
Analytic Evaluation of
Shared-Memory Architectures

Daniel J. Sorin, Member, IEEE, Jonathan L. Lemon, Derek L. Eager, and

Mary K. Vernon, Member, IEEE Computer Society

Abstract—This paper develops and validates an efficient analytical model for evaluating the performance of shared memory

architectures with ILP processors. First, we instrument the SimOS simulator to measure the parameters for such a model and we find a

surprisingly high degree of processor memory request heterogeneity in the workloads. Examining the model parameters provides

insight into application behaviors and how they interact with the system. Second, we create a model that captures such heterogeneous

processor behavior, which is important for analyzing memory system design tradeoffs. Highly bursty memory request traffic and lock

contention are also modeled in a significantly more robust way than in previous work. With these features, the model is applicable to a

wide range of architectures and applications. Although the features increase the model complexity, it is a useful design tool because

the size of the model input parameter set remains manageable, and the model is still several orders of magnitude quicker to solve than

detailed simulation. Validation results show that the model is highly accurate, producing heterogeneous per processor throughputs that

are generally within 5 percent and, for the workloads validated, always within 13 percent of the values measured by detailed simulation

with SimOS. Several examples illustrate applications of the model to studying architectural design issues and the interactions between

the architecture and the application workloads.

Index Terms—Analytical model, shared memory multiprocessor, heterogeneity, performance evaluation, mean value analysis.

æ

1 INTRODUCTION

COMPUTER architects traditionally use detailed simulation
to evaluate architecture performance tradeoffs. Detailed

simulation of parallel architectures with complex modern
processors usually entails a cycle-by-cycle simulation of each
processor that precisely captures significant behavior, such as
out-of-order instruction issue and speculative instruction
execution, that can greatly affect system performance [13].
Detailed simulation, however, is time-consuming. For exam-
ple, detailed simulation of an 8-processor shared memory
architecture, running a single parallel FFT code with a small
input data set, can take hours on a Sun UltraSPARC system,
even though only seconds of the system execution time are
actually simulated.

To design a given memory system architecture, one

would like to evaluate alternative memory system

architectures for dozens, if not hundreds, of commercial

applications and workloads that might be expected to run

on the system. Thus, more efficient evaluation methods

that can aid in culling the system design space are highly

desirable. Analytical models offer the possibility of

efficiently computing performance estimates that can be
useful in identifying the most promising regions of the
architectural design space, which can then be explored
more fully using the detailed simulation approach. The
key issue is devising an analytical model that is
sufficiently accurate for this purpose, over the range of
workloads of interest. If such a model can be constructed,
it also offers the opportunity to explore how the memory
system architecture performs for hypothetical changes in
the memory request behavior of the executing workload.
Experienced system architects may be interested in
exploring such issues, which is difficult to do with
simulation of specific benchmarks.

Three recent papers have developed analytical models
that contain some of the significant features of complex,
modern, and shared memory multiprocessor architectures
[3], [21], [17]. Of these models, the previous “SM-ILP”
model [17] is the only model that 1) includes the impact of
instruction window size and dependences between mem-
ory accesses, which cause a processor to block after a
dynamically changing number of memory requests, and 2)
has been validated against simulations of applications
running on a parallel shared memory architecture. The
model has a number of significant features. First, it is based
on a relatively small set of input parameters that are sensitive
to changes in the processor and associated cache architec-
ture, but are insensitive to changes in the rest of the memory
system architecture. Second, the model captures the key
characteristics of a complex modern processor architecture
which are important for memory system design, such as
speculative memory requests and complex processor block-
ing behavior. Third, the SM-ILP model produces results for
each alternative memory system architecture in a few
seconds and these results were shown to predict processor

166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

. D.J. Sorin is with the Department of Electrical and Computer Engineering,
Duke University, Box 90291, Durham, NC 27708.
E-mail: sorin@ee.duke.edu.

. J.L. Lemon is with Cisco Systems, 117 W. Chicago St., Stoughton, WI,
53589. E-mail: jlemon@flugsvamp.com.

. D.L. Eager is with the University of Saskatchewan, Room 1c112,
Engineering Building, 57 Campus Drive, Saskatoon, SK S7N 5A9.
E-mail: eager@cs.usask.ca.

. M.K. Vernon, 1210 W. Dayton Street, Madison, WI 53706.
E-mail: vernon@cs.wisc.edu.

Manuscript received 22 Feb. 2000; revised 13 July 2001; accepted 9 Aug.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 111556.

1045-9219/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

throughput, measured in instructions per cycle (IPC),

within 1-12 percent of the detailed simulation estimates

for several Splash-2 applications [23] running on the RSIM

architecture [12].
This paper extends the SM-ILP model in the following

ways in order to create a complete model of system

behavior:

. Measurements of several SPMD applications run-
ning on RSIM showed that each processor is
statistically identical with respect to memory request
behavior and that, for each processor, its remote
memory requests are approximately equally likely to
visit each of the remote memory modules [17]. This
paper measures the parameters for some of the same
SPMD applications as well as other Splash-2
applications using SimOS, which has been used in
several previous architecture, OS, and workload
studies [19], [20], [4] and includes the operating
system workload as well as the application work-
load. The SimOS measurements show that, although
the SGI IRIX operating system executes uniformly
across all of the processors, both the SPMD and the
other Splash-2 applications have highly heteroge-
neous memory request behavior. Measured para-
meters provided in this paper illustrate the types of
heterogeneity that occur in the workloads that are
simulated using SimOS. More detailed measures are
provided to understand the several causes of the
observed heterogeneity.

. The new model provides parameters for specifying
heterogeneous, as well as homogeneous, memory
request behavior. That is, each processor can have a
different mean time between memory requests,
distribution of the number of outstanding requests
when the processor blocks, and so forth. Moreover,
the memory requests from each processor can have a
different distribution of destinations for requests to
remote nodes. Since heterogeneous memory request
behavior can have a disproportionate impact on
system throughput due to nonlinear queuing effects
in the memory system, it is important for a model
that supports memory system design to capture such
behavior. The extensions to the SM-ILP model that
are needed to solve the heterogeneous system
models are relatively straightforward. One key open
question addressed in this work is whether the
model remains tractable, both from a programming
effort standpoint and a solution-time/convergence
standpoint, when the memory request heterogeneity
is represented. Another key open question is how
well the heterogeneous model validates with respect
to individual processor throughput estimates and
with respect to estimated mean queuing delays in
the memory system.

. The SM-ILP parameter measurements revealed that
memory requests from modern processors with
nonblocking caches are highly bursty and that this
burstiness can have a significant impact on the
queuing times in the memory systems [17]. The SM-
ILP model used a simple analytic approach to
represent the performance impact of the bursty
requests which was reasonably accurate for estimat-
ing overall system throughput, but it overestimated

processor utilization and underestimated bus waiting
times in the RSIM architecture. Recent work [5]
develops new analytic methods that more accurately
estimate server utilizations and mean waiting times in
simple two-queue networks with bursty departures
from one of the queues. The key issues addressed in
this paper are how to parameterize the new analytic
methods in [5] for the context of bursty memory
requests in shared memory system architectures and
whether the new methods are accurate in this more
complex context.

. The SM-ILP model computes total application
running time from measured average lock waiting
times as well as analytic estimates of the processing
rate when the processors are not waiting for locks.
Since lock contention delays are affected by delays in
the memory system, the average lock waiting time
input parameter is, in general, dependent on the
output values of the model. This paper develops a
submodel that accurately estimates mean lock access
delays from fundamental input parameters that are
independent of changes in the memory system
architecture (below the processor cache hierarchy).

