

1.0

N
or

m
. P

ri
va

te
 L

2
M

is
s

C
yc

le
s

Remote L1
Remote L2
Off-chip

P T R W

apache

P T R W

jbb

P T R W

oltp

P T R W

zeus

P T R W

apsi

P T R W

art

P T R W

barnes

P T R W

ocean

FIGURE 7-11. Private CMP-TLC: Private L2 Miss Cycles Breakdown
(P: CMP-Private, T: Private CMP-TLC, R: Private CMP-TLC-Request

W: Private CMP-TLC-WDM)

CMP

ce by

ceeds

idth.

on line

rage

MP-
134

Figure 7-12 compares the performance of the Private CMP-TLC designs to that of baseline private

design and illustrates that for all workloads except Ocean, Private CMP-TLC improves performan

less than 4%. Interestingly, for six of the eight workloads, Private CMP-TLC-Request matches or ex

the performance of Private CMP-TLC despite the fact that it uses transmission line links of half the w

Private CMP-TLC-Request’s comparable performance exemplifies that even very narrow transmissi

links can improve performance if they target critical low-bandwidth communication. Overall, the ave

performance improvement provided by Private CMP-TLC, Private CMP-TLC-Request, and Private C

TLC-WDM is 1%, 1%, and 3%, respectively.

0.6

0.8

1.0

Sp
ee

du
p

P T R W

apache

P T R W

jbb

P T R W

oltp

P T R W

zeus

P T R W

apsi

P T R W

art

P T R W

barnes

P T R W

ocean

FIGURE 7-12. Private CMP-TLC: Speedup
(P: CMP-Private, T: Private CMP-TLC, R: Private CMP-TLC-Request

W: Private CMP-TLC-WDM)

the

in its

uce

y 10

MP-

nsmis-

miss

rivate

t on-

sult is

ignifi-
135

7.3.4 Evaluation: Interaction with ASR

Combining ASR with Private CMP-TLC requires some slight modifications to ASR. To account for

lower remote cache hit latency provided by transmission lines, ASR reduces the local hit benefit

monitoring functions. Specifically, ASR with Private CMP-TLC and Private CMP-TLC-Request red

the local hit benefit by 4 cycles and ASR with Private CMP-TLC-WDM reduces the local hit benefit b

cycles. Similarly, the off-chip miss cost is reduced by 10 cycles for Private CMP-TLC and Private C

TLC-Request and 15 cycles for Private CMP-TLC-WDM.

Since ASR utilizes remote on-chip caches more than the previous baseline CMP-Private design, tra

sion lines improve ASR’s performance by a larger percentage. Figure 7-13 plots the normalized L1

cycles and displays transmission lines reduce L1 miss cycles by 0-10% for all workloads except for P

CMP-TLC running Apache. For Apache, ASR adapts replication to allow only a few replicas to exis

chip, thus increasing remote cache utilization and transmission line bandwidth contention. The re

Private CMP-TLC exhibits 32% slower remote L2 hit latency than the baseline design, causing a s

cant performance degradation.

0.0

0.5

1.0

N
or

m
. L

1
M

is
s

C
yc

le
s

Private L2
Remote L1
Remote L2
Off-chip

A T O W

apache

A T O W

jbb

A T O W

oltp

A T O W

zeus

A T O W

apsi

A T O W

art

A T O W

barnes

A T O W

ocean

FIGURE 7-13. Private CMP-TLC w/ASR: L1 Miss Cycles Breakdown
(A: ASR, T: Private CMP-TLC w/ASR, O: Private CMP-TLC-Request w/ASR,

W: Private CMP-TLC-WDM w/ASR)

tional

ent to

ASR

t pro-

4%,

rivate

g as

ission

better

action

7-15

blocks,
136

Figure 7-14 relates the performance of the Private CMP-TLC designs to that of ASR using conven

wires and shows that transmission lines can provide up to an additional 6% performance improvem

ASR. Similar to the previously evaluated transmission line designs, the Private CMP-TLC with

designs with higher bandwidth perform better. Specifically, the average performance improvemen

vided by Private CMP-TLC, Private CMP-TLC-Request, and Private CMP-TLC-WDM is 0%, 2%,

respectively. In comparison, the average performance improvement provided by Private CMP-TLC, P

CMP-TLC-Request, and Private CMP-TLC-WDM without ASR was 1%, 1%, 3%. Therefore, as lon

the transmission line network provides sufficient bandwidth, the combination of ASR and transm

lines performs better than either technique alone.

7.3.5 Sharing Type Latency vs. Off-chip Misses

This subsection shows more precisely why the combination of ASR and transmission lines performs

than either isolated technique. Specifically, the subsection provides further detail about the inter

between the ASR and transmission line by correlating on-chip latency with off-chip misses. Figure

illustrates the L1 miss latency to on-chip single requestor, shared read-only, and shared read-write

0.6

0.8

1.0

Sp
ee

du
p

A T O W

apache

A T O W

jbb

A T O W

oltp

A T O W

zeus

A T O W

apsi

A T O W

art

A T O W

barnes

A T O W

ocean

FIGURE 7-14. Private CMP-TLC w/ASR: Speedup
(A: ASR, T: Private CMP-TLC w/ASR, O: Private CMP-TLC-Request w/ASR

W: Private CMP-TLC-WDM w/ASR)

137

0.0

0.5

1.0

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Single Requestor

S P R A O
apache

S P R A O
jbb

S P R A O
oltp

S P R A O
zeus

S P R A O
apsi

S P R A O
art

S P R A O
barnes

S P R A O
ocean

0.0

0.5

1.0

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Shared Read-only

S P R A O
apache

S P R A O
jbb

S P R A O
oltp

S P R A O
zeus

S P R A O
apsi

S P R A O
art

S P R A O
barnes

S P R A O
ocean

0.0

0.5

1.0

N
or

m
. O

n-
ch

ip
 L

at
en

cy

Shared Read-write

S P R A O
apache

S P R A O
jbb

S P R A O
oltp

S P R A O
zeus

S P R A O
apsi

S P R A O
art

S P R A O
barnes

S P R A O
ocean

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 M
is

se
s

Off-chip

S P R A O
apache

S P R A O
jbb

S P R A O
oltp

S P R A O
zeus

S P R A O
apsi

S P R A O
art

S P R A O
barnes

S P R A O
ocean

FIGURE 7-15. Normalized L1 Miss Latency to Sharing Types and Off-chip Misses
(S: CMP-Shared, P: CMP-Private, R: Private CMP-TLC-Request, A: ASR,

O: Private CMP-TLC-Request w/ ASR)

e, sin-

reases

exploit

, ASR

t trans-

ce by

d read-

work-

s per-
138

as well as, off-chip misses. Since virtually all single requestor hits are to a processor’s local L2 cach

gle requestor latency is unaffected by ASR or transmission lines. However, shared block latency inc

or decreases depending on how Private CMP-TLC-Request with ASR (bars labeled *) chooses to

the lower latency of transmission lines. In particular, for the workloads Jbb, Oltp, Barnes and Ocean

decreases replication, resulting in a 2-25% increase in shared read-only latency versus ASR withou

mission lines (bars labeled A). The benefit of this decrease in replication is that off-chip misses redu

1-17% for these four workloads. On the other hand, ASR uses transmission lines to reduce the share

only latency for Apache, Zeus, Art, and Ocean, as well as, reduce shared read-write latency for all

loads. Overall, Figure 7-16 displays the combination of ASR and transmission lines always improve

formance versus either technique alone.

