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Pareto Governors for Energy-Optimal Computing
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�e original de�nition of energy-proportional computing does not characterize the energy e�ciency
of recent recon�gurable computers, resulting in non-intuitive “super-proportional” behavior. �is paper
introduces a new de�nition of ideal energy-proportional computing, new metrics to quantify computational
energy waste, and new SLA-aware OS governors that seek Pareto optimality to achieve power-e�cient
performance.
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1 INTRODUCTION

We see that peak energy e�ciency occurs at peak utilization and drops quickly as
utilization decreases.

Luiz André Barroso and Urs Hölzle [3]

Energy e�ciency is the work done per unit amount of energy used. Maximizing energy e�ciency
allows more work to be done for a given energy budget and also allows work to be done faster for
a given power budget. �is has economic and environmental bene�ts as it minimizes the energy
needed to do a given computation.

Barroso and Hölzle [3] observed that real systems—at that time—a�ain peak e�ciency at peak
utilization, but quickly lose e�ciency as utilization drops as they are unable to proportionately
reduce power consumption. �ey posit that an “ideal” energy-proportional system should always
use energy in proportion to the work done, by maintaining this peak e�ciency even at reduced
load.

Figures 1a and 1b illustrate this original model for an Intel Haswell server running SPECpower [36].
�e points labeled with Peak Performance Con�guration show the server’s power-performance at
di�erent load levels with the highest processor frequency. �e machine can serve maximum load
(peak performance) with this con�guration. �e EP line represents Barroso and Hölzle’s “ideal”
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6:2 R. Sen et al.

energy-proportional pro�le where performance is linearly proportional to power. We consider this
a design ideal for future systems, since current systems have unavoidable idle power consumption.
�e Dynamic EP line accounts for idle power [26], and represents an operational ideal for the
current system. �is server’s Peak Performance Con�guration achieves power-performance very
close to Dynamic EP. Figure 1b shows that the corresponding energy e�ciency (η), normalized
to that at peak performance, reduces quickly from 100% as performance drops. In contrast, an EP
system is always 100% e�cient.
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Fig. 1. (a) Power vs Load and (b) E�iciency vs Load for conventional systems.

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

S
y
st

e
m

 P
o

w
e

r 
(W

)

Load (% Peak Performance) 

Peak Perf.

Con g.

Other

Con gs

Dynamic EP

EP

Pareto

Fron er

Super-Propor onal

Sub-Linear

max_L

max_P

(a)

0%

20%

40%

60%

80%

100%

120%

140%

0% 20% 40% 60% 80% 100%

E
n

e
rg

y
 E

ci
e

n
cy

 (
) 

(N
o

rm
a

li
ze

d
)

Load (% Peak Performance) 

Peak Perf.

Con g.

Other

Con gs

EP

Pareto

Fron er

Super-Propor onalSuper-Propor onal

max_L

max

(b)

Fig. 2. (a) Power vs Load and (b) E�iciency vs Load for super-proportional systems.

Barroso and Hölzle’s observation has been instrumental in helping drive recent system designs
to have lower idle power and a wide dynamic power range. However, their model describes systems
with �xed resources, while these modern, more-e�cient processors have recon�gurable resources—
e.g., core frequencies, voltages, number of active cores, threads per core, etc. that can be varied
at runtime. Operating such a server with �xed resources can be ine�cient when it faces variable
loads. Load variation can occur due to �uctuating demands, or service consolidation and load
balancing among other servers [7, 9, 28].

Servers achieve maximum performance when con�gured for peak performance (Peak Perfor-
mance Con�guration), but other con�gurations can trade performance for greater energy e�ciency.
Figures 2a and 2b show that changing just the socket frequency (and consequently voltage) results in
energy e�ciency that exceeds the “ideal” EP pro�le. Speci�cally, by varying the frequency from 3.9
to 0.8 GHz, the server can achieve super-proportional e�ciency over almost 60% of the performance
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Pareto Governors for Energy-Optimal Computing 6:3

range (points in the shaded Super-Proportional region—where performance is super-proportional
to power). Figure 2b shows that the maximum e�ciency, ηmax, is 29% higher relative to the EP
energy e�ciency for this server. ηmax occurs at load ηmax L (which is approximately two-thirds of
maximum load) and power consumption ηmax P.

Recon�gurable systems create opportunities for increased e�ciency even outside the super-
proportional region. For example, Figure 2b shows that the Peak Performance Con�guration a�ains
a relative e�ciency of 61% at 30% load, while a di�erent con�guration achieves a relative e�ciency
of 88% at the same load. In other words, the usual server con�guration uses 44% more energy than
necessary to satisfy the same load, despite being nearly on the Dynamic EP line.

�us, neither EP nor Dynamic EP (that is, the conventional ideal models) describes the full
potential of modern computing systems. While non-linearity with recon�guration is well-known,
e.g., with frequency (and voltage) control, the existing ideal models do not consider its impact on
peak e�ciency. We propose new ideal models to address this limitation.

Conventional energy proportionality metrics are de�ned using conventional ideals and have
limitations for super-proportional systems. A popular metric, EP metric1 [32, 45], compares the
area between the power-performance curves of a real server relative to that of the “ideal” energy-
proportional server to quantify how close the real server is to the “ideal” server. Depending on
the shapes of their power-performance curves, a super-proportional server can have a EP metric
value close to that of a sub-proportional server. �us, EP metric does not identify all servers that
can bene�t from scheduling policies that exploit super-proportionality (e.g., policies other than
race-to-halt).

Recent works [30, 44] have proposed schedulers that can exploit super-proportionality, but
continue to use the conventional ideals for energy proportionality. Di�ering goals and ideals
can create confusion in scheduling applicability. For example, although Wong [44] observes that
the peak e�ciency is higher than the “ideal” (conventional energy proportional) e�ciency, and
occurs at intermediate utilizations, they propose the Peak E�ciency Aware Scheduler (PEAS) “for
highly energy proportional servers” (identi�ed using EP metric). Our rede�ned notion of energy
proportionality removes this semantic ambiguity. In our framework the ideal model achieves peak
e�ciency.
EP metric does not quantify excess energy used by the real server compared to the least possible

at a given load level. Another metric, Proportionality Gap (PG) [45], is parametrized by the
utilization level, x%, and is de�ned as:

PGx% =
Poweractual@x% − Powerideal@x%

Powerpeak

For a conventional non-recon�gurable server, PGx% ≥ 0. However, for a recon�gurable super-
proportional server, PG turns out to be negative for utilizations in the super-proportional region if
the conventional ideal model is used. We �nd this mix of positive and negative values non-intuitive
for a metric to quantify room for improvement in energy proportionality of an actual server with
respect to an ideal model.

Another limitation of PG is that it does not quantify the load allocation and server con�guration
aspects of suboptimality in a�ained energy e�ciency. Separation of these aspects is useful since
energy e�ciency for a server in a cluster can be a�ected both by inter-server load distribution as
well as intra-server con�guration selection decisions. Our new metrics quantify these e�ects for
each server. Together they in�uence how much computational energy a server is using relative to
its optimum.

1�e metric is called EP in the cited papers, but we use EP metr ic in this discussion to di�erentiate it from the EP model.
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6:4 R. Sen et al.

�is paper describes an analytical framework that integrates the concepts of energy proportion-
ality, energy optimality, Pareto e�ciency, peak e�ciency, ideals for system designers and operators,
lower bounds on energy consumption, and develops new mechanisms that meet user-speci�ed
Service-Level Agreements (SLAs) while minimizing computational energy.

�e main contributions of this work are:
(1) New Ideals: We propose new ideals for both system designers and system operators.

