
1

Revisiting Stack Caches for Energy Efficiency

Lena E. Olson 1 Yasuko Eckert 2 Srilatha Manne 2 Mark D. Hill 1

1 University of Wisconsin – Madison

{lena, markhill}@cs.wisc.edu

2 AMD Research

{yasuko.eckert, srilatha.manne}@amd.com

Abstract

 With the growing focus on energy efficiency, it is

important to find ways to reduce energy without sacrificing

performance. The L1 data cache is a significant contributor

to processor energy consumption. We advocate treating

data from the program’s stack differently from non-stack

data to reduce energy. We characterize stack accesses to
determine how they differ from general memory accesses in

terms of footprint, frequency, and ratio of loads to stores.

 We then propose two ways to optimize for these

characteristics. First, the implicit stack cache limits stack

data to residing in designated ways of the data cache,

reducing the energy required per stack access. We show

that it can reduce data cache dynamic energy by 37% with

no reduction in performance.

 Second, the explicit stack cache stores stack data in a

separate L1 cache. In addition to reducing the energy per

access, it also has additional benefits over the implicit
policy in that it can be virtually tagged and have a different

writeback policy. We show that this approach can lead to

additional energy savings, with no performance impact.

These optimizations are implemented purely in the

hardware and thus require no changes to existing code.

1. Introduction
 With the growing focus on energy efficiency, it is
important to find ways to reduce energy without sacrificing

performance. One contributor to the energy consumption of

the chip is the L1 cache. In Sodani’s Micro 2011 Keynote

[19], the fraction of core power that goes to caches was

given as 12-45%, depending on whether the workload was

floating point heavy or not.

 One common strategy for saving L1 cache energy is to

split the cache into separate data and instruction caches.
The motivation for this is that there is no need to access

both caches on every load or store; accessing a smaller

structure is faster and takes less energy. In addition, this

avoids the need to multiport both structures.

 Similarly, it is possible to categorize data by whether or

not it is from the program stack. The stack grows on

function calls and shrinks on returns, and is used for storing
local variables. Stack data has fundamentally different

characteristics than non-stack data; we advocate taking

advantage of them. We find that on average, 40% of

memory accesses are to the stack, indicating that

optimizing for them could significantly reduce energy. We

characterize stack data and show that it differs from non-

stack data in several important ways, including having high
temporal locality, a small footprint, and a high proportion

of writes compared to non-stack data. These characteristics

are common to both x86 and ARM systems.

 To take advantage of these properties, we must be able to

distinguish stack and non-stack accesses. Because

performance is highly sensitive to L1 data cache latency,

and increasing the access time will significantly degrade

performance, it is vital that we not add logic to the data
cache access critical path.

 We discuss several ways to predict whether a memory

access is to the stack, including our preferred approach:

testing whether any of an access's effective address

components (e.g., base register and offset) are individually

close to the stack pointer. Unlike previous proposals, the

new approach does not add logic to timing-critical address-
calculation path (as it is done in parallel with effective

address calculation) and leaves unchanged the ISA,

operating system, and applications. While mispredictions

are allowed by our design (e.g., if two or more components

are large), results show that the maximum number of

mispredicted accesses due to comparing with effective

address components or movement of the stack pointer is

less than 1.2% in our workloads on x86_64 and ARM, and

on average 0.2%. Because our optimizations do not rely on

any characteristics of stack data for correctness, even in the

case of misclassification the execution is correct.

 Using this stack classification, we advocate treating stack

and non-stack data differently in the L1 cache to improve

energy efficiency. We discuss two ways to do this: an

implicit stack cache and an explicit stack cache. The

implicit stack cache requires only minimal changes, while

the explicit stack cache is more complex but offers

additional opportunities to save energy. Both approaches

are invisible to the application and operating system, do not
increase L1 access time, and are simple to implement.

 First, the implicit stack cache modifies the data cache but

does not add any additional structures. We change the

replacement policy to ensure that stack blocks are only ever

found in certain designated ways of the cache. Because the

footprint of the stack is small, this generally does not

2

increase the miss rate for stack accesses. We are then able

to optimize lookups of stack data so that they only check

the ways where the stack blocks are expected to reside. We

find that this approach can reduce L1 data cache access

energy by an average of 37%, with no performance

degradation.

 Second, we discuss the explicit stack cache, where stack

accesses are diverted to a separate stack cache. Because the

footprint of the stack is small, this cache can be small and

low-associativity, so accessing it takes less energy than for

the data cache. We find that this saves approximately 36%

of L1 data cache access energy on average, without

significantly increasing static energy. In addition, the

explicit stack cache can be virtually addressed and virtually
tagged, eliminating the dynamic energy of address

translation for 40% of L1 accesses, and it can be optimized

for a larger percentage of writes by having a different write

policy than the data cache. To keep this explicit stack cache

coherent, physical coherence requests (e.g. from other

cores) get translated back to virtual addresses using a small

fully-associative buffer guaranteed to have the translation

for any block in the stack cache.

 The main contributions of this work are:

 An efficient method for classifying memory accesses as

stack or non-stack that does not require compiler or

operating system support

 An implicit stack cache with soft partitioning of the L1

data cache so that accesses to stack data require less

dynamic energy

 An explicit stack cache which adds a separate L1 cache

to store stack blocks, and which can be virtually

addressed, virtually tagged to eliminate translation

overheads, and which guarantees correctness in the

presence of non-private stack data.