0.6

0.8

1.0

1.2

Sp
ee

du
p

S P R AO

apache

S P R AO

jbb

S P R AO

oltp

S P R AO

zeus

S P R AO

apsi

S P R AO

art

S P R AO

barnes

S P R AO

ocean

FIGURE 7-16. Combination of Techniques: Speedup
(S: CMP-Shared, P: CMP-Private, R: Private CMP-TLC-Request,

A: ASR, O: Private CMP-TLC-Request w/ ASR)

b-

les of

it was

vate

onger

he per-

eiver

ce deg-

nsmis-

ance

equest
139

Transceiver Delay Sensitivity Analysis.Similar to the previous Shared CMP-TLC analysis, this su

section evaluates the sensitivity of Private CMP-TLC-Request with ASR to an extra one and two cyc

transceiver delay. The sensitivity analysis focuses on Private CMP-TLC-Request with ASR because

the best performing Private CMP-TLC design that didn’t rely upon wave division multiplexing. For Pri

CMP-TLC-Request with ASR, the local hit benefit and off-chip miss cost are adjusted to match the l

latencies associated with the slower transceivers. Figure 7-17 plots how transceiver delay affects t

formance of Private CMP-TLC-Request with ASR, and similar to Shared CMP-TLC, the extra transc

delay causes consistent performance loss for all workloads except Barnes. However, the performan

radation of Private CMP-TLC with ASR is less because fewer requests communicate across the tra

sion lines. Specifically, while two extra transceiver delay cycles resulted in an average 3% perform

degradation for Shared CMP-TLC, the average performance degradation for Private CMP-TLC-R

with ASR is 2%.

0.6

0.8

1.0

1.2

Sp
ee

du
p

S O+1+2

apache

S O+1+2

jbb

S O+1+2

oltp

S O+1+2

zeus

S O+1+2

apsi

S O+1+2

art

S O+1+2

barnes

S O+1+2

ocean

FIGURE 7-17. Private CMP-TLC-Request with ASR Transceiver Sensitivity: Speedup
(S: CMP-Shared, O: Private CMP-TLC-Request with ASR,

+1: Shared CMP-TLC with one extra transceiver delay cycle,
+2: Shared CMP-TLC with two extra transceiver delay cycles)

hared

banks.

CMP-

MP-

d use 8

ss time

ount

hieves

ork-

ificantly

ction is

ars of
140

7.4 Comparing Best Performing Designs

Though Private CMP-TLC-Request with ASR combines all three wire management techniques, S

CMP-TLC achieves better performance for half the workloads because it uses smaller and faster L2

This section compares the best two designs that don’t require wide transmission line links: Private

TLC-Request with ASR and Shared CMP-TLC, with the two conventional shared CMP designs: C

Shared and CMP-SNUCA. The difference between the two shared cache designs is CMP-Share

banks each with a 20-cycle access time, and CMP-SNUCA uses 64 banks each with 9-cycle acce

[1]. First, Figure 7-18 compares the designs’ L1 miss cycles. For the four workloads with the least am

of remote cache hit cycles: Jbb, Apsi, Barnes, and Ocean, Private CMP-TLC-Request with ASR ac

equivalent if not lower L1 misses cycles than Shared CMP-TLC. However, for the four remaining w

loads that stress remote cache access latency: Apache, Oltp, Zeus, and Art, Shared CMP-TLC sign

reduces the L1 miss cycles versus the other three designs. Most of Shared CMP-TLC’s cycle redu

attributed to the latency benefit provided by its 64-banked L2 cache. By comparing the ‘Shared L2’ b

0.0

0.5

1.0

N
or

m
. L

1
M

is
s

C
yc

le
s

Priv/Shrd L2
Remote L1
Remote L2
Off-chip

8 64 O T

apache

8 64 O T

jbb

8 64 O T

oltp

8 64 O T

zeus

8 64 O T

apsi

8 64 O T

art

8 64 O T

barnes

8 64 O T

ocean

FIGURE 7-18. Best Performing Comparison: L1 Miss Cycles Breakdown
(8: CMP-Shared, 64: CMP-SNUCA, O: Private CMP-TLC-Request w/ASR,

T: Shared CMP-TLC)

partic-

CMP-

h ASR

tracks.

rfor-

equest

ssion

itec-

m. One

into

essi-

ce pro-

s and
141

CMP-Shared and CMP-SNUCA, one can observe the latency benefit of the 64-banked L2 cache. In

ular, for hits in its shared L2 cache, CMP-SNUCA encounters approximately 27% less cycles than

Shared.

Overall, both designs achieve equivalent average performance, but Private CMP-TLC-Request wit

requires more storage overhead, while Shared CMP-TLC demands more upper layer metal

Figure 7-19 shows both Private CMP-TLC-Request with ASR and Shared CMP-TLC improves pe

mance by 14%, on average, versus CMP-Shared. To attain this performance, Private CMP-TLC-R

with ASR needs 211 KB of storage to support ASR’s dynamic monitoring and 8 4-byte wide transmi

line links traveling a maximum distance of 9 mm. In contrast, Shared CMP-TLC’ rather simple arch

ture needs no extra storage, but demands 16 8-byte wide transmission line links between 9-13 m

could imagine Private CMP-TLC-Request’s thinner transmission line network could be integrated

existing upper metal layers, while Shared CMP-TLC’s wider transmission line network probably nec

tates an additional metal layer. In the end, the CMP designer must decide whether the performan

vided by on-chip transmission lines and ASR justify their respective cost in upper-layer wire track

substrate area.

0.6

0.8

1.0

1.2

Sp
ee

du
p

8 64 O T

apache

8 64 O T

jbb

8 64 O T

oltp

8 64 O T

zeus

8 64 O T

apsi

8 64 O T

art

8 64 O T

barnes

8 64 O T

ocean

FIGURE 7-19. Best Performing Comparison: Speedup
(8: CMP-Shared, 64: CMP-SNUCA, O: Private CMP-TLC-Request w/ASR

T: Shared CMP-TLC)

n. For

to

ection

oint in

of four

ding

conven-

lower,

rrival,

tency.

ter-

coher-
142
7.5 Related Work

Other researchers have also studied the architectural impact of fast on-chip global communicatio

instance, Balasubramonianet al. [10] and Chenget al. [24] recently applied heterogeneous interconnect

global communication within a clustered processor and CMP, respectively. Heterogeneous interconn

networks are composed of multiple sets of physical wires, with each set implemented to a different p

the energy/delay/bandwidth spectrum. Both of these studies optimize global messages to utilize one

networks—delay optimal, bandwidth optimal, power optimal, and power-bandwidth optimal—depen

on the message’s characteristics. In contrast, the cache designs discussed in this chapter use only

tional wires and transmission lines and thus don’t require muxing four different physical channels.

Also Peh and Dally [85] proposed using a fast on-chip control message network to configure a s

high-bandwidth data network to improve throughput. By scheduling switches ahead of data a

enabled buffers to only be held during actual buffer usage and reduced routing and arbitration la

While utilizing fast on-chip wires, their flit-reservation flow control technique deals with low-level in

connect design issues, while the evaluated TLC designs deal with high-level interactions between

ence protocol and the wire technology.

g dis-

large

nt to a

chapter

such as

hnique

nage-

slower
143
7.6 Summary

On-chip transmission lines offer a significant latency advantage to conventional interconnect for lon

tance communication. One attractive application of transmission lines is utilizing them to access

CMP caches. This chapter showed transmission lines supply the best performance improveme

shared CMP cache, but transmission lines can also improve private CMP cache performance. The

demonstrated transmission lines can work in harmony with other latency management techniques,

Adaptive Selective Replication, to improve performance beyond what can be achieved by either tec

alone. Finally, the chapter illustrated the Private CMP-TLC design that combined all three latency ma

ment techniques performs competitively with the Shared CMP-TLC design despite using larger and

cache banks.

