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Abstract

This paper develops and validates a new analytical model for evaluating the performance of shared memory

systems with ILP processors. First, we instrument SimOS to measure the per-processor parameters for such a

model, and we find a perhaps surprisingly high degree of processor memory request heterogeneity observed in the
SimOS workload measures. Second, we create a model that captures such heterogeneous processor behavior, which is

important for analyzing memory system design tradeoffs. Highly bursty memory request traffic and lock contention
are modeled in a significantly more robust way than in previous work. With these additions, the model is applicable

to a wider range of architectures and applications. Although the features increase the model complexity, it is a

useful design tool because the size of the model input parameter set remains manageable and the model is still
several orders of magnitude quicker to solve than detailed simulation.

Validation results show that the model is highly accurate, producing heterogeneous per-processor throughputs that

are usually within 5% and always within 13% of those measured by detailed simulation with SimOS. We show several
applications of the model to studying architectural design issues and the interactions between the architecture and

the heterogeneous applications.

1 Introduction

Computer architects traditionally use detailed simulation to evaluate architecture performance trade-offs. De-
tailed simulation of parallel architectures with complex modern processors usually entails a cycle-by-cycle simula-
tion of each processor that precisely captures significant behavior such as out-of-order instruction issue and spec-
ulative instruction execution that can greatly affect system performance. Detailed simulation is time-consuming,
though. For example, detailed simulation of an 8-processor shared memory architecture, running a single parallel
FFT code with a small input dataset, can take hours on a Sun UltraSPARC system, even though only seconds of
the system execution time are actually simulated.

To design a given memory system architecture, one would like to evaluate alternative memory system archi-
tectures for dozens if not hundreds of commercial applications and workloads that might be expected to run on
the system. Thus, more efficient evaluation methods that can aid in culling the system design space are highly
desirable. Analytical models offer the possibility of efficiently computing performance estimates that can be useful
in identifying the most promising regions of the architectural design space, which can then be explored more fully
using the detailed simulation approach. The key issue is devising an analytical model that is sufficiently accurate
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for this purpose, over the range of workloads of interest. If such a model can be constructed, it also offers the
opportunity to explore how the memory system architecture performs for hypothetical changes in the memory
request behavior of the executing workload. Experienced system architects may be interested in exploring these
issue, but this is difficult to do with detailed simulation of specific benchmarks.

Three recent papers have developed analytical models that contain some of the significant features of complex
modern shared memory multiprocessor architectures [1, 11, 10]. Of these models, the previous (“SM-ILP”) model
by Sorin et al. [10] is the only model that (1) includes the impact of instruction window size and dependences
between memory accesses, which cause a processor to block after a dynamically changing number of memory
requests, and (2) has been validated against detailed simulations of applications running on a parallel shared
memory architecture. The model has a number of significant features. First, it is based on a relatively small
set of input parameters that are sensitive to changes in the processor and associated cache architecture, but are
relatively insensitive to changes in the rest of the memory system architecture. Second, the model captures the
key characteristics of a complex modern processor architecture which are important for memory system design,
such as speculative memory requests and complex processor blocking behavior. Third, it produces results for
variations in the memory system architecture in a few seconds, and these results have been shown to predict
processor throughput, measured in instructions per cycle, that is within 1-12% of the detailed simulation estimates
for several Splash-2 applications [12] running on the RSIM architecture [7].

The previous SM-ILP model also has at least three significant deficiencies. First, it assumes that each processor
is statistically identical with respect to memory request behavior, and that, for each processor, its remote memory
requests are equally likely to visit each of the remote memory modules. These homogeneity and uniformity
assumptions, which were sufficiently accurate for several SPMD applications running on RSIM, preclude the model
from being used for many application/platform combinations that might be of interest. For example, many
irregular applications can be expected to have heterogeneous processor behavior. Furthermore, an application’s
dataset and/or the work may not be distributed evenly among the nodes. Heterogeneous memory request behavior
can have a disproportionate impact on system throughput, due to non-linear queueing effects in the memory
system. Thus, it is important for a model that supports memory system design to capture such behavior. Second,
the model overestimates the fraction of time that a processor is productively executing, and it underestimates
the average waiting time at the memory system resource first visited by a request that cannot be satisfied by
the processor cache hierarchy. These errors cancel each other in the estimated system throughput measure, and
thus the overall system throughput estimates were found to be highly accurate in the validation experiments [10].
However, more accurate memory system waiting time estimates are needed if the model is to be applied reliably
for identifying memory system bottlenecks. Finally, although the model uses a basic set of input parameters for
computing processor throughput, it uses measured average lock waiting times to compute total application running
time from the estimated processing rate. Since lock contention delays are affected by delays in the memory system,
this input parameter is dependent on the output values of the model. A more basic model of lock contention is
needed to compute the application running time.

In this paper, we derive and validate a new model that captures all of the above behavior for shared memory
system architectures with complex modern processors. Furthermore, we develop this model for the architecture and
workload that is simulated in SimOS [8]. This tests the robustness of the basic analytic approach for a significant
change in the memory system architecture, including a different memory consistency model, and for workloads
that include the (SGI IRIX) operating system as well as the Splash applications. One of the results of these new
validations is that the SimOS workloads have quite different behavior than RSIM workloads with respect to the
memory system.

Specific contributions of this paper include:

• Measured parameters are provided that illustrate the types of heterogeneity that occur in the workloads that
are simulated using SimOS. These parameter values show that, although the SGI IRIX operating system
executes uniformly across all of the processors, Splash-2 applications that are generally considered to be
homogeneous have highly heterogeneous memory request behavior. More detailed measures reveal several
causes of the heterogeneity.

• The new model provides parameters for specifying the heterogeneous memory request behavior. That is, each
processor can have different mean time between memory requests, distribution of the number of outstanding
requests when the processor blocks, and so forth. Moreover, the memory requests from each processor can
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have a different distribution of destinations for requests to remote nodes. The way that processor blocking
behavior is modeled in [10] is incompatible with modeling heterogeneous processor behavior, and thus this
important aspect of the previous model must be modified in creating the new model. A key question addressed
in this work is whether the model can remain tractable, both from a programming effort standpoint and a
solution-time/convergence standpoint, when the memory request heterogeneity is represented. Another key
question is how well the heterogeneous model will validate with respect to individual processor throughput
estimates and with respect to estimated mean queueing delays in the memory system.