With the above extensions, the model presented and
validated in this paper is significantly more complete than
the SM-ILP model. Moreover, the input parameters them-
selves provide new understanding of application behavior.
While modeling the additional behaviors increases the
model’s size and complexity over that of the SM-ILP model,
the model solution time is still on the order of a couple of
seconds. The number of input parameters is increased, but
is still manageable.

The model extensions developed in this paper could
easily be applied to the RSIM architecture. The new
application to the system architecture simulated by SimOS
has two significant benefits. First, the new application tests
the robustness of the basic analytic approach for a
significant change in the memory system architecture,
including a different memory consistency model. Second,
the measured input parameters for the model show that the
SimOS workloads, which include operating system proces-
sing, have quite different behavior than RSIM workloads
with respect to the memory system.

Validations in this paper show that the new model
predicts heterogeneous processor performance that agrees
with detailed SimOS estimates for a set of benchmark
applications running on the SimOS architecture. The
percentage difference between the throughput estimates
computed by the model and the throughput reported by
SimOS for each processor is typically within 5 percent and
always less than 13 percent over the workloads studied in
this work. The validation results and example model
applications also show that modeling heterogeneity is
important for achieving high model accuracy. Thus, this
capability is essential both to achieving wider applicability
of the model and for increasing confidence in using the
model to find the promising regions of the memory system
architecture design space that should be investigated using
detailed simulation.

Three examples are provided to illustrate the use of the
new model. One example illustrates the use of the model to
evaluate alternative memory system designs under a
heterogeneous workload. The two other examples provide
estimates of the (maximum) performance gains that can be
achieved if applications are “tuned” to remove the hetero-
geneity that is observed in the measured parameters for the
applications.

Like the previous analytic model, the new model input
parameters are derived from a detailed simulation of an

SORIN ET AL.: ANALYTIC EVALUATION OF SHARED-MEMORY ARCHITECTURES 167

application or workload running on a given parallel
processor architecture. However, the model input para-
meters have been carefully chosen so as to be insensitive to
large changes in the memory system latency below the
processor cache hierarchy. Thus, as shown in [17], the
analytic model can accurately predict system performance
when various memory system components below the
processor cache hierarchy are modified. Consequently, the
analytic model can be used to quickly cull the design space
for this part of the memory system for both measured
workload parameters and hypothetical variations in the
measured workload parameters, thereby greatly extending
the region of the design space that can be evaluated as well
as reducing the size of the design space that needs to be
explored using simulation. More detailed exploration of the
promising regions of the design space can be performed
using full system simulators, detailed models of caches
(e.g., [2], [15], [22]), and/or statistical simulation ap-
proaches [11] to obtain additional insights.

The rest of this paper is organized as follows: Section 2
describes the system that will be modeled. Section 3
explains the model parameters and provides measured
application parameters that illustrate the types of hetero-
geneity that occur in the SimOS benchmarks. Section 4
discusses the model and develops new modeling ap-
proaches for bursty traffic and synchronization in shared
memory multiprocessors. Section 5 presents the model
validations and Section 6 discusses applications of the
model. Finally, Section 7 summarizes the paper and
discusses future research.

2 SYSTEM ARCHITECTURE

The system architecture of interest in this paper is the
architecture modeled by SimOS [14]. This architecture,
which is similar to that of the Stanford FLASH [7] and the
SGI Origin [8], is a cache-coherent, sequentially consistent
shared-memory multiprocessor system, as shown in Fig. 1.
Differences between this architecture and the RSIM archi-
tecture [12] previously modeled in the SM-ILP model are
pointed out in the description of the SimOS architecture
below.

The MIPS R10000 processor, modeled by SimOS’s MXS
simulator, is an aggressive implementation of sequential
consistency (SC) that exploits instruction level parallelism
using multiple functional units, out-of-order execution,
nonblocking loads, and speculative execution. Instructions

are fetched into the instruction window and they are issued
to the functional units after all of their input data
dependences are satisfied. Speculative execution is used
for (temporarily) unresolved control dependences for up to
four branch instructions. The instructions are fetched into,
and retired from, the window in program order, but they
may be issued to the functional units out of program order.

An instruction can retire from the instruction window
only after it completes execution. A key implication of this
requirement is that, when a load reaches the top of the
instruction window, retirement must stall if the data has not
yet returned. SimOS differs from RSIM in that, since SimOS
models a sequentially consistent architecture, stores in
SimOS only issue to the memory system when they reach
the top of the instruction window.

The caches use miss status holding registers (MSHRs) to
track the status of all outstanding misses [6]. Misses to the
same cache line are coalesced in the MSHRs; only one
memory request is generated for such coalesced misses.

As shown in Fig. 1, all traffic to or from a remote node
goes through the directory controller (DC). SimOS models
the memory bus and the interconnection network using
fixed latencies that account for service time as well as
estimated contention delay. In contrast to the RSIM
architecture, traffic into the node that only requires
accessing the directory and memory does not require use
of the bus. SimOS also differs from RSIM in that it does not
model a separate network interface since the DC serves that
purpose.

Cache coherence is maintained by a fairly standard
three-state (MSI) directory-based invalidation protocol.
Unlike the RSIM architecture, cache-to-cache transfers
require four hops instead of three; the home node is
responsible for collecting invalidations before acknowl-
edging a request for exclusive permission.

3 PARAMETERS

In this section, we describe the input parameters for the
model. These parameters include the system architecture
parameters and the application parameters. Then, we show
that the application parameters exhibit heterogeneity across
the processors and we explain several sources of this
heterogeneity.

3.1 System Architecture Parameters
Table 1 defines the system architecture parameters, includ-
ing the values that are used in the validation experiments in
Section 5. Latencies are in units of CPU cycles for the
200 MHz R10000 processor. Note that memory access is
overlapped with directory access; thus, there is just one
parameter for that access latency, SDClong .

168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

Fig. 1. System architecture.

TABLE 1
System Architecture Parameters

3.2 Application Parameters

The application parameters for a given processor are

summarized in Table 2. These parameters characterize the

memory request behavior (between any two barriers) of an

application running on the architecture. For a homogeneous

model, the parameter values are the same at all processors,

but this will not be true of the heterogeneous model. The

first three parameters characterize the rate of requests to the

memory system, the burstiness in the memory interrequest

times, and the number of outstanding requests when the

processor blocks due to a memory request that cannot be

retired. Note that the distribution fM accounts for the

impact of speculative (as well as nonspeculative) memory

requests on processor blocking behavior. The rest of the

parameters characterize the types of requests that are being

issued to the memory system. Sorin et al. observe that these

input parameters are sensitive to instruction window size,

processor architecture, organization and size of the proces-

sor cache hierarchy, and various aspects of the application

code and compiler, but are relatively insensitive to memory

system latencies below the processor cache hierarchy [17].

3.3 Heterogeneity in Application Parameters

The homogeneous SM-ILP model assumes that all proces-
sors have statistically similar application behavior with
respect to the memory system and that each processor’s
local/remote memory accesses are uniformly distributed
across the local/remote memory modules. In the homo-
geneous model, each processor has the same input para-
meters, as shown in Table 2, and no input parameters are
needed for frequencies of access to each memory module.

Fig. 2, Fig. 3, and Fig. 4 illustrate the processor
heterogeneity in several key parameters for particular
barriers (i.e., interbarrier phases) of a few SPLASH-2
benchmarks [23], as measured by SimOS. The benchmark
name is followed by the number of processors, e.g., FFT-8 is
an eight processor run of the FFT benchmark. For each
input parameter shown, the eight bars represent the values
of that parameter for each of the eight processors, divided
by the value of that parameter when measured over all
eight processors. The heterogeneity in various measures for
particular barriers is also summarized in Table 3.