144

145

Chapter 8
ork.

ents

ularly

hes to

adeoff

or and

kloads

serta-

ted in

showed

tency,

y and

shared

ratory
Conclusions and Future Work

This chapter provides the dissertation’s conclusions and discusses some possible areas of future w

8.1 Conclusions

The on-chip cache hierarchy significantly impacts overall CMP performance. The conflicting requirem

of reducing off-chip misses and managing slow global on-chip wires makes CMP cache design partic

challenging. Currently, CMPs utilize either a shared cache to reduce off-chip misses, or private cac

minimize on-chip latency. Ideally, architects desire a hybrid CMP cache that achieves both, but the tr

between the reducing off-chip misses and minimizing on-chip latency depends on workload behavi

system characteristics.

In order to improve CMP cache performance, this dissertation first characterized multithreaded wor

and then examined three techniques that exploited different workload behavior. In particular, this dis

tion evaluated both commercial and scientific workloads and identified three sharing types that exis

these workloads: single requestor, shared read-only, and shared read-write. The characterization

that improving scientific workload performance mostly depended on improving single requestor la

while improving commercial workload performance more depended on improving shared read-onl

shared read-write latency. Furthermore, for the commercial workloads, the characterization showed

read-only data exhibited a very high request locality in and shared read-write data displayed mig

sharing behavior.

cache.

rtation

ent

n some

ically

t wast-

ed the

rtation

tability

ency in

perfor-

ting

e able

How-

tency

tion,

migra-

energy
146
The first technique the dissertation investigated was migrating cache blocks within a shared CMP

While previous results showed block migration reduced wire delay in uniprocessor caches, this disse

discovered block migration’s capability to improve CMP performance relies on a difficult to implem

smart search mechanism. Furthermore, the large amount of inter-processor sharing that exists i

workloads fundamentally limits block migration’s benefit.

The second technique the dissertation proposed was Adaptive Selective Replication, which dynam

adapted shared read-only data replication to exploit the latency advantage of private caches withou

ing cache capacity due to excessive replication. By performing an opportunity analysis, ASR adjust

degree of replication to match the current workload behavior and system configuration. The disse

demonstrated ASR improves performance versus other hybrid designs and provides performance s

by always performing at least comparatively to the best alternative design.

The third technique the dissertation presented was using transmission lines to reduce on-chip lat

both a shared and private CMP cache. These Transmission Line Caches consistently improved

mance, but bandwidth contention prevent some TLCs from achieving their full potential. By isola

transmission lines to only low-bandwidth latency-critical messages, thin transmission line links wher

to achieve most of the performance improvement provided by much wider transmission line links.

ever, if the transmission line links were over-subscribed communicating wide messages, their la

advantage was partially, if not fully, negated by bandwidth contention.

8.2 Future Work

For the ideas proposed in the dissertation, this section outlines potential directions of future work.

Energy Evaluation. This dissertation did not evaluate the energy impact migration, selective replica

and transmission lines will have in a CMP cache. However, other results have shown cache block

tion increases CMP energy consumption [15, 48]. Selective replication could increase or decrease

muni-

f-chip

t-order

tion did

tor-

unted

te the

unting

om fil-

pplica-

les,

ould

sim-

nefit

ever,

and-

hniques

search
147
consumption depending on the energy consumption ring writebacks have compared to off-chip com

cation. One would suspect ring writebacks require less energy than utilizing the power-hungary of

drivers, but such a suspicion necessitates further investigation. While Chapter 7 showed, using firs

equations, that on-chip transmission lines demand less energy than conventional wires, this disserta

not compare the TLCs’ overall energy demand to conventional cache designs.

Bloom Filters for ASR. Replacing ASR’s partial tag structures with bloom filters, could reduce its s

age overhead. Chapter 6 demonstrated that ASR’s Next-Level Hit Buffer and Victim Tag Buffer acco

for the majority of its storage overhead. Both buffers stored the low-order bits of cache tags to estima

benefit of increasing or decreasing replication. Instead, the buffers could be implemented as non-co

bloom filters and use false positive feedback to determine when the filters should be reset. Such blo

ters have been shown to significantly reduce storage overhead versus partial tags in other similar a

tions [92]. However, an open question for ASR bloom filters is determining false positives.

ASR for Lower Power.The current ASR proposal adjusts replication to achieve lower memory cyc

however, ASR could adapt replication for lower power. While it is unclear if ASR’s power savings w

justify its costs, the changes required for a “power aware” ASR would be straightforward. One would

ply change ASR’s local hit cycle benefit and off-chip miss cycle cost constants to local hit power be

and off-chip miss power cost constants, respectively.

Multithreaded Cores. The CMP cores evaluated in this dissertation are all single-threaded. How

future CMP cores are likely to be multithreaded. Multithreaded cores would likely place additional b

width demands on a CMP cache and could potentially tolerate slower L2 caches. Because the tec

evaluated in this dissertation are sensitive to bandwidth demand and L2 latency tolerance, future re

should explore multithreaded cores.

148

149
References
,

MP

,

rady.

annel

eyne.

re-

tacha-

itec-

ture

d

ea-
[1] Vikas Agarwal, Stephen W. Keckler, and Doug Burger. The Effect of Technology Scaling on

Microarchitectural Structures.Technical Report TR-00-02, Department of Computer Sciences

University of Texas at Austin, May 2001.

[2] Ardsher Ahmed, Pat Conway, Bill Hughes, and Fred Weber. AMD Opteron Shared Memory

Systems. InProceedings of the 14th HotChips Symposium, August 2002.

[3] Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E. Moore, Min Xu, Daniel J. Sorin

Mark D. Hill, and David A. Wood. Simulating a $2M Commercial Server on a $2K PC.IEEE

Computer, 36(2):50–57, February 2003.

[4] Bharadwaj S. Amrutur and Mark A. Horowitz. Speed and Power Scaling of SRAMs.IEEE Trans-

actions on Solid-State Circuits, 35(2):175–185, February 2000.

[5] Tom M. Apostol.Calculus. Ginn (Blaisdell), 1969.

[6] Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley Jones, and Bodo Pa

SPEComp: A New Benchmark Suite for Measuring Parallel Computer Performance. InWorkshop

on OpenMP Applications and Tools, pages 1–10, July 2001.

[7] Avanti. Star-Hspice Manual, Jan 1999.

[8] Peng Bai and et al. A 65nm Logic Technology Featuring 35 nm Gate Length, Enhanced Ch

Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57 m SRAM Cell.Electron Devices Meeting,

IEDM Technical Digest. International, December 2004.

[9] J. Balachandran, S. Brebels, G. Carchon, T. Webers, W. De Raedt, B. Nauwelaers, and E. B

Package Level Interconnect Options. InInternational Workshop on System level Interconnect P

diction, pages 21–27, April 2005.

[10] Rajeev Balasubramonian, Naveen Muralimanohar, Karthik Ramani, and Venkatanand Venka

lapathy. Microarchitectural Wire Management for Performance and Power in Partitioned Arch

tures. InProceedings of the 11th IEEE Symposium on High-Performance Computer Architec,

February 2005.

[11] Paul Barford and Mark Crovella. Generating Representative Web Workloads for Network an

Server Performance Evaluation. InProceedings of the 1998 ACM Sigmetrics Conference on M

surement and Modeling of Computer Systems, pages 151–160, June 1998.

ation

m-

li-

m

sor

hi-

or.

