

Probabilistic Directed Writebacks for Exclusive Caches

Lena E. Olson
University of Wisconsin-Madison

lena@cs.wisc.edu

Mark D. Hill
University of Wisconsin-Madison

markhill@cs.wisc.edu

Abstract
 Energy is an increasingly important consideration in

memory system design. Although caches can save energy in

several ways, such as by decreasing execution time and

reducing the number of main memory accesses, they also

suffer from known inefficiencies: the last-level cache (LLC)

tends to have a high miss ratio while simultaneously
storing many blocks that are never referenced after being

written back to LLC. These blocks contribute to dynamic

energy while simultaneously causing cache pollution.

 Because these blocks are not referenced before they are

evicted, we can write them directly to memory rather than

to the LLC. To do so, we must predict which blocks will not

be referenced. Previous approaches rely on additional state

at the LLC and/or extra communication.

 We show that by predicting working set size per program

counter (PC), we can decide which blocks have low

probability of being referenced. Our approach makes the
prediction based solely on the address stream as seen by

the level-one data cache (L1D) and thus avoids storing or

communicating PC values between levels of the cache

hierarchy. We require no modifications to the LLC.

 We adapt Flajolet and Martin’s probabilistic counting to

keep the state small: two additional bits per L1D block,

with an additional 6KB prediction table. This approach

yields a large reduction in number of LLC writebacks: 25%

fewer for SPEC on average, 80% fewer for graph500, and

67% fewer for an in-memory hash table.

1. Introduction
“Half the money I spend on advertising is wasted; the

trouble is I don’t know which half.”

— Attributed to John Wanamaker

“Half the energy I spend on caching is wasted; the

trouble is I don’t know which half.”

— This paper’s authors

 Caches are an effective way to decrease execution time

and reduce the number of main memory accesses, making

them essential for both high performance and low energy.

They are so successful that they have been recursively

replicated: today’s systems have not only first- and second-

level caches, but third-level caches are becoming

increasingly common as well.

 Because caches are so essential, much effort has been

expended in improving their performance and energy

efficiency. However, there are several inefficiencies that

last-level caches (LLCs) suffer from, chief among them a

high local miss ratio and a large percentage of blocks

that are never referenced before eviction. Previous

studies have found and our experiments confirm that the

miss ratio at the LLC is high for many common

applications [2,15]. We find that for the SPEC 2006

benchmarks, on average 50% of LLC accesses result in

misses, and for memory-intensive applications such as an

in-memory hash table, the miss ratio is much higher – over

95%. At the same time, many of the blocks that are written

to the LLC after eviction from the level-one data cache

(L1D) are never re-referenced. We find that these useless

blocks account for over 80% of the writebacks to the LLC

for SPEC, and over 95% for memory-intensive workloads.

 There have been a number of approaches proposed to
remedy the problems caused by indiscriminately writing

back all data evicted from L1 to L2 and L3. These

approaches have included modifying the LLC replacement

policy to preferentially evict blocks predicted to be dead

[22], prefetching into predicted dead blocks [21], and doing

cache bypassing – that is, choosing to evict some blocks

from L1 straight to memory [11].

 A commonality of much previous work is that it makes

decisions about insertion, bypass, and replacement policies

at the LLC itself, and therefore any information from the

executing process that might aid in the decision (such as
program counter (PC) or instruction sequence) must be

transferred between levels of cache, adding overheads in

hardware and complexity. Many of these approaches do not

use bypassing, instead varying only the insertion and

replacement policies, which can reduce cache pollution, but

do not eliminate useless writebacks to the cache – blocks

are still written to the cache, they are simply evicted earlier.

This is especially problematic with emerging technologies

such as Spin-Transfer Torque RAM (STT-RAM), where

writes are far more expensive than reads both in latency

and energy [1].

 Even in approaches with bypassing, placing the decision
at the LLC prevents reducing the traffic to the LLC. In

hierarchies with multiple levels, logic must be replicated at

each cache level where bypassing is possible.

 An assumption behind much of the prior work is that the

reuse behavior of blocks in the LLC can best be determined

by observing behavior at the LLC itself. We offer the

insight that LLC block locality can be predicted by

observing the stream of addresses generated by the CPU.

We dynamically determine the cardinality of the set of

blocks referenced by each PC, because this gives an

estimate of per-PC working set size. Predicted working set
size is a good indication of temporal locality because if the

working set does not fit into the cache, blocks will likely

suffer from a high miss rate and a tendency to be evicted

before being referenced.

2

 We show that by adding a working set prediction table in

parallel with L1D accesses, we can effectively direct

blocks to the appropriate level of the memory hierarchy

upon L1D eviction. We therefore call our approach

Directed Writebacks.

 We use Flajolet and Martin’s theory result on
probabilistic counting [9] to limit state in the prediction

table. Probabilistic counting is well suited for our case,

where we require only a coarse estimate of the number of

blocks accessed per PC. We can tolerate several binary

orders of magnitude of error because we are only trying to

predict whether the working set is smaller or larger than the

cache size.

 Our prediction table entries are each 65 bits per PC plus a

32 bit tag. For a 32KB L1D, a 1MB L2, and a 4MB LLC,

we show that a 6KB structure per L1D is sufficiently large

for reasonable prediction. Because this structure is not on

the critical path for L1 accesses, it does not add any latency
overhead for L1 hits.