• Based on new AMVA methods proposed in recent work [3], we develop equations that more accurately model
the processor utilization and the mean waiting time at memory system resources when the time between
memory requests that miss in the second level cache is highly variable. The key issues here are how to adapt
the new AMVA methods to the context of the memory system architecture and Splash-2 applications, and
whether the methods will prove to be accurate in this more complex model.

• We develop a submodel that accurately estimates mean lock access delays from fundamental input parameters
that are independent of changes in the memory system architecture (below the processor cache hierarchy).

While modeling the additional behaviors increases the model’s size and complexity, the model solution time is
still on the order of a couple of seconds. The number of input parameters is increased, but not to the point of
being unwieldy.

Validations in this paper show that the new model predicts heterogeneous processor performance, from a man-
ageable set of input parameters, that agrees with detailed SimOS estimates for a set of benchmark applications
running on the SimOS architecture. The percentage difference between the performance computed by the model
and the performance reported by SimOS for each processor is typically within 5% and always less than 13% over the
validation experiments performed in this work. The validation results and example model applications also show
that modeling heterogeneity is important for achieving high model accuracy. Thus, this capability is essential both
to achieving wider applicability of the model and for increasing confidence in using the model to find the promising
regions of the memory system architecture design space that should be investigated using detailed simulation.

Three examples are provided to illustrate the use of the new model. One example illustrates the use of the
model to evaluate alternative memory system designs under a heterogeneous workload. The two other examples
provide estimates of the (maximum) performance gain that can be achieved if the application were “tuned” to
remove the heterogeneity that is observed in the measured parameters for the application.

Like the previous analytic models, the new model input parameters are derived from a detailed simulation of an
application or workload running on a given parallel processor architecture. However, the model input parameters
are carefully chosen so as to be insensitive to large changes in the memory system latency below the processor cache
hierarchy. Thus, as shown in [10], the analytic model can accurately predict system performance when various
memory system components below the processor cache hierarchy are modified. Consequently, the analytic model
can be used to quickly cull the design space for this part of the memory system, for both measured workload
parameters and hypothetical modifications to measured workload parameters, thereby greatly reducing the size of
the design space that needs to be explored using simulation.

The rest of this paper is organized as follows. Section 2 describes the system that we are modeling and
reviews the previous system model. Section 3 discusses the model extensions for heterogeneous applications and
provides measured application parameters that illustrate the types of heterogeneity that occur in the SimOS
benchmarks. Section 4 develops new modeling approaches for bursty traffic and synchronization in shared memory
multiprocessors. Section 5 presents the model validations and discusses applications of the model. Finally, Section 6
summarizes the paper and discusses future research.

2 Background

2.1 System Architecture

The system of interest in this paper is the system modeled by SimOS [8], a detailed simulator developed at
Stanford against which the new model will be validated. The architecture, which is similar to that of the Stanford
FLASH [5] and the SGI Origin [6], is a cache-coherent, sequentially consistent shared-memory multiprocessor
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Figure 1. System Architecture

system, as shown in Figure 1. This architecture differs in several key ways from the architecture modeled by
RSIM [7] and the SM-ILP model, as discussed below.

The MIPS R10000 processor, modeled by SimOS’s MXS simulator, exploits instruction level parallelism using
multiple functional units, out-of-order execution, non-blocking loads, and speculative execution. Instructions are
fetched into the instruction window, and they are issued to the functional units after all of their input data
dependences are satisfied. Speculative execution is used for (temporarily) unresolved control dependences for up
to four branch instructions. The instructions are fetched into and retired from the window in program order, but
they may be issued to the functional units out of program order.

An instruction can retire from the instruction window only after it completes execution. A key implication of
this requirement is that when a load reaches the top of the instruction window, retirement must stall if the data
has not yet returned. SimOS differs from RSIM in that, since SimOS is a sequentially consistent architecture,
stores in SimOS only issue to the memory system when they reach the top of the instruction window.

The caches use miss status holding registers (MSHRs) to track the status of all outstanding misses [4]. Misses to
the same cache line are coalesced in the MSHRs; only one memory request is generated for such coalesced misses.

All traffic to or from a remote node goes through the directory controller (DC). Traffic into the node that
only requires accessing the directory does not require use of the bus. SimOS models the memory bus and the
interconnection network using fixed latencies that account for service time as well as estimated contention delay.
SimOS also differs from RSIM in that it does not model a separate network interface since the DC serves that
purpose.

Cache coherence is maintained by a fairly standard three-state (MSI) directory-based invalidation protocol.
Unlike the RSIM architecture, there are no cache-to-cache transfers; instead the home node is responsible for
collecting invalidations before acknowledging a request for exclusive permission.

Table 1 defines the system architecture parameters, including the values that are used in the validation experi-
ments in Section 5.1. Latencies are in units of CPU cycles for the 200 MHz R10000 processor. Note that memory
access is overlapped with directory access; thus, there is just one parameter for that access latency, SDClong

.

2.2 Previous Model

The previous model developed by Sorin et. al [10] is a customized Approximate Mean Value Analysis (AMVA)
model of homogeneous applications running on the release consistent shared-memory multiprocessor architecture
modeled by the RSIM simulator, which is also based on an R10000-like processor. As claimed in that paper, it is
not very difficult to modify that model for other shared memory multiprocessor architectures. Below we provide a
brief overview of the model and the modifications for the SimOS architecture. Appendix A outlines the equations
used in the homogeneous model. For more detail about the model equations, the reader is referred to [9].
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parameter description value
N number of nodes
m memory modules per node 1
Mhw number of MSHRs 8
Sbus bus latency 15
SDC DC latency 5
SDClong

long DC latency 20
Snet network latency 30

Table 1. System Architecture Parameters

The homogeneous model input parameters are summarized in Table 2. These parameters characterize the
memory request behavior (between any two barriers) of an application running on the architecture. The first three
parameters characterize the rate of requests to the memory system, the burstiness in the memory interrequest
times, and the number of outstanding requests when the processor blocks due to a memory request that cannot be
retired. The rest of the parameters characterize the types of requests that are being issued to the memory system.
Sorin et al. observe that these input parameters are sensitive to instruction window size, processor architecture,
organization and size of the processor cache hierarchy, and various aspects of the application code and compiler,
but are relatively insensitive to memory system latencies below processor cache hierarchy [10].