Energy Optimal Proportional (EOP) is the new design ideal that subsumes conventional
“ideal” energy proportionality. Dynamic Energy Optimal (Dynamic EO), that is the power-
performance Pareto frontier, is the new operational ideal.

(2) New Metrics: We propose a new metric called Computational Power Usage E�ectiveness
(CPUE) to quantify excess computational energy used with respect to that by EOP. We also
propose new metrics, Load Usage E�ectiveness (LUE) and Resource Usage E�ectiveness
(RUE), that can help system operators to focus on load management and con�guration
management to make the system operate e�ciently. We develop the “Iron Law of Energy”
that quanti�es the impact of poor load management (a�ecting LUE) and poor con�guration
management (a�ecting RUE) on CPUE.
CPUE mirrors the well-known datacenter-level PUE metric [1] for a server’s computa-
tional energy consumption. Just as datacenter operators aim to reduce PUE, server op-
erators/schedulers should try to reduce CPUE either by reducing LUE or RUE or both.
Scheduling policies can reach target CPUE levels by governing for one or both of these
aspects a�er taking into account additional constraints such as data movement costs for
stateful services.

(3) New Governors: We develop new OS governors that seeks Pareto-optimality for socket
frequency (and associated voltage) scaling and hardware cache prefetching. OS governors
currently do not control hardware prefetching.

2 TERMINOLOGY, INFRASTRUCTURE, ANDWORKLOADS
Similar to Barroso and Hölzle [3, 4], we de�ne energy e�ciency as Work

Energy , or equivalently, Performance
Power .

�e performance of a system is measured as the rate of doing work, e.g., the load served, transactions
completed, or instructions executed per unit time. We refer to 100% load as the maximum load
achieved for the Peak Performance Con�guration (all cores at the highest frequency and prefetching
enabled). All loads are normalized with respect to that peak load. �e normalized load is the system
utilization [3].

�e system that we use is a single-socket quad-core Haswell Xeon E3-1275 v3 server with 32
GB memory (DDR3-1600), henceforth referred to as HS. HS runs RHEL 2.6.32. It has a frequency
range of 0.8–3.9 GHz with 3.5+–3.9 GHz being the turbo boost region. �e turbo boost plan is
2/3/4/4 meaning that the maximum frequency can be 3.5 + 0.1*2 = 3.7 GHz with all four cores
active, 3.5 + 0.1*3 = 3.8 GHz with three cores active, and 3.5 + 0.1*4 = 3.9 GHz with two or one
cores active. We run the system with all four cores, hyperthreading (thus, 8 threads per socket),
and cache prefetching enabled by default. All cores run at the same frequency (HS does not support
per-core DVFS). �e socket frequency can changed in steps of 100 MHz by writing to Model Speci�c
Registers (MSRs). Any value for the turbo region limits the maximum frequency. HS has a socket
TDP of 84W, socket idle power of 0.27W, and DRAM idle power of 4.3W.

�e OS acpi-cpufreq interface allows controlling frequency in 15 steps from 0.8–3.5 GHz (0.8–2.0
GHz and 2.1 GHz–3.5 GHz in steps of 200 MHz) and enabling/disabling the turbo boost region
(3.5+ GHz). We use this granularity while comparing with the existing Linux governors (Section 9
onwards). We use the �ner granularity of 100 MHz elsewhere and also in Section 11.3.
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Fig. 3. EOP and Dynamic EO models.

We measure socket power and DRAM power using an additional so�ware thread that reads
available RAPL (Runtime Average Power Limit) counters [19, 21] at 1 second intervals. �is runs
as a thread separate from application threads and any governor threads. �e governors that we
develop also read RAPL counters for power calculations. We measure wall power with a Wa�s Up?
(.net) meter [12] at 1 second intervals. �is also runs as a separate additional thread for experiments
where we use wall power.

We run the SPECpower benchmark [36]. �is Java workload simulates warehouse transaction
processing, with (by default) as many warehouses as logical processors on the system under test,
that is, the server. Transaction requests to each warehouse arrive in batches of 1000 transactions
each. �e batches have (negative) exponentially distributed interarrival times. �e server load is
measured in total transactions per second. �e workload �rst calibrates the maximum, or 100%,
load. Next, it does measurement intervals by varying the load o�ered to the system under test
from 100% (max. utilization) to 0% (no utilization) in decrements of 10%. In these intervals, the load
served must be within 2% (up to 2.5% shortfall for the 100% and 90% intervals is allowed) of the
o�ered load. SPECpower uses its own so�ware daemon to periodically measure and report system
power in the measurement intervals.

We also run graph500 [14], hpcg [11, 33], and 14 workloads from SPECOMP2012 [37]. graph500
and SPECpower are run fully whereas the other workloads are run for the �rst 1200 seconds (a few
runs of kdtree complete within this time at high frequencies).

3 REDEFINING EP AND DYNAMIC EP
�e EP model assumes that maximum energy e�ciency occurs at maximum (100%) load and
argues that an ideal system should achieve that e�ciency for all loads. Yet Figure 2b shows that a
recon�gurable server actually a�ains maximum e�ciency (ηmax) at a lower load (ηmax L < 100%).
We argue that a be�er ideal model is one that achieves this optimal e�ciency ηmax for all loads.

Similar to the EP model, the ideal system should have maximum e�ciency (ηmax) at every load.
�is implies that for a given computation, it will use minimum energy (Emin) to do it irrespective of
the computing rate (performance or load). Figure 3 shows its geometric interpretation as a straight
line passing through the points (0, 0) and (ηmax L, ηmax P). �is ideal system, that is energy optimal
at every load, uses power linearly proportional to load (l/ηmax power at load l ). Energy optimality
at every load implies energy proportionality, but the converse is not true, e.g., EP is proportional
but not optimal at all loads.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 6. Publication date: March 2017.
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We call this new model EOP (Energy Optimal Proportional) since it is both optimal and pro-
portional. EOP is a design ideal that gives system designers a way to measure how far the energy
e�ciency of a target design di�ers from the best possible design, hopefully leading to more energy-
e�cient systems. EOP subsumes the EP model—it improves upon EP for super-proportional systems
and is identical to it for all others.

Of course real systems are unlikely to achieve this design ideal, e.g., due to unavoidable idle
power, so system so�ware needs an operational model that characterizes the maximum e�ciency
that can be realized by the current system at di�erent loads. We address this using the well-known
power-performance Pareto frontier [2, 5, 31], shown as a dashed line in Figures 2a–4. �e Pareto
frontier represents con�gurations in the current system that use the lowest power, and hence are
the most e�cient, among all con�gurations that can serve a given load. �ese con�gurations are
Pareto optimal in the sense that, among these con�gurations, one cannot reduce power without
also reducing load or increase load without also increasing power.

We call this model Dynamic EO. Like Dynamic EP, it is an operational ideal that seeks to
characterize the best energy e�ciency that can be achieved for a given system. But it di�ers
from Dynamic EP in two aspects—it characterizes optimality that can already be realized by some
among the multitude of con�gurations in the current system and it does not assume linearity of
the power-performance pro�le.

Figure 3 illustrates the di�erent models. �ese are the
• design ideals: conventional (EP), new (EOP), and
• operational ideals: conventional (Dynamic EP), new (Dynamic EO).

�e EOP line tangentially meets the Dynamic EO line only at points having the maximum e�ciency
(ηmax). �e following energy e�ciency relations hold for any system:

Dynamic EP ≤ EP ≤ EOP
Dynamic EO ≤ EOP

where ≤ means less than or equal to for values of e�ciency. Systems, like our server, that can
operate in the non-Sub-Linear region for any portion of their performance range have Dynamic EP
≤ Dynamic EO for all such loads.

