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Abstract 

 With the growing focus on energy efficiency, it is 

important to find ways to reduce energy without sacrificing 

performance. The L1 data cache is a significant contributor 

to processor energy consumption. We advocate treating 

data from the program’s stack differently from non-stack 

data to reduce energy. We characterize stack accesses to 
determine how they differ from general memory accesses in 

terms of footprint, frequency, and ratio of loads to stores. 

 We then propose two ways to optimize for these 

characteristics. First, the implicit stack cache limits stack 

data to residing in designated ways of the data cache, 

reducing the energy required per stack access. We show 

that it can reduce data cache dynamic energy by 37% with 

no reduction in performance. 

 Second, the explicit stack cache stores stack data in a 

separate L1 cache. In addition to reducing the energy per 

access, it also has additional benefits over the implicit 
policy in that it can be virtually tagged and have a different 

writeback policy. We show that this approach can lead to 

additional energy savings, with no performance impact. 

These optimizations are implemented purely in the 

hardware and thus require no changes to existing code. 

1. Introduction 
 With the growing focus on energy efficiency, it is 
important to find ways to reduce energy without sacrificing 

performance. One contributor to the energy consumption of 

the chip is the L1 cache. In Sodani’s Micro 2011 Keynote 

[19], the fraction of core power that goes to caches was 

given as 12-45%, depending on whether the workload was 

floating point heavy or not. 

 One common strategy for saving L1 cache energy is to 

split the cache into separate data and instruction caches. 
The motivation for this is that there is no need to access 

both caches on every load or store; accessing a smaller 

structure is faster and takes less energy. In addition, this 

avoids the need to multiport both structures. 

 Similarly, it is possible to categorize data by whether or 

not it is from the program stack. The stack grows on 

function calls and shrinks on returns, and is used for storing 
local variables. Stack data has fundamentally different 

characteristics than non-stack data; we advocate taking 

advantage of them. We find that on average, 40% of 

memory accesses are to the stack, indicating that 

optimizing for them could significantly reduce energy. We 

characterize stack data and show that it differs from non-

stack data in several important ways, including having high 
temporal locality, a small footprint, and a high proportion 

of writes compared to non-stack data. These characteristics 

are common to both x86 and ARM systems. 

 To take advantage of these properties, we must be able to 

distinguish stack and non-stack accesses. Because 

performance is highly sensitive to L1 data cache latency, 

and increasing the access time will significantly degrade 

performance, it is vital that we not add logic to the data 
cache access critical path.  

 We discuss several ways to predict whether a memory 

access is to the stack, including our preferred approach: 

testing whether any of an access's effective address 

components (e.g., base register and offset) are individually 

close to the stack pointer. Unlike previous proposals, the 

new approach does not add logic to timing-critical address-
calculation path (as it is done in parallel with effective 

address calculation) and leaves unchanged the ISA, 

operating system, and applications. While mispredictions 

are allowed by our design (e.g., if two or more components 

are large), results show that the maximum number of 

mispredicted accesses due to comparing with effective 

address components or movement of the stack pointer is 

less than 1.2% in our workloads on x86_64 and ARM, and 

on average 0.2%. Because our optimizations do not rely on 

any characteristics of stack data for correctness, even in the 

case of misclassification the execution is correct. 

 Using this stack classification, we advocate treating stack 

and non-stack data differently in the L1 cache to improve 

energy efficiency. We discuss two ways to do this: an 

implicit stack cache and an explicit stack cache. The 

implicit stack cache requires only minimal changes, while 

the explicit stack cache is more complex but offers 

additional opportunities to save energy. Both approaches 

are invisible to the application and operating system, do not 
increase L1 access time, and are simple to implement. 

 First, the implicit stack cache modifies the data cache but 

does not add any additional structures. We change the 

replacement policy to ensure that stack blocks are only ever 

found in certain designated ways of the cache. Because the 

footprint of the stack is small, this generally does not 
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increase the miss rate for stack accesses. We are then able 

to optimize lookups of stack data so that they only check 

the ways where the stack blocks are expected to reside. We 

find that this approach can reduce L1 data cache access 

energy by an average of 37%, with no performance 

degradation. 

 Second, we discuss the explicit stack cache, where stack 

accesses are diverted to a separate stack cache. Because the 

footprint of the stack is small, this cache can be small and 

low-associativity, so accessing it takes less energy than for 

the data cache. We find that this saves approximately 36% 

of L1 data cache access energy on average, without 

significantly increasing static energy. In addition, the 

explicit stack cache can be virtually addressed and virtually 
tagged, eliminating the dynamic energy of address 

translation for 40% of L1 accesses, and it can be optimized 

for a larger percentage of writes by having a different write 

policy than the data cache. To keep this explicit stack cache 

coherent, physical coherence requests (e.g. from other 

cores) get translated back to virtual addresses using a small 

fully-associative buffer guaranteed to have the translation 

for any block in the stack cache. 