The processor and cache subsystem are modeled as a black box that - when not completely stalled - issues memory
requests at a given rate and with a given coefficient of variation in interrequest times. The model computes the
overall mean system residence time for a memory request, including mean delays and service times at the DCs,
split-transaction memory buses, and in the interconnection network, as reviewed in Appendix A. Two submodels
that each use the same set of equations for overall mean system residence times are used to compute two types of
processor stall time, respectively. One submodel computes stall time due to reads that cannot be retired until data
returns from memory. The other submodel computes stall time due to MSHRs that are fully occupied by write
requests. The model also accounts for reads that coalesce in the MSHRs with writes to the same line. Iteration
between the two submodels is necessary because the each stall time estimate is needed to compute the other stall
time estimate.

We changed the previous model in two ways due to differences between the modeled architectures. First, the
routing of requests (e.g., the path that a read request takes through the memory system) is different for SimOS
since the memory system resources and protocol are different. The second change is due to the different memory
consistency model. To model the sequentially consistent SimOS system where write requests are synchronous, we
observe that both types of stall times can be computed in a single model that has the number of MSHRs as the
number of memory requests that can be issued before the processor stalls. Thus, iteration between two submodels
is not required for the SimOS architecture.

2.3 Methodology

As mentioned above, previous work has verified that the homogeneous model input parameters are, to first order,
insensitive to changes in memory system latency below the processor cache hierarchy. Thus, for the new model
developed in this paper, we start with the same input parameters for each processor, but allow each processor to
have a different value for each parameter. One question is whether these parameters are sufficient for accurately
computing processor throughputs and mean delays in the memory system for heterogeneous workloads. This
question will be investigated by comparing the estimates against the performance measures that are given by
SimOS. If the analytic estimates are accurate for a range of heterogeneous workload parameter sets, we can then
expect to be able to vary memory system architecture parameters without significantly altering the accuracy of
the analytic model.

The detailed simulator needs to be run once to obtain the set of parameters for a given application/workload
of interest executing on a given processor and cache architecture of interest. However, the parameters can then
be used with the analytic model to explore the impact of various architecture parameters, including the number
of MSHRs, the interconnect design, and main memory organization. The detailed simulator may also be used to
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Parameter Description

τ Average time between read, write, or upgrade requests to memory, not counting the
time when the processor is completely stalled or is spin-waiting on a synchronization
event

CVτ Coefficient of Variation of τ

fM Fraction of processor stalls that occur with M = 1, 2, ... outstanding requests in the
MSHRs

Pread, Pwrite, Pupgrade Probability that a memory request is a read, write, or upgrade
Pwb Probability that a read or write request causes a writeback of a cache block
PL|x Probability directory is local for a type x transaction; x=read, write, upgrade, write-

back
PM |x,y Probability home memory can supply the data for a type x, y request;

x=read, write; y=local home, remote home
P4hop|x&not−memory Probability that a request of type x to a remote home is forwarded to a cache at a

third node;
x=read,write

X Average number of invalidates caused by a write or upgrade to a clean line

Table 2. Model Application Parameters

verify results for specific memory system architectures below the processor cache hierarchy that are identified as
having the highest performance by the analytical model. However, by varying the memory system architecture
parameters and using the input parameters measured from detailed simulation, the analytical model can be used to
quickly explore the memory system design space for a given processor/cache architecture and workload. Moreover,
the designer can vary workload input parameters (e.g., probability that a transactions takes 3 hops) to test the
system against specific synthetic workloads, which is difficult to do by altering the actual workload.

3 Heterogeneity

The previous model assumes that all processors have statistically similar behavior with respect to the memory
system and that each processor’s local/remote memory accesses are uniformly distributed across the local/remote
memory modules. In the homogeneous model, each processor has the same input parameters, as shown in Table 2,
and no input parameters are needed for frequencies of access to each memory module.

In Section 3.1, we examine the per-processor model input parameters obtained for several Splash-2 benchmarks
using SimOS, to see what types of heterogeneity occur in the processor memory requests for those applications.
In Section 3.2, we discuss how the analytic SimOS architecture model computes performance estimates for this
heterogeneous processor behavior.

3.1 SimOS Application Parameters

Figures 2, 3, and 4 illustrate the processor heterogeneity in several key parameters for particular barriers
(i.e., inter-barrier phases) of a few SPLASH-2 [12] benchmarks, each running on eight processors, as measured by
SimOS. For each input parameter shown, the eight bars represent the values of that parameter for each of the eight
processors, divided by the value of that parameter when measured over all eight processors. The heterogeneity in
various measures for particular barriers is also summarized in Table 3. The parameter Mave refers to the average
of the distribution fM .

The degree of parameter heterogeneity, such as in the measures of τ and P (L|w) in the figures and Table 3,
is perhaps higher than might be expected. Some (irregular) applications, such as Radiosity, are inherently het-
erogeneous, and thus the per-processor memory request measures simply quantify the degree of memory request
heterogeneity that occurs in those applications. However, as can be seen from the figures and the table, significant
memory request heterogeneity is also present for SPMD applications such as FFT and Radix, that are generally
thought to be homogeneous and were observed to have homogeneous memory request behavior in RSIM [7].

In an attempt to determine the source of the processor memory request heterogeneity for these SPMD applica-
tions on SimOS, we separated the statistics into application and kernel statistics for each processor. For example,
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Figure 4.

benchmark barrier parameter mean min max
FFT-8 1 Mave 1.39 1.23 1.53

2 τ 60 42 78
3 P (L|u) .13 .01 .30

Radiosity-4 3 τ 78 48 122
7 P (4hop|r) .66 .53 .78

Radix-8 1 P (L|w) .12 .01 .33
3 τ 103 31 210
4 P (L|r) .13 .04 .25

Table 3. Parameter Heterogeneity

the number of memory requests per processor for the transpose phase (barrier 2) of FFT-4 is shown in Table 4. As
expected, the number of memory requests that are issued when a processor is executing the application are quite
homogeneous across the processors, with a coefficient of variation of 0.02. What is perhaps surprising is both the
high numbers of memory requests that are issued in kernel mode (larger, in fact, than the numbers of application
requests) as well as the heterogeneity in this number across processors, as shown by a coefficient of variation of
0.27. For the SPMD applications, other parameters like CVτ , exhibit similar heterogeneity in the kernel while
remaining homogeneous in the application. Note that in Table 4, the number of memory requests appears to be
correlated with the processor number, but this correlation is just coincidental and did not occur with any higher
than random frequency in the results that we obtained for different barriers in the FFT application and for different
applications.