4 POWER-PERFORMANCE PARETO FRONTIER (DYNAMIC EO)
Every con�guration of the system can be characterized by its performance and power consumption.
We call each such (Con�guration, Performance, Power) tuple a system state. �e Pareto frontier is
determined by only those states that use the lowest power among all states having at least that
performance. It is a subset of the set of system states. Our governors seek to constrain system
operations to the Pareto frontier.

Let Π denote the set of system states with Πi representing the ith state having performance
Πi .Per f and power consumption Πi .Power . Let the highest performing state be Π0. We apply the
well-known concepts of Pareto dominance and Pareto optimality. State Πi Pareto-dominates state
Πj if (Πi .Per f ≥ Πj .Per f )∧(Πi .Power ≤ Πj .Power ).
Property 1: �e Pareto frontier is the set of non-dominated states.
In Figures 2a and 2b, the Pareto frontier is the set of states represented by the dashed line. �e

states that lie on the EP line in the Super-Proportional region are dominated by the states on the
Pareto frontier.

Implication: Constraining system operation to the Pareto frontier is important since dominated
states are less e�cient than dominating states (also see Figure 2b). �e state with the maximum
e�ciency (ηmax) lies on the Pareto frontier.
Property 2: States on the Pareto frontier have the same total order in both power and performance.
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Let Πi ,Πj be states on the Pareto frontier. �en (Πi .Per f > Πj .Per f ) ⇐⇒ (Πi .Power >
Πj .Power ). We number the states in decreasing order of performance. �e ordering relation for
states on the frontier is thus: i < j ⇐⇒ (Πi .Per f > Πj .Per f ) ∧ (Πi .Power > Πj .Power ).

Implication: While the state space is two-dimensional, the Pareto frontier is more constrained
allowing system operators to qualitatively reason about the other dimension from looking at one
dimension alone. For example, increasing the power budget will improve performance at the Pareto
frontier if the power is used. �is is not true for the whole state space where states with less
performance can use more power. �is positive correlation between the two dimensions exists at
the Pareto frontier.

Property 3: System states that optimize power-performance metrics are located at the Pareto
frontier.

Consider a state Πi that is not on the frontier. So there exists at least one other state Πj such that
Πi .Per f ≥ Πj .Per f and Πi .Power ≤ Πj .Power with at least one of the inequalities being strict.
�is implies that the highest performing state with/without a (maximum) power cap and the lowest
power state with/without a (minimum) performance bound lie on the Pareto frontier.

In this work we assume that per f ormance ∝ delay−1. Since energy is power multiplied by time
(delay), it implies that the lowest energy point with/without a delay cap must lie on the Pareto
frontier. Since the state corresponding to the highest performance-per-wa� is the same as the state
with the lowest energy, that state will also be on the Pareto frontier. Moreover, according to the
above condition, states corresponding to the minimum energy-delay (ED) product or ED2 product
or, in fact, any EDn ,n ≥ 0 must also lie on the Pareto frontier.

Since Pareto-optimal states are more e�cient than other states, the highest performing state
with/without a maximum power cap, the lowest power state with/without a minimum performance
bound, the highest performance-per-wa� state, the lowest energy state, the lowest energy-delay
state, etc. will lie on the Pareto frontier.

Implication: Optimizing system operations for commonly used power-performance or energy
e�ciency metric necessitates operating it at the Pareto frontier.

Property 4: �e points of contact between the frontier, Power = f (Per f ), and the tangent curve
Power = cn (Per f )

n+1,n + 1 ≥ 0 and some constant cn , represent con�gurations that optimize
(minimize) metric EDn . (n = 0 means energy E.)

Let Πi be a state that optimizes (minimizes) metric EDn . By Property 3, Πi must be on the
frontier. Since E = Power (Per f )−1 and EDn = Power (Per f )−n−1, Πi will be on the curve for the
power function Power = cn (Per f )

n+1 if we choose cn = Πi .Power (Πi .Per f )
−n−1. cn is thus the

optimum value for EDn . Moreover, every point on this power function curve will have the same
value for EDn , which is cn . No part of the frontier can be below this curve, as then states on this
part of the frontier will have lower power for the same performance compared to points on the
power function curve directly above them and thus have a smaller value for EDn than cn which is
a contradiction.

All points on the curve above the linear tangent are suboptimal with respect to E, all points
above the quadratic tangent are suboptimal with respect to ED, all points above the cubic tangent
are suboptimal with respect to ED2, and so on.

Implication: �is forms the basis for the geometric interpretation of the EOP line described in
Section 3. Every point on the linear tangent has the same slope, which is equal to Power

Performance , that
is, performance-per-wa�−1 value of the most energy-e�cient point.
Property 5: �e Pareto frontier is not necessarily convex (or concave).

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 6. Publication date: March 2017.



6:8 R. Sen et al.

Let Πi ,Πj ,Πk be states on the frontier with i < j < k . �e ordering relations only imply
Πi .Per f > Πj .Per f > Πk .Per f and Πi .Power > Πj .Power > Πk .Power , not Πj .Power ≤

Πk .Power +
(
Πj .Per f −Πk .Per f
Πi .Per f −Πk .Per f

)
(Πi .Power − Πk .Power ).

Implication: Convex optimization approaches cannot be directly applied while composing mul-
tiple Pareto frontiers. Moreover, hill-climbing based search techniques at the frontier can get stuck
in local optima instead of reaching global optima. However convex (polynomial) approximations
to the Pareto frontier may work well.

5 COMPUTATIONAL PUE
Datacenters can satisfy a given load by distributing it to machines in di�erent ways. Each machine
can also be con�gured in a large number of ways. �ese modes for servicing the load di�er in the
amount of energy consumed, since some modes are more ine�cient than others. A hypothetical
ideal system, that is, one that meets the design ideal EOP, achieves maximal energy e�ciency (ηmax)
and thus minimizes the energy (Emin) needed for a given computation regardless of load. We would
like a metric to quantify the excess energy used by a real system, compared to this ideal system.

Our new metric, Computational Power Usage E�ectiveness (or, CPUE), measures how much energy
a server uses with con�guration c at load l compared to the energy used by EOP. We de�ne

CPUE(c,l ) = Actual server energy with c at l
EOP energy at l , l > 0 (1)

=
E(c,l )
Emin

, l > 0 (2)

�us,E(c,l ) = CPUE(c,l ) × Emin, l > 0 (3)

CPUE(c,l ) is inspired by the well-known PUE metric [1] that tracks energy waste for datacenters
by taking the ratio of facility energy consumption to energy consumption by IT equipment. PUE >
1 quanti�es excess relative energy used by the datacenter due to the non-IT infrastructure. Similarly,
CPUE(c,l ) > 1 quanti�es excess relative computational energy used whenever e�ciency drops
below ηmax.

We de�ned CPUE(c,l ) as E(c,l )/Emin. We will now decompose CPUE(c,l ) to focus on two major
factors that cause ine�ciencies: i) running the system at a non-optimal load and ii) for a given
load, running the system with a non-optimal con�guration. For a given amount of work, energy
consumed is inversely proportional to e�ciency. �us,

CPUE(c,l ) = ηmax
η(c,l )

, l > 0 (4)

=

(
ηmax

ηPareto (l )

)
×

(
ηPareto (l )

η(c,l )

)
, l > 0 (5)

= LUE(l ) × RUE(c,l ), l > 0 (6)
�us,E(c,l ) = LUE(l ) × RUE(c,l ) × Emin, l > 0 (7)

where LUE(l ) denotes Load Usage E�ectiveness at load l and RUE(c,l ) denotes Resource Usage
E�ectiveness of con�guration c and load l .