 We evaluate our design with an exclusive cache

hierarchy in this work. Exclusive caches have significant

effective storage size advantages in deep cache hierarchies

[11,31]. Directed writebacks are also conceptually simpler

with exclusive caches because blocks are guaranteed to

only be found in one cache at a time. This allows bypassing

dirty blocks to memory without needing to worry about

stale copies causing consistency problems. We qualitatively

discuss how to extend this work to other cache hierarchies

in Section 7.2.
 The contributions of this paper are:

 demonstrating on real hardware that there are

performance benefits to cache bypassing, even in

the absence of hit rate improvement

 the insight that cache block reuse behavior can be

predicted without communicating with the cache

itself, but rather by simply observing the PC and

address streams of memory references

 providing the first adaptation (to our knowledge)

of theory's probabilistic counting to computer

architecture (to coarsely estimate LLC working set
size with small L1-like state)

 proposing directed writebacks and demonstrating

that a simple predictor added in parallel with the

L1D miss path to direct writebacks to L2, L3, or

memory can reduce energy and improve

performance in an exclusive cache hierarchy

 The paper is organized as follows: we start by

characterizing LLC block behavior for several classes of

workloads and its energy impact. We also motivate this

work by demonstrating potential energy and performance

improvement on real hardware. We then discuss

probabilistic counting and show how it can be used to store
working set size with very small area overhead, and

evaluate the results, including in comparison with SHiP

[33], another strategy for improving LLC behavior. Finally,

we place our work in the context of related work.

2. Characterization of LLC Behavior

2.1 Workload Selection

 We evaluate workloads from a variety of sources. The
SPEC 2006 workloads have been previously characterized

by Jaleel et al. [15] and Sandberg et al. [30], among others.

Because we anticipate that directed writebacks will have

greater benefits for applications with very large working

sets, we also characterize graph500 [12] and a simple

hashtable microbenchmark meant to approximate an in-

memory key-value store. To allow execution of large

numbers of instructions, we use a Pin-based simulator [24]

and run for 10 billion instructions. We validated it against

results gathered using gem5 [4] with Ruby and previous

work and find that our characterizations agree. Unless

otherwise noted, we run hashtable with a 1GB table and
graph500 with scale size 25 (equivalent to a storage size of

approximately 8GB). In all cases, we assume two cores and

a three-level exclusive cache hierarchy with parameters

shown in Table 1. We assume for this evaluation that all

levels of the hierarchy use a true LRU replacement policy.

 We examine pairs of workloads in a multiprogrammed

environment. We run with all pairs of workloads.

 We target our work to large workloads, such as graph500

and hashtable, but include SPEC 2006 to ensure that our

Figure 2. Breakdown of hits/misses at L3

Figure 1. Breakdown of hits/misses at L2

Table 1. System configuration.

L1D Private. 8-way 32KB. LRU.

L2 Private. 16-way 1MB. LRU.

L3 (LLC) Shared. 32-way 4MB. LRU.

3

approach does not cause undue performance degradation

even for smaller workloads.

2.2 LLC Local Miss Ratio
 We investigate the L2 and L3 local miss ratio for a

variety of applications and show our results in Figure 1 and

Figure 2. We find that on average 60% of L2 accesses and

over 65% of L3 accesses are misses for SPEC 2006. For

graph500 and hashtable, more than 99.5% of accesses miss

at L2, and more than 99% at L3. Our results are similar to

those found by Jaleel et al. [15]. The high miss ratio

indicates that there is potential for changes to the cache

hierarchy to significantly improve hit rate and thus

performance.

2.3 Avoidable Writebacks

 In addition to a high local miss ratio, a large percentage
of blocks written to the L2 and L3 are evicted before they

are used (each miss once the cache is full causes another

block to be evicted unused). In an exclusive cache

hierarchy, these writebacks are avoidable – that is, if we

avoided doing the writebacks and instead directed the

writeback to a different level of cache or to memory, we

would not later incur an extra miss.

2.4 Energy Impact of Avoidable Writebacks

 Avoidable writebacks to the L2 and L3 contribute to

execution energy in two major ways: the dynamic energy

of doing needless cache writebacks, and the static energy
when cache pollution results in increased run time. We

discuss each in turn.

 Dynamic energy: There is a cost in dynamic energy to

doing cache writes. We model local L3 energy using Cacti

[26]. As shown in Figure 3, we find that L3 local energy

going to avoidable writes is approximately 57% on average

for SPEC workloads. For graph500 and hashtable, over

98% of L3 dynamic energy goes to avoidable writebacks.

 Static energy: Avoidable writes also contribute to static

energy by potentially increasing the execution time for the

program. By storing useless blocks in the cache, there is

less room for useful blocks, which can increase the miss
rate and cause execution overheads. In addition, the

writeback traffic to the cache can interfere with read

requests for blocks, increasing miss latency.

 In addition to reducing the execution time of the program

performing the bypassing, bypassing can also reduce cache

pollution affecting other programs running concurrently,

preventing a program which trashes the L3 (a “gobbler” in

the terminology of Sandberg et al. [30]) from slowing down

other programs. Sandberg et al. have previously
demonstrated an improvement with multiprogrammed

SPEC workloads when bypassing is employed.

 Finally, by reducing the amount of data stored in the L2

and L3, bypassing can potentially pave the way toward

using energy optimizations such as putting some cache

ways to sleep to further reduce static energy.

3. Analysis of Avoidable Writebacks
 To determine whether we can predict where blocks

should be directed upon writeback, we did a

characterization of avoidable writebacks to L3.

3.1 Program Counter Association

 We examined the last PC used to access each block

before eviction from L1D to see if there was a relationship

between PC and L3 behavior. For SPEC, we find that on

average, about 10% of blocks come from PCs that always

generate avoidable writebacks to L3, and a further 35%

come from blocks that do so at least 99% of the time. This

suggests that by using a simple policy of always bypassing
writebacks originating from these PCs, we could eliminate

45% of avoidable writebacks to L3 while incurring very

few additional misses.

 Similar results were found by Holloway et al. [14], who

examined problem stores – that is, static instructions that

are responsible for many later load misses. They found that

a few static instructions were responsible for many of the

misses. Intuitively, these results make sense because many

L3 misses or no-reuse blocks are likely caused by the same

type of accesses: loads and stores to data structures that are

too large to fit in the L3. Other previous works that have

shown a correlation between access PC and L3 behavior
include SHiP [33].