Con-

uling

ASP-

ight

G.
150
[12] Luiz A. Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory System Characteriz

of Commercial Workloads. InProceedings of the 25th Annual International Symposium on Co

puter Architecture, pages 3–14, June 1998.

[13] Bradford M. Beckmann, Michael R. Marty, and David A. Wood. ASR: Adaptive Selective Rep

cation for CMP Caches. InProceedings of the 39th Annual IEEE/ACM International Symposiu

on Microarchitecture, December 2006.

[14] Bradford M. Beckmann and David A. Wood. TLC: Transmission Line Caches. InProceedings of

the 36th Annual IEEE/ACM International Symposium on Microarchitecture, December 2003.

[15] Bradford M. Beckmann and David A. Wood. Managing Wire Delay in Large Chip-Multiproces

Caches. InProceedings of the 37th Annual IEEE/ACM International Symposium on Microarc

tecture, December 2004.

[16] Bradley J. Benschneider and et al. A 300-MHz 64-b Quad-Issue CMOS RISC Microprocess

IEEE Journal of Solid-State Circuits, 30(11):1203–1214, Nov 1995.

[17] A. S. Brown. Fast Films.IEEE Spectrum, 20(2):36–40, February 2003.

[18] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting Inter-Thread Cache

tention on a Chip Multi-Processor Architecture. InProceedings of the 11th IEEE Symposium on

High-Performance Computer Architecture, February 2005.

[19] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Sched

and Page Migration for Multiprocessor Compute Servers. InProceedings of the 6th International

Conference on Architectural Support for Programming Languages and Operating Systems (

LOS), October 1994.

[20] Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiprocessors. InProceed-

ings of the 33nd Annual International Symposium on Computer Architecture, June 2006.

[21] Richard T. Chang, Niranjan Talwalkar, C. Patrick Yue, and S. Simon Wong. Near Speed-of-L

Signaling Over On-Chip Electrical Interconnects.IEEE Journal of Solid-State Circuits,

38(5):834–838, May 2003.

[22] Alan Charlesworth. Starfire: Extending the SMP Envelope.IEEE Micro, 18(1):39–49, Jan/Feb

1998.

[23] Guoqing Chen, Hui Chen, Mikhail Haurylau, Nicholas Nelson, Philippe M. Fauchet, and Eby

Friedman. Predictions of CMOS Compatible On-Chip Optical Interconnect. InInternational

Workshop on System level Interconnect Prediction, pages 13–20, April 2005.

B.

for-

ca-

-

nd

d

.

d its

-

re
151
[24] Liqun Cheng, Naveen Muralimanohar, Karthik Ramani, Rajeev Balasubramonian, and John

Carter. Interconnect-Aware Coherence Protocols for Chip Multiprocessors. InProceedings of the

33nd Annual International Symposium on Computer Architecture, June 2006.

[25] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Distance Associativity for High-Per

mance Energy-Efficient Non-Uniform Cache Architectures. InProceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture, December 2003.

[26] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing Replication, Communi

tion, and Capacity Allocation in CMPs. InProceedings of the 32nd Annual International Sympo

sium on Computer Architecture, June 2005.

[27] Fredrik Dahlgren and Josep Torrellas. Cache-Only Memory Architectures.IEEE Computer,

32(6):72–79, June 1999.

[28] William J. Dally and John W. Poulton.Digital Systems Engineering. Cambridge University Press,

1998.

[29] Evan E. Davidson. Large chip vs. MCM for a High-Performance System.IEEE Micro, 18(4):33–

41, July/Aug 1998.

[30] Evan E. Davidson, Bradley D. McCredie, and Walter V. Vilkelis. Long Lossy Lines (L/sup 3/) a

Their Impact Upon Large Chip Performance.IEEE Transactions on Components, Packaging an

Manufacturing Technology, Part B: Advanced Packaging, 20(4):361–375, November 1997.

[31] Alina Deutsch. Electrical Characteristics of Interconnections for High-Performance SystemsPro-

ceedings of the IEEE, 86(2):315–355, February 1998.

[32] Keith Diefendorff. Power4 Focuses on Memory Bandwidth.Microprocessor Report, 13(13):1–8,

October 1999.

[33] Antonije R. Djordjevic, Miodrag B. Bazdar, Tapan K. Sarkar, and Roger F. Harrington.Matrix

Parameters for Multiconductor Transmission Lines: Software and User’s Manual. Artech House,

1989.

[34] Susan J. Eggers and Randy H. Katz. A Characterization of Sharing in Parallel Programs an

Application to Coherency Protocol Evaluation. InProceedings of the 15th Annual International

Symposium on Computer Architecture, pages 373–382, May 1988.

[35] Babak Falsafi and David A. Wood. Reactive NUMA: A Design for Unifying S-COMA and CC

NUMA. In Proceedings of the 24th Annual International Symposium on Computer Architectu,

pages 229–240, June 1997.

bed-

r

en

ter

ipro-

s. In

kler.

Data
152
[36] Pierfrancesco Foglia, Daniele Mangano, and Cosimo Antonio Prete. A NUCA Model for Em

ded Systems Cache Design. In3rd IEEE 2005 Workshop on Embedded Systems for Real-Time

Multimedia (ESTIMEDIA), September 2005.

[37] International Technology Roadmap for Semiconductors. ITRS 2003 Edition. Semiconductor

Industry Association, 2003. http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[38] International Technology Roadmap for Semiconductors. ITRS 2004 Update. Semiconducto

Industry Association, 2004. http://www.itrs.net/Common/2004Update/2004Update.htm.

[39] International Technology Roadmap for Semiconductors. ITRS 2005 Edition. Semiconductor

Industry Association, 2005. http://www.itrs.net/Common/2005ITRS/Home2005.htm.

[40] Steven Frank, Henry Burkhardt, III, and James Rothnie. The KSR1: Bridging the Gap Betwe

Shared Memory and MPPs. InProceedings of the 38th Annual IEEE Computer Society Compu

Conference (COMPCON), pages 285–295, February 1993.

[41] S. W. Golumb.Shift Register Sequences. Aegean Park Press, revised edition, 1982.

[42] Anoop Gupta and Wolf-Dietrich Weber. Cache Invalidation Patterns in Shared-Memory Mult

cessors.IEEE Transactions on Computers, 41(7):794–810, July 1992.

[43] Erik Hagersten, Anders Landin, and Seif Haridi. DDM–A Cache-Only Memory Architecture.

IEEE Computer, 25(9):44–54, September 1992.

[44] Sarah L. Harris.Synergistic Caching in Single-chip Multiprocessors. PhD thesis, Department of

Electrical Engineering, Stanford University, 2005.

[45] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches.IEEE Transactions on

Computers, 38(12):1612–1630, December 1989.

[46] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The Future of Wires.Proceedings of the IEEE,

89(4):490–504, April 2001.

[47] M. S. Hrishikesh, Norman P. Jouppi, Keith I. Farkas, Doug Burger, Stephen W. Keckler, and

Premkishore Shivakumar. The Optimal Logic Depth Per Pipeline Stage is 6 to 8 Inverter Delay

Proceedings of the 29th Annual International Symposium on Computer Architecture, May 2002.

[48] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and Stephen W. Kec

A NUCA Substrate for Flexible CMP Cache Sharing. InProceedings of the 19th International

Conference on Supercomputing, June 2005.

[49] Nathan Ida.Engineering Electromagnetics. Springer, 2000.

