
A System-Level Specification Framework for I/O Architectures

Mark D. Hill, Anne E. Condon, Manoj Plakal, Daniel J. Sorin
Computer Sciences Department,

University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.

{mar&hill, condon, plakal, sorin)@cs.wisc.edu

Abstract

A computer system is useless unless it can interact with the outside
world through input/output (I/O) devices. II0 systems are complex,
including aspects such as memory-mapped operations, interrupts,
and bus bridges. Often, IJO behavior is described for isolated
devices without a formal description of how the complete II0 sys-

~ tern behaves. The lack of an end-to-end Jrstem description makes
the tasks of system programmers and hardware implementors more
dificult to do correctly.

This paper proposes a framework for formally describing I/O
architectures called Wisconsin II0 (WIO). WI0 extends work on
memory consistency models (that formally specify the behavior of
normal memory) to handle considerations such as memory-
mapped operations, device operations, interrupts, and operations
with side effects. Specifically, WI0 asks each processor or device
that can issue k operation types to speci’ ordering requirements in
a k X k table. A system obeys WI0 if there always exists a total
order of all operations that respects processor and device ordering
requirements and has the value of each “read” equal to the value
of the most recent “write” to that address.

This paper then presents examples of WI0 specifications for sys-
tems with various memory consistency models including sequen-
tial consistency (SC), SPARC TSO, an approximation of Intel LA-
32, and Compaq Alpha. Final& we present a directory-based
implementation of an SC system, and we sketch a proof which
shows that the implementation conforms to its WI0 specijcation.

1 Introduction
Modem computer hardware is complex. Processors execute
instructions out of program order, non-blocking caches issue
coherence transactions concurrently, and system interconnects
have moved well beyond simple buses that completed transactions
one at a time in a total order. Fortunately, most of this complexity
is hidden from software with an interface called the computer’s

Tbis work is supported in part by tbe National Science Foundation with grants MIP-
9225097, MIPS-9625558, CCR 9257241, and CDA-9623632, a Wisconsin Romnes
Fellowship, and donations from Sun Microsystems and Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
pcrsonai or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. TO copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior spccitic permission and/or a fee.
SPAA ‘99 Saint Malo, France
Copyright ACM 1999 I-581 13-124-0/99/06...$5.00

“architecture.” A computer architecture includes at least four wm-
ponents:

The instruction set architecture gives the user-level and sys-
tem-level instructions supported and how they are sequenced
(usually serially at each processor).

A memory consistency model (e.g., sequential consistency,
SPARC Total Store Order, or Compaq Alpha) gives the behav-
ior of memory.

The virtual memory architecture specifies the structure and
operation of page tables and translation buffers.

The Input/Output (Z/O) architecture specifies how programs
interact with devices and memory.

This paper examines issues in the often-neglected I/O architecture.
The I/O architecture of modem systems is complex, as illustrated
by Smotherman’s venerable I/O taxonomy [14]. It includes at least
the following three aspects. First, software, usually operating sys-
tem device drivers, must be able to direct device activity and
obtain device data and status. Most systems today implement this
with memory-mapped operations, A memory-mapped operation is
a normal memory-reference instruction (e.g., load or store) whose
address is translated by the virtual memory system to an uncache-
able physical address that is recognized by a device instead of reg-
ular memory. A device responds to a load by replying with a data
word and possibly performing an internal side-effect (e.g., popping
the read data from a queue). A device responds to a store by
absorbing the written data and possibly performing an internal
side-effect (e.g., sending an external message). Precise device
behavior is device specific. Second, most systems support inter-
rupts whereby a device sends a message to a processor. A proces-
sor receiving an interrupt may ignore it or jump to an interrupt
handler to process it. Interrupts may transfer no information
(beyond the fact that an interrupt has occurred), include a “type”
field, or possibly include one or more data fields. Third, most sys-
tems support direct memory access @MA). With DMA, a device
can transfer data into or out of a region of memory (e.g., 4Kbytes)
without processor intervention.

An example that uses all three types of mechanisms is a disk read.
A processor begins a disk read by using memory-mapped stores to
inform a disk controller of the source address on disk, the destina-
tion address in memory, and the length. The processor then
switches to other work, because a disk access takes millions of
instruction opportunities. The disk controller obtains the data from
disk and uses DMA to copy it to memory. When the DMA is com-
plete, the disk controller interrupts the processor to inform it that
the data is available.

A problem with current I/O architectures is that the behaviors of
disks, network interfaces, frame buffers, I/O buses (e.g., PCI), SYS-

138

tern interconnects (e.g., PentiumPro bus and SGI Origin 2000
interconnect), and bus bridges (that connect I/O buses and system
interconnects) are usually specified in isolation. This tendency to
specify things in isolation makes it difficult to take a “systems”
view to answer system-level questions, such as:

l What must a programmer to do (if anything) if he or she wants
to ensure that two memory-mapped stores to the same device
arrive in the same order?

l How does a disk implementor ensure that a DMA is complete
so that an interrupt signalling that the data is in memory does
not arrive at a processor before the data is in memory?

l How much is the system interconnect or bus bridge designer
allowed to reorder transactions to improve performance or
reduce cost?

This paper proposes a formal framework, called ll%consin I/O
(WIO), that facilitates the specification of the systems aspects of
an I/O architecture. WI0 builds on work on memory consistency
models that formally specifies the behavior of loads and stores to
normal memory. Lamport’s sequential consistency (SC), for exam-
ple, requires that “the result of any execution is the same as if the
operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in
this sequence in the order specified by its program [ll].” WIO,
however, must deal with several issues not included in most mem-
ory consistency models: (a) a processor can perform more opera-
tions (e.g., memory-mapped stores and incoming interrupts), (b)
devices perform operations (e.g., disks doing DMA and sending
interrupts), (c) operations can have side effects (e.g., a memory-
mapped load popping data or an interrupt invoking a handler), and
(d) it may not be a good idea to require that the order among oper-
ations issued by the same processor/device (e.g., memory-mapped
stores to different devices) always be preserved by the system.