 The predictive value of the PC can be exploited to make

effective decisions about the destination of directed

writebacks from L1D.

3.2 Software Approach on Existing Hardware

 To estimate the potential benefits of directed writebacks

in a real system, we ran tests on an AMD A8-3850

processor with a 1MB private per-core L2 and no L3. This

model has an exclusive cache hierarchy and limited support

for software bypassing. When the processor encounters a

non-temporal prefetch instruction (i.e. prefetchnta), it

both prefetches the block to the L1D and also sets a sticky

bit indicating that when the block is evicted, it should

bypass the LLC. In this way, it implements directed

writebacks to a limited extent.

 We manually inserted prefetchnta instructions into

two workloads: graph500 and hashtable. For graph500 we

inserted four static instructions (using inline assembly) and

Figure 3. Dynamic energy breakdown at L3.

4

for hashtable we inserted two, one in the get function and

one in set. To distinguish between the impact of the

additional prefetch vs. the bypass hint, we also created a

version of the workloads with prefetch instead of

prefetchnta. In all cases, the additional prefetch

instruction was inserted directly before the access. We then

ran the workloads using perf to collect performance

counter data. The base implementation of graph500 ran for

70 minutes, while hashtable ran for 8 minutes.

 As shown in Figure 4, adding bypass hints drastically

reduces the number of writebacks to the LLC, as expected,

while just using prefetch does not reduce the number of
LLC writebacks. In addition, Figure 5 shows that there is a

substantial speedup – approximately 1.5X – for both

graph500 and hashtable. We do not see a speedup for

graph500 with just prefetch added, and for hashtable

the speedup is less than with prefetchnta, indicating

that it is indeed from bypassing and not the prefetching.

 Interestingly, we do not see an increase in hit rate,

indicating that the benefit is at least partially due to a

decrease in writebacks to the LLC. When a writeback

request is made to a full LLC (common case), a block must

be evicted to memory, and when there is a high miss rate at
L1D, this can result in saturating the bandwidth to memory,

causing performance degradation.

 These results suggest that directed writebacks can

improve both performance and energy in a real system.

However, because this approach requires annotating static

instructions, we could not easily use it to evaluate our

hardware directed writebacks mechanism. The remainder

of the paper deals with the Pin-based cache model, but we

include the results on real hardware to motivate this work.

4. Directed Writebacks by Probabilistic

Counting
 As discussed in Section 3.1, PC is correlated with block

reuse behavior. However, propagating and storing PC

information at every level of the cache hierarchy adds
overhead; therefore, it is desirable to make predictions

upon L1D insertion, without any feedback from the other

levels of cache. We hypothesize that if a single PC accesses

more blocks than can fit in the entirety of a particular level

of cache, it has poor locality and we will not benefit from

storing blocks from this PC in that level. We thus use the

PC and address stream to identify the working set size for

each PC, and set a bit to direct the block to the appropriate

cache or to memory upon eviction. In addition, we do not

rely on any feedback from the cache hierarchy.

4.1 Probabilistic Counting
 To determine working set size, we keep a probabilistic

count of the number of distinct cache blocks accessed per

PC. Probabilistic counting algorithms are ideal for this use

case because we do not require an exact count and can

tolerate significant error, but are constrained to a very

limited amount of state. This algorithm requires log2N bits

of state to store N distinct events.

 Here we provide a brief overview of Flajolet and

Martin’s probabilistic counting [9,10]. It is a deep

theoretical result with the original paper cited 800 times

and the papers directly citing it being in turn cited over

10,000 times (per Google Scholar).

 The probabilistic counting algorithm states that a

sequence of events can be counted by generating a random
number for each event, setting the bit in the bit vector that

corresponds with the most significant 1 in the random

number, and then counting the number of set bits in the

bitmap from MSB to LSB until a cleared bit is encountered.

The intuition behind this approach is that every random

number will have a 50% chance of having the first 1 be in

the MSB position, 25% of it being in the next position,

12.5% of it being in the position after, and so on. Thus, on

average we would expect to see 2N+1 random numbers

before bit N is set. We can therefore estimate that if the

most significant 16 bits are set, then we expect to have seen
216 = 64K distinct events.

Figure 5. Speedup of graph500 and hashtable on

hardware, using prefetch and non-temporal prefetch

instructions

Figure 4. Normalized writebacks to the LLC with the

original binary, with prefetch instructions inserted, and

with non-temporal prefetch instructions inserted.

5

Table 2. An example address stream and working set map

modification for a single PC.

Block

Address

Hashed

Address

Working Set

Map

Working Set

Size Prediction

Initial 0000000000 0

0x40fe 1011111110 10000000000 21 = 2

0x410b 0110110000 11000000000 22 = 4

0x0f0e 1100011010 11000000000 22 = 4

0x40fe 1011111110 11000000000 22 = 4

0xabcd 0001010101 11010000000 22 = 4

 Flajolet and Martin discuss using this approach for

counting distinct entities. In this case, each entity is hashed

with a function that produces outputs that appear random

but which are deterministic by input, preventing frequently

occurring entities from inflating the count.

 We use this approach to estimate working set size by

hashing the address stream for each PC. We hash on the
granularity of a cache block and perform the hash for every

L1D insertion. The resulting bit vector is stored per PC, and

when the working set is estimated to be larger than a level

of the cache hierarchy, we choose to bypass all accesses

from that PC. Table 2 shows the working set map and

predicted working set size for a sample stream of

references from a single PC. Note that in the final entry, the

modification of the working set map from 1100… to

1101… does not increase the predicted size, because there

is a cleared bit before the added set bit.

 We evaluate our proposal using SpookyHash [16], a
public domain non-cryptographic hash function which has

a fast software implementation. However, in a hardware

implementation we would choose a non-cryptographic hash

function that is fast and low-power to implement in

hardware, such as one of the H3 class of functions [5,29].