We expect this work can inspire future work

leveraging other data characteristics to make memory

hierarchies more energy efficient.

2. Background and Related Work

2.1 The Stack

 The stack is one of the segments of virtual memory in a

program. It stores return addresses and provides space for

stack-allocated variables, such as local variables and values

spilled from registers. It can also be used to pass

parameters on function calls. It is a structure that normally

grows on function calls and shrinks on returns. In x86, it is

located at the top of a process’s virtual address space, and
grows downward towards the heap, as shown in Figure 1. It

is contiguous in virtual space.

 The stack pointer is a register that stores the virtual

address of the top of the stack. Because function calls and

references to local variables tend to be frequent, many

accesses are made as offsets of the stack pointer. The stack

pointer is decremented on function calls and incremented

on returns. The size of the stack region varies depending on

the program and the operating system. However, it tends to

be relatively small; in the latest version of the Linux kernel

on x86, the default stack size is 8 MB, whereas the heap
can be many gigabytes. In ARM Android, the stack is even

smaller: 8 KB by default. If the stack pointer attempts to

move beyond the allowed region, it results in a stack

overflow error or segmentation fault.

2.2 Related Work
 Previous work has suggested taking advantage of the

differences between stack and non-stack data behavior to

improve performance and energy efficiency.

 Cho et al. [6] propose decoupling accesses to local

variables, which are on the stack, from other memory

accesses. They keep two separate data access queues, as

well as separate caches for stack and non-stack accesses.

Their approach was focused on improving performance of

superscalar processors, and required compiler

modifications.

 Bekerman et al. [2] propose diverting memory accesses

that use the stack pointer as a base to a separate stack

cache. They find that for IA32, 99.5% of stack accesses are

via the stack pointer, while 99.3% of non-stack accesses do

not use the stack pointer. We show in Section 4 that this is

not the case for x86_64 and ARM with our workloads.

 Lee et al. [13] propose the Stack Value File (SVF), in

which a non-architected register file is used to store the top
of the stack. Their goal is to improve performance by

avoiding accesses to the L1 data cache, both by diverting

accesses to the SVF and eliminating writebacks of

programmatically dead data to the data cache. Huang et al.

[10] propose splitting the L1 data cache into stack and non-

stack components in order to save energy. They also keep

track of the top of the stack. These optimizations are based

on the semantic properties of the stack, and rely on correct

classification of stack and non-stack data. A snooping

mechanism is used to redirect incorrectly classified

accesses to the correct cache.

 González-Alberquilla et al. [7] propose adding a filter

cache before the L1 data cache that stores only the 4 to 64

Figure 1. Layout of a program in virtual memory.

3

words closest to the top of the stack. To determine whether

an address should be stored in their filter cache, they do a

subtraction from the stack pointer. This is on the critical

path after address calculation and before the memory

access.

 Lee et al. [14] propose keeping separate structures for

stack, heap, and global data. They rely on being able to

distinguish these based solely on virtual address, possibly

with some system support [15]. Without operating system

and hardware support, these approaches will not work

when Address Space Layout Randomization (ASLR) or

Transparent Runtime Randomization (TRR) are used for

security, because these techniques involve randomly

relocating the program’s stack, heap, and shared libraries at
runtime [21].

 Kang et al. [12] propose a virtually-addressed stack

cache, to be used for the main application running on a

server-type system. Their technique determines which

accesses are stack by relying on both the stack pointer and

the frame (base) pointer. This will not be effective on

programs compiled with -fomit-frame-pointer, in

which the frame pointer is used as a general purpose

register. In addition, to indicate which process to cache in

the filter cache, their scheme relies on operating system

intervention, so their approach will not work on existing

systems. They achieve performance benefits by having a

“small-but-fast” stack cache, with a different L1 hit latency
than the data cache, which can be difficult to deal with in

the pipeline.

 Much of the previous work ([6], [2], [13]) relies on

determining whether an access is stack or not based on

whether the address is an offset from the stack pointer

register. We characterize the frequency of stack pointer

accesses through the stack pointer in Section 4.

 Another limitation of prior work is that the stack is

assumed to be private. Although this is often the case, it is

not guaranteed for x86 or ARM, and multithreaded

programs may share data on the stack. Therefore, to

execute existing programs correctly, the stack data must be

kept coherent.

 In addition, previous work relies on stack data having

special semantics, such as a guarantee that data beyond the

top of the stack will not be accessed [13] [6] [12] [7] [10].

This assumption is not necessarily safe, as we discuss in

Section 3. In addition, it requires accurate classification of

stack accesses for correct execution. Because guaranteeing

that classification is always correct is difficult, we rely on a

heuristic instead, but maintain correctness whether or not

we misclassify some non-stack accesses as stack.

3. Characteristics of Stack Data
 To optimize for stack data, it is first necessary to

understand how common stack accesses are and how the

characteristics of stack accesses differ from non-stack

accesses. There are three characteristics we hypothesized

that we could optimize for: (a) frequent accesses, (b) a

higher ratio of writes to reads than for non-stack

accesses, and (c) a small footprint.