To handle this generality, WI0 asks each processor or device to
provide a table of ordering requirements. If a processor/device can
issue k types of operations, the required table is k X k, where the
ij-th entry specifies the ordering the system should preserve from
an operation of type i to an operation of type j issued later by that
processor or device in program order (i.e., in the order specified by
the processor or device’s program). A disk, for example, might
never need order to be preserved among the multiple memory
operations needed to implement a DMA. A system with p proces-
sors and d devices obeys WI0 if there exists a total order of all of
the operations issued in the system that respects the subset of the
program order of each processor and device, as specified in the
ptd tables given as parameters, such that the value of each “read”
is equal to the value of the most recent “write” to that address.’

This paper is organized as follows. In Section 2, we discuss related
work. Section 3 presents the model of the system we are studying.
Section 4 explains the orderings that are used to specify the I/O
architecture for a system whose memory model is SC, and it
defines Wisconsin I/O consistency based on these orderings.
Section 5 extends the framework to incorporate other memory con-

1. The same table can be reused for homogeneous processors and
devices. We precisely define “read” and “write” in later sections.

sistency models. Section 6 describes a system with I/O that is com-
plex enough to illustrate real issues, but simple enough to be
presented in a conference paper. In Section 7, we outline a proof
that the system described in Section 6 obeys Wisconsin I/O.
Finally, Section 8 summarizes our results.

We see this paper as having two contributions. First, we present a
formal framework for describing system aspects of I/O architec-
tures. Second, we illustrate that framework in a complete example.

2 Related Work
The publicly available work that we found related to formally
specifying the system behavior of I/O architectures is sparse. As
discussed in the introduction, work on memory consistency mod-
els is related [l]. Prior to our current understanding of memory
consistency models, memory behavior was sometimes specified
Individually by hardware elements (e.g., processor, cache, inter-
connect, and memory module). Memory consistency models
replaced this disjoint view with a specification of how the system
behaves on accesses to main memory. We seek to extend a similar
approach to include accesses across I/O bridges and to devices.

Many popular architectures, such as Intel Architecture-32 (IAl32)
and Sun SPARC, appear not to formally specify their l/O behavior
(at least not in the public literature). An exception is Compaq
Alpha, where Chapter 8 of its specification [131 discusses ordering
of accesses across I/O bridges, DMA, interrupts, etc. Specifically,
a processor accesses a device by posting information to a “mail-
box” at an I/O bridge. The bridge then performs the access on the
I/O bus. The processor can then poll the bridge to see when the
operation completes or to.obtain any return value. DMA is mod-
eled with “control” accesses that are completely ordered and
“data” accesses that are not ordered. Consistent with Alpha’s
relaxed memory consistency model, memory barriers are needed in
most cases where software desires ordering (e.g., after receiving an
interrupt for a DMA completion and before reading the newly-
written memory buffer). We seek to define a more general I/O
framework than the specific one Alpha chose and to more formally
specify how I/O fits into the partial and total orders of a system’s
memory consistency model.

3 System Model
We consider a system consisting of multiple processor nodes,
device nodes, and memory nodes that share an interconnect.
Figure 1 shows two possible organizations of such a multiproces-
sor system, where shared memory is implemented using either a
broadcast bus or a point-to-point network with directories [5]. The
addressable memory space is divided into ordinary cacheable
memory space and uncacheable I/O space. We now describe each
part of the system.

Processor Nodes; A processor node consists of a processor, cache,
network interface, and interrupt register. Each processor “issues” a
stream of operations, and these operations are listed and described
in Table 1. Note that LD and LDio are not necessarily different
opcodes; in many machines, they are disambiguated by the address
they access. We classify operations based on whether they read
data (ReadOP) or write data (WriteOP). If the cache cannot satisfy
an operation, it initiates a transaction (these will be described in
Section 6) to either obtain the requested data in the necessary state
or interact with an I/O device. The cache is also allowed to proac-

139

TABLE 2. Device Operations

FIGURE 1. Possible System Organizations

TABLE 1. Processor Operations

Class

ReadOP

WriteOP

DescriDtion

Load - load word from ordinary
memory space

Store - store word to ordinary
memory space

LDio

STio

ReadOP

WriteOP

Load I/O - load word from I/O
space

Store I/O - store word to I/O
space

tively issue transactions, such as prefetches. In addition, the pro-
cessor (logically) checks its interrupt register, which we consider
to be part of the I/O space, before executing each instruction in its
program, and it may branch to an interrupt handler depending on
the value of the interrupt register.

Device Nodes: We model a device node as a device processor and
a device memory. Each device processor can issue operations to its
device memory. In addition, it can also issue operations which lead
to transactions across the I/O bridge (via the I/O bus). These
requests allow a device to read and write blocks of ordinary cache-
able memory (via DMA) and to write to a processor node’s inter-
rupt register. The list of device operations is shown in Table 2.