LUE(l) is the e�ciency of EOP (ηmax) relative to that of of Dynamic EO at load l . LUE(l ) ≥ 1
with LUE(l ) = 1 ⇐⇒ l can be served at maximum e�ciency (ηmax). Since energy consumed is
inversely proportional to e�ciency, LUE(l ) > 1 quanti�es excess energy consumed, relative to Emin,
due to non-optimal loads assuming that the Pareto-optimal con�guration is used to serve load l .
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RUE(c,l ) is the e�ciency of Dynamic EO relative to that of con�guration c , both at load l .
RUE(c,l ) ≥ 1 with RUE(c,l ) = 1 ⇐⇒ c is a Pareto-optimal con�guration. RUE(c,l ) > 1 quanti�es
excess energy used, relative to Dynamic EO at load l , due to using non-optimal (Pareto-dominated)
con�guration c for serving load l .

Our proposed RUE and LUE metrics can help system operators isolate the sources of energy
ine�ciency and guide new policies to reduce it. LUE is important for load management of Pareto-
optimal con�gurations. RUE is important for con�guration management for Pareto-dominated
con�gurations. While LUE is applicable to all systems, both old and new, it only partially quanti�es
energy waste in recon�gurable systems that can be con�gured in a plurality of ways. RUE completes
the quanti�cation. Both LUE(l ) and RUE(c,l ) can be expressed in terms of CPUE(c,l ). Since
RUEPareto (l ) = 1 for every l , LUE(l ) = CPUEPareto (l ) and RUE(c,l ) = CPUE(c,l )/CPUEPareto (l ).

Inspired by the “Iron Law of Performance”, we call Equation 7 the “Iron Law of Energy” to
help with holistic management of server energy consumption. System designers will focus on
minimizing Emin whereas system operators will focus on minimizing LUE and RUE.

6 LOAD AND CONFIGURATION MANAGEMENT
Most data centers are provisioned to meet peak load, but normally operate at much lower load levels.
�e LUE metric can help operators quantify the potential bene�t of deploying load management
policies [7, 9, 28, 44], e.g., concentrating load on some servers and shu�ing down others. Of course,
any such policy must also ensure that service-level agreements are still satis�ed [30].
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Fig. 4. CPUE(c,l ) and LUE(l ). These→ ∞ as load l → 0 due to non-zero idle power. For any configuration c
and load l , CPUE(c,l ) ≥ CPUEPareto (l ) = LUE(l ) ≥ 1.

Figure 4 shows that CPUE for the Peak Performance Con�guration is always > 1 (wastes energy)
and increases as load decreases. �e best CPUE for this con�guration is 1.29, occurs at peak load,
and implies 29% excess energy used relative to Emin. LUE (that is, CPUE for Dynamic EO), on the
other hand, �rst decreases to 1, then increases, revealing a sweet spot of ≤ 10% excess energy used
at around 51%–90% of peak performance.

Barroso and Hölzle [3] observed that servers typically operate at 10%–50% load. �e LUE curve
for SPECpower (Figure 4), shows excess energy used due to suboptimal load of approximately
10% at the higher end of this range, to over 250% (not shown) at the lower end. �e steep slope
of the LUE curve at low loads makes even modest load management very a�ractive. For example,
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increasing load from 10% to 20% of peak reduces LUE from 3.55 (255% excess) to 1.99 (99% excess)
and a further increase to 25% peak load reduces LUE to 1.68 (68% excess).

Even in a data center with perfect load balancing, recon�gurable servers may be miscon�gured,
wasting signi�cant energy even at optimal load. Figure 5 shows RUE for SPECpower for all system
con�gurations and loads. Operating with the Peak Performance Con�guration is signi�cantly
wasteful even at low loads, e.g., 21% excess energy used at 10% load compared to operating at
Dynamic EO. �e excess increases to 51% before decreasing to zero at peak load. Not all Pareto-
dominated con�gurations are as wasteful—the shaded band identi�es con�gurations that have an
RUE of ≤ 1.1 and hence limit the extra energy used to 10%.

7 PARETO GOVERNORS
We now develop new operating system governors (resource managers) that seek to operate the
system at or close to Dynamic EO (power-performance Pareto frontier) so that Service-Level
Agreements (SLAs) are satis�ed. We call such governors Pareto governors. We consider the following
SLAs in this work.

• SLAee: Maximize energy e�ciency.
• SLApower: Maximize performance given a power cap/budget.
• SLAperf: Maximize power savings given a performance target.

Figure 6 shows what transitions the Pareto governors must make to the current operating point
to meet the SLAs. �e shaded regions in Figure 6a depict subsets of the system state space that
satisfy a given power cap (for SLApower) or performance bound (for SLAperf). Figure 6b shows
a special case for SLApower and SLAperf. �e special case of maximizing power savings for the
same performance a�ects only RUE but not LUE.

Our new governors, that meet these SLAs, have the following two-level design:
(1) Pareto Predictor: �is predicts the power-performance Pareto frontier for the system and

currently observed execution pro�le.
(2) Objective Selector: �is level selects the desired operating state from the Pareto frontier

according to the SLA to be achieved.
�e objective selector remains unchanged if the available knobs change and the Pareto predictor
remains unchanged if new SLAs are targeted. �is separation, due to Property 3 (Section 4) of the
Pareto frontier, simpli�es design and enhances portability.
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Fig. 6. State transitions to Dynamic EO for meeting SLAs.

Our governors use the BIPS (Billion Instructions Per Second) throughput metric to determine
current application or to set performance targets. We assume the existence of user-supplied
so�ware routines that convert between BIPS and high-level performance metrics. Similar to
existing governors in Linux, our new governors do not keep track of higher-level application
constructs such transactions, queries, etc. �e workloads that we consider for our experiments
do not have any latency constraints. Other workloads that have latency constraints on high-level
constructs should estimate their BIPS requirement and communicate that to the governors.

8 EXISTING GOVERNORS IN LINUX
�e Linux acpi-cpufreq module includes the following governors [6] that control the operating
frequency. �e goal is to manage power-performance by either se�ing the frequency statically, or
by varying it in response to processor utilization. With root privileges, the user can (dynamically)
change the governor.

• PowerSave (S): Sets all cores to the lowest frequency. �e idea is to use the least amount
of power to do the work, but performance may be less than what could be achieved on this
machine.

• OnDemand (O): Periodically samples (default: 10 ms interval) cores to adjust frequencies
based on core utilization. �e idea is to reduce power by lowering frequency when the CPU
is not fully utilized and increase frequency as utilization increases so that the performance
impact is minimal. �e Conservative (C) governor is a variant of the OnDemand governor
with more conservative utilization thresholds for changing frequencies.
• UserSpace (U): �e idea is to give the user (having root privileges) control of the frequency

se�ings. On HS, only the socket frequency (all cores together) can be set.
• Performance (P): Sets all cores to the highest frequency. �e idea is to get the maximum

performance. �is governor also uses the maximum power.

To further distinguish between modes, we constrain U mode to exclude S or P mode frequencies,
i.e., it operates in the range of 1.0–3.5 GHz. While these governors a�empt to control knobs
(e.g., processor frequency) in the system, none of them seek to meet SLAs that deal with energy
consumption, power limits, or performance targets.
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9 SLAEE: MAXIMIZE ENERGY EFFICIENCY
Temporarily, we consider system power as the sum of socket power and DRAM power, both of
which are estimated using RAPL counters.

HS exhibits signi�cant opportunities in improving BIPS/Wa� (equivalently, Instructions/nanoJoule)
by changing frequency se�ings alone. BIPS changes between 1.18x (swim) to 4.86x (bwaves) in
going from S to P modes whereas power changes between 2.52x (swim) to 5.67x (botsalgn), leading
to a BIPS/Wa� range of 1.29x (imagick) to 2.14x (swim) between best and worst values for that
workload over all frequencies. For all these workloads, the minimum BIPS/Wa� happens for P
mode. applu and graph500 show a BIPS/Wa� range of 1.84x and 1.67x respectively (also see Figure
7). We study SPECpower for SLAperf, but not for SLAee, as it must meet performance constraints.