[50] Aamer Jaleel, Matthew Mattina, and Bruce Jacob. Last Level Cache (LLC) Performance of

Mining Workloads On a CMP: A Case Study of Parallel Bioinformatics Workloads. InProceed-

ings of the 12th IEEE Symposium on High-Performance Computer Architecture, February 2006.

ects

nects

n

of

ruc-

n

Chip

Mir-

al

: A
153
[51] Dale W. Jorgenson, Mun S. Ho, and Kevin J. Stiroh.Information Technology and the American

Growth Resurgence. MIT Press, 2005.

[52] Anup P. Jose, George Pataunakis, and K. L. Shepard. Near speed-of-light on-chip interconn

using pulsed current-mode signalling. InProceedings of the 2005 Symposium on VLSI Circuits,

pages 108–111, 2005.

[53] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 Chip: A Dual Core Multi-

threaded Processor.IEEE Micro, 24(2):40–47, Mar/Apr 2004.

[54] Pawan Kapur and Krishna C. Saraswat. Comparison Between Electrical and Optical Intercon

for On-chip Signaling. pages 89–91, 2002.

[55] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, and Pat Conway. The AMD Optero

Processor for Multiprocessor Servers.IEEE Micro, 23(2):66–76, March-April 2003.

[56] R. E. Kessler, Richard Jooss, Alvin Lebeck, and Mark D. Hill. Inexpensive Implementations

Set-Associativity. InProceedings of the 16th Annual International Symposium on Computer

Architecture, May 1989.

[57] Sunil P. Khatri and et al. A Novel VLSI Layout Fabric for Deep Sub-Micron Applications. In

Design Automation Conference, pages 491–496, June 1999.

[58] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An Adaptive, Non-Uniform Cache St

ture for Wire-Dominated On-Chip Caches. InProceedings of the 10th International Conference o

Architectural Support for Programming Languages and Operating Systems (ASPLOS), October

2002.

[59] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair Cache Sharing and Partitioning in a

Multiprocessor Architecture. InProceedings of the 2004 International Conference on Parallel

Architectures and Compilation Techniques, pages 111–222, 2004.

[60] Mauro J. Kobrinsky, Bruce A. Block, Jun-Fei Zheng, Brandon C. Barnett, Edris Mohammed,

iam Reshotko, Frank Robertson, Scott List, Ian Young, and Kenneth Cadien. On-Chip Optic

Interconnects.Intel Technology Journal, May 2004.

[61] Akio Kodama and Toshinori Sato. A Non-Uniform Cache Architecture on Networks-on-Chip

Fully Associative Approach with Pre-Promotion. In10th International Symposium on Integrated

Circuits, Devices and Systems, September 2004.

[62] Poonacha Kongetira. A 32-way Multithreaded SPARCÆ Processor. InProceedings of the 16th

HotChips Symposium, August 2004.

[63] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-Way Multi-

threaded Sparc Processor.IEEE Micro, 25(2):21–29, Mar/Apr 2005.

es:

an,

k-in-

ure

ense

h-

05.

ts in

rk-

.

on-

.

154
[64] Georgios K. Konstadinidis and et al. Implementation of a Third-Generation 1.1-GHz 64-bit

Microprocessor.IEEE Journal of Solid-State Circuits, 37(11):1461–1469, Nov 2002.

[65] Kevin Krewell. UltraSPARC IV Mirrors Predecessor.Microprocessor Report, pages 1–3, Novem-

ber 2003.

[66] Rakesh Kumar, Victor Zyuban, and Dean Tullsen. Interconnections in multi-core architectur

Understanding Mechanisms, Overheads and Scaling. InProceedings of the 32nd Annual Interna-

tional Symposium on Computer Architecture, June 2005.

[67] James Laudon. Performance/Watt: The New Server Focus. InWorkshop on Design, Architecture

and Simulation of Chip Multi-Processors, Nov 2005.

[68] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik.Quantitative System Performance.

Prentice Hall, 1984.

[69] Feihui Li, Chrysostomos Nicopoulos, Thomas Richardson, Yuan Xie, Vijaykrishnan Narayan

and Mahmut Kandemir. Design and Management of 3D Chip Multiprocessors Using Networ

Memory. InProceedings of the 33nd Annual International Symposium on Computer Architect,

June 2006.

[70] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. Organizing the Last Line of Def

before Hitting the Memory Wall for CMPs. InProceedings of the Tenth IEEE Symposium on Hig

Performance Computer Architecture, February 2004.

[71] LostCircuits. Intel Pentium4 600 Series. http://www.lostcircuits.com/cpu/p4-600/, Feb 21, 20

[72] Peter S. Magnusson et al. Simics: A Full System Simulation Platform.IEEE Computer, 35(2):50–

58, February 2002.

[73] Atul Maheshwari and Wayne Burleson. Current Sensing Techniques for Global Interconnec

Very Deep Submicron (VDSM) CMOS. InProceedings of the IEEE 2001 Computer Society Wo

shop on VLSI, pages 66–70, April 2001.

[74] Milo M. K. Martin. Token Coherence. PhD thesis, University of Wisconsin, 2003.

[75] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R

Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s General Executi

driven Multiprocessor Simulator (GEMS) Toolset.Computer Architecture News, pages 92–99,

September 2005.

[76] Michael R. Marty, Jesse D. Bingham, Mark D. Hill, Alan J. Hu, Milo M. K. Martin, and David A

Wood. Improving Multiple-CMP Systems Using Token Coherence. InProceedings of the Eleventh

IEEE Symposium on High-Performance Computer Architecture, February 2005.

r.

,

with

-

ory

ul-

nd

tion

hi-

w-
155
[77] Cameron McNairy and Rohit Bhatia. Montecito: A Dual-Core Dual-Thread Itanium Processo

IEEE Micro, 25(2):10–20, March/April 2005.

[78] Carmeron McNairy and Don Soltis. Itanium 2 Processor Microarchitecture.IEEE Micro,

23(2):44–55, March/April 2003.

[79] David A. B. Miller. Ratioinale and Challenges for Optical Interconnects to Electronic Chips.Pro-

ceedings of the IEEE, 88(6):728–749, June 2000.

[80] Masayuki Minzuno, Kenichiro Anjo, Yoshikazu Sumi, Muneo Fukaishi, Hitoshi Wakabayashi

Tohru Mogami, Tadahiko Horiuchi, and Masakazu Yamashina. Clock Distribution Networks

On-Chip Transmission Lines. InProceedings of the IEEE 2000 International Interconnect Tech

nology Conference, pages 3–5, 2000.

[81] Haim E. Mizrahi, Jean-Loup Baer, Edward D. Lazowska, and John Zahorjan. Introducing Mem

into the Switch Elements of Multiprocessor Interconnection Networks. InProceedings of the 16th

Annual International Symposium on Computer Architecture, May 1989.

[82] Gordon E. Moore. Cramming More Components onto Integrated Circuits.Electronics, pages 114–

117, April 1965.

[83] Shin’ichiro Mutoh and et al. 1-V Power Supply High-Speed Digital Circuit Technology with M

tithreshold-Voltage CMOSS.IEEE Journal of Solid-State Circuits, 30(8):847–854, Aug 1995.

[84] Vijay S. Pai.Exploiting Instruction-Level Parallelism for Memory System Performance. PhD the-

sis, Rice University, 2000.

[85] Li-Shiuan Peh and William J. Dally. Flit-Reservation Flow Control. InProceedings of the Sixth

IEEE Symposium on High-Performance Computer Architecture, January 2000.