 To see if these characteristics held, we examined

memory access patterns in a variety of applications. We

used the gem5 simulator [3] in full system mode to

characterize stack accesses for several benchmark suites for

both x86_64 and ARM. We analyzed the workloads in

SPEC 2006 [9] for x86_64 and ARM. We looked at

DaCapo [4], which contains Java workloads, on x86_64.

We also analyzed bbench for ARM Android; bbench is a

webpage-rendering benchmark typical of what might be
run on a phone [8] Detailed description of benchmarks can

be found in Table 2.

 Frequent accesses: We classified all memory accesses

as either stack or non-stack for each of our workloads.

Figure 3 shows that the percentage of stack for each

benchmark suite on x86 and ARM. Figure 2 shows a

breakdown for the SPEC 2006 workloads on x86, since

these workloads showed the highest variation. On average,
approximately 40% of the total accesses we observed were

Figure 3. Breakdown of memory accesses for different
workloads on x86 and ARM.

Figure 2. Breakdown of Memory Accesses by Workload
for SPEC 2006 on x86

4

to stack data, although for DaCapo on x86 and SPEC on

ARM, we saw close to 50% of accesses going to the stack.

Implication: Stack is a large enough class of data cache

accesses that optimizing specifically for it can have benefits

for total energy efficiency.

 Higher ratio of writes to reads compared to non-stack

accesses: As shown in Figure 3, we find that on average,

approximately 30% of stack accesses are writes, while only

22% of non-stack accesses are writes. Approximately half

of total writes are to the stack. Implication: Having a

different write policy for stack and non-stack data may

have energy benefits by reducing L2 accesses or

interconnect traffic.

 Small footprint: We examined the size of the stack, both

in terms of how much the stack pointer varies during the

execution of a program, as well as how distant stack

accesses typically are from the stack pointer, as shown in

Figure 4. We find that the maximum change in stack

pointer tends to be relatively small, even over the large

intervals we measure.

 We measured the distance between the stack pointer and

each stack reference. We found that the majority (75%) of

stack accesses are within 128 bytes, or two 64-byte blocks,

on either side of the stack pointer, as shown by the CDF in

Figure 4. In addition, 93% are within 1 KB of the stack

pointer. Since most stack accesses are close to the stack

pointer and the stack pointer remains within a small region,

it follows that the footprint of the stack is small. In

addition, the region it accesses tends to be contiguous,
indicating that even a direct-mapped cache will not suffer

from many conflict misses.

Implication: Even a small, low-associativity stack cache is

likely to have a low miss rate.

 Other characteristics of the stack: There are several

other properties of the stack that are important to consider.

One of these is whether the stack can be guaranteed to be

private. Some previous approaches have assumed this to be

true, but in x86 and ARM there is no guarantee that stack is

private. For example, in a pthreads program threads can

pass pointers to the stack. Implication: In order to

guarantee correctness for multithreaded programs, it is

necessary to keep stack data coherent between threads.

 Another consideration is whether to use the semantic

information about programmatic liveness provided by the

stack pointer, which points to the top of the stack.

Normally, the stack grows with function calls (pushes) and

shrinks on returns (pops); anything beyond the top of the

stack will be written before it is read again. In other words,

any data beyond the top of the stack is programmatically

dead, and need not be written back to any lower levels of

the memory hierarchy.

 Some previous approaches have taken advantage of this

semantic information to avoid unnecessary writebacks.

However, in Linux there is a “red zone” of 128 bytes past

the end of the stack that is used for temporary storage [16];

any optimizations must not prematurely discard these

blocks. In addition, multithreaded programs may have more

than one stack, further complicating stack semantics.

Finally, since we expect that stack blocks will not often be
evicted from the cache due to their high locality, the benefit

of avoiding writing back programmatically dead data will

be limited. Implication: Optimizations based on the

liveness of data beyond the stack are complicated and do

not offer clear benefits.

 In summary, stack data is small, frequently accessed,

and has many writes. In addition, the stack is not

guaranteed private and determining liveness of stack

blocks is not straightforward. We find that these

characteristics are true for both x86 and ARM. For these

reasons, we advocate optimizing for stack accesses via

stack caches, potentially with different write policies than

for non-stack data. We do not make any assumptions about

privacy or liveness, unlike prior work, and instead provide

correctness in all cases.

4. Classifying Stack and Non-Stack Data
 To treat stack and non-stack data differently, we first

must have a way to distinguish them. We would like to

make the distinction quickly and efficiently, as well as with

high accuracy. Because misclassification is possible, we

need to be able to handle it and make any necessary

corrections, which may have a cost in performance and

energy; for example, in some previous works such as SVF,

misclassifications necessitated a pipeline flush [13]. We

discuss several possible classification methods.

 Compiler annotation: One approach is to have the

compiler annotate each access as either stack or non-stack.

However, the compiler may not be able to determine this

Figure 4. The cumulative distribution function for

distance from the stack pointer for stack accesses for

benchmarks in DaCapo and SPEC 2006 on x86 and SPEC
on ARM.

5

for all accesses that are made through pointers. In addition,
this requires a change to both the compiler and the ISA,

which we would like to avoid.

 Offset from stack pointer: A second approach is to

classify all accesses that are made relative to the stack

pointer as stack, and all other accesses as non-stack. This

approach has been used extensively in previous work. It

allows classification in the decode stage, before the address
has been calculated, which means that it does not add logic

between address calculation and initiating the memory

access. We looked at the percentage of stack accesses made

via the stack pointer for several workloads, shown in Figure

5.