 The main contributions of this work are: 

 An efficient method for classifying memory accesses as 

stack or non-stack that does not require compiler or 

operating system support 

 An implicit stack cache with soft partitioning of the L1 

data cache so that accesses to stack data require less 

dynamic energy 

 An explicit stack cache which adds a separate L1 cache 

to store stack blocks, and which can be virtually 

addressed, virtually tagged to eliminate translation 

overheads, and which guarantees correctness in the 

presence of non-private stack data. 

 

We expect this work can inspire future work 

leveraging other data characteristics to make memory 

hierarchies more energy efficient. 

2. Background and Related Work 

2.1 The Stack 

 The stack is one of the segments of virtual memory in a 

program. It stores return addresses and provides space for 

stack-allocated variables, such as local variables and values 

spilled from registers. It can also be used to pass 

parameters on function calls. It is a structure that normally 

grows on function calls and shrinks on returns. In x86, it is 

located at the top of a process’s virtual address space, and 
grows downward towards the heap, as shown in Figure 1. It 

is contiguous in virtual space. 

 The stack pointer is a register that stores the virtual 

address of the top of the stack. Because function calls and 

references to local variables tend to be frequent, many 

accesses are made as offsets of the stack pointer. The stack 

pointer is decremented on function calls and incremented 

on returns. The size of the stack region varies depending on 

the program and the operating system. However, it tends to 

be relatively small; in the latest version of the Linux kernel 

on x86, the default stack size is 8 MB, whereas the heap 
can be many gigabytes. In ARM Android, the stack is even 

smaller: 8 KB by default. If the stack pointer attempts to 

move beyond the allowed region, it results in a stack 

overflow error or segmentation fault. 

2.2 Related Work 
 Previous work has suggested taking advantage of the 

differences between stack and non-stack data behavior to 

improve performance and energy efficiency. 

 Cho et al. [6] propose decoupling accesses to local 

variables, which are on the stack, from other memory 

accesses. They keep two separate data access queues, as 

well as separate caches for stack and non-stack accesses. 

Their approach was focused on improving performance of 

superscalar processors, and required compiler 

modifications. 

 Bekerman et al. [2] propose diverting memory accesses 

that use the stack pointer as a base to a separate stack 

cache. They find that for IA32, 99.5% of stack accesses are 

via the stack pointer, while 99.3% of non-stack accesses do 

not use the stack pointer. We show in Section 4 that this is 

not the case for x86_64 and ARM with our workloads. 

 Lee et al. [13] propose the Stack Value File (SVF), in 

which a non-architected register file is used to store the top 
of the stack. Their goal is to improve performance by 

avoiding accesses to the L1 data cache, both by diverting 

accesses to the SVF and eliminating writebacks of 

programmatically dead data to the data cache. Huang et al. 

[10] propose splitting the L1 data cache into stack and non-

stack components in order to save energy. They also keep 

track of the top of the stack. These optimizations are based 

on the semantic properties of the stack, and rely on correct 

classification of stack and non-stack data. A snooping 

mechanism is used to redirect incorrectly classified 

accesses to the correct cache. 

 González-Alberquilla et al. [7] propose adding a filter 

cache before the L1 data cache that stores only the 4 to 64 

 

Figure 1. Layout of a program in virtual memory. 
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words closest to the top of the stack. To determine whether 

an address should be stored in their filter cache, they do a 

subtraction from the stack pointer. This is on the critical 

path after address calculation and before the memory 

access. 

 Lee et al. [14] propose keeping separate structures for 

stack, heap, and global data. They rely on being able to 

distinguish these based solely on virtual address, possibly 

with some system support [15]. Without operating system 

and hardware support, these approaches will not work 

when Address Space Layout Randomization (ASLR) or 

Transparent Runtime Randomization (TRR) are used for 

security, because these techniques involve randomly 

relocating the program’s stack, heap, and shared libraries at 
runtime [21]. 

 Kang et al. [12] propose a virtually-addressed stack 

cache, to be used for the main application running on a 

server-type system. Their technique determines which 

accesses are stack by relying on both the stack pointer and 

the frame (base) pointer. This will not be effective on 

programs compiled with -fomit-frame-pointer, in 

which the frame pointer is used as a general purpose 

register. In addition, to indicate which process to cache in 

the filter cache, their scheme relies on operating system 

intervention, so their approach will not work on existing 

systems. They achieve performance benefits by having a 

“small-but-fast” stack cache, with a different L1 hit latency 
than the data cache, which can be difficult to deal with in 

the pipeline. 

 Much of the previous work ([6], [2], [13]) relies on 

determining whether an access is stack or not based on 

whether the address is an offset from the stack pointer 

register. We characterize the frequency of stack pointer 

accesses through the stack pointer in Section 4. 

 Another limitation of prior work is that the stack is 

assumed to be private. Although this is often the case, it is 

not guaranteed for x86 or ARM, and multithreaded 

programs may share data on the stack. Therefore, to 

execute existing programs correctly, the stack data must be 

kept coherent. 