[86] Christopher Poirer, Richard McGowen, Christopher Bostak, and Samuel Naffziger. Power a

temperature control on a 90nm Itanium-family processor. InProceedings of the IEEE 2005 Inter-

national Solid-State Circuits Conference, pages 304–305, 2005.

[87] Donald A. Priore. Inductance on Silicon for Sub-micron CMOS VLSI. InProceedings of the 1993

Symposium on VLSI Circuits, pages 17–18, 1993.

[88] M. Racanelli and et al. Ultra High Speed SiGe NPN for Advanced BiCMOS Technology.Electron

Devices Meeting, IEDM Technical Digest. International, pages 15.3.1–15.3.4, 2001.

[89] Alex Ramirez, Oliverio J. Santana, Josep L. Larriba-Pey, and Mateo Valero. Fetching instruc

streams. InProceedings of the 35th Annual IEEE/ACM International Symposium on Microarc

tecture, pages 371–382, November 2002.

[90] Sumant Ramprasad, Naresh R. Shanbhag, and Ibrahim N. Hajj. A Coding Framework for Lo

Power Address and Data Busses.IEEE Transactions on VLSI Systems, 7(2):212–2, June 1999.

s-

lexity

/

ppli-

rcon-

p

rent

ter

licies

imized

ter

che-

-

for

.

156
[91] Intel Press Release. Intel Desktop Processors Get 64-Bit Support. http://www.intel.com/pres

room/archive/releases/20050221comp.htm, Feb 21, 2005.

[92] Robert Ricci, Steve Barrus, Dan Gebhardt, and Rajeev Balasubramonian. Managing Comp

in the Piranha Server-Class Processor Design. In7th Workshop on Complexity-Effective Design

held in conjunction with the 33rd International Symposium on Computer Architecture, June 2006.

[93] Anand Lal Shimpi and Derek Wilson. Intel Pentium4 600 Series. http://www.anandtech.com

printarticle.aspx?i=2353, Feb 21, 2005.

[94] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel A

cations for Shared Memory.Computer Architecture News, 20(1):5–44, March 1992.

[95] Kimming So and Rudolph N. Rechtschaffen. Cache Operations by MRU Change.IEEE Transac-

tions on Computers, 37(6):700–709, June 1988.

[96] Vassos Soteriou and Li-Shiuan Peh. Design Space Exploration of Power-Aware On/Off Inte

nection Networks. InProceedings of Internationl Conference on Computer Design (ICCD’04),

October 2004.

[97] Vijayaraghavan Soundararajan, Mark Heinrich, Ben Verghese, Kourosh Gharachorloo, Anoo

Gupta, and John Hennessy. Flexible Use of Memory for Replication/Migration in Cache-Cohe

DSM Multiprocessors. InProceedings of the 25th Annual International Symposium on Compu

Architecture, pages 342–355, June 1998.

[98] Evan Speight, Hazim Shafi, Lixin Zhang, and Ram Rajamony. Adaptive Mechanisms and Po

for Managing Cache Hierarchies in Chip Multiprocessors. InProceedings of the 32nd Annual

International Symposium on Computer Architecture, June 2005.

[99] Per Stenström, Mats Brorsson, and Lars Sandberg. Adaptive Cache Coherence Protocol Opt

for Migratory Sharing. InProceedings of the 20th Annual International Symposium on Compu

Architecture, pages 109–118, May 1993.

[100] Per Stenström, Truman Joe, and Anoop Gupta. Comparative Performance Evaluation of Ca

Coherent NUMA and COMA Architectures. InProceedings of the 19th Annual International Sym

posium on Computer Architecture, May 1992.

[101] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. A New Memory Monitoring Scheme

Memory-Aware Scheduling and Partitioning. InProceedings of the Eighth IEEE Symposium on

High-Performance Computer Architecture, February 2002.

[102] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in SoftwareDr.

Dobb’s Journal, 30(3), March 2005.

or-

ing

ystem

ystem

pport

tems

-chip

. The

r RC

n,

Hz
157
[103] Dennis Sylvester, William Jiang, and Kurt Keutzer. BACPAC - Berkeley Advanced Chip Perf

mance Calculator website. http://www-device.eecs.berkeley.edu/ dennis/bacpac/.

[104] Dennis Sylvester and Kurt Keutzer. Getting to the Bottom of Deep Submicron II: a Global Wir

Paradigm. InProceedings of the 1999 International Symposium on Physical Design, pages 193–

200, 1999.

[105] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram Sinharoy. POWER4 S

Microarchitecture. IBM Server Group Whitepaper, October 2001.

[106] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram Sinharoy. POWER4 S

Microarchitecture.IBM Journal of Research and Development, 46(1), 2002.

[107] Frank F. Tsui. JSP - A Research Signal Processor in Josephson Technology.IBM Journal of

Research and Development, 24(2):243–252, March 1980.

[108] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating System Su

for Improving Data Locality on CC-NUMA Compute Servers. InProceedings of the 7th Interna-

tional Conference on Architectural Support for Programming Languages and Operating Sys

(ASPLOS), October 1996.

[109] Virtutech AB. Simics Full System Simulator. http://www.simics.com/.

[110] J. D. Warnock and et al. The Circuit and Physical Design of the POWER4 Microprocessor.IBM

Journal of Research and Development, 46(1):27–51, January 2002.

[111] Fred Weber. AMD’s Next Generation Microprocessor Architecture, October 2001.

[112] N. Weste and K. Eshragian.Principles of CMOS VLSI Design: A Systems Perspective. Addison-

Wesley Publishing Co., 1982.

[113] Steven J.E. Wilton and Norman P. Jouppi. An enhanced access and cycle time model for on

caches.Tech report 93/5, DEC Western Research Lab, 1994.

[114] Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/gems/.

[115] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta

SPLASH-2 Programs: Characterization and Methodological Considerations. InProceedings of the

22nd Annual International Symposium on Computer Architecture, pages 24–37, June 1995.

[116] Chung-Yu Wu and Ming-Chuen Shiau. Delay Models and Speed Improvement Techniques fo

Tree Interconnections Among Small-Geometry CMOS Inverters.IEEE Journal of Solid-State Cir-

cuits, 25(5):1247–1256, Oct 1990.

[117] Thucydides Xanthopoulos, Daniel W. Bailey, Michael K. Gowan Atul K. Gangwar, Anil K. Jai

and Brian K. Prewitt. The Design and Analysis of the Clock Distribution Network for a 1.2 G

-

dded

es:

re

m

ache

r

158
Alpha Microprocessor. InProceedings of the IEEE 2001 International Solid-State Circuits Con

ference, pages 402–403, 2001.

[118] Thomas Y. Yeh and Glenn Reinman. Fast and Fair: Data-stream Quality of Service. InProceed-

ings of the 2005 International Conference on Compilers, Architecture and Synthesis for Embe

Systems (CASES), September 2005.

[119] Hui Zhang, Varghese George, and Jan M. Rabaey. Low-Swing On-Chip Signaling Techniqu

Effectiveness and Robustness.IEEE Transactions on VLSI Systems, 8(3):264–272, June 2000.

[120] Michael Zhang and Krste Asanovic. Miss Tags for Fine-Grain CAM-Tag Cache Resizing. InPro-

ceedings of the International Symposium on Low Power Electronics and Design, August 2002.

[121] Michael Zhang and Krste Asanovic. Victim Replication: Maximizing Capacity while Hiding Wi

Delay in Tiled Chip Multiprocessors. InProceedings of the 32nd Annual International Symposiu

on Computer Architecture, June 2005.

[122] Zheng Zhang and Josep Torrellas. Reducing Remote Conflict Misses: NUMA with Remote C

versus COMA. InProceedings of the Third IEEE Symposium on High-Performance Compute

Architecture, February 1997.