4.2 Empirical Analysis of Probabilistic Counting

 To better understand the properties of probabilistic

counting, we tested how many distinct random numbers we

needed to generate to reach a map with the first 20 bits set;

that is, with predicted 220 = 1,048,576 values. We ran 1000
trials. A histogram of our results can be seen in Figure 6.

 We find that the average value is slightly higher than

predicted: 1,246,372. However, the distribution has a long

tail and the median is close to our desired value: 1,028,292.

The minimum value is only 58,023 (over 4 binary orders of

magnitude off) and the greatest is 7,431,854, or almost 3

binary orders of magnitude in error. Hence, any design

decision must take into account that the predicted working

set size can be quite different from actual working set size,

and that the distribution has a long tail.

5. Hardware Design for Directed Writebacks
 We will first describe a naïve version of the design for

directed writebacks, and then show how it can be refined.

We make two additions to the traditional exclusive cache

design. First, we add 2 bits per line to the L1D to indicate

whether the block should be directed to memory, to L3, or

to L2 upon eviction. Second, we add the working set size

prediction table, a table of PCs and working set maps, in
parallel with the L1D miss access path. In contrast to

previous approaches, we make no changes to the L2 or L3.

An overview of our design is shown in Figure 7.

 The working set size prediction table is a small structure

added in parallel with the L1D which is accessed on L1D

misses. Each entry contains a working set map, which in

our naïve implementation is 32 bits; we discuss the size of

the map further in Section 5.5. We also tag each entry with

32 bits of the PC. In total, each entry is 64 bits. Because the

prediction table is located at L1D, in contrast to most

previous work which places it at the L2 or L3, it must be
replicated for every core. However, this has the benefit that

it makes it simple to disable the policy for a specific

process (similar to a hardware prefetcher).

 Our additions do not affect L1D access time because the

hash function and prediction table are not on the critical

path; the predictor can return the prediction to the L1D

after the cache fill is completed, since it is only relevant on

Figure 6. Distribution of number of values before map predicts 1 (binary) million. The vertical bar shows the expected value.

6

Figure 7. High-level diagram of the

L1D and working set size prediction

table. The cache and the table are

shown as direct-mapped for the sake

of clarity.

The hit pathway is not shown, as it is

unchanged from the baseline design.

The insertion pathway shows the

steps that take place when an L1D

access misses and must be inserted in

the L1D. Note that some of the steps

may overlap (e.g. the data request

can overlap the accesses to the

working set size prediction table).

The eviction pathway shows the steps

that take place when a block is

evicted from the L1D. The only

change from baseline is checking the

eviction direction bits and directing

the writeback accordingly.

an eviction. The hashing logic and prediction table are

accessed only on L1D miss.
 This approach requires no communication between the

L1D and other levels of the hierarchy, in contrast with

previous work. In the version we model, we make no

changes to replacement policies at any level; however, we

discuss the possibility of using information from the

working set size prediction table to improve insertion and

replacement decisions in Section 7.1.

5.1 Working Set Size Selection

We evaluated a range of probabilistic working set sizes

to determine when directed writebacks should be sent to

each level of the memory hierarchy. Although the caches

are a known size in our system – 1MB and 4MB,
respectively – we do not want to simply bypass when the

working set size is predicted to be greater than 1 or 4MB.

As seen in Section 4.2, predicted working set size can have

significant error. In addition, the penalty for a block

bypassing a cache where it would have hit is far higher than

that of writing back a block that will be evicted before use.

We predict that because of this asymmetric penalty, we

should choose to bypass only when we think there is high

probability that the working set size is bigger than the

cache. We choose to have directed writebacks to the L2

when the predicted working set size is less than 16MB, to
L3 when the predicted working set size is less than 64MB,

and to memory otherwise.

5.2 Prediction Table Size

 We next determine an appropriate size for the working

set size prediction table. We choose to map multiple PCs to

the same entry, similar to what a branch prediction table

does. However, there is an important distinction between

branch predictors and our predictor: the branch predictor

learns from feedback, while our predictor does not receive

any feedback. In addition, the penalty for erroneously

predicting that a block should bypass a level of cache is

much greater than failing to bypass an avoidable write.

Because sharing entries between different PCs can result in
erroneously decision to bypass, we cannot share entries

between different PCs.

 Instead, we use a small set-associative buffer, tagged by

32 bits of the PC, to store working set maps. We use a

modified LRU policy to determine which entry to evict.

Because it takes many accesses to populate the buffer, we

supplement LRU eviction to bias in favor of keeping

entries which correspond to known large working sets.

 We find that a 4-way structure with 512 entries has a

very small number of populated evictions – for 20 billion

instructions, we find that on average 4 and at most 33

populated entries are evicted.

5.3 Reducing Prediction Error

 Probabilistic counting has a large standard deviation, as

noted in Section 4.2. This error can be reduced by

populating multiple maps and combining their results for

the estimated working set size. This technique is discussed

7

in Flajolet and Martin [9] and reduces the error by a factor

proportionate to the square root of the number of maps.

 To avoid needing multiple hash functions, we use the

log(M) least significant bits of the hashed value to select

one of M hash maps. We then expect each individual map

to predict 1/M of the size of the working set for the PC. To
simplify the logic, rather than averaging the number of bits

set, we choose to predict the working set size based on a

vote between the hash maps.

 For our results, we use 4 hash maps. If each map is 32

bits, this results in a total of 128 bits per predictor entry.

We predict that the working set is 4 times the largest

working set that at least 3 of the 4 maps predict.

5.4 Temporality

 Some programs may have phase behavior or PCs that

access many addresses, but in a blocked pattern. We would

like to distinguish between PCs that access N distinct

addresses out of N accesses, as opposed to those that access
N distinct addresses in greater than N accesses. For

example, a PC that accesses 1 GB of addresses but in a

blocked fashion of 512 KB at a time should be cached in

the L2, but the bitmap will progressively become more

populated until our predictor sets the blocks to bypass.