 In addition, previous work relies on stack data having 

special semantics, such as a guarantee that data beyond the 

top of the stack will not be accessed [13] [6] [12] [7] [10]. 

This assumption is not necessarily safe, as we discuss in 

Section 3. In addition, it requires accurate classification of 

stack accesses for correct execution. Because guaranteeing 

that classification is always correct is difficult, we rely on a 

heuristic instead, but maintain correctness whether or not 

we misclassify some non-stack accesses as stack. 

3. Characteristics of Stack Data 
 To optimize for stack data, it is first necessary to 

understand how common stack accesses are and how the 

characteristics of stack accesses differ from non-stack 

accesses. There are three characteristics we hypothesized 

that we could optimize for: (a) frequent accesses, (b) a 

higher ratio of writes to reads than for non-stack 

accesses, and (c) a small footprint. 

 To see if these characteristics held, we examined 

memory access patterns in a variety of applications. We 

used the gem5 simulator [3] in full system mode to 

characterize stack accesses for several benchmark suites for 

both x86_64 and ARM. We analyzed the workloads in 

SPEC 2006 [9] for x86_64 and ARM.  We looked at 

DaCapo [4], which contains Java workloads, on x86_64. 

We also analyzed bbench for ARM Android; bbench is a 

webpage-rendering benchmark typical of what might be 
run on a phone [8]  Detailed description of benchmarks can 

be found in Table 2. 

 Frequent accesses: We classified all memory accesses 

as either stack or non-stack for each of our workloads. 

Figure 3 shows that the percentage of stack for each 

benchmark suite on x86 and ARM. Figure 2 shows a 

breakdown for the SPEC 2006 workloads on x86, since 

these workloads showed the highest variation. On average, 
approximately 40% of the total accesses we observed were 

 

Figure 3. Breakdown of memory accesses for different 
workloads on x86 and ARM. 

 

Figure 2. Breakdown of Memory Accesses by Workload 
for SPEC 2006 on x86 
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to stack data, although for DaCapo on x86 and SPEC on 

ARM, we saw close to 50% of accesses going to the stack. 

Implication: Stack is a large enough class of data cache 

accesses that optimizing specifically for it can have benefits 

for total energy efficiency. 

 Higher ratio of writes to reads compared to non-stack 

accesses: As shown in Figure 3, we find that on average, 

approximately 30% of stack accesses are writes, while only 

22% of non-stack accesses are writes. Approximately half 

of total writes are to the stack. Implication: Having a 

different write policy for stack and non-stack data may 

have energy benefits by reducing L2 accesses or 

interconnect traffic. 

 Small footprint: We examined the size of the stack, both 

in terms of how much the stack pointer varies during the 

execution of a program, as well as how distant stack 

accesses typically are from the stack pointer, as shown in 

Figure 4. We find that the maximum change in stack 

pointer tends to be relatively small, even over the large 

intervals we measure. 

 We measured the distance between the stack pointer and 

each stack reference. We found that the majority (75%) of 

stack accesses are within 128 bytes, or two 64-byte blocks, 

on either side of the stack pointer, as shown by the CDF in 

Figure 4. In addition, 93% are within 1 KB of the stack 

pointer. Since most stack accesses are close to the stack 

pointer and the stack pointer remains within a small region, 

it follows that the footprint of the stack is small. In 

addition, the region it accesses tends to be contiguous, 
indicating that even a direct-mapped cache will not suffer 

from many conflict misses. 

Implication: Even a small, low-associativity stack cache is 

likely to have a low miss rate. 

 Other characteristics of the stack: There are several 

other properties of the stack that are important to consider. 

One of these is whether the stack can be guaranteed to be 

private. Some previous approaches have assumed this to be 

true, but in x86 and ARM there is no guarantee that stack is 

private. For example, in a pthreads program threads can 

pass pointers to the stack. Implication: In order to 

guarantee correctness for multithreaded programs, it is 

necessary to keep stack data coherent between threads. 

 Another consideration is whether to use the semantic 

information about programmatic liveness provided by the 

stack pointer, which points to the top of the stack. 

Normally, the stack grows with function calls (pushes) and 

shrinks on returns (pops); anything beyond the top of the 

stack will be written before it is read again. In other words, 

any data beyond the top of the stack is programmatically 

dead, and need not be written back to any lower levels of 

the memory hierarchy. 

 Some previous approaches have taken advantage of this 

semantic information to avoid unnecessary writebacks. 

However, in Linux there is a “red zone” of 128 bytes past 

the end of the stack that is used for temporary storage [16]; 

any optimizations must not prematurely discard these 

blocks. In addition, multithreaded programs may have more 

than one stack, further complicating stack semantics. 

Finally, since we expect that stack blocks will not often be 
evicted from the cache due to their high locality, the benefit 

of avoiding writing back programmatically dead data will 

be limited. Implication: Optimizations based on the 

liveness of data beyond the stack are complicated and do 

not offer clear benefits. 