The degree of parameter heterogeneity, such as in the
measures of � and P ðLjwÞ in the figures and Table 3, is

SORIN ET AL.: ANALYTIC EVALUATION OF SHARED-MEMORY ARCHITECTURES 169

TABLE 2
Application Parameters

Fig. 2. Parameter heterogeneity of FFT-8, barrier 1. Fig. 3. Parameter heterogeneity of Radiosity-4, barrier 7.

perhaps higher than might be expected. Some (irregular)
applications, such as Radiosity, are inherently heteroge-
neous and, thus, the per processor memory request
measures simply quantify the degree of memory request
heterogeneity that occurs in those applications. However, as
can be seen from the figures and the table, significant
memory request heterogeneity is also present for SPMD
applications, such as FFT and Radix, that are generally
thought to be homogeneous and were observed to have
homogeneous memory request behavior in RSIM [12]. It is
particularly surprising to observe the heterogeneity in the
statistics for systems with small numbers of processors, and
it is relevant since SMPs with four or eight processors are
prevalent in industry. We are not aware of any prior work
that shows that SPMD applications have a high degree of
statistical heterogeneity.

In an attempt to determine the source of the processor
memory request heterogeneity for these SPMD applications
on SimOS, we separated the statistics into application and
kernel statistics for each processor. For example, the
number of memory requests per processor for the transpose
phase (barrier 2) of FFT-4 is shown in Table 4. As expected,
the number of memory requests that are issued when a
processor is executing the application are quite homoge-
neous across the processors, with a coefficient of variation
of 0.02. What is perhaps surprising is both the high
numbers of memory requests that are issued in kernel
mode (larger, in fact, than the numbers of application
requests) as well as the heterogeneity in this number across
processors, as shown by a coefficient of variation of 0.27.
For the SPMD applications, other parameters like CV�
exhibit similar heterogeneity in the kernel while remaining
homogeneous in the application.1

A key point is that the kernel executes uniformly
across the processors in the SimOS architecture and, thus,
the kernel memory request statistics are fairly homo-
geneous across the processors if measured over a long
time interval, such as the execution time for the entire
application. However, the memory request heterogeneity
observed in the measured intervals between each barrier
will impact memory system performance and, therefore,

the heterogeneity in this timeframe must be measured
and represented in the inputs to the model.

Beyond the heterogeneity inherent in some applications
or caused by kernel behavior, some applications can
exhibit heterogeneous behavior if they have not been
“tuned” to run on a particular architecture and runtime
system, which occurs frequently in practice. Heterogene-
ity in the measured model input parameters can point to
the need for such tuning and even indicate what types of
tuning are needed. For example, in barrier 1 of FFT-8,
three processors have small relative values of � when the
application is executing, indicating that they have espe-
cially high level 2 cache miss rates. Those same
processors (and one additional processor) have a rela-
tively low probability of local memory access for read
and/or write requests. Thus, examining the data layout
or comparing the code that runs on those three processors
against the code that runs on the other five processors,
looking for differences that might cause these effects, may
lead to some insight about how to improve performance.
Similarly, the heterogeneity in the probability that a write
request is local for Radix suggests that data layout should
be examined for that application as well.

In general, although there may be intuition that
particular applications will exhibit heterogeneous behavior
of some form, intuition alone is generally insufficient to
estimate the magnitude of the heterogeneity in particular
statistics of interest, its magnitude relative to the hetero-
geneity induced by kernel activity, or the extent to which
performance might be improved by particular types of
application tuning. Measurements of heterogeneity and the
use of models that capture its performance impacts can
provide answers to such questions.

The figures and the table indicate that heterogeneity
occurs in practice for every model input parameter. Two
parameters, though, have notably less extreme heterogene-
ity: 1) the average of the fM distribution (i.e., the average
number of memory requests that are outstanding when the
processor blocks because a load or store cannot be retired)
and 2) the probability that a remote read request for a dirty

170 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

Fig. 4. Parameter heterogeneity of Radix-8, barrier 2.

TABLE 3
Examples of Parameter Heterogeneity

TABLE 4
Memory Requests for FFT-4 Barrier 2

1. Note that, in Table 4, the number of memory requests appears to be
correlated with the processor number, but this correlation is just
coincidental and did not occur with any higher than random frequency in
the results that we obtained for different barriers in the FFT application and
for different applications.

block requires invalidating or downgrading the line in a
cache at another remote node (P4hopjr). However, system
performance can be sensitive to the values of these
parameters. Thus, the model extensions for processor
heterogeneity will allow each processor to have its own
value for each of the input parameters.

3.4 Methodology for Obtaining the Application
Parameters

As mentioned in Section 3.2, previous work has shown that
the homogeneous model input parameters are, to first
order, insensitive to changes in memory system latency
below the processor cache hierarchy. For the new model
developed in this paper, we use the same input parameters
for each processor, but allow each processor to have a
different value for each parameter. Thus, these input
parameters will also be insensitive (to first order) to changes
in the memory system latencies below the processor-cache
hierarchy. One question is whether these parameters are
sufficient for accurately computing processor throughputs
and mean delays in the memory system for heterogeneous
workloads. This question will be investigated by comparing
the estimates against the performance measures that are
given by SimOS.

The set of parameters for a given application/workload
of interest executing on a given processor and cache
architecture of interest are obtained through simulation of
the application on a single memory and interconnection
network architecture (e.g., an idealized constant latency
interconnect) with memory access latencies that are within a
small constant factor of the latencies in the memory
architectures to be evaluated with the model. Currently,
as shown in [17], the most accurate way to estimate these
parameters is to use the detailed simulator (e.g., SimOS)
that will be used to further evaluate the promising memory
system architectures identified by the analytic model.2

A key point in this methodology is that the detailed
simulator is run once for each workload and a given
processor/cache architecture to obtain the analytic model
parameters. The analytic model is then used to evaluate
many candidate memory and interconnection network
architectures, as illustrated in Section 6 of the paper. The
detailed simulator is then used to evaluate further details of
the most promising memory/interconnect architectures.
Because the detailed simulator is needed for detailed
analysis of the more promising architectures, the one run
needed per application to obtain the parameters for the
analytic model does not add significantly to the total time
needed to evaluate the architectures. Conversely, the
analytic model is more easily modified for alternative
memory/interconnect architectures than the simulator
(because the analytic model is more abstract and the
equations each have one of several possible forms) and it
can significantly speed up evaluation of the alternative
architectures.

4 ANALYTICAL MODEL

In this section, we develop the extended analytical model
for the SimOS architecture. The principal output measure
computed by the model is the system throughput, mea-
sured in instructions retired per cycle (IPC). This through-
put, as well as mean waiting time and utilization of each
memory system resource, is computed as a function of the
input parameters that characterize the workload and the
memory architecture.

For simplicity, in the exposition of the model equations,
we first present the homogeneous model in Section 4.1 and
then present the extensions for the heterogeneous model in
Section 4.2. In Section 4.3, we develop the techniques for
modeling bursty memory traffic and lock contention.

4.1 Homogeneous Model

As in the previous SM-ILP model [17], we develop a
customized Approximate Mean Value Analysis (AMVA)
model of homogeneous workloads running on the SimOS
architecture. Our experience is that, as claimed in that
paper, it is not difficult to modify the basic AMVA
equations in the previous model [18] for other shared
memory multiprocessor architectures. The most significant
issue in developing the new model was how to model the
different memory consistency model in the SimOS archi-
tecture. Unlike the SM-ILP model which iterated between
two submodels to account for two types of processor
blocking behavior in the release consistent (RC) RSIM
architecture, the model of the sequentially consistent (SC)
SimOS architecture developed below is a single model that
accounts for all types of blocking behavior.