To exploit the improvement potential, we propose a simple reactive, R(t), mode of operation.
Our approach is to sample power and performance at a few di�erent frequencies, then use that
information to interpolate the frontier. �e Pareto frontiers are usually non-linear. �us, at least
three samples are needed to target super-proportionality. In contrast, aiming for proportionality
would require only two points, but the non-linearity in system behavior between the points could
not be predicted or controlled.

We implement two power-performance predictors (in so�ware)—one for the socket subsystem
and the other for the memory subsystem. �e socket predictor sets the frequency to 0.8 GHz (lowest
frequency), 2.1 GHz (midpoint frequency) and 3.5 GHz (nominal frequency) in three consecutive
intervals of t ms each and observes the power, performance, memory read and write bandwidths
for each se�ing. It then interpolates the e�ects for the other frequencies.

A so�ware coordination module, running on one of the cores, reads the socket predictions
and DRAM predictions every 51t ms (immediately a�er the 3t socket sampling), composes the
predictions, estimates the frontier and selects the best frequency. �e length of the interval that
the system runs in this state is 48t. It is during this time that the DRAM predictor is periodically
invoked (every 12t ms) to adjust a computed linear regression between DRAM power and read
and write bandwidths (two variables) based on current readings. �e regression is reset every
17 observations (204t ms) to react faster to phase changes. We choose this value since 17 is not
divisible by 4 (48t/12t = 4), so the regression will not be reset at the time when the readings are
needed for the power estimations with the interpolated values.

Since the optimal frequency will be in of the high/mid/low ranges, the sampling overhead is
approximately 2t

51t ≈ 4%. �e workload continues to execute, although suboptimally, in those two
intervals, so the overhead is usually < 4%. For the intervals mentioned above, we do not account
for additional governor overheads due to system calls, interpolation, estimations, etc. So, the actual
intervals are slightly longer. �e governor in Section 11.3 accounts for these overheads.

�ere are three issues in implementing the interpolant for the socket predictor—ge�ing successive
samples having non-decreasing performance and power with increasing frequency, ge�ing samples
with acceptable measurement noise/ji�er, and dealing with non-convexity of the frontier. �e �rst
issue arises when the workload shows local phase behavior. �e second issue arises with rapid
sampling that makes the ji�er in the energy measurements seem to be higher than that in the
timing measurements leading to occasionally unrealistic power numbers. �e third issue arises
when the number of samples is not enough to estimate the shape of the frontier well.

To deal with the �rst two issues, we disregard samples if either decreasing values are found or if
power readings di�er in more than 10x between the three samples and the coordinator transitions
to 3.5 GHz. While other default actions are possible, we choose to penalize ourselves when we
are not con�dent about the interpolation. On average (geometric mean) less than 2% of samples
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are discarded, but the frequency can occasionally be high, e.g., 10% for bwaves in R(1). We do not
correct for the third issue and our results will be suboptimal for non-convex frontiers.
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Fig. 7. BIPS-per-Wa� on HS with di�erent policies.

Figure 7 compares the energy e�ciency (performance-per-wa�) with di�erent modes of operation.
For all these workloads, the P mode has the lowest e�ciency. �e numbers at the top show
maximum gains (e.g., 1.36 implies 36% gains) in energy e�ciency over P-mode by selecting the
optimal frequency in U or S modes (Figure 7a) and R(10) mode (Figure 7b). We observe that:

• �e potential rewards for selecting optimal con�gurations are signi�cant: �e e�ciency
improvements were 28.6% (imagick) to 113.7% (swim) over P (geometric mean: 55% over
P, 13.4% over S). �e O and P modes are suboptimal for this metric for every workload.
However, there is a performance cost. Compared to P mode, the most energy-e�cient
frequency se�ing for each workload resulted in a reduction of BIPS of around 12.8% (mgrid)
to 45.3% (botsspar), with a geometric mean of 35.4%.

• �ere is no single best static frequency se�ing: �e best static frequency se�ings for the
di�erent workloads were 0.8 GHz (swim), 1.0 GHz (applu, graph500, hpcg), 1.4 GHz (mgrid),
1.8 GHz (bt, botsspar), 2.0 GHz (ilbdc, smithwa, kdtree), 2.1 GHz (md, nab, botsalgn, fma3d),
2.3 GHz (bwaves, imagick).

• Rapid pro�ling and recon�gurations are not necessary for long running workloads: We did
a sensitivity analysis with t = 1 ms, 4 ms, 10 ms, and 20 ms. �e resulting performance-
per-wa� numbers indicate that R(20) (geometric mean: 48% over P, 8.3% over S), R(10)
(geometric mean: 49% over P, 9% over S), and R(4) (geometric mean: 48.7% over P, 8.8%
over S) improved over R(1) (geometric mean: 27.5% over P, -6.7% over S).
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We found that many workloads exhibit long-term variation and periodic behavior in power-
performance traces. For example, applu shows 34.3 sec periodicity in P mode and 42.3 sec with
R(10). graph500 exhibits 12.3 sec periodicity in P-mode and 15 sec with R(10). We expect long
training intervals that track considerable execution history to work well with such workloads.

We use quadratic interpolation for the socket predictor. A piecewise linear interpolation would
be faster, but for the performance-per-wa� metric, only one of the sample frequencies (0.8/2.1/3.5
GHz) would get chosen as the optimal frequency. �is is because Per f ( f ) = af + b, Pwr ( f ) =
c f + d =⇒ Per f ( f )/Pwr ( f ) is monotonic in f. So, the maxima will always occur among the end
points of the interval. For applu, while Linear �uctuates mostly between 0.8 and 2.1 GHz, resulting
in 66% improvement over P-mode, �adratic selects more frequencies in between resulting in
76.4% improvement. mgrid similarly had more improvements with �adratic than with Linear.

Doing �xed-time experiments (running for 1200 secs), as opposed to �xed-work experiments,
risks ge�ing incomparable runs. However, for these workloads, the di�erences are small due to
stability in the average energy e�ciency over long time intervals. We re-evaluated results using
the same number of instructions (minimum across all policies from the �xed-time runs) for each
workload. In terms of U-mode gains over P-mode, applu changed from 84% to 80% whereas botsspar
changed from 47% to 52%. �e geometric mean changed < 2% for all policies. All trends remained
the same.

9.1 SLAee: Adding L2 Prefetch Control
Hardware prefetching on Intel x86 machines can be enabled or disabled by writing speci�c values to
Model-Speci�c Registers (MSRs) [20]. All prefetchers are enabled by default. In this study we keep
the DCU (L1 Data Cache) prefetchers enabled, but dynamically enable or disable the L2 prefetchers
(all cores).
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Fig. 8. Pareto-optimal states have L2 prefetching enabled for mgrid, but not for md.

Figure 8 shows one example workload each for bene�cial prefetch (mgrid) and harmful prefetch
(md) with all possible socket DVFS se�ings. When prefetching is disabled, md shows 14% improve-
ment in peak performance and 13.6% in maximum energy e�ciency whereas mgrid shows 12.3%
loss in peak performance and 14.9% loss in maximum energy e�ciency. Disabling prefetch also
improves SPECpower performance (Figure 14). Since prefetching bene�ts are workload dependent,
a static prefetch se�ing will always be suboptimal for some workloads.