 In summary, stack data is small, frequently accessed, 

and has many writes. In addition, the stack is not 

guaranteed private and determining liveness of stack 

blocks is not straightforward. We find that these 

characteristics are true for both x86 and ARM. For these 

reasons, we advocate optimizing for stack accesses via 

stack caches, potentially with different write policies than 

for non-stack data. We do not make any assumptions about 

privacy or liveness, unlike prior work, and instead provide 

correctness in all cases. 

4. Classifying Stack and Non-Stack Data 
 To treat stack and non-stack data differently, we first 

must have a way to distinguish them. We would like to 

make the distinction quickly and efficiently, as well as with 

high accuracy. Because misclassification is possible, we 

need to be able to handle it and make any necessary 

corrections, which may have a cost in performance and 

energy; for example, in some previous works such as SVF, 

misclassifications necessitated a pipeline flush [13]. We 

discuss several possible classification methods. 

 Compiler annotation: One approach is to have the 

compiler annotate each access as either stack or non-stack. 

However, the compiler may not be able to determine this 

 

Figure 4. The cumulative distribution function for 

distance from the stack pointer for stack accesses for 

benchmarks in DaCapo and SPEC 2006 on x86 and SPEC 
on ARM. 
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for all accesses that are made through pointers. In addition, 
this requires a change to both the compiler and the ISA, 

which we would like to avoid. 

 Offset from stack pointer: A second approach is to 

classify all accesses that are made relative to the stack 

pointer as stack, and all other accesses as non-stack. This 

approach has been used extensively in previous work. It 

allows classification in the decode stage, before the address 
has been calculated, which means that it does not add logic 

between address calculation and initiating the memory 

access. We looked at the percentage of stack accesses made 

via the stack pointer for several workloads, shown in Figure 

5. 

 We find that on average, half of the accesses to the stack 

do not use the stack pointer, and in the case of libquantum 

on x86, 95% of stack accesses are not through the stack 
pointer and would be misclassified using this approach. 

Many of these accesses are likely through the frame (base) 

pointer; however, since it is possible to use that register as a 

general purpose register instead, classifying accesses via 

the frame pointer as stack would incur many 

misclassifications for programs compiled to not use the 

frame pointer. This high degree of inaccuracy would make 

it difficult to perform optimizations based on this 

classification scheme. 

 An alternate approach would be to mark which registers 

are pointers to the stack by keeping a bit associated with 

each one. This bit would always be on for the stack pointer, 

and would be set on registers when they were written as a 

result of a move or computation with a register with the 

stack bit set. Although this approach would likely be 

effective, it is ultimately more complicated than our chosen 

approach. 

 Virtual address of access: The approach used by Lee et 

al. [14] is to classify all accesses within a specific region of 

the virtual address space as stack. The stack is the area 

between the base of the stack and the stack pointer. 

However, this approach has several disadvantages. First, 

the base of the stack is not guaranteed to begin at any 

particular address, especially if Address Space Layout 
Randomization (ASLR) is being used. Second, subtracting 

the virtual address of the memory access from the stack 

pointer requires adding in a subtraction after the address 

has been calculated but before the memory access is 

initiated, which is on a cycle critical path. Third, it is 

unclear how this approach would work if there are multiple 

stacks in the same address space, possibly resulting in 

misclassifications.  

 Our choice: Aligned region of virtual address: An 

approach that is similar to the one above is to compare just 

the N most significant bits of the memory virtual address 

and the stack pointer. If these are the same, the access is 

classified as stack; otherwise, non-stack. This may classify 

“dead” blocks from beyond the top of the stack as stack, 

but as we are not using this liveness information, it will not 

affect correctness of execution. Because this approach uses 

the value of the stack pointer, which provides information 

about the virtual address where the stack is actually stored, 

it can work correctly in the presence of ASLR. 

 One advantage to this approach is that the classification 

can be done in parallel to address calculation: we can 

compare the most significant bits of the components of the 

address (base register, displacement, and index) with those 

of the stack pointer, and if and only if any of them match, it 

is very likely that the calculated virtual address matches as 

well. We found that this approach works well for user code, 
but x86 system code makes use of the segment register and 

is not accurately classified with this method. Because the 

percentage of time spent in system code is small, we 

choose to simply conservatively classify all accesses in 

system space as non-stack. 

 We compare all but the 23 least significant bits, for a 

stack region size of 8 MB for x86. This results in consistent 

classifications: as long as the stack pointer does not move 
between 8 MB regions, any address that was classified as 

stack in one access will also be classified as stack in the 

next, and vice versa. For ARM Android, we use an 8 KB 

 
Figure 5. Percentage of accesses in the stack region that are relative to the stack pointer. 
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stack region.  Our classification accuracies are discussed in 

section 7.3. 

 Importantly, since we do not rely on any special 

characteristics of the stack, such as programmatic liveness 

or privateness, misclassification will not have any effect on 

the correctness of our optimizations. However, since the 

optimizations are based on the differences in behavior that 

we have observed between the two classes, a high rate of 

misclassification may result in performance degradation. 