A key point is that the kernel executes uniformly across the processors in the SimOS architecture, and thus the
kernel memory request statistics are fairly homogeneous across the processors if measured over a long time interval,
such as the execution time for the entire application. However, the memory request heterogeneity observed in the
measured intervals between each barrier will impact memory system performance, and, therefore, the heterogeneity
in this timeframe must be measured and represented in the inputs to the model.

Beyond the heterogeneity inherent in some applications or caused by kernel behavior, some applications can
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cpu 0 cpu 1 cpu 2 cpu 3
overall 461 613 781 787
application 216 219 231 219
kernel 245 394 550 568

Table 4. Memory Requests for FFT-4 Barrier 2

exhibit heterogeneous behavior if they have not been “tuned” to run on a particular architecture and runtime
system, which occurs frequently in practice. Heterogeneity in the measured model input parameters can point
to the need for such tuning, and even indicate what types of tuning are needed. For example, in barrier 1 of
FFT-8, three processors have small relative values of τ when the application is executing, indicating that they have
especially high level 2 cache miss rates. Those same processors (and one additional processor) have a relatively low
probability of local memory access for read and/or write requests. Thus, examining the data layout or comparing
the code that runs on those three processors against the code that runs on the other five processors, looking for
differences that might cause these effects, may lead to some insight about how to improve performance. Similarly,
the heterogeneity in the probability that a write request is local for Radix suggests that data layout should be
examined for that application as well.

In general, although there may be intuition that particular applications will exhibit heterogeneous behavior of
some form, intuition alone is generally insufficient to estimate the magnitude of the heterogeneity in particular
statistics of interest, its magnitude relative to the heterogeneity induced by kernel activity, or the extent to which
performance might be improved by particular types of application tuning. Measurements of heterogeneity, and the
use of models that capture its performance impacts, can provide answers to such questions.

The figures and the table indicate that heterogeneity occurs in practice for every model input parameter. Two
parameters, though, have notably less extreme heterogeneity: (1) the average of the fM distribution (i.e., the
average number of memory requests that are outstanding when the processor blocks because a load or store cannot
be retired) and (2) the probability that a remote read request for a dirty block requires invalidating or downgrading
the line in a cache at another remote node (P4hop|r). However, system performance can be sensitive to the values
of these parameters. Thus, the model extensions for processor heterogeneity will allow each processor to have its
own value for each of the input parameters.

3.2 Modeling Heterogeneity

Given that (1) processor heterogeneity (and memory access non-uniformity) occur quite frequently in practice,
and (2) we can expect the heterogeneity to have a non-linear impact on queueing and memory system performance,
it is important to develop models that enable computation of system performance measures for heterogeneous
workloads. We will show in Section 5.1 that modeling heterogeneity is critical for achieving accurate results.

Three features are needed in order to model heterogeneous processor behavior. First, new model inputs are
required. Specifically, each of the model input parameters in Table 2 is measured for each processor. Also, modeling
memory access non-uniformity requires additional parameters that specify, for each processor and type of remote
memory request, the probability that the request will be directed to each other node.

Second, we require a new model of the varying number of outstanding requests, M , that are issued by the
processor before the processor blocks waiting for a memory system response. The SM-ILP model computes system
throughput for each possible value of M with the same value of M at every processor, and then computes a
weighted sum of these throughputs, where the weights are computed from the measured distribution of M , fM .
This weighted sum approach may be valid if the processors generally have the same value of M at the same time,
as might be true for the homogeneous SPMD applications that were modeled in [10]. However, the weighted sum
technique is difficult to apply in the case where different nodes have different distributions of M . Computing
the throughput for every possible combination of M values at the different processors, as well as computing the
weighting factor for each such throughput, is prohibitively complex. An alternate approach is to use the average
value of M at each node. The drawback of using the average value is that it may fail to capture the non-linear
effects of varying M ; thus it may not capture a broad distribution of M accurately.

In Table 5, we compare the accuracy of the estimated processor throughput for the weighted sum approach

9



Processor Throughput (IPC)
app f1 f2 f3 f4 f5 f6 f7 f8 Mave weighted ave M actual

erle16 .65 .17 . 09 .08 0 0 0 0 1.64 1.35 1.40 1.45
fft-opt16 .42 .17 0 0 .34 0 0 0 2.72 1.53 1.61 1.58

fft16 .53 .47 0 0 0 0 0 0 1.47 1.46 1.46 1.39
lu-opt8 .12 .06 .06 .06 .06 .06 .07 .49 5.83 2.46 2.19 2.41

lu8 .51 .49 0 0 0 0 0 0 1.50 1.96 1.91 1.91
radix8 .99 .01 0 0 0 0 0 0 1.01 1.76 1.74 1.64

water16 .73 .25 .01 0 0 0 0 0 1.33 1.87 1.62 1.74

Table 5. Accuracy of Processor Throughput (IPC) Estimates for Weighted Sum vs Average M

against simply solving the model once for the average value of M for some of the homogeneous applications that
were simulated using RSIM. These results provide some evidence that, for current window sizes and applications,
the average M approach achieves similar accuracy to the weighted sum approach. We compute average M from
the measured fM , where the fM are measured assuming an infinite number of MSHRs, and we allow each processor
to have its own average value of M which is limited by the number of MSHRs, Mhw.

The third change is to modify the model equations [9, 13] to compute performance metrics at each resource
within the memory system for heterogeneous processor loads. With homogeneous behavior, it is only necessary to
compute performance metrics for a single generic resource of type i and a single generic processor load; the total
utilization of the particular memory resource, for example, can then be obtained simply by multiplying by the
number of processors. This leads to model complexity on the order of the number of types of resources, as can
be seen in the equations in Appendix A. For heterogeneous processor loads, in contrast, each processor may have
differing memory referencing behavior and thus may contribute to differing extents to utilization and contention
at each resource. Computing the N 2 interactions of each processor on each memory system resource increases the
complexity of the model equations by a factor of N 2, which leads to a key question about whether the iterative
model will converge in practice. This issue is addressed in Section 5.1. Efficient coding methods (for both the
homogeneous and heterogeneous model) limit the size of the model (measured in C++ code), though, to only about
twice that of the homogeneous model. The accuracy improvements that may be obtained by accurately modeling
heterogeneous memory request behavior when it exists, rather than assuming homogeneity, are also illustrated in
Section 5.1.