 By periodically clearing the bitmaps, we can limit the

working set we track to the previous N accesses. However,

we wish to do this without having to pay the overhead of

training every time we clear the map. Therefore, we use

two maps: one that is updated upon misses, and the other

which is used to decide the destination for the directed
writeback. We switch between the two maps with a

probability proportional to the size of the working set we

wish to predict. For example, if we wish to predict when 1

million distinct accesses have occurred, we switch with a

probability of 1 in 4 million. Upon switching, we clear the

map.

 Because the working set size we wish to predict is

different for deciding whether to bypass the L2 and L3, we

need a mechanism to reset the bitmap with a different

frequency for the two predicted working set sizes. To do

this, we simply clear the most significant bits of the

working set with a probability proportional to the size of
the L2. This allows us to include a notion of temporal

locality in our decision.

5.5 Improvement: Smaller Working Set Maps

 In the implementation described above, we use 2 128-bit

working set maps per entry, for a total of 256 bits per entry.

We will now show how to reduce this to 64 bits per entry.

 Since we treat all predicted working sets below 4MB the

same, we require that the first 16 bits are set. Because the
probability of each bit being set is twice as high as the one

to its right, it is very likely that if bits 13, 14, and 15 are set,

then 31-16 are set as well. Similarly, 32 bits is sufficient to

predict up to 232 blocks, which corresponds to 256GB of

memory. Since this is much larger than current cache

capacity, these bits could be truncated as well. We show

this in Figure 8, where the most significant bits have a very

high probability of being set for ranges we are interested in,

and the least significant bits have a high probability of

being 0. It is only the highlighted bits that help us predict

working set size.
 We modified the working set map to take a 32 bit hashed

address, as before, but to only set a bit in the working set

map if the first 1 was between bits 15 and 7, corresponding

to a working set size of between 4MB and 1GB. This

results in working set maps that are only 8 bits each; with 4

working set maps used in each voting group and a test and

train set for each entry, this results in 64 bits per entry.

5.6 Prediction Error Discussion

 In general, we err on the side of writing back useless

blocks rather than bypassing them. This approach has

several implications beyond dealing with the asymmetrical

penalty for bypassing useful blocks and writing back
useless blocks.

 A non-intuitive consideration is that having a working set

greater than the cache capacity does not necessarily mean

that bypassing all accesses will maximize hit rate. For

example, if the addresses accessed are random and the

working set is twice the size of the cache, we would expect

that writing all blocks to cache would result in a 50% hit

rate from that PC, versus 0% when all blocks bypass.

 We demonstrate this relationship with the hash table

benchmark in Figure 9, using data from real execution on

an AMD machine with 32KB L1D and 1MB LLC. As can

Figure 9. LLC local hit ratio for a hashtable ranging in

size from 1KB to 1GB. L1D size is 32KB and LLC Size

is 1MB.

Figure 8. Breakdown of the bitmap: only the highlighted

bits are helpful for predicting working set size.

8

be seen, LLC local hit ratio is very high when the working

set is too large for the L1D but fits in the LLC: for table

sizes of 32KB to 1MB. However, even when the table size

is twice the capacity of the LLC (2MB), we see that the hit

ratio does not drop to 0; rather it drops to 50%. Even when

the hash table size is 16 times the LLC, we still see
approximately 6% hit rate.

 Ideally, if application working set size is twice the size of

a cache, we would like to direct ½ of the evictions to that

cache and ½ onwards: if the accesses are randomly

distributed, then we would have the 50% hit rate from the

baseline case, as well as the 50% reduction in LLC

writebacks from the evict-to-memory case. If the accesses

are sequential, writing back half the data is even better; we

expect to see 50% hit rate vs. 0% hit rate for the no-bypass

case.

 By clearing the bitmaps probabilistically and selecting

our threshold size for bypassing conservatively, we are
likely to write blocks back to the caches during some

intervals even for PCs that sometimes bypass. However, the

above explains why this can actually have benefits in terms

of hit rate.

5.7 Variability

 Because the working set prediction map is probabilistic,

there is increased variability in program execution time.

Because of this, our approach may not be well-suited for

real-time systems with hard deadlines. However, caches

themselves complicate the calculation of worst-case

execution times, and our approach is no worse than for
other cache prediction strategies.

 An extension to prevent unacceptable performance

degradation for critical applications or for applications

which perform poorly with directed writebacks is to allow

the system to disable directed writebacks via an

architectural register, similar to how hardware prefetching

can be turned off in current systems. This has the additional

benefit of allowing the system to control the priorities of

different applications; by disabling directed writebacks for

an application with strict quality of service guarantees

while using directed writeback to prevent other applications

from polluting the caches.

5.8 Context Switches

 Although our evaluation is Pin-based and as such is

limited to user mode, it is important for a hardware design

to take context switches into account. Our directed

writeback predictor requires ~6KB of state to perform well

with our cache hierarchy. This is too much state to save on

a context switch; in addition, we would prefer that our

approach not require system modifications. However, we

also do not want to flush all state on a context switch,

because it requires many accesses to repopulate the

working set size prediction table. Therefore, we advocate
tagging the table by physical address of the PC to allow

state to persist across context switches. Then, once the

process is rescheduled, it may still have entries persisting in

the prediction table, especially since populated entries are

less likely to be evicted with our replacement policy.

6. Evaluation

6.1 Methodology
 We use a 3-level exclusive cache model fed by Pin

traces, as described in Section 2.1. We run each

configuration for all pairs of workloads; all runs are

multiprogrammed. Our cache configuration uses LRU, and

consists of 32LB private L1Ds, 1MB private L2s, and a

4MB shared L3. We use traces with 10 billion instructions,

for a total of 20 billion instructions per workload pair.