5. Implicit Stack Cache 
 The implicit stack cache makes only minor changes to 

the data cache, but has significant energy benefits. We 

propose that blocks identified as stack be limited to 

residing in a particular cache way or ways, limiting the 

number of ways that need to be checked on a stack access. 

 In a set-associative cache, the tags need to be accessed, 

and if there is a match, the data from the corresponding 
way is used. Because it is important to keep L1 latency 

low, tags and data are usually accessed in parallel for the 

data cache. Although this reduces the latency, it results in 

an increase in dynamic energy because all data ways are 

accessed, even though at most one will contain the desired 

block. 

 One approach that aims to reduce the dynamic power 
without increasing latency in the common case is way 

prediction [11]. Only the way that is predicted to contain 

the data is accessed. If the tag does not match, the other 

ways can be checked. If the way prediction has high 

accuracy, this approach will reduce dynamic energy 

without impacting the L1 latency. 

 The implicit stack cache is a special case of way 

prediction: we predict that all stack accesses will be found 
in a particular cache way or ways. On a non-stack access, 

all ways are accessed in parallel, like in a typical data 

cache. On a stack access, we only access the way(s) where 

stack data is allowed to reside, thereby reducing dynamic 

energy. The advantage of our approach over a conventional 

way-prediction scheme is that we can make the prediction 

based on our classification, rather than performing a lookup 

in a PC or address-based prediction table. 

 To implement the implicit stack cache, we change the 

replacement policy so that on a miss, a stack block is only 

allowed to evict a block in one of the designated stack 

ways. Non-stack blocks can be inserted into the cache in 

any way, according to LRU or any other replacement 

policy. This results in a soft partitioning of the cache, 

where stack data is limited to a subset of ways, but non-

stack data may reside in any way. Figure 6 shows a stack 

way cache where stack is only allowed to occupy the first 
two ways; blocks classified as stack are colored dark. 

 We can detect the case where a stack block is in one of 

the non-stack ways, such as due to a stack pointer change, 

by checking all tags on every access or checking all tags on 

a stack miss. To avoid the same stack address repeatedly 

missing because it is in a way designated as non-stack, the 

block can be evicted. When it is re-inserted into the cache 
on the next miss, it will be placed in an allowed way. This 

is the approach we take in our implementation. 

  As long as the stack classification is sufficiently accurate 

and the stack working set fits within the designated way(s), 

the performance impact will be small, and energy 

efficiency will increase because fewer ways are accessed 

on stack accesses. 

 As a concrete example, if the policy is LRU, the LRU 

information would be updated as normal on each cache 

access. When a block needs to be evicted to insert a non-

stack block, the block in the LRU position should be 

chosen, regardless of whether it is in a stack way. It is only 

when the block to be inserted is classified as stack that 

there is any difference in the replacement policy: in that 

case, the least recently used of the blocks in the stack ways 

should be chosen. Because stack blocks tend to be 
frequently accessed, they should not often be evicted by 

non-stack blocks, and this soft partitioning scheme prevents 

the hit rate for non-stack blocks being penalized for 

applications with small stack footprints. 

 Although most L1 caches do not actually implement 

LRU, the implicit stack cache can be used with other 

replacement policies as well. For example, a common 
policy is pseudo-LRU, which can be implemented as a tree 

[18]. Then, each level of the tree is 1 bit, saying whether to 

go left or right to find the block to replace. The bits are also 

flipped as the tree is traversed, as well as updated on hits. 

This results in an approximation where the most recently 

used block(s) will never be replaced, but the exact order of 

replacement for the less recently used half of the line may 

not match LRU. Our approach works in this case as well; 

we can start the tree traversal directly at the node that is the 

earliest common ancestor of all stack blocks. In actual 

 

Figure 6. Implicit stack cache where stack data (dark) is 

allowed to occupy 2 of the 8 ways in the data cache. 
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systems, a lookup table for the pattern of bits is likely to be 

used rather than traversing the tree; we can simply add the 

bit pattern to find stack ways into this table. 

6. Explicit Stack Cache 
 The explicit stack cache allows for several additional 

benefits over the implicit stack cache, at the expense of less 

flexibility in terms of adapting to varying stack footprints 

and more extensive changes from the common design. 

Rather than modifying the existing data cache, this design 

adds an additional cache to store stack data. 

 Accesses that are classified as stack are directed only to 

the stack cache, while all other accesses go only to the data 

cache. Then, on a miss, either the other cache can be 

checked or the L2 can maintain coherence by keeping a bit 

indicating whether the block is in one of the L1 caches. 

 The main advantage of this approach is that on hits, 

which are the common case, only one cache needs to be 
checked, and the stack cache can be much smaller and 

more energy-efficient than the data cache. The size of the 

stack cache can be chosen such that the hit rate is still high, 

but the cache is small. This is possible since the stack has a 

much smaller footprint compared to the entire working set. 