The processor and cache subsystem are modeled as a
black box that—when not completely stalled—issues
memory requests at a given rate (1=�) and with a given
coefficient of variation in interrequest times (CV�). The
model computes the overall mean system residence time for
a memory request, including mean delays and service times
at the directory controllers (DCs), split-transaction memory
buses, and in the interconnection network.

For readability, we have adopted the following notation
of subscripts and superscripts for the variables in the
model. The resource is always the first subscript on a
variable, whether it is mean residence time (R), mean
waiting time (W), mean utilization (U), or mean service time
(S). For example, Rdc is the mean residence time at the
directory controller. For many terms, there is a subscript of
loc or rem to indicate whether the resource is at the local
node for a given processor or a remote node. The subscript
variable y denotes the transaction type (such as read or
write). We first present the equations for the case that
fM ¼ 1 for a particular but arbitrary value of M less than or
equal to the number of MSHRs. In this case, each processor
has M customers that each alternately visit the processor for
average time � and then visit various resources in the
memory system, reflecting (statistically) the memory re-
quest behavior from the processor. Later, we discuss how to
model the more general distribution for fM .

The following equation is for the total mean residence
time of a customer for one cycle from the processor, through
the memory system, and back to the processor. This
includes the mean residence times at the processor, buses
(both local and remote), network, and directory controllers,

SORIN ET AL.: ANALYTIC EVALUATION OF SHARED-MEMORY ARCHITECTURES 171

2. Faster methods might be developed to obtain some of the parameters,
as was investigated for the SM-ILP model, but those parameters have, so
far, been less accurate than the parameters from the detailed simulator and
improvements in the faster simulation methods are beyond the scope of this
paper.

R ¼ Rpe þRbus þRnet þRdc:

Each of these terms is derived from lower level
equations. For example, the mean residence time at the
directory controllers is equal to the sum of the mean
residence time at the local DC and at the remote DCs,

Rdc ¼ Rdcloc þRdcrem :

The mean residence time at the local (remote) DC is
equal to the sum of the weighted mean residence time for
each transaction type y at the local (remote) DC, weighted
by the probability that the transaction is of type y,

Rdcloc ¼
X
y

Rdcloc;y ;

Rdcrem ¼
X
y

Rdcrem;y :

The weighted mean residence time of a transaction of
type y at the local (remote) DC is equal to the probability of
transaction y times the average number of visits the type y
transaction makes to the local (remote) DC (Vdirlocy) times the
sum of the waiting time at the local (remote) DC (Wdcloc) and
the service time at a DC,

Rdcloc;y ¼ PyVdclocy ðWdcloc þ SdcÞ;

Rdcrem;y ¼ PyVdcremy ðWdcrem þ SdcÞ:

Note that the average number of visits to the local
(remote) DC is computed for the transaction type using the
other probabilities given in Table 2.

All of the terms in the above equations are inputs, except
the waiting times. Wdcloc consists of the waiting time at the
local DC due to requests from the local node (Wloc

dcloc
) and

due to requests from remote nodes (Wrem
dcloc

),

Wdcloc ¼Wloc
dcloc
þWrem

dcloc
:

The waiting time at the local DC due to requests from the
local node equals the sum of the waiting times over all
transaction types y that cause waiting,

Wloc
dcloc
¼
X
y

Wloc;y
dcloc

;

Wrem
dcloc
¼
X
y

Wrem;y
dcloc

:

Wdcrem consists of the waiting time due to remote
customers that are not from that remote node (Wothers

dcrem
)

and those that are from that remote node (Wrem
dirrem

),

Wdcrem ¼Wothers
dcrem

þWrem
dcrem

;

Wothers
dcrem

¼
X
y

Wothers;y
dcrem

;

Wrem
dcrem
¼
X
y

Wrem;y
dcrem

:

The following equations are for the mean waiting times

due to waiting for specific transaction types. For example,

Wloc;y
dcloc

is the mean waiting time at the local DC due to local

requests of transaction type y. Mean waiting time for a

single other customer equals
Rdcloc;y

R ÿ Udcloc;y (the probability

that a customer is in the queue but not in service) times the

service time plus Udcloc;y (the probability that a customer is in

service) times the mean residual life of a customer in

service. Therefore, to get the total mean waiting time, we

multiply by the number of local customers who could cause

an arriving local customer to wait, M ÿ 1.

Wloc;y
dcloc
¼ ðM ÿ 1Þ

Rdcloc;y

R
ÿ Udcloc;y

� �
Sdc þ Udcloc;y

Sdc
2

� �� �
Wrem;y

dcloc
¼MðN ÿ 1Þ

Rdcrem;y

R
ÿ Udcrem;y

� �
Sdc þ Udcrem;y

Sdc
2

� �� �
Wothers;y

dcrem
¼ ½ðM ÿ 1Þ þMðN ÿ 2Þ�½ð

Rdcrem;y

R
ÿ Udcrem;yÞSdc

þ ðUdcrem;yÞð
Sdc
2
Þ�

Wrem;y
dcrem

¼M
Rdcloc;y

R
ÿ Udcloc;y

� �
Sdc þ ðUdcloc;yÞ

Sdc
2

� �� �
:

Last, we have the utilization equations. The first equation
is the mean utilization of a DC by a local customer, and the
second equation is the mean utilization of a DC by a remote
customer,

Udcloc;y ¼
Py
R
ðVdcloc;ySdcÞ;

Udcrem;y ¼
Py
R
ðVdcrem;ySdcÞ:

A key question in developing the analytic model is how
to compute throughput as a function of the dynamically
changing number of outstanding memory requests that can
be issued before the processor must stall waiting for data to
return from memory. The SM-ILP model resolved this issue
by solving the model for each value of M and then taking a
weighted average of the results. As will be explained in the
next section, a different solution will be necessary for a
heterogeneous model.

4.2 Modeling Heterogeneity

Given that 1) processor heterogeneity (and memory access
nonuniformity) occur quite frequently in practice and 2) the
heterogeneity can be expected to have a nonlinear impact
on queuing and memory system performance, this section
extends the model above for heterogeneous workloads.
Results in Section 5 will show that modeling heterogeneity
is critical for achieving accurate results.

Three features are needed in order to model hetero-
geneous processor behavior. First, new model inputs are
required. Specifically, each of the model input parameters
in Table 2 is measured for each processor. Also, modeling
memory access nonuniformity requires additional para-
meters that specify, for each processor and type of remote
memory request, the probability that the request will be
directed to each other node.

Second, we require a new model of the varying number
of outstanding requests, M, that are issued by the processor

172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

before the processor blocks waiting for a memory system
response. The SM-ILP model computes system throughput
for each possible value of M with the same value of M at
every processor and, then, computes a weighted sum of
these throughputs, where the weights are computed from
the measured distribution of M, fM . This weighted sum
approach may be valid if the processors generally have the
same value of M at the same time, as might be true for the
homogeneous SPMD applications that were modeled in
[17]. However, the weighted sum technique is difficult to
apply in the case where different nodes have different
distributions of M. Computing the throughput for every
possible combination of M values at the different proces-
sors, as well as computing the weighting factor for each
such throughput, is prohibitively complex. An alternate
approach is to use the average value of M at each node. The
drawback of using the average value is that it may fail to
capture the nonlinear effects of varying M; thus, it may not
capture a broad distribution of M accurately.

In Table 5, we compare the accuracy of the estimated
processor throughput for the weighted sum approach
against simply solving the model once for the average
value of M for some of the homogeneous applications that
were simulated using RSIM. These results provide some
evidence that, for current window sizes and applications,
the average M approach achieves similar accuracy to the
weighted sum approach. We compute average M from the
measured fM , where the fM are measured assuming an
infinite number of MSHRs, and we allow each processor to
have its own average value of M which is limited by the
number of MSHRs, Mhw.