A request from a processor node to a device memory can “cause”
the device to “do something useful.” For example, a write to a disk
controller status register can trigger a disk read to begin. This is
modeled by the device processor executing some sort of a program
(that specifies the device behavior) which, for example, makes it sit
in a loop, check for external requests to its device memory, and
then do certain things (e.g., manipulate physical devices) before
possibly doing an operation to its device memory or to ordinary
memory. The device program will usually be hard-coded in the
device controller circuits, while the requests from processor nodes
will be part of a device driver that is part of the operating system.
Note that, in general, the execution of a subroutine by the device in

Operation

LDio

Class

ReadOP

STio WriteOP

INT

LDblk ReadOP

STbIk WriteOP

response to an ex nal request tc

Load I/O - load word from
device memory (I/O space)

Store I/O - store word to
device memory (I/O space)

Interrupt - send an interrupt to
a processor node

Load Block - load cache block
from ordinary memory

Store Block - store cache block
to ordinary memory
levice memory needs to be made

atomic with respect to other external requests to device memory.
This avoids data races in accessing device memory locations.

Memorv nodes: Memory nodes contain some portion of the ordi-
nary shared memory space. In a system that uses a directory proto-
col, they also contain the portion of the directory associated with
that memory. Memory nodes respond to requests made by proces-
sor nodes and device nodes. Their behavior is defined by the spe-
cific coherence protocol used by the system.

Description

Interconnect: The interconnect consists of the network between the
processor and memory nodes and the I/O bridges. This could either
be a broadcast bus or a general point-to-point interconnection net-
work. The I/O bridges are responsible for handling trafllc between
the processor and memory nodes, and the device nodes. Note that,
while we allow a system to contain multiple bridges, we do assume
that a single device is accessible via exactly one bridge. This could
perhaps be extended to systems where devices are accessible
through multiple bridges (for fault-tolerance reasons), by assuming
that only one device-bridge pairing is active at any point in time.

Examnle: We now present an example that shows how this model
can be used to describe a common I/O scenario. Table 3 illustrates
disk reads, which, for example, might be initiated by the operating
system for paging virtual memory or for accessing files in a disk-
based file-system. In the example, the first operand of a memory
operation is the destination and the second operand is the source.
The example assumes a hypothetical disk controller with device
registers DRO, DRl, DR2, and DR3 mapped into I/O address
space. These registers are used to control the initial disk block
number to read, the starting memory address of the buffer which
will contain the data to be read, the length of the buffer, and the
command (Read) to be executed. In the table, physical time flows
downwards. The final STio to DR3 (the command register) imme-
diately “triggers” the device to read all of the device registers and
to set up the disk to do the read. Data is transferred using DMA
between the disk and coherent memory via physical disk reads and
STblks. It is useful to note here that most operating systems would
make sure that these STblks do not generate any unnecessary
coherence activity by invalidating all shared and modifled copies
(to speed up the DMA). Finally, an interrupt is generated when the
disk controller has finished the DMA. This triggers the interrupt
handler at the processor which can then use the data.

140

TABLE 3. Disk Read

Processor I Disk Controller

STio Block, [DRO]
Setup SI’io Address, [DRl]

I
STio Length, [DRZ]

STio Read-Cmd, [DR3]

DMA

Interrupt handler runs

Read DRO, DRl, DR2,
DR3 and set up disk read

Read in data from disk,
issue STblk for each cache
block of data to appropri-
ate address

INT

Use LD Rl, [Address]
data ST [Address+4], Rl I

4 An I/O Framework for Sequential Consistency
As the example in the previous section shows, certain orderings
between operations are required in order to get device operations
to work. The objective of our framework is to concisely capture the
orderings required of a system. In this section, we present a version
of our framework for ordering the memory and I/O operations in a
system where the memory model is sequential consistency (SC).
Section 5 will address systems with other memory models. We
begin with the ordering at individual processors and devices, and
then we incorporate these orderings into a framework for system-
wide ordering.

4.1 Processor and Device Ordering
In a given execution of the system, at each processor or device
there is a total ordering of the operations (from the list LD, ST,
LDio, STio, INT, LDblk, and STblk) that can be issued by that pro-
cessor or device. Call this program order and denote it by %

Let partial program order be any relaxation of program order at a
processor or a device processor. For example, let epp be the partial
program order that respects program order with respect to opera-
tions to the same address and also satisfies the constraints of Tables
4 and 5, where entries in these tables use the following notation:

A: OPl cPP OP2 always

D: OPl cpp OP2 if the addresses of OPl and OP2 refer to the same
device

-: no ordering constraint on OPl, OP2 (if not to the same address)

The entries in the tables reflect the behavior of a hypothetical sys-
tem. For example, in many systems, STios to multiple devices are
not guaranteed to be ordered in any particular way. Also, there is
no ordering from a STio to a subsequent LD or ST, since that
would require the processor to wait for an acknowledgment from
the device.

TABLE 4. Partial Program Order at a Processor

Operation 2

LD ST LDio STio

rl LD A A A A
8
‘a ST A A A A
e

8
LDio A A D D

STio - D D

TABLE 5. Partial Program Order at a Device Processor

Operation 2

LDio STio INT LDblk STblk

LDio A A A A A
rl
d STio A A A A A
P
E INT - - D - -

6
LDblk - - A - -

STblk - - A - -

It is important to realize that a programmer who wishes to enforce
ordering between operations that are not guaranteed to be ordered
can create an ordering through transitivity. For example, a pro-
grammer can order a processor’s LD after a STio by inserting a
LDio to the same device as the STio between the two operations.
Since STio cPP LDio and LDio ePP LD, we have STio cpp LD (for
this particular sequence of three operations).