We extend the frequency governor in the following simple way. Instead of taking one sample
at 2.1 GHz, we take two samples—once with prefetching enabled and once disabled. We choose
the prefetching mode that gives be�er performance and continue with that for the remaining two
samples and estimating the frontier for that interval. Our choice of 2.1 GHz for taking the initial
two samples is motivated by the need to keep the overhead of taking an extra sample small. A
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mid-range frequency, such as 2.1 GHz, is likely to incur a lower additional overhead for this than
a high frequency, such as 3.5 GHz since the energy-e�cient operations for most workloads are
not at high frequencies. Similar to R(t), we name the new governor RF(t) (Reactive with prefetch
control), parametrized by t, the length of the pro�ling interval in milliseconds. RF(10) improved
performance-per-wa� more than R(10) for md (48% over P instead of 31%) but did not create
signi�cant di�erences for other workloads.

To summarize, we �nd that the P, PF and O modes can always be improved by the other
policies. S works best for swim, well for hpcg, but can be improved by U, R and RF for the other
workloads. U is a good policy to use provided that workload is known in advance and pro�ling
experiments can be carried out. R reaches close to U but is unable to outperform it. �is is likely
because these workloads have long-term stable behavior making the best static frequency not a bad
choice. On the other hand, R su�ers from runtime pro�ling overheads and prediction errors due to
sampling inconsistency and non-convexity of the frontier. �e situation changes for SPECpower
(see Sections 11.2 and 11.3), where reactive governors do signi�cantly be�er than static frequency
se�ings. RF further improves upon R if disabling prefetch is useful but does not hurt energy
e�ciency if not, so it represents the best of both prefetch modes.

9.2 SLAee: Adding Control for Wall Power
Measuring wall power (to include power consumption by the PSU, network interfaces, hard disks,
etc.) with external power meters causes a time granularity mismatch, e.g., minimum 1 sec intervals
with Wa�s Up? meters as opposed to milliseconds (supported by the RAPL counters) used by our
governors (R(10) uses a measurement interval granularity of 10 ms). So we estimate wall power
from socket+mem power (measured by RAPL counters) using regression models determined o�ine
by running workloads (SPECOMP2012, graph500, hpcg) with all frequency se�ings. We consider
the following two models for wall power (y) as a function of socket+mem power (x ).

(1) �adratic: y = ax2 + bx + c . �e best-�t line is y = 0.004x2 + 0.7932x + 21.329 with
coe�cient of determination R2 = 0.9912.

(2) Linear: y = ax + b. �e best-�t line is y = 1.141x + 14.891 with R2 = 0.9869.
�e quadratic model gives a be�er �t for idle power as well as a slightly be�er �t overall, so we use
this model for subsequent experiments.
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Fig. 9. BIPS-per-wa� of governors P and RF(10) with wall (full-system) power.

Figure 9 shows the performance-per-wa� for the baseline P governor (measured wall power)
and our new RF governor. RF reads RAPL counters, then applies the wall power model mentioned
above to estimate wall power. �e maximum gains in performance-per-wa� achieved by RF
over P is 67% (swim) while the geometric mean over all workloads is 30.2%. Since CPUE is
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directly proportional to energy consumption and inversely proportional to energy e�ciency,
we have CPU E (P)

CPU E (RF) =
E (P)
E (RF) =

η (RF)
η (P) = 1.302. So the average energy savings of RF over P is

E (P)−E (RF)
E (P) = 1 − E (RF )

E (P) = 1 − 1.302−1 = 23.2%. RF can thus save cost by using 23% less energy on
average to do the same work or generate revenue by doing 30% more work on average for the same
energy cost. While it improves energy-e�ciency, RF loses performance, with respect to P mode,
ranging from 0.2% (md) to 30% (bt) with a geometric mean of 19.5%.

10 SLAPOWER: MAXIMIZE PERFORMANCEWITHIN A POWER CAP/BUDGET
None of the standard Linux governors S, C, O, U, P deal with power caps/limits. �e RAPL [21]
capabilities include mechanisms to enforce a limit on the power consumption. One advantage of
RAPL limits over frequency se�ings is that they can be �ne-grained (e.g., units of 1/8 W) leading to
greater control of the state space. Another advantage is that since RAPL limits are enforced by the
hardware, the management overhead is lower than that of a so�ware-controlled governor. Prior
works [26, 39] have used power limiting as a mechanism to improve energy e�ciency.

�ere are two main disadvantages of the RAPL power-capping mechanisms. First, capping of
wall power cannot be directly speci�ed. Second, non-frequency se�ings (e.g., prefetching) are
not managed by the RAPL mechanisms. So, workloads such as md that bene�t signi�cantly from
prefetch control would not see those advantages with the RAPL approach. From this perspective,
RAPL guarantees a power cap, not best performance within that power cap. Pareto optimality
provides the stronger guarantee.

Our new governor for SLApower, RF SLApower(t), improves upon the RAPL governor in
both of these aspects. It controls both the prefetch se�ings as well as socket frequency to get
the maximum performance within a speci�ed power budget. We modify the objective selector to
select the next state that is predicted to use the highest power among all states with less power
consumption than the SLA target. We do not set turbo mode frequencies because of limited control
in turbo mode, so our maximum frequency is the nominal frequency (3.5 GHz).
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Fig. 10. Power-performance profiles for graph500 and md for SLApower.

We investigate enforcement of SLApower using RF SLApower(10) and the RAPL governor
for two of our workloads: graph500 and md. For RAPL, we limit average socket power over 1
second intervals from 10W to 80W in steps of 5W. We could enforce a power cap only for the
socket on HS, not for the memory or for other components. We used caps on full system power for
RF SLApower(10) (35W–80W for graph500 and 35W–105W for md, both in steps of 5W) and a
more restrictive interval of 510 ms.

Figure 10 shows the power-performance pro�les for the governors. Both workloads exhibited
behavior close to Pareto optimal with RF SLApower(10). �e RAPL governor works well for
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graph500, but causes Pareto-dominated (hence suboptimal) operations for md as it does not control
prefetch se�ings. RF SLApower(10) falls short of achieving maximum performance at the upper
end of the operating range due to not operating in the turbo region.

11 SLAPERF: MAXIMIZE POWER SAVINGS GIVEN A PERFORMANCE TARGET
None of the standard governors S, C, O, U, P deal with user-speci�ed performance targets. Our new
governor, RF SLAperf(t), allows the user to specify performance targets in absolute or relative
(with respect to peak) BIPS.

11.1 Governing for absolute performance targets
To govern for this SLA, we keep the Pareto predictor intact, but modify the objective selector
to keep track of the performance so far (time elapsed and instructions executed). �e idea is to
determine the desired performance for the next interval so that if this target is met, then the average
performance so far would be that required by the SLA. If the average performance so far is greater
than the SLA, the lowest performing point is chosen. Otherwise, if the next interval target is greater
than the best performance predicted for 3.5 GHz, then turbo mode is chosen. Otherwise, the point
on the frontier that meets or just exceeds the next interval target is chosen.

We investigate enforcement of SLAperf using RF SLAperf(10) for two of our workloads: md
and graph500. md has mostly homogeneous behavior during its execution and we will show that it
can be governed well to meet the SLA. On the other hand, graph500 has signi�cant heterogeneity
(di�erent execution phases) and, as we shall show, cannot be governed well without prior knowledge
of the phase behavior.

md has an average performance range of 4.8–21.6 BIPS at the frontier depending on the frequency
and with L2 prefetching disabled. We select SLA targets of 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0 and
22.5 BIPS (unreachable). graph500 has an average performance range of 2.9–5.6 BIPS at the frontier
depending on the frequency and with L2 prefetching enabled. We select SLA targets of 3.0, 3.5, 4.0,
4.5, 5.0 and 5.5 BIPS.
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Fig. 11. Power-performance profiles for md and graph500 for SLAperf.