 In addition to running the baseline and our approach, we

also compare against SHiP. SHiP uses PC information at

the LLC to determine whether a line should be inserted in

MRU or LRU position. We implemented SHiP in our
model to compare it to our approach, although there are

some important differences: SHiP only operates at the LLC

and not the L2, and it does not do bypassing. Originally,

SHiP was designed for inclusive caches, so we modified it

slightly for an exclusive cache hierarchy. We update the

Signature History Counter Table on either L3 hit or

Figure 10. Writebacks to L2 and L3 by configuration,

normalized to the baseline.

9

eviction, and we do not use set sampling but rather train

with all sets. We use the hashed PC as the signature.

6.2 L2 and L3 Writebacks

 We observe the number of writebacks to the L2 and L3

to measure the benefit of directed writebacks compared to

the baseline and SHiP, neither of which do any bypassing.
The results are shown in Figure 10; lower is better.

 For SPEC, the benefits are relatively small; we eliminate

approximately a quarter of writebacks at L2 and L3.

However, for graph500 and hashtable, where most blocks

written back to the L2 and L3 are evicted before use, we

see greater benefits. For graph500, directed writebacks

eliminates more than 97% of L2 and 80% of L3 writebacks.

For hashtable, directed writebacks reduces writes by 70%

at L2 and 67% at L3.

 Finding: The directed writebacks approach dramatically

reduces the number of writebacks to L2 and L3, especially

for workloads with very large working sets.

6.3 Usefulness of Stored Blocks

 In the previous section we showed that directed

writebacks avoids writing many blocks back to L2 and L3;

we now show what percentage of the blocks that were

bypassed would have been referenced before eviction. We

determine the eventual outcome of every block written

back to the L2 and L3 in the baseline: it can either leave the

level of cache through satisfying a request from the L1D (a

hit) or by being evicted. We show the breakdown of block

fates in Figure 11; a breakdown by SPEC benchmark is in

Figure 12.

 Most of the writebacks to L2 and L3 that our technique

eliminates are to blocks that would otherwise be evicted

unused. We see benefits for all three classes of workloads,

but they are much greater benefits for graph500 and the
hash table, where the working sets are large. For a few

SPEC workloads (perlbench and zeusmp), our technique

actually causes an increase in writebacks to the LLC. This

occurs when blocks that would have hit in the L2 are

bypassed to the L3. However, this effect only occurs for

two benchmarks, and in most cases our design decreases

the number of writebacks.

 We also compare to SHiP, and find that in general, SHiP

has a higher L3 hit rate than directed writebacks for SPEC.

However, SHiP does not perform bypassing, and thus

cannot reduce writebacks. In addition, the large workloads

we study are not able to significantly benefit from SHiP.
 Finding: Directed writebacks reduce the number of

writebacks to L2 and L3, particularly for workloads with

very large working sets, such as graph500 and the hash

table. In general, the bypassed writebacks do not result in a

significant increase in misses, because the bypassed blocks

would not have been referenced before eviction.

6.4 Hardware Overhead

 The hardware overhead of directed writebacks has two

components: the directed writeback prediction table and the

Figure 11. Outcome of blocks written to L2 and L3 in each configuration, normalized to baseline, showing the effect of bypassed

blocks in directed writebacks. A block may leave the cache either as a result of a request from the L1D (hit) or by being evicted.

10

added eviction direction bits in the L1D. The prediction

table consists of 512 entries, each containing 2 groups of 4

8-bit maps, a 32-bit PC tag, and 1 bit to select between

test/train bitmaps. This is a total of approximately 6KB.

The eviction direction bits in the L1D are 2 bits per cache

line, for a total of 128 bytes for a 32KB cache.

 For comparison, there are also two sources of hardware

overhead for SHiP: the Signature History Counter Table,

and the storage of the 14-bit PC signature at each level of

the cache hierarchy. SHiP uses a 16K-entry table, for a total
of approximately 32KB of overhead. The extra bits in the

cache add approximately 1KB of overhead to each 32-KB

L1D, 32KB to each 1 MB L2, and 128KB to the 4 MB L3.

 Although SHiP has a larger prediction table, it requires

only one for the entire system, while our approach requires

one per L1D. In addition, 6KB is a large structure to add at

the L1D. However, this is less serious than it appears. This

table is accessed only on the miss pathway, which means

that it only needs to be as fast as a L2 hit.

7. Extensions
 We touch upon two possible extensions of this work.

7.1 Replacement Policy

 Although we evaluated this approach only in the context

of bypassing writebacks, it is clear that knowing
approximate working set size could have other applications

as well. For example, it could be used to modify

replacement policies by selecting insertion position in an

LRU or pseudo-LRU policy.

 In particular, blocks associated with PCs with predicted

working set sizes close to the size of the cache could be

inserted there in LRU position. This avoids pollution but

has a smaller penalty for misprediction. Alternately, set

dueling could be used to adjust the bypass policy or disable

directed writebacks for workloads with a high rate of

mispredictions that blocks should bypass.

Figure 12. Outcome of blocks written to L2 and L3 in baseline/SHiP, showing effect of bypassed blocks in directed writebacks.

Breakdown of SPEC benchmarks. For L2, each set of bars has the baseline on the left and directed writebacks on the right; for L3,

there are three bars: baseline, SHiP, and directed writebacks.

Baseline
Directed

Writebacks

Baseline Directed

Writebacks

SHiP

11

7.2 Inclusive Caches

 It is straightforward to implement directed writebacks in

an exclusive cache hierarchy, because when a block is

evicted from the L1D, it is guaranteed not to be in the LLC.

However this is not the case for inclusive and non-inclusive

hierarchies. Here we briefly discuss how directed
writebacks can be modified to work with these caches.