All of the details of the heterogeneous AMVA equations can be found in [13]. At a high level, the heterogeneous
equations have form similar to the homogeneous equations. Terms require extra indices (given in brackets) to
indicate the node of the customer and/or the destination. Thus, a utilization term such as Udcloc

(the mean uti-
lization of the local DC) becomes Udcloc

[i] (the mean utilization of the DC of node i by local customers) to reflect
the fact that the utilization of the local DC is different for different nodes. The probabilities of the transaction
types (e.g., local read or 3-hop write) use an index in a similar fashion. For example, we now have that the
probability of transaction y at node i is Py[i]. So, the total mean residence time for a customer from node i, R[i],
is equal to the sum of its mean residence times at the processor (pe), buses, network, and directory controllers (dc).

R[i] = Rpe[i] + Rbus[i] + Rnet[i] + Rdc[i]

Examining the DC portion of this equation highlights the differences in the equations between the heterogeneous
and homogeneous models. Mean DC residence time is equal to the mean residence time at the local DC plus the
mean residence time at the DCs of the other nodes.

Rdc[i] = Rdcloc
[i] +

∑

j

j 6=i

Rdcrem
[i][j]
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Only focusing on the mean residence time at the remote DC, it is the sum of the mean residence times over the
different types of transactions, denoted by a subscript of y.

Rdcrem
[i][j] =

∑

y

Rdcrem,y
[i][j]

The mean residence times of individual transaction types are equal to the probability of the transaction type
(Py[i]) times the visit count (Vdcremy

[i][j]) times the sum of the mean waiting time (Wdcrem
[i][j]) and the service

time at the DC (Sdc):

Rdcrem,y
[i][j] = Py[i]Vdcremy

[i][j](Wdcrem
[i][j] + Sdc)

All of the terms in the above equation are inputs except for the waiting times. The equation for mean waiting
time at a remote directory is as follows:

Wdcrem
[i][j] = W others

dcrem
[i][j] + W rem

dcrem
[i][j]

W others
dcrem

[i][j] is the mean waiting time of a node i customer at the DC of node j due to traffic from all nodes
other than node j. W rem

dcrem
[i][j] is the mean waiting time of a node i customer at the DC of node j due to traffic

from node j. Only breaking down W rem
dcrem

[i][j] further, we have that

W rem
dcrem

[i][j] =
∑

y

(

W
rem,y
dcrem

[i][j]
)

The following equations are for the mean waiting times of specific transaction types. Thus, W
rem,y
dcrem

[i][j] is the
mean waiting time by a node i customer at node j’s DC due to node j traffic for transactions of type y. Mean

waiting time due to a single node j customer equals
Rdcloc,y

[j]

R[j] − Udcloc,y
[j] (the probability that a customer is in

the queue but not in service) times the service time, plus Udcloc,y
[j] (the probability that a customer is in service)

times the mean residual life of a customer in service. Therefore, to get the total mean waiting time, we multiply
by the number of node j customers, M [j].

W
rem,y
dcrem

[i][j] = M [j]

[(

Rdcloc,y
[j]

R[j]
− Udcloc,y

[j]

)

Sdc + Udcloc,y
[j]

(

Sdc

2

)]

Lastly, we have the equation for the mean utilization of node i’s DC by a local customer.

Udcloc,y
[i] =

Py[i]

R[i]
(Vdcloc,y

[i]Sdc)

Modeling the other resources in the system is similar to what has been shown here for the DC.
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4 Modeling Bursty Memory Requests and Lock Contention

In this section, we present two key model extensions. A recent paper [3] proposes new AMVA techniques for
modeling bursty arrivals in simple queueing networks. In Section 4.1, we show how these ideas can be applied
to model bursty memory system traffic observed in the SimOS workload measures. In Section 4.2, we develop a
method for computing lock synchronization from basic model input parameters. Bursty memory requests and lock
synchronization play significant roles in system performance, and thus it is important to model them accurately.

4.1 Burstiness

In the previous SM-ILP model, the mean residence time of a “customer in service” at the processor (i.e., a
memory request about to be generated) is computed using a specially derived interpolation for mean residual life.
In this paper, we employ a more accurate AMVA equation (called “AMVA-decomp” in [3]) for mean residence
time at the processor queue. In addition, we adapt the AMVA techniques in [3] to accurately compute the mean
wait at the “downstream” queues (i.e., the local DCs in the SimOS architecture) which have bursty arrivals from
the processors, and thus increased queueing activity.

The AMVA-decomp equation accurately computes mean residence time for a 2-stage hyperexponential server.
That is, with probability p a given customer has a “small” mean service time, τa, and with probability 1 − p

the customer has a “large” mean service time, τb, where τa < τb and τ = pτa + (1 − p)τb. The key question in
applying this technique for the processors in the heterogeneous model is how to obtain the parameters of a suitable
hyperexponential distribution. Two constraints on the distribution are the measured mean service time (τ) and
the coefficient of variation in the service time (CVτ ). However, this is an underconstrained problem. To apply
this technique to modeling heterogeneous bursty processors, we measure a third parameter for each processor, τa,
which is set to be equal to the minimum sampled value of τ . Using τ , CVτ , and τa, we solve for τb and p. The
model is more sensitive to the value of τa than to that of τb, especially in the high variance cases where τa << τb.
Thus, it is preferable to assign τa to a measured value and allow τb to float. Moreover, the true best value of
the “small” mean is likely to be near the measured minimum value of τ , while there is no measured value that
corresponds well to τb.

In the model of bursty requests at the downstream queues, there are bursts of arrivals and intervals between
bursts in which there are no arrivals. This scenario is characterized by three parameters:
k, the average number of customer arrivals within a burst,
Ii, the mean interarrival time within a burst, and
Io, the mean time between bursts.