 Because the stack cache can be smaller and lower 

associativity than the data cache, it is possible for it to have 
a lower hit latency. However, allowing multiple L1 hit 

latencies complicates the pipeline. For our evaluation, we 

assume that the stack and data cache the have same latency. 

6.1 Virtually Addressed, Virtually Tagged Cache 
 An additional optimization of an explicit stack cache 

over an implicit stack cache is that it can easily be virtually 

tagged. Because the TLB can be 3-13% of core energy [1], 

this will reduce energy without impacting performance. 

 On a stack cache hit, no translation is needed. In the case 

of a miss, translation is needed so that the block can be 

fetched from the next level of the cache hierarchy. During 

this step, the page permissions are checked. 

 There are several challenges when using virtually tagged 

caches [20]. One of these problems is homonyms: the same 

virtual address can map to different physical addresses. 

Homonyms can only occur when addresses from multiple 
address spaces are being stored in the same structure. Since 

the stack cache is private, this should only occur on context 

switches. To avoid this problem, we simply flush the stack 

cache on context switches. Since the stack cache is 

relatively small and context switches are infrequent, this 

will not have a significant impact on the hit rate of the stack 

cache. 

 One disadvantage of flushing the stack cache on a 

context switch is that it can increase the context switch 

latency. To avoid this, the blocks in the stack cache can be 

marked as “stale” on a cache flush, indicating that they are 

no longer valid to write to but are dirty. Then, on a later 

“hit” to a stale block, the block can be written back to the 

L2 and replaced with the block that the virtual address 
refers to. This is similar to the swapped-valid bit used by 

Wang et al [20]. This prevents having to flush the entire 

stack cache at once, while still providing correct behavior. 

 If the core is multi-threaded, we could add a thread ID to 

each line of the stack cache or provide each thread with its 

own stack cache. 

 Another problem with a virtually tagged cache is 

synonyms: multiple virtual addresses mapping to the same 

physical address. We do not expect this to be a common 

occurrence for blocks in the stack cache, because generally 

the stack is a contiguous region. However, we must 

guarantee correctness even if a program is doing unusual 

things with the stack or if data is misclassified. In addition, 

it is necessary to keep the stack cache coherent with both 

the other stack caches and data caches in the system; it is 
possible that one processor might classify an address as 

being stack and another as non-stack. 

 To this end, we propose keeping a small buffer 

containing virtual to physical translations along with the 

stack cache. Because most entries in the stack cache are 

expected to come from only a small number of pages, this 

structure can be kept small. We will evaluate the size this 
structure would need to be in section 7.4. It can function 

both as the TLB for the stack cache, allowing virtual to 

physical address translation on a writeback from the stack 

cache, as well as to determine whether it is possible that an 

incoming coherence request is for a block residing in the 

stack cache. If the physical page of a cache block is not 

found in this structure, then the block is not in the stack 

cache, eliminating any need to check it. Because the 

structure is small, checking it on coherence requests will 

not take much energy. 

6.2 Writeback Policy 

 A second optimization that can be made for the stack 
cache is to make it writeback, even if the data cache is 

writethrough. One reason why the data cache might be 

writethrough is that the ECC information can be kept 

within the L2, and the data cache can use weaker, but less 

expensive, parity. Then, if an error is detected in the data 

cache, the block can be invalidated and re-fetched from the 

L2, which is guaranteed to have a valid and up-to-date 

copy. This approach reduces the energy and area overhead 

of the data cache, at the expense of requiring writing two 

Table 1. Simulated environment. 

L1 Instruction Cache 32KB, 2-way, private, write-
back, inclusive to L2 

L1 Data Cache 32KB, 8-way, private, write-

back. inclusive to L2 

L2 Cache 512KB, 16-way, shared 

Processor In-Order, Simple Timing 

Number of cores 1 
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structures on every store. It is used in AMD’s BullDozer 

[5]. 

 Because stack blocks are written very frequently, having 

a writethrough policy for these blocks will incur a large 

number of extra writes to the L2 (or to the write coalescing 

cache, in Bulldozer). We can instead use a writeback policy 

for the stack cache, and protect it with ECC. Since the stack 

cache can be significantly smaller than the L1 data cache 

while still maintaining a high hit rate, the overhead of ECC 

can be more easily accommodated. 

7. Evaluation 

7.1 Methodology 

 We evaluated both the implicit and explicit stack cache 

configurations on the gem5 simulator, using Ruby as the 

memory model [3]. We ran all x86_64 workloads in full 

system mode, under Linux kernel 2.6.22.9. For ARM, we 

used Android Gingerbread for bbench and Linux kernel 

2.6.38.8 for the other workloads. We used CACTI 6.5 to 
model the relative static and dynamic energy of each 

configuration [17]. We report relative energy numbers 

because we believe that CACTI is more reliable for relative 

numbers than absolute. We obtained energy estimates for 

32 nm technology with type itrs-hp and fast access mode. 