 We find that on average, half of the accesses to the stack

do not use the stack pointer, and in the case of libquantum

on x86, 95% of stack accesses are not through the stack
pointer and would be misclassified using this approach.

Many of these accesses are likely through the frame (base)

pointer; however, since it is possible to use that register as a

general purpose register instead, classifying accesses via

the frame pointer as stack would incur many

misclassifications for programs compiled to not use the

frame pointer. This high degree of inaccuracy would make

it difficult to perform optimizations based on this

classification scheme.

 An alternate approach would be to mark which registers

are pointers to the stack by keeping a bit associated with

each one. This bit would always be on for the stack pointer,

and would be set on registers when they were written as a

result of a move or computation with a register with the

stack bit set. Although this approach would likely be

effective, it is ultimately more complicated than our chosen

approach.

 Virtual address of access: The approach used by Lee et

al. [14] is to classify all accesses within a specific region of

the virtual address space as stack. The stack is the area

between the base of the stack and the stack pointer.

However, this approach has several disadvantages. First,

the base of the stack is not guaranteed to begin at any

particular address, especially if Address Space Layout
Randomization (ASLR) is being used. Second, subtracting

the virtual address of the memory access from the stack

pointer requires adding in a subtraction after the address

has been calculated but before the memory access is

initiated, which is on a cycle critical path. Third, it is

unclear how this approach would work if there are multiple

stacks in the same address space, possibly resulting in

misclassifications.

 Our choice: Aligned region of virtual address: An

approach that is similar to the one above is to compare just

the N most significant bits of the memory virtual address

and the stack pointer. If these are the same, the access is

classified as stack; otherwise, non-stack. This may classify

“dead” blocks from beyond the top of the stack as stack,

but as we are not using this liveness information, it will not

affect correctness of execution. Because this approach uses

the value of the stack pointer, which provides information

about the virtual address where the stack is actually stored,

it can work correctly in the presence of ASLR.

 One advantage to this approach is that the classification

can be done in parallel to address calculation: we can

compare the most significant bits of the components of the

address (base register, displacement, and index) with those

of the stack pointer, and if and only if any of them match, it

is very likely that the calculated virtual address matches as

well. We found that this approach works well for user code,
but x86 system code makes use of the segment register and

is not accurately classified with this method. Because the

percentage of time spent in system code is small, we

choose to simply conservatively classify all accesses in

system space as non-stack.

 We compare all but the 23 least significant bits, for a

stack region size of 8 MB for x86. This results in consistent

classifications: as long as the stack pointer does not move
between 8 MB regions, any address that was classified as

stack in one access will also be classified as stack in the

next, and vice versa. For ARM Android, we use an 8 KB

Figure 5. Percentage of accesses in the stack region that are relative to the stack pointer.

6

stack region. Our classification accuracies are discussed in

section 7.3.

 Importantly, since we do not rely on any special

characteristics of the stack, such as programmatic liveness

or privateness, misclassification will not have any effect on

the correctness of our optimizations. However, since the

optimizations are based on the differences in behavior that

we have observed between the two classes, a high rate of

misclassification may result in performance degradation.

5. Implicit Stack Cache
 The implicit stack cache makes only minor changes to

the data cache, but has significant energy benefits. We

propose that blocks identified as stack be limited to

residing in a particular cache way or ways, limiting the

number of ways that need to be checked on a stack access.

 In a set-associative cache, the tags need to be accessed,

and if there is a match, the data from the corresponding
way is used. Because it is important to keep L1 latency

low, tags and data are usually accessed in parallel for the

data cache. Although this reduces the latency, it results in

an increase in dynamic energy because all data ways are

accessed, even though at most one will contain the desired

block.

 One approach that aims to reduce the dynamic power
without increasing latency in the common case is way

prediction [11]. Only the way that is predicted to contain

the data is accessed. If the tag does not match, the other

ways can be checked. If the way prediction has high

accuracy, this approach will reduce dynamic energy

without impacting the L1 latency.

 The implicit stack cache is a special case of way

prediction: we predict that all stack accesses will be found
in a particular cache way or ways. On a non-stack access,

all ways are accessed in parallel, like in a typical data

cache. On a stack access, we only access the way(s) where

stack data is allowed to reside, thereby reducing dynamic

energy. The advantage of our approach over a conventional

way-prediction scheme is that we can make the prediction

based on our classification, rather than performing a lookup

in a PC or address-based prediction table.

 To implement the implicit stack cache, we change the

replacement policy so that on a miss, a stack block is only

allowed to evict a block in one of the designated stack

ways. Non-stack blocks can be inserted into the cache in

any way, according to LRU or any other replacement

policy. This results in a soft partitioning of the cache,

where stack data is limited to a subset of ways, but non-

stack data may reside in any way. Figure 6 shows a stack

way cache where stack is only allowed to occupy the first
two ways; blocks classified as stack are colored dark.

 We can detect the case where a stack block is in one of

the non-stack ways, such as due to a stack pointer change,

by checking all tags on every access or checking all tags on

a stack miss. To avoid the same stack address repeatedly

missing because it is in a way designated as non-stack, the

block can be evicted. When it is re-inserted into the cache
on the next miss, it will be placed in an allowed way. This

is the approach we take in our implementation.