 For non-inclusive caches, a block may be in both L1D

and the LLC. If there is a stale copy in the LLC, we must

invalidate it by sending an invalidation when we direct a

dirty block to bypass a level of the cache. Even in this case,

we will still get some of the benefits of reduced writeback

traffic, because an invalidate message is less expensive

than writing back data and, if the block is not present,

needing to evict another block.

 For inclusive caches, the block must already be resident

in all levels of the cache hierarchy. However, we can

invalidate it early to reduce cache pollution. In addition, if
the block is dirty, we can choose to invalidate it at the LLC

rather than writing back the updated copy. Alternately,

“inclusive” caches with some ways that contain only tags

have been proposed to maintain the coherence benefits of

inclusive caches while allowing techniques like bypassing

[2,3,34]. These caches with dataless ways can be

augmented with directed writebacks.

8. Related Work
 The idea of preventing useless blocks from polluting the

LLC and of implementing cache bypassing for energy and

performance reasons is not new. We summarize related

work and how ours differs from it.

 There have been many cache management proposals that

have aimed to discover temporal and spatial locality with

the goal of reducing LLC pollution. One prominent

example is SHiP [33], which used a variety of policies

including PC-based to predict whether lines would have

near-immediate or distant reuse intervals. There are several
disadvantages to this approach: first, it requires that a

signature be stored along with each block in every level of

cache and communicated between them; it also does not

eliminate useless writes but only helps mitigate their

effects.

 Jiménez [17] proposes an approach to select between

several Insertion-Promotion Vectors (IPVs), which

determine order of insertion and promotion of LLC blocks.

The IPVs are chosen using an off-line genetic approach,

and then selected between with set-dueling. Other

approaches that modify insertion policy include Qureshi et
al. [27] and Keramidas et al. [20].

 The Reuse Cache [2] distinguishes between temporal and

re-use locality, and does not store blocks without reuse

locality in the LLC. It stores tags for all blocks, but only

stores data for ¼ of them – those that show reuse locality. It

relies on the insight that one extra miss for a frequently

accessed block will not significantly degrade performance.

However, it is unsuited for the class of applications that use

the LLC well, because it reduces LLC capacity. Gupta et al.

[13] propose a similar bypass scheme for inclusive caches.

 Guar et al. [11] use trip count and use count to do bypass

and insertion in exclusive LLCs. Their approach involves

maintaining a per-block trip counter.

 PriSM [25] aims to control per-core LLC occupancy by
changing eviction probabilities, because this provides more

flexibility than way-partitioning.

 Kharbutli et al. [23] augment each LLC cache line with

an event counter to keep track of number of accesses to a

set between accesses to a particular entry, and also track the

number of accesses to a cache line. They then use this

information to improve the replacement algorithm, as well

as doing bypassing. This approach requires 21 bits per

cache line, plus a 40KB prediction table. This approach

also does not allow setting different policies for different

processes.

 Sandberg et al. [30] demonstrate that a significant
performance improvement can be attained by adding non-

temporal prefetch instructions to workloads. Their

approach relies on profiling with a representative data set,

and requires recompilation, in contrast with ours, which is

automatic and in hardware. However, the benefits they

demonstrated on real machines are likely to also apply with

our approach, since both are ultimately PC-based.

 Tyson et al. [32] and Dybdahl and Stenström [7] use

counter-based prediction tables to determine when to

bypass blocks.

 Some previous approaches focus on L1D bypassing. Chi
and Dietz [6] present an early work on selective cache

bypassing; they use compiler support. Etsion et al. [8] point

out that if a resident block in a cache is chosen at random, it

is unlikely to be a highly-referenced block, but if an access

is chosen at random, it is likely to be to a highly-referenced

block. They use this insight to determine the core working

set. Johnson et al. [18,19] use a Memory Address Table to

count the number of references to a memory region. Rivers

et al. [28] compare address vs. PC-based prediction.

 Probabilistic counting for cardinality was initially

developed by Flajolet and Martin [9] and has subsequently

been analyzed and improved upon by many theoreticians.
However, to our knowledge, it has not been applied in the

field of computer architecture.

9. Conclusion
 With directed writebacks, we provide a simple way to

reduce the number of writebacks to the L2 and L3, which

can be useful for several reasons. It limits interference
between workloads, reduces dynamic energy, and reduces

the traffic and hence contention between L2, L3, and

memory. We show how a small predictor can be used to

eliminate writebacks to many blocks that would otherwise

be evicted before use, without adding significant overhead.

We also show how probabilistic counting can be applied to

computer architecture.

12

10. References
1. Ahn, J., Yoo, S., and Choi, K. DASCA: Dead Write Prediction

Assisted STT-RAM Cache Architecture. Proceedings of the 20th

IEEE International Symposium On High Performance Computer

Architecture, (2014).

2. Albericio, J., Ibáñez, P., Vinals, V., and Llabería, J.M. The Reuse

Cache: Downsizing the Shared Last-level Cache. Proceedings of the

46th Annual IEEE/ACM International Symposium on

Microarchitecture, ACM (2013), 310–321.

3. Basu, A., Hower, D., Hill, M., and Swift, M. FreshCache: Statically

and dynamically exploiting dataless ways. Computer Design

(ICCD), 2013 IEEE 31st International Conference on, (2013), 286–

293.

4. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A.,

Basu, A., Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen,

R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., and Wood, D.A.

The gem5 simulator. Computer Architecture News (CAN), (2011).

5. Carter, J.L. and Wegman, M.N. Universal Classes of Hash

Functions (extended abstract). Proceedings of the 9th Annual ACM

Symposium on Theory of Computing, (1977), 106–112.

6. Chi, C.-H. and Dietz, H. Improving cache performance by selective

cache bypass. System Sciences, 1989. Vol.I: Architecture Track,

Proceedings of the Twenty-Second Annual Hawaii International

Conference on, (1989), 277–285 vol.1.