The third change is to modify the model equations [18],
[16] to compute performance metrics at each resource
within the memory system for heterogeneous processor
loads. With homogeneous behavior, it is only necessary to
compute performance metrics for a single generic resource
of type i and a single generic processor load; the total
utilization of the particular memory resource, for example,
can then be obtained simply by multiplying by the number
of processors. This leads to model complexity on the order
of the number of types of resources, as was seen in the
equations in Section 4.1. For heterogeneous processor loads,
in contrast, each processor may have differing memory
referencing behavior and, thus, may contribute to differing
extents to utilization and contention at each resource.
Computing the N2 interactions of each processor on each
memory system resource increases the complexity of the
model equations by a factor of N2, which leads to a key

question about whether the iterative model will converge in
practice. This issue is addressed in Section 5. Efficient
coding methods (for both the homogeneous and hetero-
geneous model) limit the size of the model (measured in
C++ code), though, to only about twice that of the
homogeneous model. The accuracy improvements that
may be obtained by accurately modeling heterogeneous
memory request behavior when it exists, rather than
assuming homogeneity, are also illustrated in Section 5.

At a high level, the heterogeneous equations have a form
similar to the homogeneous equations. Terms require extra
indices (given in brackets) to indicate the node of the
customer and/or the destination. Thus, a utilization term
such as Udcloc (the mean utilization of the local DC) becomes
Udcloc ½i� (the mean utilization of the DC of node i by local
customers) to reflect the fact that the utilization of the local DC
is different for different nodes. The probabilities of the
transaction types (e.g., local read or 4-hop write) use an index
in a similar fashion. For example, we now have that the
probability of transaction y at node i is Py½i�. So, the total mean
residence time for a customer from node i,R½i�, is equal to the
sum of its mean residence times at the processor (pe), buses,
network, and directory controllers (dc).

R½i� ¼ Rpe½i� þRbus½i� þRnet½i� þRdc½i�:

Examining the DC portion of this equation highlights the
differences in the equations between the heterogeneous and
homogeneous models. Mean DC residence time is equal to
the mean residence time at the local DC plus the mean
residence time at the DCs of the other nodes.

Rdc½i� ¼ Rdcloc ½i� þ
X
j6¼i
j

Rdcrem ½i�½j�:

Only focusing on the mean residence time at the remote
DC, it is the sum of the mean residence times over the
different types of transactions, denoted by a subscript of y.

Rdcrem ½i�½j� ¼
X
y

Rdcrem;y ½i�½j�:

The mean residence times of individual transaction types
are equal to the probability of the transaction type (Py½i�)
times the visit count (Vdcremy ½i�½j�) times the sum of the mean
waiting time (Wdcrem ½i�½j�) and the service time at the DC
(Sdc):

Rdcrem;y ½i�½j� ¼ Py½i�Vdcremy ½i�½j�ðWdcrem ½i�½j� þ SdcÞ:

SORIN ET AL.: ANALYTIC EVALUATION OF SHARED-MEMORY ARCHITECTURES 173

TABLE 5
Accuracy of Processor Throughput Estimates for Weighted Sum versus Average M

All of the terms in the above equation are inputs, except
for the waiting times. The equation for mean waiting time at
a remote directory is as follows:

Wdcrem ½i�½j� ¼Wothers
dcrem

½i�½j� þWrem
dcrem
½i�½j�:

Wothers
dcrem

½i�½j� is the mean waiting time of a node i
customer at the DC of node j due to traffic from all
nodes other than node j. Wrem

dcrem
½i�½j� is the mean waiting

time of a node i customer at the DC of node j due to
traffic from node j. Only breaking down Wrem

dcrem
½i�½j�

further, we have that

Wrem
dcrem
½i�½j� ¼

X
y

Wrem;y
dcrem
½i�½j�

� �
:

The following equations are for the mean waiting times

of specific transaction types. Thus, Wrem;y
dcrem
½i�½j� is the mean

waiting time by a node i customer at node j’s DC due to

node j traffic for transactions of type y. Mean waiting time

due to a single node j customer equals
Rdcloc;y

½j�
R½j� ÿ Udcloc;y ½j� (the

probability that a customer is in the queue but not in

service) times the service time plus Udcloc;y ½j� (the probability

that a customer is in service) times the mean residual life of

a customer in service. Therefore, to get the total mean

waiting time, we multiply by the number of node j

customers, M½j�.

Wrem;y
dcrem
½i�½j� ¼

M½j�
Rdcloc;y ½j�
R½j� ÿ Udcloc;y ½j�

� �
Sdc þ Udcloc;y ½j�

Sdc
2

� �� �
:

Last, we have the equation for the mean utilization of
node i’s DC by a local customer.

Udcloc;y ½i� ¼
Py½i�
R½i� ðVdcloc;y ½i�SdcÞ:

Modeling the other resources in the system is similar to
what has been shown here for the DC. All of the details of
the heterogeneous AMVA equations can be found in [16].

4.3 Modeling Bursty Memory Requests and Lock
Contention

In this section, we present two further model extensions.
In Section 4.3.1, we adapt the new AMVA techniques
proposed in [5] to model bursty memory request traffic
observed in the SimOS workload measures. In
Section 4.3.2, we develop a method for computing lock
synchronization from basic model input parameters.

4.3.1 Burstiness

In the previous SM-ILP model, the mean residual line of a
“customer in service” at the processor (i.e., a memory
request about to be generated) is computed using an
intuitively motivated ad hoc interpolation. In this paper,
we instead employ a new and significantly more accurate
AMVA technique (called “AMVA-decomp”) [5] for com-
puting mean residence time at the processor queue. In
addition, we adapt the new AMVA techniques in [5] for
computing the mean wait at the “downstream” queue (i.e.,

the local DC in the SimOS architecture) which has bursty
arrivals from the local processor and thus increased average
queuing delay compared with the random arrivals assumed
in the standard AMVA equations.

The use of these new simple AMVA techniques is
motivated by the fact that they represent a very favorable
balance between accuracy, efficiency, and robustness.
Most importantly, they are based on a small number of
input parameters for which reliable values are relatively
easy to obtain. Furthermore, the solution method is easy
to implement and does not add appreciable complexity to
the overall AMVA model solution. Finally, the technique
is shown in [5] to have very high accuracy over a wide
range of system parameters, including parameter values
for which it might be expected to have high inaccuracy.
More detailed models of the processor service times, with
correspondingly more detailed models of the DC arrival
process, could be constructed, but such models would
require more detailed input parameters that would be
more difficult to estimate reliably. The more detailed
model would also be more complex to implement and,
thus, would only be justified if an appreciable increase in
model accuracy could be expected. However, mean
delays and system throughput for closed systems are
not sensitive to the details of the service distributions (i.e.,
higher moments of the distribution than the first or
second moment) at the various resources in the system
[9], [10]. Thus, a more detailed model of the processor
service time distribution is not desirable. Validation
results later in the paper confirm that, for the purposes
of computing system throughput for alternative memory
system architectures, the simple AMVA techniques out-
lined below capture the bursty behavior in sufficient
detail to predict system throughput quite accurately.

The AMVA-decomp technique assumes that the server
that has the bursty departures (i.e., the processor nodes in
the SimOS architecture) can be modeled with a 2-stage
hyperexponential distribution of service times. That is,
with probability p, a given customer has a “small” mean
service time, �a, and, with probability 1ÿ p, the customer
has a “large” mean service time, �b, where �a < �b and
� ¼ p�a þ ð1ÿ pÞ�b. The key question in applying this
technique for the processors in the heterogeneous model
is how to obtain the parameters of a suitable hyperexpo-
nential distribution. Two constraints on the distribution
are the measured mean service time (�) and the
coefficient of variation in the service time (CV�). How-
ever, this is an underconstrained problem. To apply this
technique to modeling heterogeneous bursty processors,
we define a third parameter for each processor, �a, that is
equal to the minimum measured value of � .3 Using � ,
CV� , and �a, we solve for �b and p.