 As long as the stack classification is sufficiently accurate

and the stack working set fits within the designated way(s),

the performance impact will be small, and energy

efficiency will increase because fewer ways are accessed

on stack accesses.

 As a concrete example, if the policy is LRU, the LRU

information would be updated as normal on each cache

access. When a block needs to be evicted to insert a non-

stack block, the block in the LRU position should be

chosen, regardless of whether it is in a stack way. It is only

when the block to be inserted is classified as stack that

there is any difference in the replacement policy: in that

case, the least recently used of the blocks in the stack ways

should be chosen. Because stack blocks tend to be
frequently accessed, they should not often be evicted by

non-stack blocks, and this soft partitioning scheme prevents

the hit rate for non-stack blocks being penalized for

applications with small stack footprints.

 Although most L1 caches do not actually implement

LRU, the implicit stack cache can be used with other

replacement policies as well. For example, a common
policy is pseudo-LRU, which can be implemented as a tree

[18]. Then, each level of the tree is 1 bit, saying whether to

go left or right to find the block to replace. The bits are also

flipped as the tree is traversed, as well as updated on hits.

This results in an approximation where the most recently

used block(s) will never be replaced, but the exact order of

replacement for the less recently used half of the line may

not match LRU. Our approach works in this case as well;

we can start the tree traversal directly at the node that is the

earliest common ancestor of all stack blocks. In actual

Figure 6. Implicit stack cache where stack data (dark) is

allowed to occupy 2 of the 8 ways in the data cache.

7

systems, a lookup table for the pattern of bits is likely to be

used rather than traversing the tree; we can simply add the

bit pattern to find stack ways into this table.

6. Explicit Stack Cache
 The explicit stack cache allows for several additional

benefits over the implicit stack cache, at the expense of less

flexibility in terms of adapting to varying stack footprints

and more extensive changes from the common design.

Rather than modifying the existing data cache, this design

adds an additional cache to store stack data.

 Accesses that are classified as stack are directed only to

the stack cache, while all other accesses go only to the data

cache. Then, on a miss, either the other cache can be

checked or the L2 can maintain coherence by keeping a bit

indicating whether the block is in one of the L1 caches.

 The main advantage of this approach is that on hits,

which are the common case, only one cache needs to be
checked, and the stack cache can be much smaller and

more energy-efficient than the data cache. The size of the

stack cache can be chosen such that the hit rate is still high,

but the cache is small. This is possible since the stack has a

much smaller footprint compared to the entire working set.

 Because the stack cache can be smaller and lower

associativity than the data cache, it is possible for it to have
a lower hit latency. However, allowing multiple L1 hit

latencies complicates the pipeline. For our evaluation, we

assume that the stack and data cache the have same latency.

6.1 Virtually Addressed, Virtually Tagged Cache
 An additional optimization of an explicit stack cache

over an implicit stack cache is that it can easily be virtually

tagged. Because the TLB can be 3-13% of core energy [1],

this will reduce energy without impacting performance.

 On a stack cache hit, no translation is needed. In the case

of a miss, translation is needed so that the block can be

fetched from the next level of the cache hierarchy. During

this step, the page permissions are checked.

 There are several challenges when using virtually tagged

caches [20]. One of these problems is homonyms: the same

virtual address can map to different physical addresses.

Homonyms can only occur when addresses from multiple
address spaces are being stored in the same structure. Since

the stack cache is private, this should only occur on context

switches. To avoid this problem, we simply flush the stack

cache on context switches. Since the stack cache is

relatively small and context switches are infrequent, this

will not have a significant impact on the hit rate of the stack

cache.

 One disadvantage of flushing the stack cache on a

context switch is that it can increase the context switch

latency. To avoid this, the blocks in the stack cache can be

marked as “stale” on a cache flush, indicating that they are

no longer valid to write to but are dirty. Then, on a later

“hit” to a stale block, the block can be written back to the

L2 and replaced with the block that the virtual address
refers to. This is similar to the swapped-valid bit used by

Wang et al [20]. This prevents having to flush the entire

stack cache at once, while still providing correct behavior.

 If the core is multi-threaded, we could add a thread ID to

each line of the stack cache or provide each thread with its

own stack cache.

 Another problem with a virtually tagged cache is

synonyms: multiple virtual addresses mapping to the same

physical address. We do not expect this to be a common

occurrence for blocks in the stack cache, because generally

the stack is a contiguous region. However, we must

guarantee correctness even if a program is doing unusual

things with the stack or if data is misclassified. In addition,

it is necessary to keep the stack cache coherent with both

the other stack caches and data caches in the system; it is
possible that one processor might classify an address as

being stack and another as non-stack.

 To this end, we propose keeping a small buffer

containing virtual to physical translations along with the

stack cache. Because most entries in the stack cache are

expected to come from only a small number of pages, this

structure can be kept small. We will evaluate the size this
structure would need to be in section 7.4. It can function

both as the TLB for the stack cache, allowing virtual to

physical address translation on a writeback from the stack

cache, as well as to determine whether it is possible that an

incoming coherence request is for a block residing in the

stack cache. If the physical page of a cache block is not

found in this structure, then the block is not in the stack

cache, eliminating any need to check it. Because the

structure is small, checking it on coherence requests will

not take much energy.