4.2 System Ordering: Wisconsin I/O Consistency for SC

Using the definition of partial program order, we can now define a
system ordering which we call Wisconsin I/O ordering. The defini-
tion of Wisconsin I/O (WIO) ordering takes as a parameter an n-
tuple of partial program orders, such as the 2-tuple specified by
Tables 4 and 5. Let cw be a total ordering of all LD, ST, LDio,
STio, INT, LDblk, STblk operations of an execution of the system.
Then cw satisfies Wisconsin I/O with respect to a given partial
program order if:

1. ew respects the partial program order, and

2. the value read by every ReadOP operation is the value stored by
the most recent WriteOP operation to the same address in the cw
order.

In Sections 6 and 7, we will describe an implementation for an SC
system and outline a proof that shows it obeys this specification.

5 An I/O Framework for Other Consistency Models
To ease presentation complexity and concentrate on I/O aspects,
we have thus far assumed a memory consistency model of sequen-
tial consistency. More relaxed models, such as SPARC TSO and
Compaq Alpha, can also be accommodated, and we now show how
this can be accomplished. We accommodate them by changing the
partial program ordering at the processor, but we leave the device
processor ordering unchanged. One could easily imagine provid-
ing a WI0 specification where the device ordering does not match

141

the ordering specified in Table 5, but instead matches that of the
specific device(s) being modeled.

5.1 Processor and Device Ordering

As in Section4.1, for each memory consistency model, we will
present tables of ordering requirements for partial program order at
processors. In the following discussion, we do not include syn-
chronization operations, such as Read-Modify-Write (RMW). A
RMW can be thought of as an atomic operation which includes a
LD and then a ST. It would be ordered such that order between a
RMW and another operation, OP2, respects the union of ordering
rules between OP2 and a LD and between OP2 and a ST.

5.1.1 SPARC TotaI Store Order (TSO)

SPARC Total Store Order (TSO) [16] is a variant ofprocessor con-
sistency [7,8] that has been implemented on Sun multiprocessors
for many years. TSO relaxes SC in that STs can be ordered after
LDs which follow them in program order (so long as there are no
intervening memory barriers (MB) and the two operations are to
different locations). Thus, TSO sometimes allows a load to get a
value from a “future” store. In real implementations, this behavior
is manifest when a processor’s LD returns a value from its own ST
that is still on its own first-in-first-out (FIFO) write buffer and has
not yet seen by other processors. It should be noted that TSO sup-
ports multiple flavors of MBs, but we only concern ourselves with
the strongest (i.e., an MB that enforces order between any opera-
tion before it and any operation after it).

In previous research [3], we developed a memory model called
Wisconsin TSO that is equivalent to SPARC TSO, and it elimi-
nates the oddity of getting a value from a “future” store by splitting
each ST into a STp,.ivate and a STpuulie. Wisconsin TSO respects
program order between STurlvateS and LDs, while STPuhlies can be
delayed until the next MB in program order. In addition, STuuhlies
must also stay in program order with respect to each other. The
STprivatc and STpublic corresponding to the same ST carry the same
value. A LD gets its value from either (a) the most recent STurivate
by the same processor as the ID for which the corresponding
STpUblie has not yet occurred (if any) or (b) the most recent STpublie
otherwise. The STp,.ivate or STuublle from which the LD gets its
value is considered to be the applicable WriteOX? Practitioners can
think of a STptiate as a store entering a processor’s FIFO write
buffer, case (a) as bypassing from the write buffer, STpublie as a
store exiting the write buffer, and case (b) as obtaining a LD’s
value from cache or memory.

This definition leads to the ordering rules shown in Table 6 for par-
tial program order at a processor, where differences from Table 4
are shaded. Note that a programmer can enforce order from a
STp”blle to a LD by inserting an MB between them.

5.1.2 An Approximation of Intel IA-32

The Intel IA-32 memory model is similar to TSO, in that it is a
variant of processor consistency. We approximate the IA-32 sys-
tem ordering model by combining the TSO memory model with
our interpretation of the IA-32 I/O ordering rules [4]. IA-32 has
two uncached (UC) operations, LDuc and STuc, that are similar to
our LDio and STio I/O operations, but UC operations are more
strictly ordered. AlI operations before a UC operation (in program

TABLE 6. TSO: Partial Program Order at a Processor

I Operation 2

LD STpriv sTpub MB LDio STio

LD A A A A A A

rl A A A= A A A
g

STpriv

‘G sTpub - I - A A A A
fi &MB A A A A A A

0 LDio A A A A D, D

STio - i - - A’D D _
a. Includes the case where both operations are caused by
the same Store (i.e., OPl is the STprivate and OP2 is the
STpublic for a given ST).

order) are ordered before the UC operation, all operations after a
LDuc are ordered after the LDuc, and all STs after a S’Btc are
ordered after the STuc. In addition to the UC operations, IA-32 has
two “write combining” (WC) uncached operations, LDwc and
S’Bvc. These operations are less strictly ordered than LDio/STio
operations, and they are well-suited to the access ordering require-
ments for a video frame buffer. There is no ordering enforced
between WC operations or between a WC operation and a cache-
able memory operation. Also, IA-32 has several “serializing
instructions” which enforce ordering in much the same way as
memory barriers, and we will simply refer to them as MBs.

We have made two simplifications in this description of IA-32.
First, IA-32 has several flavors of cacheable memory operations,
including Write-through, Write-back, and Write-protected, but we
will fold them all into ID/ST operations. Second, it supports IN
and OUT I/O instructions, which are not memory-mapped I/O, but
instead directly access I/O ports. These I/O instructions are
ordered just as strongly as MBs, and we do not include them here.

Table 7 shows the ordering rules at a processor obeying our
approximation of IA-32. Once again, differences from the SC table
are shaded. Notice the extra ordering requirements of the LDuc/
STuc compared to those of the LDio/STio in Table 4.