In the model of bursty requests at the downstream
queues, there are bursts of arrivals and intervals between
bursts in which there are no arrivals. This scenario is
characterized by three parameters:

174 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

3. Note that other choices of �a, such as a small constant times the
minimum measured value of � , are also possible. What is needed is a value
that is approximately correct. We choose to set �a to a measured value and
allow �b to be computed from �a because the best value of the “small” mean
is likely to be near the measured minimum value of � , while there is no
measured value that corresponds well to �b. Moreover, the model is more
sensitive to the value of �a than to that of �b, especially in the high variance
cases where �a << �b.

. k, the average number of customer arrivals within a
burst,

. Ii, the mean interarrival time within a burst, and

. Io, the mean time between bursts.

In applying the bursty request model to the local DCs in
the SimOS architecture, the key question again is how to
map the requisite parameters to observable quantities in the
system. There are two constraints in determining values for
these three parameters. First, the coefficient of variation in
the interarrival time is determined by the coefficient of
variation in the service time at the processor. Second, the
throughput at the downstream queue, and thus the mean
interarrival time, is determined during the AMVA solution.
We create a third constraint by setting Ii equal to the value
of �a since it is reasonable to assume that interarrival time
during a burst would be similar to the value of a short
service time at the processor. We also assume that down-
stream burstiness is only caused by requests from the local
processor. The superposition of requests from other
processors will, on average, be less bursty.

Solving the model with the burstiness equations initially
led to some convergence problems. Ensuring that the model
converges requires some careful choices of initial values
and bounds on the input parameters to make sure that
values produced during the iterative solutions are reason-
able. For example, k cannot be allowed to be larger than the
total number of local customers.

4.3.2 Lock Contention

The previous SM-ILP model measured average lock waiting
times, which are affected by the memory system architec-
ture, instead of computing these performance measures
from more basic parameters that are independent of the
memory system architecture. In this paper, lock synchroni-
zation effects are computed from basic inputs with a
separate lock contention model.

Contention for a particular lock is most naturally
modeled by a queue in which the server is the lock and
the service time is the lock holding time. The challenge in
constructing this queue for the memory system architecture
workloads is that the customers (i.e., application processes)
queue for the lock while in service at the processor.
Furthermore, while holding the lock, the customer may
queue for memory system resources and then for further
use of the processor. In addition, the program can release
the lock while still holding the processor and it can
complete service at a memory system resource or processor
while still holding the lock. To model these various
behaviors, we initially assume that only one lock is held
at a time and then relax this assumption.

Lock contention is modeled in a separate queuing
network with one queue per lock that has nonnegligible
contention and a delay center which represents mean time
between releasing a lock and requesting another lock. An
example lock queueing model is shown in Fig. 5.
N customers in the network represent the processors that
are vying for the locks. The parameters for mean time at the
delay center and mean service time at the lock queue (i.e.,
mean time the lock is held) are computed from the memory
architecture model.

The basic parameters used to characterize lock behavior
in the example are the following:

. L: number of locks that have nonnegligible contention

. rnolock;j: average number of memory accesses made
by processor j between lock requests

. Plocki;j: probability that a lock request from processor j
is for lock i

. rlocki;j: average number of memory requests by
processor j while holding lock i

To incorporate the effects of lock contention in the
architecture model, we iterate between the memory
architecture model and the lock contention model. The
mean service time at each lock queue is set equal to rlocki;j
times the mean total round trip time for processor j in the
memory architecture model (R½j�). The mean time at the
delay center in the lock contention model for customer j is
set equal to rnolock;j times R½j�. The mean service time at the
processor in the architecture model is inflated (i.e.,
increased to �j þ �j=rnolock;j) to include mean lock waiting
time computed from the lock model. The iterative solution
again increases the complexity of the model, an issue that
will be addressed in Section 5. It also causes solution time to
increase slightly, but solution time is still on the order of
seconds. Moreover, this iterative technique can be general-
ized for specific cases of nested lock requests by having a
separate lock contention model for the locks at each level of
the lock hierarchy and iteratively solving the lock models
along with the architecture model. The details of the lock
contention equations can be found in [16].

5 MODEL VALIDATION

In this section, we present the results of validation
experiments that assess the accuracy of the analytic model
that is developed in this paper. The validations are
performed against SimOS, using SimOS’s detailed MXS
processor simulator and its NUMA memory system
simulator. SimOS runs IRIX 5.3 and all benchmark results
include OS behavior that occurred while the benchmark
was running. Thus, we measure analytic model inputs and
estimate system performance for the complete system
behavior instead of for the application alone.

The validation experiments include FFT, LU, Radiosity,
and Radix from the Splash-2 suite [23]. Table 6 shows the
data sets used for each application. We attempted to obtain

SORIN ET AL.: ANALYTIC EVALUATION OF SHARED-MEMORY ARCHITECTURES 175

Fig. 5. Example lock contention model.

SimOS results for the rest of the Splash-2 benchmark suite,
but these applications would not run successfully on the
version of the SimOS MXS processor simulator used in this
study. (This version of the MXS simulator was one of the
first versions to be released for use outside of the research
group that developed and initially used the simulator for
architectural studies. Thus, various steps needed to get the
other applications to run may have been missing from the
available documentation.) Similarly, we were unable to
make this version of the SimOS MXS simulator produce
results for greater than eight processors. Although the
number of benchmarks that ran successfully is small, the
memory access characteristics captured in the model input
parameters vary greatly across these applications as well as
in the different periods between barriers in a given
application and, thus, the analytical model is exercised
over a nontrivial region of the input parameter space.
Table 3 and Table 5 illustrate some of the variety in the
memory request behavior across the applications. As we
will show later, the processor throughput varies from 0.1 to
2.4 instructions per cycle across the application barriers
against which we were able to validate, indicating that the
differences in memory request behavior among these
benchmarks is significant. The low processor throughput
estimates also indicate that, although the number of
processors is relatively small, significant contention occurs
in the memory system (particularly at the directory
controllers) and, thus, the ability of the analytic model to

accurately estimate queuing delays is also exercised. This is
confirmed by the measured mean queueing delays reported
by SimOS for these applications (with the architectural
parameters in Table 1).

The validation results for model input parameter values
that exhibited the greatest degrees of heterogeneity in
processor performance are shown in Fig. 6, Fig. 7, and Fig. 8.
These results are for specific barriers (i.e., interbarrier
phases) of FFT, Radix, and Radiosity running on 8-node and
4-node versions of SimOS. Each graph gives the throughput
(in IPC) for each processor estimated by the new hetero-
geneous system model as well as the average throughput
estimated by the homogeneous model. Results for other
barriers of the FFT, LU, Radix, and Radiosity benchmarks
(both 8-node and 4-node) are presented in Table 7. The
column numbers in the table correspond to node numbers.
For each pair of rows, the first row is the IPC reported by
SimOS and the second row is the IPC predicted by the
model. The rightmost column corresponds to a homoge-
neous model using the average statistics, where the first
row is the average IPC across all nodes reported by SimOS
and the second row is the IPC predicted by the previous
homogeneous model using input parameters that are
averaged across all nodes.

These results show that the analytic estimates of per
processor throughput agree quite closely with the SimOS
measurements, even when each processor throughput is
remarkably different. The model achieves accurate perfor-

176 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

TABLE 6
Benchmark Data Sets

Fig. 6. Validation of FFT-8, barrier 1.

Fig. 7. Validation of Radix-4, barrier 2.