6.2 Writeback Policy

 A second optimization that can be made for the stack
cache is to make it writeback, even if the data cache is

writethrough. One reason why the data cache might be

writethrough is that the ECC information can be kept

within the L2, and the data cache can use weaker, but less

expensive, parity. Then, if an error is detected in the data

cache, the block can be invalidated and re-fetched from the

L2, which is guaranteed to have a valid and up-to-date

copy. This approach reduces the energy and area overhead

of the data cache, at the expense of requiring writing two

Table 1. Simulated environment.

L1 Instruction Cache 32KB, 2-way, private, write-
back, inclusive to L2

L1 Data Cache 32KB, 8-way, private, write-

back. inclusive to L2

L2 Cache 512KB, 16-way, shared

Processor In-Order, Simple Timing

Number of cores 1

8

structures on every store. It is used in AMD’s BullDozer

[5].

 Because stack blocks are written very frequently, having

a writethrough policy for these blocks will incur a large

number of extra writes to the L2 (or to the write coalescing

cache, in Bulldozer). We can instead use a writeback policy

for the stack cache, and protect it with ECC. Since the stack

cache can be significantly smaller than the L1 data cache

while still maintaining a high hit rate, the overhead of ECC

can be more easily accommodated.

7. Evaluation

7.1 Methodology

 We evaluated both the implicit and explicit stack cache

configurations on the gem5 simulator, using Ruby as the

memory model [3]. We ran all x86_64 workloads in full

system mode, under Linux kernel 2.6.22.9. For ARM, we

used Android Gingerbread for bbench and Linux kernel

2.6.38.8 for the other workloads. We used CACTI 6.5 to
model the relative static and dynamic energy of each

configuration [17]. We report relative energy numbers

because we believe that CACTI is more reliable for relative

numbers than absolute. We obtained energy estimates for

32 nm technology with type itrs-hp and fast access mode.

7.2 Benchmarks
 We ran a selection of the SPEC CPU2006 [9] workloads

for x86_64 and ARM, as well as DaCapo [4] for x86_64

and bbench [8] for ARM. We list the selection of

benchmarks we evaluated in Table 2.

7.3 Implicit Stack Cache
 We simulated a 32 KB, 8-way set-associative data cache

with stack data allowed to reside in numbers of ways

varying from 1 to all 8. The case with 8 ways is the

baseline case, which behaves exactly the same as a normal

data cache, and we normalized execution times and

performance to it.

 We find that this approach significantly decreases overall

energy. As shown in Figure 7, limiting stack data to only
one way results in a reduction of 37% of dynamic L1 data

cache energy, on average. Limiting the stack to two ways

also reduced energy, but by slightly less: on average, 30%.

The benefits decrease as stack is allowed to reside in more

ways.

 In order to reap the maximum benefits of the implicit

stack cache, we would like to allow stack to reside in the
minimum number of ways that can hold the entire stack

working set. This allows saving energy without increasing

the miss rate and hence causing performance degradation.

To get an idea of how many ways are required to hold the

working set of the stack in each of our workloads, we

measured the misses per thousand instructions broken

down into stack and non-stack misses for each

configuration, as shown in Figure 8. Most workloads do not

show an increase in miss rate when stack is limited to fewer

ways, implying that performance will not be affected.

Figure 8. Misses per thousand instructions for implicit stack
cache, where 2 indicates stack is limited to 2 ways.

0

5

10

15

20

12345678 12345678 12345678 12345678

DaCapo x86 SPEC x86 SPEC ARM bbench
ARM

M
P

K
I

Stack Non-Stack

Table 2. Benchmarks

Benchmark

Suite

Benchmarks

SPEC 2006 for

x86

astar, bwaves, bzip2, cactusADM, calculix,

games, gcc, gemsFTDT, gobmk, gromacs, h264,

hmmer, lbm, leslie3d, libquantum, mcf, milc,

namd, omnetpp, perlbench, povray, soplex

DaCapo for x86 avrora, batik, eclipse, fop, h2, jython, luindex,

lusearch, pmd, sunflow, tomcat, tradebeans,

tradesoap, xalan

Bbench for

ARM

bbench

SPEC 2006 for

ARM

astar, bzip2, gcc, gobmk, h264, hmmer,

libquantum, omnetpp, perlbench, povray, soplex

Figure 7. Dynamic cache energy for implicit stack cache,

when stack is allowed to reside in 1, 2, 4 or all ways,
normalized.

9

 Indeed, as shown in Figure 9, we find that performance is

generally not affected when the stack is confined to a
subset of ways; even with the stack confined to 1 way, the

overhead is less than 1%. For 2 ways, there is a slight

speedup for some workloads (such as DaCapo). This is

possible because it prevents stale stack data from polluting

the cache.

 To test the accuracy of the stack classification, we looked

at the percentage of stack accesses where the block was

found in a non-allowed way. Our results are shown in
Figure 10, and show that a maximum of 1.2% of stack

accesses are found in a non-allowed way. This confirms

that this case is uncommon. Therefore, having extra latency

in these cases or causing an extra L2 access will not have a

large effect on energy or performance, and our

classification approach works well enough that it is

unlikely a more accurate strategy would offer any

significant improvement.