7.2  Benchmarks 
 We ran a selection of the SPEC CPU2006 [9] workloads 

for x86_64 and ARM, as well as DaCapo [4] for x86_64 

and bbench [8] for ARM. We list the selection of 

benchmarks we evaluated in Table 2. 

7.3 Implicit Stack Cache 
 We simulated a 32 KB, 8-way set-associative data cache 

with stack data allowed to reside in numbers of ways 

varying from 1 to all 8. The case with 8 ways is the 

baseline case, which behaves exactly the same as a normal 

data cache, and we normalized execution times and 

performance to it.  

 We find that this approach significantly decreases overall 

energy. As shown in Figure 7, limiting stack data to only 
one way results in a reduction of 37% of dynamic L1 data 

cache energy, on average. Limiting the stack to two ways 

also reduced energy, but by slightly less: on average, 30%. 

The benefits decrease as stack is allowed to reside in more 

ways. 

 In order to reap the maximum benefits of the implicit 

stack cache, we would like to allow stack to reside in the 
minimum number of ways that can hold the entire stack 

working set. This allows saving energy without increasing 

the miss rate and hence causing performance degradation. 

To get an idea of how many ways are required to hold the 

working set of the stack in each of our workloads, we 

measured the misses per thousand instructions broken 

down into stack and non-stack misses for each 

configuration, as shown in Figure 8. Most workloads do not 

show an increase in miss rate when stack is limited to fewer 

ways, implying that performance will not be affected. 

 

 

Figure 8. Misses per thousand instructions for implicit stack 
cache, where 2 indicates stack is limited to 2 ways. 

0

5

10

15

20

12345678 12345678 12345678 12345678

DaCapo x86 SPEC x86 SPEC ARM bbench
ARM

M
P

K
I 

Stack Non-Stack

Table 2. Benchmarks 

Benchmark 

Suite 

Benchmarks 

SPEC 2006 for 

x86 

astar, bwaves, bzip2, cactusADM, calculix, 

games, gcc, gemsFTDT, gobmk, gromacs, h264, 

hmmer, lbm, leslie3d, libquantum, mcf, milc, 

namd, omnetpp, perlbench, povray, soplex 

DaCapo for x86 avrora, batik, eclipse, fop, h2, jython, luindex, 

lusearch, pmd, sunflow, tomcat, tradebeans, 

tradesoap, xalan 

Bbench for 

ARM 

bbench 

SPEC 2006 for 

ARM 

astar, bzip2, gcc, gobmk, h264, hmmer, 

libquantum, omnetpp, perlbench, povray, soplex 

 

 

Figure 7. Dynamic cache energy for implicit stack cache,  

when stack is allowed to reside in 1, 2, 4 or all ways, 
normalized. 
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 Indeed, as shown in Figure 9, we find that performance is 

generally not affected when the stack is confined to a 
subset of ways; even with the stack confined to 1 way, the 

overhead is less than 1%. For 2 ways, there is a slight 

speedup for some workloads (such as DaCapo). This is 

possible because it prevents stale stack data from polluting 

the cache. 

 To test the accuracy of the stack classification, we looked 

at the percentage of stack accesses where the block was 

found in a non-allowed way. Our results are shown in 
Figure 10, and show that a maximum of 1.2% of stack 

accesses are found in a non-allowed way. This confirms 

that this case is uncommon. Therefore, having extra latency 

in these cases or causing an extra L2 access will not have a 

large effect on energy or performance, and our 

classification approach works well enough that it is 

unlikely a more accurate strategy would offer any 

significant improvement. 

7.4 Explicit Stack Cache 

 The explicit stack cache targets energy improvements in 

three ways: accessing a smaller structure rather than the 
data cache, avoiding address translation, and optimizing the 

write policy. We find that all three of these have significant 

benefits. 

 We simulated with an explicit stack cache with sizes 

from 1 KB to 16 KB and associativity from 1 to 4. For our 

initial experiments, we assumed both caches were write-

back and physically tagged. We shrunk the data cache to 28 

KB, 24 KB, or 16 KB, so that the total L1 data capacity 

remained at most 32 KB. The static power for the two 

caches remained approximately constant, since cache 

capacity did not change. For our dynamic energy estimates, 

we conservatively assumed that the data cache always took 
a constant energy per access; that is, we assumed that the 

16 KB data cache had the same energy per access as the 32 

KB. This was done due to limitations in CACTI. 

 Accessing a smaller structure: 

 On an access classified as stack, we first check the stack 

cache. If the block is found there, there is no need to check 

the data cache. Because the stack cache is much smaller 

than the data cache, accessing it instead will take less 

energy. For non-stack accesses, we check only the data 

cache. On a miss to either cache, we could either check the 

other cache and then the L2, or check only the L2 and rely 

on coherence mechanisms.  

 We find that the average reduction in L1 data dynamic 

 

 

Figure 9. Execution time for implicit stack cache, 
normalized. 

 

Figure 10. Percentage of stack accesses found in non-allowed 

ways. 