Fig. 8. Validation of Radiosity-4.

mance estimates although memory request behavior is
modeled statistically and at a high level of abstraction. As
mentioned before, the complexity of the new analytic model
makes its tractability a key question. In validating the
model, however, we discovered no cases where the model
did not converge to a solution within a matter of a few
seconds, in spite of strong heterogeneity in the model inputs
and in the estimated per processor throughputs.

Although the homogeneous analytic model is also often
accurate in estimating the average processor throughput,
the new estimates of per processor throughput from the
heterogeneous model are crucial to accurately estimating
the impact of the memory system architecture on applica-
tion execution times because, for applications employing
barriers, the barrier only completes execution when the
slowest processor reaches the barrier. Moreover, there are
examples, such as LU-4 barrier 4, for which the homo-
geneous model is not even accurate with respect to the
average node behavior reported by SimOS. This is due to
the fact that heterogeneity can have nonlinear effects on
queuing delays in the memory system and these nonlinear
effects are only captured in the heterogeneous model.

Validation of the lock synchronization modeling was
difficult in that none of the benchmarks that succeeded in
running on the MXS simulator in our version of SimOS
exhibited significant lock contention. Instead, we imple-
mented the “Sieve of Eratosthenes” algorithm for finding
prime numbers and found that executing this application
on SimOS exhibited significant lock contention. The

accuracy of the analytic model with complementary service
time inflation for lock contention, as compared with SimOS
measures for the application, is illustrated by the results in
Fig. 9 and Fig. 10. The application’s heavy lock contention is
revealed by the high mean lock waiting times reported in
Fig. 9. The mean lock waiting times and processor
throughputs (measured in memory requests per cycle)
estimated by the analytic model agree reasonably well with
the measured values, even in this extreme case.

6 APPLICATIONS OF THE MODEL

The model developed in this paper can be applied to
efficiently obtain initial answers to numerous questions
about architectural designs and the interactions between
applications and the architecture. Recall that the memory
system parameters (below the L2 cache) can be varied to
explore the design space without having to rerun the
detailed simulator to obtain new input parameters. The
model can reveal performance bottlenecks at specific
system resources due to heterogeneous and bursty memory
request traffic. This section illustrates three applications of
the model to such issues, pointing out cases in which the
previous homogeneous model provides inaccurate results.

6.1 Decoupling the Network Interface from the
Directory Controller

As discussed in Section 2, the SimOS architecture requires
all traffic into and out of a node to pass through the

SORIN ET AL.: ANALYTIC EVALUATION OF SHARED-MEMORY ARCHITECTURES 177

TABLE 7
Validation Results: Processor Throughput (IPC) Estimates

directory controller (DC). The DC effectively assumes the
responsibility of being the network interface (NI) for all
traffic, including traffic that does not require use of the
directory. This coupling of the DC and NI may, in some
cases, create a bottleneck, especially as processor speed
increases relative to memory speed.

An interesting architectural question that can be quickly
assessed with the model is the performance gain that could
be achieved by decoupling the NI from the DC, given that
the DC is twice as slow relative to the processor speed as
compared to the default values in Table 1. Fig. 11 shows
that, for an 8-way parallel execution of Radix (barrier 2),
decoupling the NI and the DC reduces the cycle count of the
barrier from 163k to 124k and moves the bottleneck from
CPU 3 to CPU 7.

The rightmost pair of bars shows the performance
impact predicted by the homogeneous model and there
are two key inaccuracies worth noting. Quantitatively, the
homogeneous model predicts barrier cycle counts 30 percent
less than those predicted by the heterogeneous model.

Qualitatively, the homogeneous model fails to capture the
shift in the bottleneck.

6.2 Importance of Data Layout

The model input parameter values for a given application
or workload can be useful in identifying opportunities for
tuning the application (or kernel). For example, the input
parameters that characterize where memory requests from
each processor are directed reveal insight into data layout
issues. More specifically, good data layout schemes max-
imize the fraction of requests that can be serviced locally.
That is, for a given application, if one layout scheme has a
higher probability of servicing a memory request locally
than another scheme, then it will likely have better
performance since local requests have lower latency than
remote requests.

For barrier 3 of LU-4, Fig. 12 illustrates the performance
gains that can be achieved for a hypothetical 50 percent
increase in the probability that a request is satisfied locally.
Of interest is the reduction in execution time that is
achieved by the hypothetical tuning at the bottleneck
processor (i.e., CPU 3 in Fig. 12). The magnitude of the
decrease in execution time guides how much effort should
be expended in looking for opportunities to increase data
locality in the LU code.

As shown in Fig. 12, the homogeneous model predicts a
decrease in average processor execution time that is similar
in magnitude (although larger in percentage) to the
decrease in execution time for the bottleneck processor.
However, the decrease in average processor execution time
is not generally a reliable estimate for what will occur at the
bottleneck center.

6.3 Tuning the Operating System

As discussed in Section 3.3, the operating system causes the
memory request heterogeneity that is observed in work-
loads with applications that are generally considered
homogeneous. For example, Table 4 shows that barrier 2
of FFT-4 is heterogeneous in � because of the kernel. To
determine the performance gain that could be achieved by

178 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

Fig. 9. Validation of lock contention estimates (“Sieve of Eratosthenes”

algorithm on four CPUs).

Fig. 10. Validation of processor throughput estimates with lock

contention (“Sieve of Eratosthenes” algorithm on four CPUs).

Fig. 11. Impact of decoupling DC and NI.

hypothetically tuning the kernel for homogeneity, we
compared the performance of this barrier against the
performance of the same barrier with homogeneous kernel
behavior. The OS parameters at each node are assumed to
be equal to their averages across all four nodes. Fig. 13
reveals that if the OS can be tuned for greater uniformity in
processor usage within the time that the application
executes between barriers rather than on a much coarser
time scale, this would lead to a 20 percent reduction in cycle
count for this barrier. Clearly, this study could not have
been performed without a heterogeneous model.

7 CONCLUSIONS

We have developed and validated a new analytical model
for evaluating the performance of shared memory multi-
processors with ILP processors and heterogeneous proces-
sor workloads. This work extends prior research in this area
in three ways: 1) adapting and validating the model for a
different architecture than that considered in previous
work, 2) modeling heterogeneous node behavior that was
reported by SimOS even when running homogeneous
applications, and 3) applying new techniques for modeling
bursty memory requests and developing techniques for
modeling lock synchronization. Despite the complexity of
modeling processor heterogeneity and nonuniform memory
access probabilities, bursty memory traffic, and lock
contention, the model converges quickly, is still several
orders of magnitude faster to solve than detailed simula-
tion, and the number of input parameters remains manage-
able. The model validates extremely well for individual
processor throughput estimates over a range of Splash-2
benchmarks that have a wide variety of memory request
behaviors, which leads to a wide range of observed
processor throughputs. Examples in Section 6 show how
the model can be used to study architectural design issues
as well as to study interactions between the architecture and
the application. Moreover, the examples show that insight
can be gained simply from looking at the input parameter
values that are measured for a particular workload. Model
parameters reveal application behavior and, in turn,

opportunities for architectural and application optimiza-

tions that target the bottlenecks revealed by the behavior

(such as not enough parallelism in the requests issued to

memory).
The model is being made available for use by others in

the POEMS environment [1]. The real test of the model is

how it performs in a commercial architecture design context

for which public data is unavailable. Perhaps in making the

model available to commercial systems designers, feedback

can be obtained about its accuracy in a real system design

setting. Results for systems with more nodes would also be

interesting since the model’s speed advantage over simula-

tion would be even greater. Future research topics also

include investigating methods of coupling the architectural

model with a more abstract model of the communication

and synchronization behavior in the application.