	Abstract
	Acknowledgments
	Table of Contents

	Chapter 1 Introduction 1
	Chapter 2 Background: On-Chip Wire Technology 11
	Chapter 3 Global Wires and Large On-chip Caches 25
	Chapter 4 Exploiting Workload Behavior 37
	Chapter 5 Cache Block Migration 71
	Chapter 6 Adaptive Selective Replication 87
	Chapter 7 Transmission Line Caches 119
	Chapter 8 Conclusions and Future Work 145
	List of Figures
	List of Tables

	Chapter 1
	Introduction
	1.1 On-chip Global Wire Technology
	1.2 Multithreaded Workload Behavior
	Single Requestor Blocks
	Shared Read-only Blocks
	Shared Read-write Blocks

	1.3 Wire Delay Management Techniques for Different Sharing Types
	Migration for Single Requestor Blocks
	Selective Replication for Shared Read-only Blocks
	Transmission Lines for Shared Read-write Blocks

	1.4 Thesis Contributions
	1.5 Dissertation Structure

	Chapter 2
	Background: On-Chip Wire Technology
	2.1 Conventional RC Communication
	2.1.1 Propagation Delay
	(2.1)
	(2.2)
	TABLE 2-1. ITRS Projections for Conventional Global Wires

	2.1.2 Physical Requirements
	2.1.3 Power Consumption
	(2.3)

	2.2 On-chip Transmission Line Communication
	2.2.1 Propagation Delay
	FIGURE 2-1.� Sample Output Waveform of a 10 mm On-chip Transmission Line

	2.2.2 Physical Requirements
	FIGURE 2-2.� Stripline Transmission Lines

	2.2.3 Power Consumption
	(2.4)

	2.3 Comparison: Conventional RC Wires versus On-chip Transmission Lines
	2.3.1 Latency
	FIGURE 2-3.� Latency Comparison

	2.3.2 Bandwidth Density
	FIGURE 2-4.� Cross-sectional Wire Comparison

	2.3.3 Dynamic Power
	TABLE 2-1. Bandwidth Density Comparison
	FIGURE 2-5.� Dynamic Power Comparison

	2.4 Attractive Alternative Technologies
	2.5 Summary

	Chapter 3
	Global Wires and Large On-chip Caches
	3.1 Wire Delay and Cache Partitioning
	FIGURE 3-1.� NUCA Cache Network for an 8 Processor CMP

	3.2 CIM: Cache Investigative Model
	FIGURE 3-2.� Diagram of the Cache Investigation Model
	(3.1)
	(3.2)
	(3.3)
	(3.4)
	(3.5)
	(3.6)
	(3.7)

	3.2.1 CIM: Cache Partitioning
	TABLE 3-1. CIM: Cache Bank Partitioning Parameters
	FIGURE 3-3.� CIM: Cache Partitioning - Cache Access Time vs. Bandwidth Demand

	3.2.2 CIM: Wire Technology
	TABLE 3-2. CIM: Wire Technology Parameters
	FIGURE 3-4.� CIM: Wire Technology - Cache Access Time vs. Bandwidth Demand

	3.3 Cache Organization and Memory System Performance
	3.3.1 Shared CMP Cache
	(3.8)

	3.3.2 Private CMP Caches
	(3.9)

	3.4 Summary

	Chapter 4
	Exploiting Workload Behavior
	4.1 Characterizing Sharing Types
	TABLE 4-1. Workload Descriptions
	Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier s...
	Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models ...
	Static Web Serving: Zeus. Zeus is another static web serving workload driven by SURGE. Zeus uses ...

	TABLE 4-2. Evaluation Methodology
	TABLE 4-3. Percentage of Cache Blocks Profiled at L2 Eviction

	4.1.1 Requests
	TABLE 4-4. L2 Cache Request Profile
	FIGURE 4-1.� L2 Cache Shared Requests Breakdown (1:�Single�Requestor,�RO: Shared Read-only, RW: S...

	4.1.2 Cache Capacity
	TABLE 4-5. L2 Cache Capacity and Allocation Profile

	4.1.3 Sharing Behavior
	TABLE 4-6. L2 Cache Block Sharing Behavior

	4.1.4 Request vs. Cache Block Locality
	FIGURE 4-2.� Request to Block Distribution: Single Requestor Data
	FIGURE 4-3.� Request to Block Distribution: Shared Read-only Data
	FIGURE 4-4.� Request to Block Distribution: Shared Read-write Data

	4.1.5 Cache Hit Ratio
	(4.1)
	FIGURE 4-5.� Normalized L2 Cache Hit Ratios

	4.1.6 Probability Distribution Functions
	FIGURE 4-6.� Probability Distribution Function HLb|1R - F(x)
	FIGURE 4-7.� Probability Distribution Function HLb|S - M(x)
	FIGURE 4-8.� Probability Distribution Function HRb|S - N(x)
	FIGURE 4-9.� Probability Distribution Function HLb|SRO - G(x)
	FIGURE 4-10.� Probability Distribution Function HLb|SRW - H(x)
	FIGURE 4-11.� Probability Distribution Function HRb|SRO - P(x)
	FIGURE 4-12.� Probability Distribution Function HRb|SRW - Q(x)

	4.2 Exploiting Workload Behavior Through Migration
	4.2.1 Modelling Migration
	(4.2)
	(4.3)
	(4.4)
	(4.5)
	(4.6)
	(4.7)
	(4.8)
	(4.9)
	(4.10)
	(4.11)
	(4.12)
	(4.13)
	(4.14)

	4.2.2 Evaluating Migration
	FIGURE 4-13.� Migration Model: All Workloads Default Parameters

	4.3 Exploiting Workload Behavior Through Replication
	4.3.1 Modelling Replication
	(4.15)
	(4.16)
	(4.17)
	(4.18)
	(4.19)
	(4.20)
	(4.21)
	(4.22)
	(4.23)
	(4.24)
	(4.25)
	To model the accuracy of selectively replicating frequently requested shared read-only blocks, Eq...
	(4.27)
	(4.28)
	(4.29)
	(4.30)

	4.3.2 Evaluating Replication
	FIGURE 4-14.� Replication Model: All Workloads Default Parameters
	FIGURE 4-15.� Replication Model: All Workloads Except Art Default Parameters
	FIGURE 4-16.� Replication Model: Apache Cache Capacity vs. Probability of Replication
	FIGURE 4-17.� Replication Model: OLTP Cache Capacity vs. Probability of Replication
	FIGURE 4-18.� Replication Model: Cache Capacity vs. Probability of Replication
	FIGURE 4-19.� Replication Model: Apache Miss Latency vs. Probability of Replication
	FIGURE 4-20.� Replication Model: OLTP Miss Latency vs. Probability of Replication
	FIGURE 4-21.� Replication Model: Miss Latency vs. Probability of Replication

	4.4 Summary

	Chapter 5
	Cache Block Migration
	5.1 Motivation
	5.2 Baseline: CMP-SNUCA
	TABLE 5-1. 2010 System Parameters
	FIGURE 5-1.� 16 MB CMP-NUCA Layout with CMP-DNUCA Bankcluster Regions

	5.3 CMP-DNUCA
	5.3.1 Overview
	5.3.2 Implementation
	Allocation.
	Movement.
	Search.

	5.4 Methodology
	5.5 Evaluation
	5.5.1 Block Movement in CMP-DNUCA
	FIGURE 5-2.� CMP-DNUCA: L2 Hit Distribution
	FIGURE 5-3.� a) Oltp DNUCA Distribution