5.13 Compaq Alpha

The Compaq @EC) Alpha memory model [131 is a weakly consis-
tent model that relaxes the ordering requirements at a given pro-
cessor between any accesses to different memory locations unless
ordering is explicitly stated with the use of a Memory Barrier
(MB). The Alpha memory model is formally detined through the
use of two orders that must be observed with respect to memory
accesses. The first order, program issue order, is a partial order on
the memory operations (LDs, STs) issued by a given processor.
Issue order relaxes program order in that there is no order between
accesses to different locations without intervening MBs. Issue
order enforces order between accesses to the same location, order
between any access and an MB, and order between MBs. The sec-
ond order, access order, is a total order of operations on a single
memory location (regardless of the processors that issued them).

142

‘IABLE 7. “IA-325 Partial Pxwgram Order at a Processor

Operation 2

L.D : STpriv STp;d ‘MB LDuc sTuc LDWC- i snvc
IX>

LD A A. A ~A’A A - :;

STpriv _I- A’ ‘A At, ‘; A A A - -
ii

STpnb ,‘ w . A*- A A’ A e ‘1 I

MB A ’ A A .A A A A 1 A ,
LDUC A A A. A A A A j A

snlc A A A A A _ ‘5
!; A

LD”k * I I A A A - ,; w

SIbG
II i, - ,_ I d I*, ,),, A ‘,

’
A

.‘. I ^*, . : i . _ x IL
A

c ^- ,I
a. Includes the case where both operations are for the same ST (i.e., OPl is the STprivate and OP2 is the STpublic for a given ST).

We previously defined an equivalent memory model, called Wis-
consin Alpha [3], where an execution of an implementation satis-
fies the Wisconsin Alpha memory model if there exists a total
ordering of all loads, stores, and MBs, such that:

l all of the issue orders are respected, and

l a load returns the value of the most recent store to the same
location in this total order.

This definition of Wisconsin Alpha is reflected in the partial pro-
gram ordering rules shown in Table 8. Notice that there are no
ordering requirements between LDs and STs (unless they are to the
same address). To enforce order between them requires inserting
an MB between them, which creates the order LD/ST cw MB <w
LD/ST.

TABLE 8. Alpha: Partial Program Order at a Processor

I Operation 2

1 1 LD ST MB LDio STio

LD - - I I A, A A
r(
a ST _’ _, A”: A A

1 Sri0 1 - - A.‘: D D

5.1.4 Release Consistency

Release consistency (RC), particularly the RCpc flavor, is one of
the most relaxed memory consistency models [7]. To define con-
sistency models like this, Gharachorloo et al. developed a general
framework for memory consistency models, where writes are bro-
ken into p+ 1 sub-operations, where p is the number of processors
in the system [6]. This framework, in turn, is based on a system
abstraction developed by Collier [2].

Along these lines, we could expand our partial program order
tables to reflect that a store in an RC system could appear to be
broken up into a STphvate and many STpubli,+ with one STpublic at

each processor. The applicable WriteOP for a LD would be either
the STptivate or the STpublic at that processor. Moreover, RC has
two new operations, Acquires and Releases, which can be consid-
ered to be types of MBs for our purposes. Acquires and Releases
would be included in the processor partial program order table, and
the ordering required among them would depend on the flavor of
RC. For example, the ordering between acquires and releases in an
RCpc system would be the same as the ordering between LDs and
STs in a processor consistent system (e.g., TSO). This approach,
however, could lead to large, unwieldy tables.

5.2 WI0 Consistency for General Memory Models

Extending the definition of WI0 from Section 4.2 to incorporate
memory models other than SC requires that we:

l Add any new operations, such as LDwc and S%c (which are a
ReadOP and a WriteOP, respectively).

l Define what the applicable WriteOPs are for a ReadOP. For
example, in TSO, the applicable WriteOP for a LD is the most
TFt S~private at that processor unless the corresponding

P,,blic 1s also before the L?, in which case it is the most
recent STpublic

l Change WI0 property 2 to read:

2. the value read by every ReadOP operation is the value stored by
the most recent applicable WriteOP operation to the same address
in the cw order.

6 An Implementation that Obeys WI0 for SC

So far, we have provided abstract specifications of systems that
include I/O. We now provide a concrete implementation that aims
to conform to the WI0 specification for SC systems presented in
Section 4. In this section, we specify a sequentially consistent
directory-based system consisting of the components described in
Section 3. This description builds upon the directory protocol
described in Plakal et al. [12]. The description is divided into
descriptions of the processor nodes, interconnect, I/O devices,
bridge and memory nodes.

Processor nodes: The cache receives a stream of LD/ST/LDio/STio
operations from the processor and, if it cannot satisfy a request, it

143

issues a transaction.’ The complete list of transactions, including
block transfer transactions (Rblk/Wblk) that can only be issued by
devices and which will be discussed later, are shown in Table 9.
Cache coherence transactions (GETX/GETS/UPG/WB) are
directed to the home of the memory block in question (i.e., the
memory node which contains the directory information for that
block). I/O transactions (Rio/Wio) are directed to a specific I/O
device and also contain an address of a location within the memory
of the device (and, if Wio, the data to write as well). The granular-
ity of access for an I/O transaction is one word (for simplicity of
exposition). Rios generate a reply message from which the cache
extracts a register value and passes it to the processor. Wios do not
generate any reply messages from the target device; in the case that
a processor issues a Wio and desires a response, it can subse-
quently query the device with a Rio. Note that each LDio or STio
generates exactly one Rio or Wio (respectively). This is unlike nor-
mal cacheable memory transactions where, for example, multiple
LDs or STs may be issued to the same block after a single GETX
brought it into the cache.