7. Dybdahl, H. and Stenström, P. Enhancing Last-Level Cache

Performance by Block Bypassing and Early Miss Determination. In

C. Jesshope and C. Egan, eds., Advances in Computer Systems

Architecture. 2006, 52–66.

8. Etsion, Y. and Feitelson, D. Probabilistic Prediction of Temporal

Locality. Computer Architecture Letters 6, 1 (2007), 17–20.

9. Flajolet, P. and Martin, G.N. Probabilistic counting. Foundations of

Computer Science, 1983., 24th Annual Symposium on, (1983), 76–

82.

10. Flajolet, P. and Martin, G.N. Probabilistic counting algorithms for

data base applications. Computer and System Sciences 31, 2 (1985),

182 – 209.

11. Gaur, J., Chaudhuri, M., and Subramoney, S. Bypass and insertion

algorithms for exclusive last-level caches. Computer Architecture

(ISCA), 2011 38th Annual International Symposium on, (2011), 81–

92.

12. graph500 --The Graph500 List. http://www.graph500.org/.

13. Gupta, S., Gao, H., and Zhou, H. Adaptive Cache Bypassing for

Inclusive Last Level Caches. Parallel Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on, (2013),

1243–1253.

14. Holloway, A. and Sohi, G. Characterization of Problem Stores.

Computer Architecture Letters 3, 1 (2004), 9–9.

15. Jaleel, A. Memory characterization of workloads using

instrumentation-driven simulation. Web Copy:

http://www.glue.umd.edu/ajaleel/workload, (2013).

16. Jenkins, B. Spookyhash: a 128-bit noncryptographic hash. 2013.

17. Jimenez, D.A. Insertion and Promotion for Tree-based PseudoLRU

Last-level Caches. Proc. of the 46th Annual IEEE/ACM

International Symp. on Microarchitecture, ACM (2013), 284–296.

18. Johnson, T.L., Connors, D.A., Merten, M.C., and Hwu, W.W. Run-

time cache bypassing. Computers, IEEE Transactions on 48, 12

(1999), 1338–1354.

19. Johnson, T.L., Merten, M.C., and Hwu, W.W. Run-time Spatial

Locality Detection and Optimization. Proceedings of the 30th

Annual IEEE/ACM International Symposium on Microarchitecture,

(1997), 57–64.

20. Keramidas, G., Petoumenos, P., and Kaxiras, S. Cache replacement

based on reuse-distance prediction. Computer Design, 2007. ICCD

2007. 25th International Conference on, (2007), 245–250.

21. Khan, S.M., Daniel A. Jimnez, D.B., and Falsafi, B. Using dead

blocks as a virtual victim cache. PACT ’10: Proceedings of

International conference on Parallel architectures and compilation

techniques, (2010).

22. Khan, S.M., Jimenez, D.A., and Yingying, T. Sampling Dead Block

Prediction for Last-Level Caches. MICRO’10: Proceedings of

International Symposium on Microarchitecture (MICRO), (2010).

23. Kharbutli, M. and Solihin, D. Counter-Based Cache Replacement

and Bypassing Algorithms. Computers, IEEE Transactions on 57, 4

(2008), 433–447.

24. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,

Wallace, S., Reddi, V.J., and Hazelwood, K. Pin: building

customized program analysis tools with dynamic instrumentation.

PLDI’05: ACM SIGPLAN conference on Programming language

design and implementation, ACM (2005).

25. Manikantan, R., Rajan, K., and Govindarajan, R. Probabilistic

Shared Cache Management (PriSM). Computer Architecture (ISCA),

2012 39th Annual International Symposium on, (2012), 428–439.

26. Muralimanohar, N., Balasubramonian, R., and Jouppi, N.P. CACTI

6.0. Hewlett Packard Labs, 2009.

27. Qureshi, M.K., Jaleel, A., Patt, Y.N., Jr, S.C.S., and Emer, J.

Adaptive Insertion Policies for High-Performance Caching.

Proceedings of the 34th Annual International Symposium on

Computer Architecture, (2007).

28. Rivers, J.A., Tam, E.S., Tyson, G.S., Davidson, E.S., and Farrens,

M. Utilizing Reuse Information in Data Cache Management.

Proceedings of the 12th International Conference on

Supercomputing, ACM (1998), 449–456.

29. Sanchez, D., Yen, L., Hill, M.D., and Sankaralingam, K.

Implementing Signatures for Transactional Memory. Proceedings of

the 40th Annual IEEE/ACM International Symposium on

Microarchitecture, (2007).

30. andberg kl v and agersten educing ache

Pollution Through Detection and Elimination of Non-Temporal

Memory Accesses. High Performance Computing, Networking,

Storage and Analysis (SC), 2010 International Conference for,

(2010), 1–11.

31. Sim, J., Lee, J., Qureshi, M.K., and Kim, H. FLEXclusion:

Balancing Cache Capacity and On-chip Bandwidth via Flexible

Exclusion. Proceedings of the 20th Annual International Symposium

on Computer Architecture, (1993), 321–332.

32. Tyson, G., Farrens, M., Matthews, J., and Pleszkun, A.R. A

Modified Approach to Data Cache Management. Proceedings of the

28th Annual International Symposium on Microarchitecture, IEEE

Computer Society Press (1995), 93–103.

33. Wu, C.-J., Jaleel, A., Hasenplaugh, W., Martonosi, M., Steely,

J.S.C., and Emer, J. SHiP: Signature-based Hit Predictor for High

Performance Caching. Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture, ACM (2011), 430–

441.

34. Zhao, L., Iyer, R., Makineni, S., Newell, D., and Cheng, L. NCID: a

non-inclusive cache, inclusive directory architecture for flexible and

efficient cache hierarchies. CF ’10: Proceedings of the 7th ACM

international conference on Computing frontiers, (2010).

