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Abstract 

A computer system is useless unless it can interact with the outside 
world through input/output (I/O) devices. II0 systems are complex, 
including aspects such as memory-mapped operations, interrupts, 
and bus bridges. Often, IJO behavior is described for isolated 
devices without a formal description of how the complete II0 sys- 

~ tern behaves. The lack of an end-to-end Jrstem description makes 
the tasks of system programmers and hardware implementors more 
dificult to do correctly. 

This paper proposes a framework for formally describing I/O 
architectures called Wisconsin II0 (WIO). WI0 extends work on 
memory consistency models (that formally specify the behavior of 
normal memory) to handle considerations such as memory- 
mapped operations, device operations, interrupts, and operations 
with side effects. Specifically, WI0 asks each processor or device 
that can issue k operation types to speci’ ordering requirements in 
a k X k table. A system obeys WI0 if there always exists a total 
order of all operations that respects processor and device ordering 
requirements and has the value of each “read” equal to the value 
of the most recent “write” to that address. 

This paper then presents examples of WI0 specifications for sys- 
tems with various memory consistency models including sequen- 
tial consistency (SC), SPARC TSO, an approximation of Intel LA- 
32, and Compaq Alpha. Final& we present a directory-based 
implementation of an SC system, and we sketch a proof which 
shows that the implementation conforms to its WI0 specijcation. 

1 Introduction 
Modem computer hardware is complex. Processors execute 
instructions out of program order, non-blocking caches issue 
coherence transactions concurrently, and system interconnects 
have moved well beyond simple buses that completed transactions 
one at a time in a total order. Fortunately, most of this complexity 
is hidden from software with an interface called the computer’s 
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“architecture.” A computer architecture includes at least four wm- 
ponents: 

The instruction set architecture gives the user-level and sys- 
tem-level instructions supported and how they are sequenced 
(usually serially at each processor). 

A memory consistency model (e.g., sequential consistency, 
SPARC Total Store Order, or Compaq Alpha) gives the behav- 
ior of memory. 

The virtual memory architecture specifies the structure and 
operation of page tables and translation buffers. 

The Input/Output (Z/O) architecture specifies how programs 
interact with devices and memory. 

This paper examines issues in the often-neglected I/O architecture. 
The I/O architecture of modem systems is complex, as illustrated 
by Smotherman’s venerable I/O taxonomy [14]. It includes at least 
the following three aspects. First, software, usually operating sys- 
tem device drivers, must be able to direct device activity and 
obtain device data and status. Most systems today implement this 
with memory-mapped operations, A memory-mapped operation is 
a normal memory-reference instruction (e.g., load or store) whose 
address is translated by the virtual memory system to an uncache- 
able physical address that is recognized by a device instead of reg- 
ular memory. A device responds to a load by replying with a data 
word and possibly performing an internal side-effect (e.g., popping 
the read data from a queue). A device responds to a store by 
absorbing the written data and possibly performing an internal 
side-effect (e.g., sending an external message). Precise device 
behavior is device specific. Second, most systems support inter- 
rupts whereby a device sends a message to a processor. A proces- 
sor receiving an interrupt may ignore it or jump to an interrupt 
handler to process it. Interrupts may transfer no information 
(beyond the fact that an interrupt has occurred), include a “type” 
field, or possibly include one or more data fields. Third, most sys- 
tems support direct memory access @MA). With DMA, a device 
can transfer data into or out of a region of memory (e.g., 4Kbytes) 
without processor intervention. 

An example that uses all three types of mechanisms is a disk read. 
A processor begins a disk read by using memory-mapped stores to 
inform a disk controller of the source address on disk, the destina- 
tion address in memory, and the length. The processor then 
switches to other work, because a disk access takes millions of 
instruction opportunities. The disk controller obtains the data from 
disk and uses DMA to copy it to memory. When the DMA is com- 
plete, the disk controller interrupts the processor to inform it that 
the data is available. 