	5.5.2 Searching in CMP-DNUCA
	FIGURE 5-4.� CMP-DNUCA: Average L2 Hit Latency (S:�CMP�SNUCA,�D:�CMP-DNUCA, pD: perfect CMP-DNUCA)
	FIGURE 5-5.� Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S:�CMP-SNUCA, D: CM...
	FIGURE 5-6.� CMP-DNUCA: Speedup (S:�CMP�SNUCA,�D:�CMP�DNUCA,�pD:�perfect�CMP-DNUCA)
	FIGURE 5-7.� CMP-DNUCA: Normalized Memory Cycles (S:�CMP-SNUCA, D: CMP-DNUCA, pD: perfect CMP-DNUCA)

	5.6 Summary

	Chapter 6
	Adaptive Selective Replication
	6.1 Motivation
	6.2 Baseline: Private CMP Caches
	FIGURE 6-1.� Private CMP Cache

	6.3 Adaptive Selective Replication
	6.3.1 Replication and CMP Cache Performance
	(6.1)
	FIGURE 6-2.� a) Replication Benefit

	6.3.2 Balancing Replication via ASR
	FIGURE 6-3.� ASR Decision Table for Adjusting Replication

	6.4 Implementing ASR
	6.4.1 Selective Probabilistic Replication
	TABLE 6-1. SPR Replication Levels

	6.4.2 ASR Hardware
	Benefit of Increasing Replication (HC - HH)
	Cost of Increasing Replication (MH - MC)
	FIGURE 6-4.� Binary Tree Position Translation to LRU Rank

	Benefit of Decreasing Replication (MC - ML)
	Cost of Decreasing Replication (HL - HC)
	Triggering a Cost-Benefit Analysis

	6.4.3 Storage and Energy
	TABLE 6-2. ASR Storage Overhead

	6.5 Methodology
	6.5.1 Alternative Cache Designs
	CMP-Shared
	CMP-Private
	FIGURE 6-5.� Layout of CMP-Shared

	SPR-VR
	SPR-NR
	SPR-CC

	6.5.2 System Parameters
	TABLE 6-3. Comparison of Configuration Parameters

	6.6 Evaluation
	6.6.1 Replication Capacity and Memory Cycles
	FIGURE 6-6.� a) Current�CMP: L2�Hit�Cycles / Instr.

	6.6.2 Adapting to Workload Behavior
	FIGURE 6-7.� a) Future CMP: ASR�Adaptability Apache
	FIGURE 6-8.� a) Future CMP: ASR�Adaptability Apache—Processor 0

	6.6.3 Sharing Type Latency vs. Off-chip Misses
	FIGURE 6-9.� Future CMP: Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S:�CMP�...

	6.6.4 Comparison of Replication Schemes
	Performance.
	FIGURE 6-10.� Current CMP: Speedups (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR�VR, N:�SPR-NR, C: SPR-...
	FIGURE 6-11.� Current CMP: Memory Cycles (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR-VR, N: SPR-NR, C:...
	FIGURE 6-12.� Future CMP: Speedups (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR�VR,�N:�SPR�NR,�C:�SPR�C...
	FIGURE 6-13.� Future CMP: Memory Cycles (S:�CMP�Shared,�P:�CMP�Private,�V:�SPR�VR,�N:�SPR�NR,�C:�...
	FIGURE 6-14.� Future CMP 500 cycle memory latency: Speedups (S:�CMP�Shared,�P:�CMP-Private, V: SP...
	FIGURE 6-15.� Future CMP 500 cycle memory latency: Memory Cycles (S:�CMP�Shared,�P:�CMP-Private, ...

	Performance Summary
	Storage Overhead.
	TABLE 6-4. Storage Overhead Comparison

	6.7 Related Work
	6.7.1 Multiprocessor Memories
	6.7.2 Uniprocessor Caches
	6.7.3 Chip Multiprocessor Caches
	6.8 Summary

	Chapter 7
	Transmission Line Caches
	7.1 Motivation
	7.2 Shared CMP-TLC
	7.2.1 Overview
	FIGURE 7-1.� Shared CMP-TLC
	TABLE 7-1. Shared CMP-TLC Cache Interface Unit Height Breakdown
	FIGURE 7-2.� Uncontended Latency Comparison Between CMP-SNUCA and Shared CMP-TLC

	7.2.2 Methodology
	FIGURE 7-3.� CMP-SNUCA

	7.2.3 Evaluation
	FIGURE 7-4.� Shared CMP-TLC: Average Remote L1 Cache Hit Latency (S: CMP-SNUCA, T: Shared CMP-TLC...
	FIGURE 7-5.� Shared CMP-TLC: Average L2 Cache Hit Latency (S:�CMP-SNUCA, T: Shared CMP-TLC, W: Sh...
	FIGURE 7-6.� Shared CMP-TLC: L1 Miss Cycles Breakdown (S:�CMP�SNUCA, T: Shared CMP-TLC, W: Shared...
	FIGURE 7-7.� Shared CMP-TLC: Speedup (S:�CMP�SNUCA,�T:�Shared�CMP-TLC, W: Shared CMP-TLC-WDM)
	Transceiver Delay Sensitivity Analysis
	FIGURE 7-8.� Shared CMP-TLC Transceiver Sensitivity: Speedup (S:�CMP�SNUCA, T: Shared CMP-TLC, +1...
	FIGURE 7-9.� Shared CMP-TLC-WDM Transceiver Sensitivity: Speedup (S:�CMP�SNUCA, W:�Shared CMP-TLC...

	7.3 Private CMP-TLC
	7.3.1 Overview
	FIGURE 7-10.� Private CMP-TLC

	7.3.2 Methodology
	7.3.3 Evaluation: Baseline Private CMP Protocol
	FIGURE 7-11.� Private CMP-TLC: Private L2 Miss Cycles Breakdown (P: CMP-Private, T: Private CMP-T...
	FIGURE 7-12.� Private CMP-TLC: Speedup (P:�CMP�Private,�T:�Private�CMP�TLC,�R: Private CMP-TLC-Re...

	7.3.4 Evaluation: Interaction with ASR
	FIGURE 7-13.� Private CMP-TLC w/ASR: L1 Miss Cycles Breakdown (A:�ASR,�T: Private CMP-TLC w/ASR, ...
	FIGURE 7-14.� Private CMP-TLC w/ASR: Speedup (A:�ASR,�T:�Private�CMP-TLC w/ASR, O: Private CMP-TL...

	7.3.5 Sharing Type Latency vs. Off-chip Misses
	FIGURE 7-15.� Normalized L1 Miss Latency to Sharing Types and Off-chip Misses (S:�CMP-Shared, P:�...
	FIGURE 7-16.� Combination of Techniques: Speedup (S:�CMP�Shared, P:�CMP-Private, R:�Private CMP-T...
	Transceiver Delay Sensitivity Analysis.
	FIGURE 7-17.� Private CMP-TLC-Request with ASR Transceiver Sensitivity: Speedup (S:�CMP�Shared, O...

	7.4 Comparing Best Performing Designs
	FIGURE 7-18.� Best Performing Comparison: L1 Miss Cycles Breakdown (8:�CMP-Shared, 64:�CMP-SNUCA,...
	FIGURE 7-19.� Best Performing Comparison: Speedup (8:�CMP�Shared,�64:�CMP-SNUCA, O: Private CMP-T...

	7.5 Related Work
	7.6 Summary

	Chapter 8
	Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	Energy Evaluation.
	Bloom Filters for ASR.
	ASR for Lower Power.
	Multithreaded Cores.

	References