7.4 Explicit Stack Cache

 The explicit stack cache targets energy improvements in

three ways: accessing a smaller structure rather than the
data cache, avoiding address translation, and optimizing the

write policy. We find that all three of these have significant

benefits.

 We simulated with an explicit stack cache with sizes

from 1 KB to 16 KB and associativity from 1 to 4. For our

initial experiments, we assumed both caches were write-

back and physically tagged. We shrunk the data cache to 28

KB, 24 KB, or 16 KB, so that the total L1 data capacity

remained at most 32 KB. The static power for the two

caches remained approximately constant, since cache

capacity did not change. For our dynamic energy estimates,

we conservatively assumed that the data cache always took
a constant energy per access; that is, we assumed that the

16 KB data cache had the same energy per access as the 32

KB. This was done due to limitations in CACTI.

 Accessing a smaller structure:

 On an access classified as stack, we first check the stack

cache. If the block is found there, there is no need to check

the data cache. Because the stack cache is much smaller

than the data cache, accessing it instead will take less

energy. For non-stack accesses, we check only the data

cache. On a miss to either cache, we could either check the

other cache and then the L2, or check only the L2 and rely

on coherence mechanisms.

 We find that the average reduction in L1 data dynamic

Figure 9. Execution time for implicit stack cache,
normalized.

Figure 10. Percentage of stack accesses found in non-allowed

ways.

Figure 11. Dynamic energy for explicit stack cache + data cache configurations, normalized to combined data cache. 2K-1

indicates a 2 KB, direct-mapped stack cache.

10

energy for the most energy efficient configuration is

approximately 36% for both ARM and x86, as shown in

Figure 11. We break down the dynamic energy into the

components for stack and data cache. The maximum

energy reduction we saw was approximately 73% for

CactusADM on x86 for a direct-mapped, 1 KB stack cache,

because CactusADM has a small stack footprint. All

configurations we examined reduce dynamic energy on

average. Although increasing the associativity for the stack
cache can increase the hit rate, it can also increase the

dynamic energy because each stack cache access takes

more energy. We show the number of misses per million

instructions for each configuration in Figure 12, and the

normalized execution time in Figure 13. We see that adding

a stack cache and reducing the size of the data cache adds a

slight performance overhead due to an increase in data

cache misses, but that it is generally less than 1%.

 The exact design point can be selected based on the

desired trade-off between performance and energy. If the

stack cache is too small, the stack miss rate will increase;

similarly, if the data cache is too small, the data miss rate

will increase. We see that for a 4 KB, direct-mapped stack

cache, the dynamic energy is reduced by about 36% for the

data cache with approximately 0.2% performance

overhead; this is approximately the same increase in energy

efficiency as for the implicit stack cache. However, there

are several other benefits associated with an explicit stack

cache that we will now discuss.

 Avoiding address translation:

 We evaluated the potential energy savings from having a

virtually addressed, virtually tagged stack cache, and found

that on average, the number of translations can be reduced

by 40%. Our results are shown in Figure 14. This assumes

that translation occurs on every non-stack L1 access, and

on every stack cache miss. Because TLB energy is 3 to

13% of core energy, the benefit of avoiding 40% of the
accesses and thus up to 40% of the dynamic energy for

address translation is significant.

 As mentioned in Section 6.1, the virtually indexed

virtually tagged stack cache must be kept coherent, and

coherence requests are by physical address. If the virtual

page to physical page translations are kept in a small

buffer, the lookup can be done in either direction without a

large energy or latency. We looked at how many different
pages are represented in the stack cache for each workload.

The maximum number of pages ever simultaneously found

in the stack cache is given in Figure 15. For most x86

SPEC workloads, the maximum number of pages is less

Figure 12. Misses per thousand instructions for the explicit stack cache.

Figure 13. Normalized execution time for explicit stack

cache.

Figure 14. TLB accesses for a virtually-tagged stack cache
and physically-tagged data cache (normalized).

11

than 5. It is higher for DaCapo, but for a 4 KB cache, it is

usually less than 10. This indicates that a small, fully-

associative buffer that is only checked on coherence

requests (generated when some cache has a miss) will be

sufficient to keep the stack cache coherent without large

energy overheads.

 Optimizing the write policy:

 We evaluated potential benefits of having a writeback

stack cache in the case where the data cache is writethrough

and found that on average, this strategy allows us to

eliminate 43% of the L2 accesses when the stack cache is 4

KB. Our results are shown in Figure 16. In processors that

have a writethrough data cache, there may be a small write
coalescing cache between the data cache and the L2, to

reduce the frequency of L2 accesses. However, every write

still must access both the data cache and the write

coalescing cache. Our approach results in only accessing

one small structure on every stack write. For benchmarks

like gromacs on x86, where the majority of writes are to the

stack, this can eliminate a large number of unnecessary

writes to the write coalescing cache or L2 (up to 75%).

7.5 Comparison of Implicit and Explicit Stack Caches
 Both approaches have advantages and disadvantages.

The implicit stack cache can easily adapt to workloads with

unusually small stack footprints, because the cache is only

soft partitioned and blocks not occupied with stack can be

used by non-stack data. However, the implicit stack cache

does not allow optimizations such as avoiding address

translation or unnecessary write-throughs of stack data.