A problem with current I/O architectures is that the behaviors of 
disks, network interfaces, frame buffers, I/O buses (e.g., PCI), SYS- 
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tern interconnects (e.g., PentiumPro bus and SGI Origin 2000 
interconnect), and bus bridges (that connect I/O buses and system 
interconnects) are usually specified in isolation. This tendency to 
specify things in isolation makes it difficult to take a “systems” 
view to answer system-level questions, such as: 

l What must a programmer to do (if anything) if he or she wants 
to ensure that two memory-mapped stores to the same device 
arrive in the same order? 

l How does a disk implementor ensure that a DMA is complete 
so that an interrupt signalling that the data is in memory does 
not arrive at a processor before the data is in memory? 

l How much is the system interconnect or bus bridge designer 
allowed to reorder transactions to improve performance or 
reduce cost? 

This paper proposes a formal framework, called ll%consin I/O 
(WIO), that facilitates the specification of the systems aspects of 
an I/O architecture. WI0 builds on work on memory consistency 
models that formally specifies the behavior of loads and stores to 
normal memory. Lamport’s sequential consistency (SC), for exam- 
ple, requires that “the result of any execution is the same as if the 
operations of all the processors were executed in some sequential 
order, and the operations of each individual processor appear in 
this sequence in the order specified by its program [ll].” WIO, 
however, must deal with several issues not included in most mem- 
ory consistency models: (a) a processor can perform more opera- 
tions (e.g., memory-mapped stores and incoming interrupts), (b) 
devices perform operations (e.g., disks doing DMA and sending 
interrupts), (c) operations can have side effects (e.g., a memory- 
mapped load popping data or an interrupt invoking a handler), and 
(d) it may not be a good idea to require that the order among oper- 
ations issued by the same processor/device (e.g., memory-mapped 
stores to different devices) always be preserved by the system. 

To handle this generality, WI0 asks each processor or device to 
provide a table of ordering requirements. If a processor/device can 
issue k types of operations, the required table is k X k, where the 
ij-th entry specifies the ordering the system should preserve from 
an operation of type i to an operation of type j issued later by that 
processor or device in program order (i.e., in the order specified by 
the processor or device’s program). A disk, for example, might 
never need order to be preserved among the multiple memory 
operations needed to implement a DMA. A system with p proces- 
sors and d devices obeys WI0 if there exists a total order of all of 
the operations issued in the system that respects the subset of the 
program order of each processor and device, as specified in the 
ptd tables given as parameters, such that the value of each “read” 
is equal to the value of the most recent “write” to that address.’ 

This paper is organized as follows. In Section 2, we discuss related 
work. Section 3 presents the model of the system we are studying. 
Section 4 explains the orderings that are used to specify the I/O 
architecture for a system whose memory model is SC, and it 
defines Wisconsin I/O consistency based on these orderings. 
Section 5 extends the framework to incorporate other memory con- 

1. The same table can be reused for homogeneous processors and 
devices. We precisely define “read” and “write” in later sections. 

sistency models. Section 6 describes a system with I/O that is com- 
plex enough to illustrate real issues, but simple enough to be 
presented in a conference paper. In Section 7, we outline a proof 
that the system described in Section 6 obeys Wisconsin I/O. 
Finally, Section 8 summarizes our results. 

We see this paper as having two contributions. First, we present a 
formal framework for describing system aspects of I/O architec- 
tures. Second, we illustrate that framework in a complete example. 

2 Related Work 
The publicly available work that we found related to formally 
specifying the system behavior of I/O architectures is sparse. As 
discussed in the introduction, work on memory consistency mod- 
els is related [l]. Prior to our current understanding of memory 
consistency models, memory behavior was sometimes specified 
Individually by hardware elements (e.g., processor, cache, inter- 
connect, and memory module). Memory consistency models 
replaced this disjoint view with a specification of how the system 
behaves on accesses to main memory. We seek to extend a similar 
approach to include accesses across I/O bridges and to devices. 

