Blending Containers and Virtual Machines: A Study of Firecracker and gVisor

Anjali

Tyler Caraza-Harter Michael M. Swift

Department of Computer Sciences University of Wisconsin-Madison

Existing (legacy) solutions

Hypervisor based virtualization

- Different kernel
- High boot time
- High memory footprint
- Strong isolation

Арр Арр				
Bins/Libs	Bins/Libs			
Container Engine				
Operating System				
Infrastructure				

Container virtualization

- Same kernel
- Fast boot time
- Low memory footprint
- Weak isolation

Existing (legacy) solutions

Hypervisor based virtualization

- Different kernel
- High boot time
- High memory footprint
- Strong isolation

Container virtualization

Infrastructure

App

Bins/Libs

- Same kernel
- Fast boot time
- Low memory footprint
- Weak isolation

The dilemma

Application Developer

- Which has the best performance?
- How vulnerable are they to attacks from other containers?

Isolation Platform Developer

Kernel Developer

- How to design the architecture to minimize dependency on the host?
- How to streamline kernel support for isolation platforms?

Our work

- Initial study
 - Compare properties of three secure isolation platforms
 - Linux containers
 - gVisor
 - Firecracker
 - Evaluate fundamental performance via microbenchmarks
 - Assess dependence on OS services via code tracing

Outline

Platform architecture

- Firecracker
- gVisor
- Comparisons
 - Syscalls
 - CPU
 - Network
 - Overall

Platform Architecture: Firecracker

- Exports only 3 devices
- Limited system calls using SECure COMputing (seccomp) filters
- Written in Rust type safe, memory safe, no unsafe C code etc.

Platform Architecture: gVisor

- Handles syscalls in sentry
- User space kernel written in Golang
- Sentry is heavily sandboxed
- Gofer for file access

How are they different?

Firecracker	gVisor
Relies on guest and host kernel	Relies on Sentry and host kernel
Narrow syscall interface	Wider syscall interface
Low memory footprint	Low memory footprint
Type safe language	Type safe language

Both minimize interaction to the host kernel to enhance secure isolation by limiting syscalls interface.

Methodology

- Measure performance for microbenchmarks
 - CPU
 - Network
 - Memory
 - File I/O
- Icov to capture lines of source code executed for microbenchmarks
- Hardware Cloudlab xl170 machine, a ten-core Intel E5-2640v4 running at 2.4 GHz, 64GBECC Memory (4x 16 GB DDR4-2400 DIMMs), Intel DC S3520 480 GB 6G SATA SSD and 10Gbps NIC.

LCOV - code coverage report

Current view: top level		Hit	Total	Coverage
Test: host_mem_10min_new.info	Lines:	56945	806323	7.1 %
Date: 2020-02-05 17:52:14	Functions:	6365	75512	8.4 %
	Branches:	28340	618467	4.6 %

Directory	Line Coverage 🕈		Eurotione A		Branchae A		
arch/x86/crypto		2.9 %	19/660	1.2 %	1 / 86	3.1 %	9 / 288
arch/x86/entry		55.6 %	65 / 117	60.0 %	6 / 10	37.5 %	27 / 72
arch/x86/entry/vsyscall		0.0 %	0 / 106	0.0 %	0 / 11	0.0 %	0 / 98
arch/x86/events		3.9 %	37 / 954	3.0 %	3 / 99	1.3 %	10 / 783
arch/x86/events/amd		0.0 %	0 / 867	0.0 %	0 / 100	0.0 %	0 / 546
arch/x86/events/intel		1.8 %	96 / 5327	2.2 %	14 / 638	1.0 %	32 / 3332
arch/x86/hyperv		0.0 %	0 / 368	0.0 %	0 / 42	0.0 %	0 / 188
arch/x86/ia32		0.0 %	0 / 232	0.0 %	0 / 49	0.0 %	0 / 153
arch/x86/include/asm		35.1 %	579 / 1650	37.7 %	77 / 204	17.6 %	374 / 2120
arch/x86/include/asm/crypto		0.0 %	0 / 11	-	0/0	0.0 %	0 / 30
arch/x86/include/asm/e820		100.0 %	2/2	100.0 %	1/1	-	0/0
arch/x86/include/asm/fpu		59.4 %	57 / 96	71.4 %	10 / 14	40.9 %	18 / 44
arch/x86/include/asm/numachip		0.0 %	0 / 4	-	0/0	-	0/0
arch/x86/include/asm/trace		20.5 %	9 / 44	11.8 %	12 / 102	0.0 %	0 / 442
arch/x86/include/asm/vdso		100.0 %	2/2	-	0/0	-	0/0
arch/x86/include/asm/xen		0.0 %	0 / 120	0.0 %	0/9	0.0 %	0 / 98
arch/x86/kernel		5.7 %	642 / 11307	5.9 %	69 / 1170	3.0 %	212 / 7045

General Findings

CPU: Sysbench Performance

CPU: Sysbench Performance

CPU: Coverage

Overall

/virt

CPU: Coverage

/arch

/arch/x86/kvm

Network: Performance

Network: Coverage

/net

Network: Coverage

Invocation Frequency

<pre>bool is_skb_forwardable(const struct net_device *dev,</pre>	1823
unsigned int len;	1824
if (!(dev->flags & IFF_UP))	1825
return false;	1826
len = dev->mtu + dev->hard_header_len +	1827
VLAN_HLEN;	
if $(skb \rightarrow len \leq len)$	1828
return true;	1829
if (skb_is_gso(skb))	1830
return true;	1831
return false;	1832
}	1833

	Hits				
Lines	LXC	gVisor	Firecracker		
1825	0.2 billion	5 million	0		
1827	0.2 billion	5 million	0		
1828	0.2 billion	5 million	0		
1830	8 million	0.9 million	0		

net/core/dev.c

Overall Coverage

Conclusion

- Neither gVisor nor Firecracker are best for all workloads
- Firecracker High host kernel code footprint
- gVisor High dependence on kernel functionality
- Optimize code paths

Next Steps

• Expand to other isolation platforms

Questions?

anjali@wisc.edu