 

Figure 11. Dynamic energy for explicit stack cache + data cache configurations, normalized to combined data cache. 2K-1 

indicates a 2 KB, direct-mapped stack cache. 
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energy for the most energy efficient configuration is 

approximately 36% for both ARM and x86, as shown in 

Figure 11. We break down the dynamic energy into the 

components for stack and data cache. The maximum 

energy reduction we saw was approximately 73% for 

CactusADM on x86 for a direct-mapped, 1 KB stack cache, 

because CactusADM has a small stack footprint. All 

configurations we examined reduce dynamic energy on 

average. Although increasing the associativity for the stack 
cache can increase the hit rate, it can also increase the 

dynamic energy because each stack cache access takes 

more energy.  We show the number of misses per million 

instructions for each configuration in Figure 12, and the 

normalized execution time in Figure 13. We see that adding 

a stack cache and reducing the size of the data cache adds a 

slight performance overhead due to an increase in data 

cache misses, but that it is generally less than 1%.  

  The exact design point can be selected based on the 

desired trade-off between performance and energy. If the 

stack cache is too small, the stack miss rate will increase; 

similarly, if the data cache is too small, the data miss rate 

will increase.  We see that for a 4 KB, direct-mapped stack 

cache, the dynamic energy is reduced by about 36% for the 

data cache with approximately 0.2% performance 

overhead; this is approximately the same increase in energy 

efficiency as for the implicit stack cache. However, there 

are several other benefits associated with an explicit stack 

cache that we will now discuss.  

 Avoiding address translation: 

 We evaluated the potential energy savings from having a 

virtually addressed, virtually tagged stack cache, and found 

that on average, the number of translations can be reduced 

by 40%. Our results are shown in Figure 14. This assumes 

that translation occurs on every non-stack L1 access, and 

on every stack cache miss. Because TLB energy is 3 to 

13% of core energy, the benefit of avoiding 40% of the 
accesses and thus up to 40% of the dynamic energy for 

address translation is significant. 

 As mentioned in Section 6.1, the virtually indexed 

virtually tagged stack cache must be kept coherent, and 

coherence requests are by physical address. If the virtual 

page to physical page translations are kept in a small 

buffer, the lookup can be done in either direction without a 

large energy or latency. We looked at how many different 
pages are represented in the stack cache for each workload. 

The maximum number of pages ever simultaneously found 

in the stack cache is given in Figure 15. For most x86 

SPEC workloads, the maximum number of pages is less 

 

Figure 12. Misses per thousand instructions for the explicit stack cache. 

 

Figure 13. Normalized execution time for explicit stack 

cache. 

 

Figure 14. TLB accesses for a virtually-tagged stack cache 
and physically-tagged data cache (normalized). 
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than 5. It is higher for DaCapo, but for a 4 KB cache, it is 

usually less than 10. This indicates that a small, fully-

associative buffer that is only checked on coherence 

requests (generated when some cache has a miss) will be 

sufficient to keep the stack cache coherent without large 

energy overheads. 

 Optimizing the write policy: 

 We evaluated potential benefits of having a writeback 

stack cache in the case where the data cache is writethrough 

and found that on average, this strategy allows us to 

eliminate 43% of the L2 accesses when the stack cache is 4 

KB. Our results are shown in Figure 16. In processors that 

have a writethrough data cache, there may be a small write 
coalescing cache between the data cache and the L2, to 

reduce the frequency of L2 accesses. However, every write 

still must access both the data cache and the write 

coalescing cache. Our approach results in only accessing 

one small structure on every stack write. For benchmarks 

like gromacs on x86, where the majority of writes are to the 

stack, this can eliminate a large number of unnecessary 

writes to the write coalescing cache or L2 (up to 75%). 

 

7.5 Comparison of Implicit and Explicit Stack Caches 
 Both approaches have advantages and disadvantages. 

The implicit stack cache can easily adapt to workloads with 

unusually small stack footprints, because the cache is only 

soft partitioned and blocks not occupied with stack can be 

used by non-stack data. However, the implicit stack cache 

does not allow optimizations such as avoiding address 

translation or unnecessary write-throughs of stack data. 

8. Conclusion 
 Energy efficiency is an increasingly important 

consideration across a range of processor types, from 

embedded processors through servers. Where there are 

ways to improve energy efficiency without negatively 

affecting performance, doing so is well worth it. We 

discussed one method of doing so: taking advantage of the 

differing characteristics of stack and non-stack data. Our 

approach requires no changes to user or system code and 
does not make any assumptions about stack semantics. We 

showed that by storing stack accesses either in a designated 

way of the L1 data cache or in a separate structure parallel 

to the data cache, we can achieve significant energy 

savings: 37% of data cache dynamic energy for the implicit 

stack cache and 36% for the explicit stack cache, with 

additional savings of 40% of address translations. These 

energy benefits are obtained without sacrificing any 

performance or requiring any changes to existing code or 

systems. 
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