Many popular architectures, such as Intel Architecture-32 (IAl32) 
and Sun SPARC, appear not to formally specify their l/O behavior 
(at least not in the public literature). An exception is Compaq 
Alpha, where Chapter 8 of its specification [ 131 discusses ordering 
of accesses across I/O bridges, DMA, interrupts, etc. Specifically, 
a processor accesses a device by posting information to a “mail- 
box” at an I/O bridge. The bridge then performs the access on the 
I/O bus. The processor can then poll the bridge to see when the 
operation completes or to.obtain any return value. DMA is mod- 
eled with “control” accesses that are completely ordered and 
“data” accesses that are not ordered. Consistent with Alpha’s 
relaxed memory consistency model, memory barriers are needed in 
most cases where software desires ordering (e.g., after receiving an 
interrupt for a DMA completion and before reading the newly- 
written memory buffer). We seek to define a more general I/O 
framework than the specific one Alpha chose and to more formally 
specify how I/O fits into the partial and total orders of a system’s 
memory consistency model. 

3 System Model 
We consider a system consisting of multiple processor nodes, 
device nodes, and memory nodes that share an interconnect. 
Figure 1 shows two possible organizations of such a multiproces- 
sor system, where shared memory is implemented using either a 
broadcast bus or a point-to-point network with directories [5]. The 
addressable memory space is divided into ordinary cacheable 
memory space and uncacheable I/O space. We now describe each 
part of the system. 

Processor Nodes; A processor node consists of a processor, cache, 
network interface, and interrupt register. Each processor “issues” a 
stream of operations, and these operations are listed and described 
in Table 1. Note that LD and LDio are not necessarily different 
opcodes; in many machines, they are disambiguated by the address 
they access. We classify operations based on whether they read 
data (ReadOP) or write data (WriteOP). If the cache cannot satisfy 
an operation, it initiates a transaction (these will be described in 
Section 6) to either obtain the requested data in the necessary state 
or interact with an I/O device. The cache is also allowed to proac- 
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TABLE 2. Device Operations 

FIGURE 1. Possible System Organizations 

TABLE 1. Processor Operations 

Class 

ReadOP 

WriteOP 

DescriDtion 

Load - load word from ordinary 
memory space 

Store - store word to ordinary 
memory space 

LDio 

STio 

ReadOP 

WriteOP 

Load I/O - load word from I/O 
space 

Store I/O - store word to I/O 
space 

tively issue transactions, such as prefetches. In addition, the pro- 
cessor (logically) checks its interrupt register, which we consider 
to be part of the I/O space, before executing each instruction in its 
program, and it may branch to an interrupt handler depending on 
the value of the interrupt register. 

Device Nodes: We model a device node as a device processor and 
a device memory. Each device processor can issue operations to its 
device memory. In addition, it can also issue operations which lead 
to transactions across the I/O bridge (via the I/O bus). These 
requests allow a device to read and write blocks of ordinary cache- 
able memory (via DMA) and to write to a processor node’s inter- 
rupt register. The list of device operations is shown in Table 2. 

A request from a processor node to a device memory can “cause” 
the device to “do something useful.” For example, a write to a disk 
controller status register can trigger a disk read to begin. This is 
modeled by the device processor executing some sort of a program 
(that specifies the device behavior) which, for example, makes it sit 
in a loop, check for external requests to its device memory, and 
then do certain things (e.g., manipulate physical devices) before 
possibly doing an operation to its device memory or to ordinary 
memory. The device program will usually be hard-coded in the 
device controller circuits, while the requests from processor nodes 
will be part of a device driver that is part of the operating system. 
Note that, in general, the execution of a subroutine by the device in 

Operation 

LDio 

Class 

ReadOP 

STio WriteOP 

INT 

LDblk ReadOP 

STbIk WriteOP 

response to an ex nal request tc 

Load I/O - load word from 
device memory (I/O space) 

Store I/O - store word to 
device memory (I/O space) 

Interrupt - send an interrupt to 
a processor node 

Load Block - load cache block 
from ordinary memory 

Store Block - store cache block 
to ordinary memory 
levice memory needs to be made 

atomic with respect to other external requests to device memory. 
This avoids data races in accessing device memory locations. 

Memorv nodes: Memory nodes contain some portion of the ordi- 
nary shared memory space. In a system that uses a directory proto- 
col, they also contain the portion of the directory associated with 
that memory. Memory nodes respond to requests made by proces- 
sor nodes and device nodes. Their behavior is defined by the spe- 
cific coherence protocol used by the system. 