In applying the bursty request model to the local DCs in the SimOS architecture, the key question again is how
to map the requisite parameters to observable quantities in the system. There are two constraints in determining
values for these three parameters. First, the coefficient of variation in the interarrival time is determined by the
coefficient of variation in the service time at the processor. Second, the throughput at the downstream queue, and
thus the mean interarrival time, is determined during the AMVA solution. We create a third constraint by setting
Ii equal to the value of τa, since it is reasonable to assume that interarrival time during a burst would be similar
to the value of a short service time at the processor. We also assume that downstream burstiness is only caused
by requests from the local processor. The superposition of requests from other processors will, on average, be less
bursty.

Solving the model with the burstiness equations initially led to some convergence problems. To ensure that
the model converges requires some careful choices of initial values and bounds checks to make sure that values
produced during iterative solutions are reasonable. For example, k cannot be allowed to be larger than the total
number of local customers.

4.2 Lock Contention

The previous SM-ILP model measured average lock waiting times, which are affected by the memory system
architecture, instead of computing these performance measures from more basic parameters that are independent
of the memory system architecture. In this paper, lock synchronization effects are computed from basic inputs
with a separate lock contention model. The context that we consider allows the application program to queue for
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a lock while occupying a processor. Symmetrically, while holding the lock, the program can queue for memory
system resources or the processor. In addition, the program can release the lock while still holding the processor
and it can complete service at a memory system resource or processor while still holding the lock. We assume for
now that only one lock is held at a time, but we will describe later how to relax this assumption.

In the lock contention model, there are N customers, representing the processors that are vying for the locks.
There are First-Come-First-Served (FCFS) queues for each of the locks that have non-negligible contention, and
there is a delay center which represents the execution time while not accessing or holding any of the locks. An
example lock queueing model is shown in Figure 5.

lock 1

lock 2

lock L

P1

P2

PL

no-lock execution time

Figure 5. Example Lock Contention Model

The basic parameters used to characterize lock behavior in the example are the following:
L: number of locks that have non-negligible contention
rnolock,j : average number of memory accesses made by processor j between lock requests
Plocki,j : probability that a lock request from processor j is for lock i

rlocki,j : average number of memory requests by processor j while holding lock i

To incorporate the effects of lock contention in the architecture model, we iterate between the architecture
model and the lock model. The service times in the lock model are derived from the above basic parameters,
and mean residence times computed from the architecture model. The service times at the processors in the
architecture model are inflated so as to reflect lock waiting times computed from the lock model. This iterative
solution technique again increases the complexity of the model, an issue that will be addressed in Section 5.1.
It also causes solution time to increase slightly, but it is still on the order of seconds. Moreover, this iterative
technique can be generalized for specific cases of nested lock requests by having a separate lock contention model
for the locks at each level of the lock hierarchy and iteratively solving the lock models along with the architecture
model. The details of the lock contention equations can be found in [13].

5 Model Validation and Applications

5.1 Model Validation

In this section, we present the results of validation experiments that assess the accuracy of the analytic model
that is developed in this paper. The validations are performed against SimOS, using SimOS’ detailed MXS
processor simulator and its NUMA memory system simulator. SimOS runs IRIX 5.3, and all benchmark results
include OS behavior that occurred while the benchmark was running. Thus, we measure analytic model inputs
and estimate system performance for the complete system behavior, instead of for the application alone.

The validation experiments include FFT, LU, Radiosity, and Radix from the Splash-2 suite [12]. Table 6 shows
the data sets used for each application.
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app input size
FFT -l6 -n1024
LU 512x512 array, 16x16 blocks
Radiosity -batch
Radix 1M integers, radix 1024

Table 6. Benchmark Data Sets

We attempted to obtain SimOS results for the rest of the Splash-2 benchmark suite, but these applications would
not run successfully on the version of the SimOS MXS processor simulator that we were able to obtain access to.
Similarly, we were unable to make this version of the SimOS MXS simulator produce results for greater than 8
processors. Although the number of benchmarks that ran successfully is small, the memery access characteristics
captured in the model input parameters vary greatly accross these applications as well as in the different periods
between barriers in a given application, and thus the analytical model is exercised over a non-trivial region of the
input parameter space. Tables 3 and 5 illustrate some of the variety in the memory request behavior accross the
applications. As shown below, the processor throughput varies from 0.1 to 2.4 instructions per cycle across the
application barriers that we were able to validate against, indicating that the differences in memory request behavior
among these benchmarks is significant. The low processor throughput estimates also indicate that although the
number of processors is relatively small, significant contention occurs in the memory system (particularly at the
directory controllers), and thus the ability of the analytic model to accurately estimate queueing delays is also
exercised. This is confirmed by the measured mean queueing delays reported by SimOS for these applications
(with the architectural parameters in Table 1).

The validation results for model input parameter values that exhibited the greatest degrees of heterogeneity in
processor performance are shown in Figures 6, 7, and 8. These results are for specific barriers (i.e., inter-barrier
phases) of FFT, Radix, and Radiosity, running on 8-node and 4-node versions of SimOS. Each graph gives the
throughput (in IPC) for each processor estimated by the new heterogeneous sytem model as well as the average
throughput estimated by the homogeneous model. Results for other barriers of the FFT, LU, Radix, and Radiosity
benchmarks (both 8-node and 4-node) are presented in Table 7. The column numbers in the table correspond to
node numbers. For each pair of rows, the first row is the IPC reported by SimOS, and the second row is the IPC
predicted by the model. The rightmost column corresponds to a homogeneous model using the average statistics,
where the first row is the average IPC across all nodes reported by SimOS, and the second row is the IPC predicted
by the previous homogeneous model using input parameters that are averaged across all nodes.

These results show that the analytic estimates of per-processor throughput agree quite closely with the SimOS
measurements, even when each processor throughput is remarkably different. The model achieves accurate perfor-
mance estimates although memory request behavior is modeled statistically and at a high level of abstraction. As
mentioned before, the complexity of the new analytic model makes its tractability a key question. In validating
the model, however, we discovered no cases where the model did not converge to a solution within a matter of a
few seconds, in spite of strong heterogeneity in the model inputs and in the estimated per-processor throughputs.

Although the homogeneous analytic model is also often accurate in estimating the average processor throughput,
the new estimates of per-processor throughput from the heterogeneous model are crucial to accurately estimating
the impact of the memory system architecture on application execution times, is illustrated in Section 5.2, because
for applications employing barriers, the barrier only completes execution when the slowest processor reaches the
barrier. Moreover, there are examples, such as LU-4 barrier 4, for which the homogeneous model is not even
accurate with respect to the average node behavior reported by SimOS. This is due to the fact that heterogeneity
can have non-linear effects on queueing delays in the memory system, and these non-linear effects are only captured
in the heterogeneous model.