ACKNOWLEDGMENTS

This research is supported, in part, by the US Defense

Advanced Research Projects Agency/ITO under Contract

N66001-97-C-8533, the US National Science Foundation

under Grants MIP-9625558, EIA-9971256, EIA-9975024, and

EIA-0127857, and by the Natural Sciences and Engineering

Research Council of Canada under Grant OGP-0000264.

REFERENCES

[1] V. Adve, R. Bagrodia, J. Browne, E. Deelman, A. Dube, E.
Houstis, J. Rice, R. Sakellariou, D. Sundaram-Stukel, P. Teller,
and M. Vernon, “POEMS: End-to-end Performance Design of
Large Parallel Adaptive Computation Systems,” IEEE Trans.
Software Eng., vol. 26, no. 11, pp. 1027-1048, Nov. 2000.

[2] A. Agarwal, M. Horowitz, and J.L. Hennessy, “An Analytical
Cache Model,” Trans. Computer Systems, vol. 7, no. 2, pp. 184-215,
May 1989.

[3] D. Albonesi and I. Koren, “A Mean Value Analysis Multiprocessor
Model Incorporating Superscalar Processors and Latency Tolerat-
ing Techniques,” Int’l J. Parallel Programming, pp. 235-263, 1996.

[4] L.A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory System
Characterization of Commercial Workloads,” Pro. 25th Ann. Int’l
Symp. Computer Architecture, pp. 3-14, June 1998.

SORIN ET AL.: ANALYTIC EVALUATION OF SHARED-MEMORY ARCHITECTURES 179

Fig. 12. Performance impact of improved memory locality. Fig. 13. Predicted impact of tuning the OS.

[5] D. Eager, D. Sorin, and M. Vernon, “AMVA Techniques for High
Service Time Variability,” Proc. ACM SIGMETRICS, pp. 217-228,
June 2000.

[6] D. Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache Organi-
zation,” Proc. Eighth Int’l Symp. Computer Architecture, pp. 81-87,
May 1981.

[7] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz,
A. Gupta, M. Rosenblum, and J. Hennessy, “The Stanford
FLASH Multiprocessor,” Proc. 21st Int’l Symp. Computer
Architecture, pp. 302-313, Apr. 1994.

[8] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” Proc. 24th Ann. Int’l Symp. Computer Architecture,
pp. 241-251, June 1997.

[9] E. Lazowska, “The Use of Percentiles in Modelling CPU Service
Time Distributions,” Proc. IFIP W.G.7.3 Int’l Symp. Computer
Performance Modeling, Aug. 1977.

[10] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik, Quantitative
System Performance, Computer System Analysis Using Queueing
Network Models. Prentice Hall, May 1984.

[11] M. Oskin, F.T. Chong, and M. Farrens, “HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor
Designs,” Proc. 27th Ann. Int’l Symp. Computer Architecture, pp. 71-
82, June 2000.

[12] V. Pai, P. Ranganathan, and S. Adve, “RSIM Reference Manual,”
Technical Report 9705, Dept. of Electrical and Computer Eng.,
Rice Univ., Aug. 1997.

[13] V.S. Pai, P. Ranganathan, S.V. Adve, and T. Harton, “An
Evaluation of Memory Consistency Models for Shared-Memory
Systems with ILP Processors,” Proc. Seventh Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 12-
23, Oct. 1996.

[14] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “Complete
Computer System Simulation: The SimOS Approach,” IEEE Trans.
Parallel and Distributed Systems, vol. 3, no. 4, pp. 34-43, Apr. 1995.

[15] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the Memory
Wall: The Case for Processor/Memory Integration,” Proc. 23rd
Ann. Int’l Symp. Computer Architecture, pp. 90-101, May 1996.

[16] D. Sorin, J. Lemon, D. Eager, and M. Vernon, “A Customized
MVA Model for Shared-Memory Systems with Heterogeneous
Applications,” Technical Report 1400, Computer Sciences Dept.,
Univ. of Wisconsin, Madison, 1999.

[17] D. Sorin, V. Pai, S. Adve, M. Vernon, and D. Wood, “Analytic
Evaluation of Shared-Memory Parallel Systems with ILP Proces-
sors,” Proc. 25th Int’l Symp. Computer Architecture, pp. 380-391,
June 1998.

[18] D. Sorin, M. Vernon, V. Pai, S. Adve, and D. Wood, “A
Customized MVA Model for ILP Multiprocessors,” Technical
Report 1369, Computer Sciences Dept., Univ. of Wisconsin,
Madison, Mar. 1998.

[19] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A.
Gupta, and J. Hennessy, “Flexible Use of Memory for Replication/
Migration in Cache-Coherent DSM Multiprocessors,” Proc. 25th
Ann. Int’l Symp. Computer Architecture, pp. 342-355, June 1998.

[20] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
System Support for Improving Data Locality on CC-NUMA
Compute Servers,” Proc. Architectural Support for Programming
Languages and Operating Systems VII, pp. 279-289, Oct. 1996.

[21] D. Willick and D. Eager, “An Analytical Model of Multistage
Interconnection Networks,” Proc. ACM SIGMETRICS, pp. 192-202,
May 1990.

[22] S.J.E. Wilton and N.P. Jouppi, “CACTI: An Enhanced Cache
Access and Cycle Time Model,” IEEE J. Solid-State Circuits, vol. 31,
no. 5, pp. 677-688, May 1996.

[23] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations” Proc. 22nd Int’l Symp. Computer Architecture, pp. 24-36,
June 1995.

Daniel J. Sorin received the BSE degree in
electrical and computer engineering from Duke
University in 1996, the MS and PhD degrees in
electrical and computer engineering from the
University of Wisconsin-Madison in 1998 and
2002, respectively. He is an assistant professor
in the Department of Electrical and Computer
Engineering at Duke University. Dr. Sorin’s
research interests are in multiprocessor memory
systems, with an emphasis on availability,

verification, and analytical performance evaluation. He is a member of
the IEEE.

Jonathan L. Lemon received the BSE degree
in computer science and electrical engineering
from the University of California at Berkeley in
1990 and worked for Hewlett Packard and
Amdahl before attending the University of
Wisconsin-Madison, where he received the MS
degree in computer science in 1999. He left the
university in 2000 to cofound a caching company
which was subsequently purchased by Cisco
Systems, where he is currently employed. In his

spare time, he contributes to development of the FreeBSD Operating
System, where he is well-known for his invention of the kqueue facility.

Derek L. Eager received the BSc degree in
computer science from the University of Regina,
Saskatchewan, Canada, in 1979, and the MSc
and PhD degrees in computer science from the
University of Toronto in 1981 and 1984, respec-
tively. Currently, he is a professor in the Depart-
ment of Computer Science at the University of
Saskatchewan. His research interests are in the
areas of performance evaluation, streaming
media delivery, and distributed systems.

Mary K. Vernon received the BS degree with
departmental honors in chemistry and the PhD
degree in computer science from the University
of California at Los Angeles. In 1983, she joined
the Computer Science Department at the Uni-
versity of Wisconsin-Madison, where she is
currently a professor of computer science and
industrial engineering. Her research interests
include performance analysis techniques for
evaluating computer/communication system de-

sign tradeoffs, parallel/distributed architectures and software systems,
computer system security, and streaming media content distribution. Dr.
Vernon has served on the editorial board of the IEEE Transactions on
Parallel and Distributed Systems, the board of directors of the
Computing Research Association, the executive committee of the
National Computational Science Alliance, and as chair of the ACM
SIGMETRICS. She received a US National Science Foundation
Presidential Young Investigator Award in 1985, the ACM Fellow award
in 1996, and a University of Wisconsin Vilas Associate Award in 2000.
She is a member of the IEEE Computer Society, the ACM, and IFIP WG
7.3 on Information Processing System Modeling, Measurement, and
Evaluation.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