TABLE 9. Jkansactions

Tkansaction I Description

GETX

GETS

UPG

WB

Rio

Wio

Rblk

wblk

Get Exclusive access

Get Shared access

Upgrade (Shared to Exclusive) access

Write Back

Read I/O - read word from I/O space

Write I/O - write word to I/O space

Read Block - read cache block from ordi-
nary memory

Write Block - write cache block to ordi-
nary memory

Processor nodes must conform to the list of behavior requirements
specified in Section 2.4 of Plakal et al. [12] (e.g., a processor node
maintains at most one outstanding request for each block). They
must also conform to the ordering restrictions laid out in Table 4.
Thus, they do not issue a LD/ST until all LDios preceding it in pro-
gram order have been “performed” (i.e., the reply has been written
into the register by the cache).

A processor node’s network interface sends all transactions from
the cache into the interconnection network. In addition, the net-
work interface will pass a Wio coming from the network to the
processor’s interrupt register. It also passes all replies to transac-
tions to the cache.

Interconnect: The network ensures point-to-point order between a
processor node and a device node, and it ensures reliable and even-
tual delivery of all messages.

Bridge: The I/O bridge performs the following functions: it
receives Rio/Wios from processor nodes and broadcasts them on

1. As noted earlier, caches can also proactively issue transactions
without receiving an operation from their processors.

the I/O Bus (this has to be done in order of receipt on a per-device
basis); sends Wio replies from device memory to processor nodes;
sends Wios (to interrupt registers) from device processors to pro-
cessor nodes; participates in Rblk/Wblk transactions (discussed
below) and broadcasts completion acknowledgments on the I/O
bus. The I/O bridge must obey certain rules. It provides sufficient
buffering such that it does not have to deny (negative acknowledg-
ment or NACK) requests sent by processors or devices. It also han-
dles the re-try of its own NACKed requests (to memory nodes). No
order is observed in the issue/overlap of Rblk/Wblk transactions.

Device Nodes: Each device processor can issue LDio/STios to its
device memory and INTs to processor interrupt registers. INT
operations are converted to Wio transactions by the I/O bridge.
These are directed to a specific processor’s interrupt register and
do not generate reply messages. In addition, a device can also issue
LDblk and STblk requests, and these operations are converted to
Rblk and Wblk transactions by the bridge and are directed to the
home node. The data payload for both requests is a processor
cache line (equal to a block of memory at a memory node, which is
equal to the coherence unit for the entire system). Both requests
generate acknowledgments (ACKs) on the I/O bus (from the
bridge) and, in the case of the Rblk, the ACK contains the data as
well. A Wblk request carries the data with it. Also, each LDblk/
STblk will generate exactly one Rblk/Wblk (just as with LDio/
STios and Rio/Wios).

Each device memory receives a stream of LDio/STios from its
device processor. In addition, it also receives a stream of Rio/Wios
from the bridge (via the I/O bus) which it logically treats as LDio/
STios. These two streams are interleaved arbitrarily by the device
memory. For each incoming Rio, the device memory sends (via the
bus and the bridge) the value of that location back to the node that
sent the Rio. LDio/STios operate on device memory like a proces-
sor’s LD/STs operate on its cache.

The device processor must obey the ordering rules specified in
Table 5. For example, an INT is not issued until all LDblk/STblks
preceding it in “device program order” have been performed (i.e.,
an ACK has been received from the bridge for the corresponding
Rblk/Wblk).

Memorv Nodes: Memory nodes operate as described in Plakal et
al. [12] (with respect to directory state and transactions), with the
following modifications for handling Rblk/Wblk transactions. Pro-
tocol actions depend on the state of the block at the home node for
both transactions.

Rblk:

Idle or Shared: the home sends the block to the bridge, which
broadcasts an ACK with the data on the I/O bus.

Exclusive: the home changes state to Busy-Rblk, removes the
current owner’s ID from CACHED, and forwards the request
to the current owner. The owner sends the block to the bridge,
invalidates the block in its cache, and sends an update message
(with the block) to the home, which changes the state to Idle
and writes the block to memory. The bridge receives the block
and broadcasts an ACK along with the data on the I/O bus.

Busy-Any: the home NACKs the request.

144

‘IABLE 10. Example 1 TABLE 11. Example 2

Dl P2 D3 D3 P4 PS

send Wio Wl to Dl GETX B

recv Wio Wl
):

J

send Rio Wl to Dl

/

send Wio W2 to D
\

STio Wl send Rio W2 to D3
‘4 P

recv INV B

recv Rio Wl recv Rio W2 recv a&s/data for B

LDio Wl; send to P2
J

LDio W2; send to P2 revc Wio W2

\
receive W2 STio W2 STB

LDio W2

receive Wl

LDio Wl

whk

l Idle: the home stores the block to memory and sends an ACK
to the bridge. The bridge sends an ACK to the device (via
broadcast on the I/O Bus).

l Shared: the home stores the block to memory, sends invalida-
tions to all shared copies, sends a count of the copies to the
bridge and changes the state to Busy-Wblk. The bridge waits
until it receives all ACKs for the invalidations before broad-
casting the transaction completion ACK on the I/O Bus. The
bridge also then sends an ack to the home which enables it to
change its state to Idle.

l Exclusive: the home stores the block to memory, sends an
invalidation to the (previous) owner, sends an ACK to the
bridge, and changes the state to Busy-Wblk. The former owner
invalidates its copy and sends an ack to the bridge, which then
sends an ACK to the device and to the home (which then
changes its state to Idle).

l Busy-Any: the home NACKs the request.