Validation of the lock synchronization modeling was difficult in that none of the benchmarks that succeeded
in running on the MXS simulator in our version of SimOS exhibited significant lock contention. Instead, we
implemented the “Sieve of Eratosthenes” algorithm for finding prime numbers, and found that executing this
application on SimOS exhibited significant lock contention. The accuracy of the analytic model with complementary
service time inflation for lock contention, as compared with SimOS measures for the application, is illustrated by
the results in Figures 9 and 10. The application’s heavy lock contention is revealed by the high mean lock waiting
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app 1 2 3 4 5 6 7 8 average
FFT-4 (b1) 0.12 0.14 0.15 0.17 0.15

0.11 0.13 0.15 0.17 0.16

FFT-4 (b2) 0.68 0.73 1.06 0.91 0.82
0.61 0.66 0.99 0.82 0.74

FFT-4 (b3) 0.47 0.48 0.55 0.62 0.52
0.43 0.43 0.50 0.57 0.47

FFT-8 (b1) 0.14 0.16 0.42 0.61 0.41 0.13 0.33 0.48 0.40
0.13 0.16 0.43 0.62 0.42 0.13 0.33 0.47 0.40

FFT-8 (b3) 0.52 0.56 0.52 0.53 0.39 0.43 0.47 0.50 0.50
0.51 0.55 0.55 0.52 0.39 0.42 0.48 0.49 0.50

LU-4 (b2) 1.27 0.59 0.59 1.43 0.82
1.40 0.61 0.62 1.37 0.91

LU-4 (b3) 2.17 1.79 1.92 2.22 1.96
2.37 1.88 2.06 2.50 2.13

LU-4 (b4) 0.85 1.09 0.81 1.20 1.06

0.89 1.14 0.72 1.22 1.32

Radix-4 (b2) 0.43 0.46 0.63 0.48 0.49
0.41 0.47 0.58 0.46 0.47

Radix-4 (b6) 0.30 0.36 0.26 0.45 0.36
0.32 0.39 0.26 0.48 0.39

Radix-8 (b1) 0.64 0.64 0.62 0.64 0.61 0.61 0.61 0.63 0.62
0.68 0.64 0.61 0.64 0.62 0.61 0.60 0.63 0.62

Radix-8 (b3) 0.90 0.70 0.68 0.64 0.56 0.50 0.42 0.45 0.69
0.87 0.67 0.67 0.63 0.58 0.52 0.47 0.46 0.69

Radiosity-4 (b9) 0.49 0.78 0.93 0.35 0.63
0.51 0.76 0.90 0.36 0.65

Table 7. Validation Results: Processor Throughput Estimates
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Figure 6. Validation of FFT-8, Barrier 1

Figure 7. Validation of Radix-4, Barrier 2
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Figure 8. Validation of Radiosity-4

times reported in Figure 9. The mean lock waiting times and processor throughputs (measured in memory requests
per cycle) estimated by the analytic model agree reasonably well with the measured values, even in this extreme
case.

5.2 Applications of the Model

The model developed in this paper can be applied to efficiently obtain initial answers to numerous questions
about architectural designs and the interactions between applications and the architecture. Recall that the memory
system parameters (below the L2 cache) can be varied to explore the design space without having to re-run the
detailed simulator to obtain new input parameters. The model can reveal performance bottlenecks at specific system
resources due to heterogeneous and bursty memory request traffic. This section illustrates three applications of
the model to such issues, pointing out cases in which the previous homogeneous model provides inaccurate results.

5.2.1 Decoupling the Network Interface from the Directory Controller

As discussed in Section 2.1, the SimOS architecture requires all traffic into and out of a node to pass through the
directory controller (DC). The DC effectively assumes the responsibility of being the network interface (NI) for all
traffic, including traffic that does not require use of the directory. This coupling of the DC and NI may, in some
cases, create a bottleneck, especially as processor speed increases relative to memory speed.

An interesting architectural question that can be quickly assessed with the model is the performance gain that
could be achieved by decoupling the NI from the DC, given that the DC is twice as slow relative to the processor
speed as compared to the default values in Table 1. Figure 11 shows that, for an 8-way parallel execution of Radix
(barrier 2), decoupling the NI and the DC reduces the cycle count of the barrier from 163k to 124k and moves the
bottleneck from CPU 3 to CPU 7.

The rightmost pair of bars shows the performance impact predicted by the homogeneous model, and there are
two key inaccuracies worth noting. Quantitatively, the homogeneous model predicts barrier cycle counts 30% less
than those predicted by the heterogeneous model. Qualitatively, the homogeneous model fails to capture the shift
in the bottleneck.
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Figure 9. Validation of Lock Contention Estimates (“Sieve of Eratosthenes” algorithm on 4 CPUs)

Figure 10. Validation of Processor Throughput Estimates with Lock Contention (“Sieve of Eratos-
thenes” algorithm on 4 CPUs)
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Figure 11.

5.2.2 Importance of Data Layout

The model input parameter values for a given application or workload can be useful in identifying opportunities
for tuning the application (or kernel). For example, the input parameters that characterize where memory requests
from each processor are directed reveal insight into data layout issues. More specifically, good data layout schemes
maximize the fraction of requests that can be serviced locally. That is, for a given application, if one layout scheme
has a higher probability of servicing a memory request locally than another scheme, then it will likely have better
performance, since local requests have lower latency than remote requests.

For barrier 3 of LU-4, Figure 12 illustrates the performance gains that can be achieved for a hypothetical 50%
increase in the probability that a request is satisfied locally. Of interest is the reduction in execution time that
is achieved by the hypothetical tuning at the bottleneck processor (i.e., CPU 3 in the figure). The magnitude of
the decrease in execution time guides how much effort should be expended in looking for opportunities to increase
data locality in the LU code.

As shown in the figure, the homogeneous model predicts a decrease in average processor execution time that is
similar in magnitude (although larger in percentage) to the decrease in execution time for the bottleneck processor.
However, the decrease in average processor execution time is not generally a reliable estimate for what will occur
at the bottleneck center.