Figure 11 shows the power-performance pro�les and expected behavior for both workloads. �e
pro�le for md was at the frontier except at high performance targets. Its highest performance is
around 3.5% less than the maximum possible due to sampling/pro�ling and prediction overheads
in the governor. For targets close to its highest performance, it tries to compensate for the loss
by transitioning more into turbo mode resulting in more power consumption and consequently,
Pareto-dominated states.

�e governor failed to meet the SLA for most points of graph500 and the pro�le was quite
suboptimal, being closer to proportional than Pareto optimal. However, as we explain below,
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this is primarily due to the non-homogeneous nature of the workload rather than incorrect state
transitions chosen by the governor.
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Fig. 12. Execution traces for graph500 with SLA = 3.5 BIPS and 5.5 BIPS.

Figure 12 shows execution traces for graph500 for two SLAs: 3.5 and 5.5 BIPS. �e primary
vertical axis (le� axis) and the blue line show the number of instructions executed per second in
BIPS. �e secondary vertical axis (right axis) and the red line show the power (socket+memory) in
Wa�s. �e Avg. BIPS line shows the average BIPS a�ained by the workload execution so far. �e
dashed line shows the average BIPS expected to be reached over the entire execution. �e governor
seeks state transitions that will maintain the average BIPS equal to the SLA BIPS.
graph500 has non-homogeneous behavior—the initial approximately 290 seconds is mostly a

high-performance phase whereas the remainder of the execution (successive iterations of breadth-
�rst search) is low-performance. Initially, the average BIPS is higher than the SLA BIPS, so the
governor reduces frequency to the lowest possible to save power. Eventually, execution enters the
low-performance phase and the average BIPS starts dropping more rapidly. However, the governor
continues with a low frequency execution as the SLA BIPS is still lower than the average BIPS.
A�er a while (1152 seconds for SLA=3.5, 491 seconds for SLA=5.5), the average drops below the
SLA BIPS and remains that way although the governor transitions to higher frequencies including
turbo mode (with a sharp increase in power consumption). �is is more pronounced for SLA=5.5,
where the SLA is breached earlier, than for SLA=3.5. Timely prediction of maximum performance
in future execution phases is needed to handle this issue.

11.2 Governing for relative performance targets
Figure 13 shows power-performance pro�les for SPECpower with the default governors. P-mode
and O-mode perform similarly and use the highest power for the achieved load. S-mode uses the
lowest power for the achieved load, but the maximum load achievable is low (see below). C-mode
works be�er than P-mode or O-mode at low loads but in general consumes signi�cantly more
power than S-mode or the U-mode Pareto frontier for the same load. For these experiments we
“niced” the power measurement daemon and set the ignore nice load parameter of the O and C
governors to discount activity by the daemon while calculating processor utilization.

Even though S-mode’s pro�le lies on the Pareto frontier, it has two limitations. First, it can only
serve up to around 27% of peak load. So it will fail the performance requirement (see Section 2)
at higher loads. �e other governors in Figure 13 can serve high as well as low loads. Second,
although RUE = 1 for this governor, LUE ≥ 1.58. So, at least 58% excess energy is used compared
to operating with the best load even though it is operating at the Pareto frontier. Its pro�le does
not even enter the Super-Proportional region. So, restricting servers to this policy is not a good
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Fig. 13. Power-performance profiles for SPECpower with Linux governors.

idea. �e other governor pro�les are distant from Dynamic EO, thus have large RUE values (waste
energy).

To govern for this SLA, we modify the Pareto predictor to also sample turbo mode so that peak
BIPS can be estimated. We now have the maximum pro�ling frequency as 3.7 GHz (midpoint of
the turbo range 3.5–3.9 GHz) since we do not know the actual temperature-dependent operating
frequency. For any load, the target relative BIPS is set to be equal to that load level (load relative to
maximum load). For example, a�empting to serve 70% load level sets the target relative BIPS to 0.7.
�e objective selector selects the lowest-power con�guration that is predicted to have relative BIPS
greater than or equal to the target relative BIPS.

We call this new governor RF SLAperf(t). �e parameter t, in milliseconds, is the length of the
intervals as follows. For 100% target performance, the plan is to turn prefetching o� and on for t ms
each, then choose the mode that performed be�er to run with for the next 48t ms. �is plan is then
repeated. For 100% target performance, the frequency is kept at 3.7 GHz and not changed. For a
lower target performance, the plan is to set frequency to 2.1 GHz (midpoint frequency) for pro�ling
prefetch se�ings (t ms for each mode). With the chosen prefetching mode, set frequency to 3.7
GHz (turbo frequency) and then to 0.8 GHz (lowest frequency) for t ms each. We then estimate the
Pareto frontier, select the best frequency, and run with that se�ing for the next 48t ms.

Figure 14a shows power-performance withR SLAperf(10) andRF SLAperf(10). R SLAperf(t)
always enables prefetching whereas RF SLAperf(t) dynamically controls it. Controlling prefetch-
ing increases the maximum load achievable compared to P-mode that always has prefetching
enabled. RF SLAperf(10) outperforms P-mode by around 4%. �is outcome is qualitatively similar
to md (See Figure 10). �e increase in maximum performance can also be observed by running in
P-mode with prefetching disabled (P-mode + No L2 Prefetch pro�le).

RF SLAperf(10) disabled prefetching for most of the time and chose a number of di�erent
frequencies for each run depending on the load served. By default, SPECpower does 3 calibration
intervals followed by 11 measurement intervals. During the calibration intervals and the �rst
measurement interval, the server is o�ered very high load. So we expect that during these times
the maximum frequency would be chosen by the governor. �us for at least (3+1)/(3+11) = 28.6%
(observed: 34%) of the time, the maximum frequency should be chosen. �e last measurement
interval is “Active Idle”, that is zero load is o�ered, so we expect to select the lowest frequency
during this interval which is around 1/(3+11) = 7.1% (observed: 15%) of total time.
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Fig. 14. Power-performance with (a) RF SLAperf, R SLAperf, and (b) RF Active.

11.3 Governing to minimize idle time
So far, a performance target (absolute or relative) needed to be speci�ed to the governors so that
they could ensure that SLAperf is satis�ed. We will now discuss a new governor that aims to serve
the o�ered load without keeping any threads idle. We demonstrate its action in the context of the
SPECpower workload execution.

�e key idea is to predict the highest frequency such that there are no idle cycles. Let α denote
the number of active (that is, not idle) cycles per second in the last interval. �e governor estimates
the optimal value of target frequency for the next interval to be α

8 . �e division by 8 is done since
there are 8 logical threads on HS. �is assumes that in the next interval, the load will remain the
same (or at least, not increase) and all threads will be equally active.

In case these assumptions are not true, the system may not be able to serve the o�ered load.
To protect against this situation, the governor increases the estimated target frequency by a step
whenever it equals the current frequency and doubles the value of the step. �is facilitates an
exponential ramp-up of frequency over successive intervals. On the other hand, if the estimated
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target frequency is less than the current frequency, the frequency is set to the target frequency and
the step is re-initialized.

We call our new governor RF Active(t,p). It repeatedly does the following. It turns prefetching
o� and on for p/2 ms each. �en it chooses the prefetching mode that performed be�er and also
estimates and sets the frequency for the remaining interval. We determine the length of the last
interval o�ine so that the average total epoch length is t ms including governor overheads (system
calls, pro�ling, and estimations). �is governor does not predict either power or performance for
any con�guration, but manages to operate the system very close to Dynamic EO.