Note that we now have two new ‘Lbusy” home states, Busy-Rblk
and Busy-Wblk, which serve similar roles as the busy states used in
the original directory protocol. These modifications make some
formerly impossible situations possible. In particular, Writebuck
requests may find the home busy. One solution is to modify this
transaction case:

l Writeback on home Busy-Rblk or Busy-Wblk: This is the same
as when the home is Busy-Shared.

7 Proof that the Implementation Satisfies WI6
We show correctness of the implementation described in Section 6
as follows. We will use a verification technique based on Lam-
port’s logical clocks [lo] that we have successfully applied to sys-
tems without I/O [15, 12,3]. The technique relies on being able to
assign timestamps to operations in a system and then proving that
the ordering induced by the timestamps has the properties required
of the implementation. In order to apply our verification technique,

we tirst describe a timestamping scheme that logically orders all
ReadOps and WriteOps that occur in any given execution of the
protocol. Second, we show that the resulting total order satisfies
properties 1 and 2 of WI0 consistency, as in Section 4.2 for SC. A
detailed specification of our correctness proof can be found in a
technical report of this research [9]; the following is a short over-
view of our approach.

To specify the timestamping scheme, we augment processors,
directory, and device processors (all referred to as nodes) with log-
ical clocks. We stress that these clocks are simply conceptual tools,
not part of the actual protocol. Using these clocks, a unique times-
tamp is assigned to each read and write. In addition, a transaction
that causes a node to change its access permission to a block of
data or word of I/O is timestamped by that node. Thus, a transac-
tion may be timestamped by several nodes. Roughly, when an
event (i.e. read, write, or transaction) to be timestamped “happens”
at a node, the clock is moved forward in time and the updated time
on the clock is assigned to that event. Of course, events are not
atomic and so a central aspect of the timestamping method is the
determination, from the protocol specification, of exactly when
(and where) events are timestamped (and thus when they are con-
sidered to “happen”). In this way, the timestamping scheme pro-
vides a single, total ordering of all key events in the system. The
correctness proof then shows that the real system behaves just as if
the events happened atomically, in the order given by the times-
tamping scheme.

Tables 10, 11, and 12 are examples that illustrate how the times-
tamping scheme works and help in reasoning about correctness of
our protocol. We need to describe one further aspect of timestamps
before getting to our examples. Timestamps are split into three
non-negative integral components: global time, local time, and
processor ID. As will become clearer from the example, global
timestamps help to order transactions which happen across nodes,
whereas local timestamps help to order read and write operations
that happen internal to a node. Processor ID simply acts as a tie-
breaker between operations with the same global and local times-
tamps.

145

TABLE 12. Combined example with timestamps. InitiaIIy, aII clocks (global.locaI) are set to 0.0.

Dl P2 D3 P4 P5

send Wio Wl to Dl GETX B

1.0.1 recv Wio Wl send Rio Wl to Dl send Wio W2 to D3

1.1.1 STio Wl send Rio W2 to D3 1.0.5 recv INV B

2.0.1 recv Rio Wl 1.0.3 recv Rio W2 2.04 recv a&s/data for B

2.1.1 LDio Wl; send to P2 1.1.3 LDio W2; send to P2

receive W2 2.1.4 ST B

LDio W2

receive Wl

LDio Wl

2.0.3 recv Wio W2

2.1.3 STio W2

The tirst example, shown in Table 10, shows one processor, P2,
that communicates with two devices, namely Dl and D3. P2 sim-
ply does a write followed by a read to a word Wl of Dl, followed
by a read to a word W2 of D3. Because the network preserves
point to point ordering of messages, Dl first receives the “Wio
Wl” request, and then the “Rio Wl” request; Dl performs these
operations in order and returns the value of Wl to P2. Meanwhile,
D3 handles the “Rio W2” request and returns the value of W2 to
P2.

Table 12 shows how these reads and writes are timestamped. In our
timestamping scheme, reads and writes to device memory are
timestamped at the device (thus ensuring that, in the resulting total
ordering, the value of a read is that of the most recent write to the
same word). The Wio and Rio requests to Dl are considered to be
transactions and so Dl assigns global time 1 to the Wio and global
time 2 to the Rio request. As with all transactions, the local times-
tamp for each of these is 0, and the final component of the times-
tamp is the device ID, which is 1 in our example. When the (local)
“STio Wl” is performed by Dl, the local time is incremented, and
thus the timestamp is 1.1.1. Similarly, the timestamp of the “LDio
Wl” operation is 2.1.1, and the events at D3 are timestamped in a
manner consistent with those at Dl. Thus, the “STio Wl” appears
before the “LDio Wl” operations at Dl. This is consistent with our
specification in Table 4 that reads and writes to a common device
(in this case, Dl) by a processor should respect program order.
Also note that, regardless of the relative order in real time of the
“LDio Wl at Dl” and “LDio W2 at D3,” the “LDio Wl” happens
before the “LDio W2” in timestamp order simply because Dl’s
clock is further along than D3’s clock when they perform these
operations. The timestamps assigned to these operations are also
independent of whether P2 receives the value of W2 before or after
P2 receives the value for Wl. So, although the “Rio Wl” appears
before “Rio W2” in P2’s program order, the “LDio W2” appears
before the “LDio Wl” in timestamp order. Again, this is consistent
with Table 4, which that specifies LDios to different devices are
not constrained to respect program order.