Description 

Interconnect: The interconnect consists of the network between the 
processor and memory nodes and the I/O bridges. This could either 
be a broadcast bus or a general point-to-point interconnection net- 
work. The I/O bridges are responsible for handling trafllc between 
the processor and memory nodes, and the device nodes. Note that, 
while we allow a system to contain multiple bridges, we do assume 
that a single device is accessible via exactly one bridge. This could 
perhaps be extended to systems where devices are accessible 
through multiple bridges (for fault-tolerance reasons), by assuming 
that only one device-bridge pairing is active at any point in time. 

Examnle: We now present an example that shows how this model 
can be used to describe a common I/O scenario. Table 3 illustrates 
disk reads, which, for example, might be initiated by the operating 
system for paging virtual memory or for accessing files in a disk- 
based file-system. In the example, the first operand of a memory 
operation is the destination and the second operand is the source. 
The example assumes a hypothetical disk controller with device 
registers DRO, DRl, DR2, and DR3 mapped into I/O address 
space. These registers are used to control the initial disk block 
number to read, the starting memory address of the buffer which 
will contain the data to be read, the length of the buffer, and the 
command (Read) to be executed. In the table, physical time flows 
downwards. The final STio to DR3 (the command register) imme- 
diately “triggers” the device to read all of the device registers and 
to set up the disk to do the read. Data is transferred using DMA 
between the disk and coherent memory via physical disk reads and 
STblks. It is useful to note here that most operating systems would 
make sure that these STblks do not generate any unnecessary 
coherence activity by invalidating all shared and modifled copies 
(to speed up the DMA). Finally, an interrupt is generated when the 
disk controller has finished the DMA. This triggers the interrupt 
handler at the processor which can then use the data. 
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TABLE 3. Disk Read 

Processor I Disk Controller 

STio Block, [DRO] 
Setup SI’io Address, [DRl] 

I 
STio Length, [DRZ] 

STio Read-Cmd, [DR3] 

DMA 

Interrupt handler runs 

Read DRO, DRl, DR2, 
DR3 and set up disk read 

Read in data from disk, 
issue STblk for each cache 
block of data to appropri- 
ate address 

INT 

Use LD Rl, [Address] 
data ST [Address+4], Rl I 

4 An I/O Framework for Sequential Consistency 
As the example in the previous section shows, certain orderings 
between operations are required in order to get device operations 
to work. The objective of our framework is to concisely capture the 
orderings required of a system. In this section, we present a version 
of our framework for ordering the memory and I/O operations in a 
system where the memory model is sequential consistency (SC). 
Section 5 will address systems with other memory models. We 
begin with the ordering at individual processors and devices, and 
then we incorporate these orderings into a framework for system- 
wide ordering. 

4.1 Processor and Device Ordering 
In a given execution of the system, at each processor or device 
there is a total ordering of the operations (from the list LD, ST, 
LDio, STio, INT, LDblk, and STblk) that can be issued by that pro- 
cessor or device. Call this program order and denote it by % 

Let partial program order be any relaxation of program order at a 
processor or a device processor. For example, let epp be the partial 
program order that respects program order with respect to opera- 
tions to the same address and also satisfies the constraints of Tables 
4 and 5, where entries in these tables use the following notation: 

A: OPl cPP OP2 always 

D: OPl cpp OP2 if the addresses of OPl and OP2 refer to the same 
device 

-: no ordering constraint on OPl, OP2 (if not to the same address) 

The entries in the tables reflect the behavior of a hypothetical sys- 
tem. For example, in many systems, STios to multiple devices are 
not guaranteed to be ordered in any particular way. Also, there is 
no ordering from a STio to a subsequent LD or ST, since that 
would require the processor to wait for an acknowledgment from 
the device. 

TABLE 4. Partial Program Order at a Processor 

Operation 2 

LD ST LDio STio 

rl LD A A A A 
8 
‘a ST A A A A 
e 

8 
LDio A A D D 

STio - D D 

TABLE 5. Partial Program Order at a Device Processor 

Operation 2 

LDio STio INT LDblk STblk 

LDio A A A A A 
rl 
d STio A A A A A 
P 
E INT - - D - - 

6 
LDblk - - A - - 

STblk - - A - - 

It is important to realize that a programmer who wishes to enforce 
ordering between operations that are not guaranteed to be ordered 
can create an ordering through transitivity. For example, a pro- 
grammer can order a processor’s LD after a STio by inserting a 
LDio to the same device as the STio between the two operations. 
Since STio cPP LDio and LDio ePP LD, we have STio cpp LD (for 
this particular sequence of three operations). 