Figure 14b shows the power-performance pro�le of our new governor, RF Active, with di�er-
ent parameter values: RF Active(10,2), RF Active(100,20), and RF Active(500,20). For these
experiments, we consider all frequencies (0.1 GHz granularity). RF Active(10,2) su�ers from more
overheads and less accurate selection of resource se�ings with shorter intervals—it keeps prefetch-
ing enabled for a larger fraction of time and also selects the maximum frequency more o�en than
RF Active(100,20) or RF Active(500,20). Compared to RF SLAperf(10), RF Active(100,20)
and RF Active(500,20) select the lowest frequency more o�en and the maximum frequency less
o�en but keep prefetching enabled for longer.

RF Active is similar to PAMPA [42] since both governors change core frequency in response to
core utilization. �e description of PAMPA does not include the rate of frequency change in each
step, but we believe that our exponential ramp-up strategy allows RF Active to increase service
rates faster in response to a sudden increase in load levels. PAMPA controls the number of active
cores in addition to core (socket) frequency but does not control cache prefetch enable. Number of
active cores as well as thread placement [41] are interesting resource management knobs that can
enhance the potentials for power savings.

12 LIMITATIONS
We will now discuss a few limitations of our governor designs—socket-wide control, intrusive
pro�ling, sampling inconsistency, non-zero reaction times, and not tracking latency distributions.

Socket-Wide Control: Our governors select the same resource se�ing for the entire socket.
Having the same frequency se�ing for all cores may be suboptimal for non-homogeneous workloads
if the hardware supports di�erent se�ings for di�erent cores. We expect that we can continue
to pro�le with all-core se�ings and then predict per-core Pareto frontiers. To do that we need to
measure or estimate, using performance counter values, the performance and energy consumption
of each core for each pro�led se�ing. But interpolating Pareto frontiers individually for many cores
can be costly in so�ware. Hardware support for doing this would be useful.

Intrusive Pro�ling: Our governors try out a few resource con�gurations (e.g., socket fre-
quencies) to determine their e�ectiveness. �is intrusive pro�ling may be costly in terms of
recon�guration latency and energy for some resources, e.g., caches. Moreover, exhaustively pro-
�ling a multitude of resources can be prohibitively expensive for short time intervals. To limit
overheads, pro�ling can be combined with other strategies, such as analytical models and heuristics,
to guide resource con�guration decisions. For example, thread criticality can be used to partition
aggregate frequency among cores [27]. CoScale [10] uses analytical performance and energy models
parametrized by pro�led values of performance counters and activity counters at the highest core
and memory frequencies.

Sampling Inconsistency: �e strategy of sampling execution with three frequencies and then
��ing a quadratic polynomial to the measured power-performance values assumes that the samples
are consistent, that is, not drawn from di�erent execution phases. Sample inconsistency can be
avoided by an alternate approach [34, 38] that samples performance counters once, then predicts
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power and performance for other con�gurations using a precharacterized model. However, that
approach is limited by the number of performance counters that can be concurrently read (can
a�ect prediction accuracy) and by the availability of the particular counters on di�erent platforms
(can a�ect portability).

Non-Zero Reaction Times: Our R(t) governors logically partition execution time into epochs,
of length 51t or 52t. Shortening the epochs will allow for faster reaction times with increased
pro�ling overhead. However, they need to be long enough to capture a stable, representative region
of workload execution. Moreover, the unit of time, t, cannot be made very small due to limited
update frequency of the RAPL counters (usually about once every millisecond [15, 21]).

Latency Distribution Unawareness: Our governors track performance in terms of throughput
metrics but not in terms of distributions of computation latency/response times. However, some on-
line applications such as web services may have requirements on tail latency that need to be met [8].
Recent works [17, 23, 24, 26, 29, 30] have explored latency-aware resource management (without
prefetching control). We plan to augment our governors to be aware of latency requirements,
possibly with application-speci�c knowledge, as part of future work.

13 RELATEDWORK
Hsu and Poole [16] observed real machines doing be�er than the conventional “ideal” system that
assumes linear proportionality. �ey proposed quadratic proportionality (Power(u) ∝ u2, where u is
the load level) as the new ideal model. However, this makes ideal system e�ciency load-dependent(

u
Power(u ) =

1
u

)
, with higher e�ciency at lower loads than at higher loads. Wong also observed that

the peak e�ciency can occur at intermediate loads, in the super-proportional region [44].
Wong and Annavaram [45] name the region that we call Sub-Linear as Superlinear. We prefer to

use “Sub-” in the sense that operating in this region lowers e�ciency compared to that of Linear
(Dynamic EP).

Song et al. [35] proposed Iso-energy-e�ciency (EE) as the energy ratio between sequential
and parallel executions of a given application. Our CPUE, LUE and RUE metrics do not use
speci�c execution modes (e.g., sequential/parallel, homogeneous/heterogeneous, speculative/non-
speculative, cache-conscious/cache-oblivious, etc.) for reference, but compare system states to
the Pareto frontier (Dynamic EO) or to EOP. �e de�nitions of our metrics are oblivious to which
con�gurations created the frontier. �e EE model focuses on maintaining equal e�ciency as
systems and applications scale up. In contrast, the EP and EOP models focus on maintaining equal
e�ciency under changing loads. EE does not quantify its dependence on load.

Barroso and Hölzle [4] compute datacenter energy consumption as PUE × SPUE × energy to
electronic components. While PUE accounts for non-compute overheads in datacenter building
infrastructure, SPUE (Server PUE) accounts for overheads, e.g., power supply losses, to computing
energy. Our RUE and LUE metrics do not separate SPUE losses from computing energy but separate
energy-wasting operating con�gurations and loads from optimal ones.

Other existing metrics [32, 40, 45] for characterizing energy e�ciency, e.g., based on the dynamic
power range, ratio between the idle and peak power consumptions, deviations from or area enclosed
by an ideal curve, etc. continue to be useful with the new ideals, EOP and Dynamic EO, replacing
the conventional ideals.

Dynamic voltage and frequency scaling (DVFS) and dynamic frequency scaling (DFS) for cores
are well-known techniques [13, 18, 43]. Researchers have explored mechanisms [10, 22, 24, 27, 30]
to exploit per-core DVFS capabilities. Our server, HS, lacks this support (also see Section 12).

OS governors [6, 34, 38] typically control DVFS se�ings but not additionally prefetch se�ings.
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Seeking Pareto optimality for improving e�ciency is well-known [2, 5, 25, 31, 44], but its
relationship to energy proportionality had not been formalized (see Section 3 for invariants between
Dynamic EP, EP, Dynamic EO and EOP).

14 CONCLUSION
Power-performance Pareto optimality and energy proportionality are well-known but dissimi-
lar concepts, both of which share the end goal of making computing more energy e�cient. We
demonstrated that the conventional model of energy proportionality is inadequate for recon�g-
urable systems since it does not guarantee energy optimality. We de�ned a new model, EOP, that
guarantees both optimality and proportionality and established its relation to the Pareto frontier.

We proposed a new metric, Computational PUE (CPUE), that quanti�es how much excess
computational energy is used by real systems relative to that by EOP. �is depends on both the load
served and the system con�guration used to serve that load. Our new Iron Law of Energy shows
how CPUE can be decomposed into constituent terms that help separate the load, con�guration,
and design aspects of suboptimality.

We developed new SLA-aware OS governors that seek Pareto optimality, and thereby reduce
CPUE, in the presence of frequency scaling and cache prefetching. We demonstrated improvements
in performance-per-wa� by up to 67% (maximum gains) and 30% on average (geometric mean over
all workloads) of a modern Intel Haswell server machine. �is opens up signi�cant opportunities
for revenue generation or cost savings. We also presented case studies and discussed challenges in
governing for maximizing performance within a power cap and minimizing power for a performance
target. Scheduling frameworks that carefully choose con�gurations and operating ranges will
unlock the full potential of current and future recon�gurable systems.
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