Our second example, in Table 11, concerns a processor P4 that
receives exclusive permission for block B, causing processor P5 to
invalidate its copy of block B. In addition, P4 sends a “Wio W2” to
D3. Table 12 shows how transactions and operations at D3, P4, and
P5 are timestamped. The timestamping rules specify that the glo-
bal timestamp assigned by P4 to the GETX transaction must be
later than the corresponding INValidate at P5. Imagine that acks
sent to P4 from P5 include the timestamp of the INValidate. Also,
in contrast with the fact that reads and writes to devices are times-
tamped at the device, reads and writes to cacheable memory (and
thus the “ST B” operation at P4) are timestamped at the processor
performing the operation. This is because permissions for the
block reside at the processor, whereas permissions for a word of
device memory always reside at the device.

Note that in Table 12, at any single node, the logical timestamps
are always increasing in real time, while timestamps may be “out
of order” across nodes in real time. Finally, note that the logical
timestamps provide a total ordering of all reads and writes; this
total ordering obtained in our example can be easily seen to satisfy
the conditions of Section 4.2.

8 Conclusions

Although I/O devices are integral parts of computer systems and
having clean I/O architectures would offer benefits, the commer-
cial systems with which we are familiar tend to use ad hoc, com-
plex, and undocumented interfaces. In this paper, we have
proposed a framework called Wisconsin I/O for formally describ-
ing I/O architectures. WI0 is an extension of research on memory
consistency models that incorporates memory-mapped I/O, inter-
rupts, and device operations that cause side effects. WI0 is defined
through ordering requirements at each processor and device, and a
system is considered to obey WI0 if there exists a total order of all
operations that satisfies these ordering requirements such that the
value of every read is equal to the value of the most recent write.
We outlined how to use Lamport clocks to prove that an example
system that we specified satisfies its WI0 specification.

146

The framework presented here for specifying and analyzing sys-
tems with I/O can be generalized in several ways that were not pre-
sented earlier in order to simplify the discussion. For example,
unlike in Section 6, we can model I/O bridges that do not have
enough buffering to ensure that, they can sink all incoming
requests. Also, the definition of Wisconsin I/O consistency is
parameterized by a n-tuple of partial program orders and is there-
fore easily generalized to handle an arbitrary set of local ordering
rules. In the extreme case, each processor and each device would
have its own table of partial program orders.

Acknowledgments

We would like to thank Sarita Adve, Bob Cypher, Andy Glew, Gil
Neiger, and the anonymous referees for their helpful comments
and suggestions. The authors, however, take responsibility for the
views expressed in this paper.

References

PI

PI

[31

141

PI

WI

171

PI

PI

WI

WI

WI

Sarita V. Adve and Kourosh Gharachorloo. Shared Memory
Consistency Models: A Tutorial. IEEE Computer, pages 66-76,
December 1996.

William W. Collier. Reasoning About Parallel Architecfures.
Prentice-Hall, Inc., 1992.

Anne E. Condon, Mark D. Hill, Manoj Plakal, and Daniel J. Sorin.
Using Lamport Clocks to Reason About Relaxed Memory Models.
In Proceedings of the 5th International Symposium on High
Performance Computer Architecture, January 1999.

Intel Corporation. Pentium Pro Family Developer’s Manual,
Version 3: Operating System Writer’s Manual. January 1996.

David Culler, Jaswinder Pal Singh, and Anoop Gupta. ParaZZel
Computer Architecture: A HardwarelSofrware Approach. Morgan
Kaufmarm, 1998.

Kourosh Gharachorloo, SaritaV. Adve, Anoop Gupta, JohnL.
Hennessy, and Mark D. Hill. Specifying System Requirements for
Memory Consistency Models. Technical Report CS-TR-1199,
University of Wisconsin - Madison, December 1993. See also
URL ftp://ftp.cs.wisc.edu/tech-repolts/reportrl199.ps.Z.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip
Gibbons, Anoop Gupta, and John Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-memory Multiprocessors.
In Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 15-26, May 1990.

J. Goodman. Cache Consistency and Sequential Consistency.
Technical Report 61, IEEE Scalable Coherent Interface Working
Group, 1989.

Mark D. Hill, Anne E. Condon, Daniel J. Sorin, and Manoi Plakal.
A System-Level Specification Framework for I/O Architectures.
Technical Rewrt CS-TR-1398. Universitv of Wisconsin-Madison.
March 1999: See also UC ftp://ftp.&.wisc.edu/tech-reports;
reports/99/trl398.ps.Z.

Leslie Lamport. Time, Clocks and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7):558-565,
July 1978.

Leslie Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs. IEEE Transactions on
Computers, C-28(9):241-248, September 1979.

Manoj Plakal, Daniel J. Sorin, Anne E. Condon, and Mark D. Hill.
Lamport Clocks: Verifying a Directory Cache-Coherence
Protocol. In Proceedings of the 10th Annual ACM Symposium on
Parallel Architectures and Algorithms, Puerto Vallarta, Mexico,
June 28-July 2 1998.

P31

P41

WI

WI

Richard L. Sites, editor. Alpha Architecture Reference Manual.
Digital Press, 1992.

Mark Smotherman. A Sequencing-Based Taxonomy of I/O
Systems and Review of Historical Machines. Computer
Architecture News, 17(5):1&15, September 1989. See also URL
http://www.cs.clemson.edu/-msrk/io.ps.

Daniel J. Sorin, Manoj Plakal, Mark D. Hill, and AMe E. Condon.
Lamport Clocks: Reasoning About Shared-Memory Correctness.
Technical Report CS-TR-1367, University of Wisconsin-Madison,
March 1998. See also URL ftp://ftp.cs.wisc.edu/tech-reports/
reportsi98ltr1367.ps.Z.
David L. Weaver and Tom Germond, editors. The SPARC
Architecture Manual, Version 9. Prentice Hall, 1994. SPARC
International, Inc.

147