8. Conclusion
 Energy efficiency is an increasingly important

consideration across a range of processor types, from

embedded processors through servers. Where there are

ways to improve energy efficiency without negatively

affecting performance, doing so is well worth it. We

discussed one method of doing so: taking advantage of the

differing characteristics of stack and non-stack data. Our

approach requires no changes to user or system code and
does not make any assumptions about stack semantics. We

showed that by storing stack accesses either in a designated

way of the L1 data cache or in a separate structure parallel

to the data cache, we can achieve significant energy

savings: 37% of data cache dynamic energy for the implicit

stack cache and 36% for the explicit stack cache, with

additional savings of 40% of address translations. These

energy benefits are obtained without sacrificing any

performance or requiring any changes to existing code or

systems.

9. REFERENCES
1. Basu, A., Hill, M.D., and Swift, M.M. Reducing Memory Reference

Energy With Opportunistic Virtual Caching. Proceedings of the 39th

annual international symposium on Computer architecture, (2012),

297–308.

2. Bekerman, M., Yoaz, A., Gabbay, F., Jourdan, S., Kalaev, M., and

Ronen, R. Early load address resolution via register tracking.

Figure 15. Maximum number of pages in stack cache at a time.

Figure 16. Number of L2 accesses with writeback stack

and writethrough data cache (normalized).

12

Proceedings of the 27th annual international symposium on Computer

architecture, ACM (2000), 306–315.

3. Binkert, N., Beckmann, B., Black, G., et al. The gem5 simulator.

Computer Architecture News (CAN), (2011).

4. Blackburn, S.M., Garner, R., Hoffman, C., et al. The DaCapo

Benchmarks: Java Benchmarking Development and Analysis.

OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN

conference on Object-Oriented Programing, Systems, Languages, and

Applications, ACM Press (2006), 169–190.

5. Butler, M., Barnes, L., Sharma, D.D., and Gelinas, B. Bulldozer: An

Approach to Multithreaded Compute Performance. IEEE Micro 31, 2

(2011).

6. Cho, S., Yew, P.-C., and Lee, G. Decoupling local variable accesses in

a wide-issue superscalar processor. Proceedings of the 26th annual

international symposium on Computer architecture, IEEE Computer

Society (1999), 100–110.

7. Gonzalez-Alberquilla, R., Castro, F., Pinuel, L., and Tirado, F. Stack

oriented data cache filtering. Proceedings of the 7th IEEE/ACM

international conference on Hardware/software codesign and system

synthesis, ACM (2009), 257–266.

8. Gutierrez, A., Dreslinski, Wenisch, et al. Full-System Analysis and

Characterization of Interactive Smartphone Applications. the

proceedings of the 2011 IEEE International Symposium on Workload

Characterization (IISWC), (2011), 81–90.

9. Henning, J.L. SPEC CPU2006 Benchmark Descriptions. Computer

Architecture News 34, 4 (2006), 1–17.

10. Huang, M., Renau, J., Yoo, S.-M., and Torrellas, J. L1 data cache

decomposition for energy efficiency. Proceedings of the 2001

international symposium on Low power electronics and design, ACM

(2001), 10–15.

11. Inoue, K., Ishihara, T., and Murakami, K. Way-predicting set-

associative cache for high performance and low energy consumption.

Proceedings of the 1999 international symposium on Low power

electronics and design, ACM (1999), 273–275.

12. Kang, S. chan, Nicopoulos, C., Lee, H., and Kim, J. A High-

Performance and Energy-Efficient Virtually Tagged Stack Cache

Architecture for Multi-core Environments. High Performance

Computing and Communications (HPCC), 2011 IEEE 13th

International Conference on, (2011), 58 –67.

13. Lee, H.-H.S., Smelyanskiy, M., Tyson, G.S., and Newburn, C.J. Stack

Value File: Custom Microarchitecture for the Stack. Proceedings of

the 7th International Symposium on High-Performance Computer

Architecture, IEEE Computer Society (2001), 5–.

14. Lee, H.-H.S. and Tyson, G.S. Region-based caching: an energy-delay

efficient memory architecture for embedded processors. Proceedings

of the 2000 international conference on Compilers, architecture, and

synthesis for embedded systems, ACM (2000), 120–127.

15. Lee. Improving Energy and Performance of Data Cache Architectures

by Exploiting Memory Reference Characteristics. 2001.

16. Matz, M., Hubicka, J., Jaeger, A., and Mitchell, M. System V

Application Binary Interface AMD64 Architecture Processor

Supplement Draft Version 0.99. Available at www.x86-

64.org/documentation/abi.pdf, (2009).

17. Muralimanohar, N., Balasubramonian, R., and Jouppi, N.P. CACTI

6.0. Hewlett Packard Labs, 2009.

18. So, K. and Rechtschaffen, R.N. Cache Operations by MRU Change.

IEEE Transactions on Computers 37, 6 (1988), 700–709.

19. Sodani, A. Race to Exascale: Opportunities and Challenges. 2011.

20. Wang, W.H., Baer, J.-L., and Levy, and H.M. Organization and

performance of a two-level virtual-real cache hierarchy. ISCA ’89:

Proceedings of the 16th annual international symposium on Computer

architecture, ACM (1989).

21. Xu, J., Kalbarczyk, Z., and Iyer. Transparent runtime randomization

for security. Reliable Distributed Systems, 2003. Proceedings. 22nd

International Symposium on, (2003), 260 – 269.