5.2.3 Tuning the Operating System

As discussed in Section 3, the operating system causes the memory request heterogeneity that is observed in
workloads with applications that are generally considered homogeneous. For example, Table 4 shows that barrier
2 of FFT-4 is heterogeneous in τ because of the kernel. To determine the performance gain that could be achieved
by hypothetically tuning the kernel for homogeneity, we compared the performance of this barrier against the
performance of the same barrier with homogeneous kernel behavior. The OS parameters at each node are assumed
to be equal to their averages across all four nodes. Figure 13 reveals that if the OS can be tuned for greater
uniformity in processor usage within the time that the application executes between barriers, rather than on a
much coarser timescale, this would lead to a 20% reduction in cycle count for this barrier.
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Figure 12. : Performance Impact of Improved Memory Locality

Figure 13. : Predicted Impact of Tuning the OS
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6 Conclusions

We have developed and validated a new analytical model for evaluating the performance of shared memory mul-
tiprocessors with ILP processors and heterogeneous processor workloads. This work extends prior research in this
area in three ways: (1) adapting and validating the model for a different architecture (SimOS) than that consid-
ered in previous work, (2) modeling heterogeneous node behavior that was reported by SimOS even when running
homogeneous applications, and (3) applying new techniques for modeling bursty memory requests and developing
techniques for modeling lock synchronization. Despite the complexity of modeling processor heterogeneity and
non-uniform memory access probabilities, bursty memory traffic, and lock contention, the model converges quickly,
is still several orders of magnitude faster to solve than detailed simulation, and the number of input parameters
remains manageable. The model validates extremely well, for individual processor throughput estimates, over a
range of Splash-2 benchmarks that has wide variety in memory request behavior, which leads to a wide range of
observed processor throughputs. Examples in setion 5 show how the model can be used to study architectural
design issues as well as to study interactions between the architecture and the application. Moreover, the exam-
ples show that insight can be gained simply from looking at the input parameter values that are measured for a
particular workload.

The model is being made available for use by others in the POEMS environment [2]. The real test of the model
is how it performs in a commercial architecture design context, for which public data is unavailable. Perhaps in
making the model available commercial systems designers, feedback can be obtained about its accuracy in a real
system design setting. Future research topic includes investigating methods of coupling the architectural model
with a more abstract model of the communication and synchronization behavior in the application.
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A Customized AMVA Equations for the Homogeneous Model

Notation: For readability, we have adopted the following subscripts and superscripts for the variables in the
model. The resource is always the first subscript on a variable, whether it is mean residence time (R), mean
waiting time (W ), mean utilization (U), or mean service time (S). For example, Rdc is the mean residence time at
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the directory controller (DC). For many terms, there is a subscript of loc or rem to indicate whether the resource
is at the local node for a given processor or a remote node. The subscript variable y denotes the transaction type
(such as read or write).

We now present a subset of the equations used in the homogeneous model. These equations apply to both
submodels that are used to compute the two types of stall time: stalling due to load misses awaiting data and
stalling due to the hardware constraint on the number of outstanding memory requests. The following equation is
for the total response time of a customer through the system. It includes the response times at the processor, bus
(both local and remote), network, and directory controller.

R = Rpe + Rbus + Rnet + Rdc

Each of these terms is derived from lower level equations. For example, the residence time at the DC is equal
to the sum of the residence time at the local DC and at the remote DCs.

Rdc = Rdcloc
+ Rdcrem

The mean residence time at the local (remote) DC is equal to the weighted average of the residence time of a
transaction type y at the local (remote) DC, for all transaction types y.

Rdcloc
=

∑

y Rdcloc,y

Rdcrem
=

∑

y Rdcrem,y

The mean residence time of a transaction of type y at the local (remote) DC is equal to the probability of
transaction y times how many times it visits the local (remote) DC (Vdirlocy

) times the sum of the waiting time at

the local (remote) DC (Wdcloc
) and the service time at a DC.

Rdcloc,y
= PyVdclocy

(Wdcloc
+ Sdc)

Rdcrem,y
= PyVdcremy

(Wdcrem
+ Sdc)

All of the terms in the above equations are inputs except the waiting times. Wdcloc
consists of the waiting time

at the local DC due to requests from the local node (W loc
dcloc

) and due to requests from remote nodes (W rem
dcloc

).

Wdcloc
= W loc

dcloc
+ W rem

dcloc

The waiting time at the local DC due to requests from the local node equals the sum of the waiting times over
all transaction types y that cause waiting.

W loc
dcloc

=
∑

y W
loc,y
dcloc

W rem
dcloc

=
∑

y W
rem,y
dcloc

Wdcrem
consists of the waiting time due to remote customers that are not from that remote node (W others

dcrem
) and

those that are from that remote node (W rem
dirrem

).

Wdcrem
= W others

dcrem
+ W rem

dcrem

W others
dcrem

=
∑

y W
others,y
dcrem
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W rem
dcrem

=
∑

y W
rem,y
dcrem

The following equations are for the mean waiting times due to waiting for specific transaction types. For exam-
ple, W

loc,y
dcloc

is the waiting time at the local DC due to local requests of transaction type y. Mean waiting time for a

single other customer equals
Rdcloc,y

R
−Udcloc,y

(the probability that a customer is in the queue but not in service)
times the service time, plus Udcloc,y

(the probability that a customer is in service) times the mean residual life of a
customer in service. Therefore, to get the total mean waiting time, we multiply by the number of local customers
who could cause an arriving local customer to wait, M − 1.

W
loc,y
dcloc

= (M − 1)
[(

Rdcloc,y

R
− Udcloc,y

)

Sdc + Udcloc,y

(

Sdc

2

)

]

W
rem,y
dcloc

= M
[(

Rdcrem,y

R
− Udcrem,y

)

Sdc + Udcrem,y

(

Sdc

2

)

]

W
others,y
dcrem

= [(M − 1) + M(N − 2)][(
Rdcrem,y

R
− Udcrem,y

)Sdc + (Udcrem,y
)(Sdc

2 )]

W
rem,y
dcrem

= M [(
Rdcloc,y

R
− Udcloc,y

)Sdc + (Udcloc,y
)(Sdc

2 )]

Lastly, we have the utilization equations. The first equation is the mean utilization of a DC by a local customer,
and the second equation is the mean utilization of a DC by a remote customer.

Udcloc,y
=

Py

R
(Vdcloc,y

Sdc)

Udcrem,y
=

Py

R
(Vdcrem,y

Sdc)
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