4.2 System Ordering: Wisconsin I/O Consistency for SC 

Using the definition of partial program order, we can now define a 
system ordering which we call Wisconsin I/O ordering. The defini- 
tion of Wisconsin I/O (WIO) ordering takes as a parameter an n- 
tuple of partial program orders, such as the 2-tuple specified by 
Tables 4 and 5. Let cw be a total ordering of all LD, ST, LDio, 
STio, INT, LDblk, STblk operations of an execution of the system. 
Then cw satisfies Wisconsin I/O with respect to a given partial 
program order if: 

1. ew respects the partial program order, and 

2. the value read by every ReadOP operation is the value stored by 
the most recent WriteOP operation to the same address in the cw 
order. 

In Sections 6 and 7, we will describe an implementation for an SC 
system and outline a proof that shows it obeys this specification. 

5 An I/O Framework for Other Consistency Models 
To ease presentation complexity and concentrate on I/O aspects, 
we have thus far assumed a memory consistency model of sequen- 
tial consistency. More relaxed models, such as SPARC TSO and 
Compaq Alpha, can also be accommodated, and we now show how 
this can be accomplished. We accommodate them by changing the 
partial program ordering at the processor, but we leave the device 
processor ordering unchanged. One could easily imagine provid- 
ing a WI0 specification where the device ordering does not match 
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the ordering specified in Table 5, but instead matches that of the 
specific device(s) being modeled. 

5.1 Processor and Device Ordering 

As in Section4.1, for each memory consistency model, we will 
present tables of ordering requirements for partial program order at 
processors. In the following discussion, we do not include syn- 
chronization operations, such as Read-Modify-Write (RMW). A 
RMW can be thought of as an atomic operation which includes a 
LD and then a ST. It would be ordered such that order between a 
RMW and another operation, OP2, respects the union of ordering 
rules between OP2 and a LD and between OP2 and a ST. 

5.1.1 SPARC TotaI Store Order (TSO) 

SPARC Total Store Order (TSO) [16] is a variant ofprocessor con- 
sistency [7,8] that has been implemented on Sun multiprocessors 
for many years. TSO relaxes SC in that STs can be ordered after 
LDs which follow them in program order (so long as there are no 
intervening memory barriers (MB) and the two operations are to 
different locations). Thus, TSO sometimes allows a load to get a 
value from a “future” store. In real implementations, this behavior 
is manifest when a processor’s LD returns a value from its own ST 
that is still on its own first-in-first-out (FIFO) write buffer and has 
not yet seen by other processors. It should be noted that TSO sup- 
ports multiple flavors of MBs, but we only concern ourselves with 
the strongest (i.e., an MB that enforces order between any opera- 
tion before it and any operation after it). 

In previous research [3], we developed a memory model called 
Wisconsin TSO that is equivalent to SPARC TSO, and it elimi- 
nates the oddity of getting a value from a “future” store by splitting 
each ST into a STp,.ivate and a STpuulie. Wisconsin TSO respects 
program order between STurlvateS and LDs, while STPuhlies can be 
delayed until the next MB in program order. In addition, STuuhlies 
must also stay in program order with respect to each other. The 
STprivatc and STpublic corresponding to the same ST carry the same 
value. A LD gets its value from either (a) the most recent STurivate 
by the same processor as the ID for which the corresponding 
STpUblie has not yet occurred (if any) or (b) the most recent STpublie 
otherwise. The STp,.ivate or STuublle from which the LD gets its 
value is considered to be the applicable WriteOX? Practitioners can 
think of a STptiate as a store entering a processor’s FIFO write 
buffer, case (a) as bypassing from the write buffer, STpublie as a 
store exiting the write buffer, and case (b) as obtaining a LD’s 
value from cache or memory. 

This definition leads to the ordering rules shown in Table 6 for par- 
tial program order at a processor, where differences from Table 4 
are shaded. Note that a programmer can enforce order from a 
STp”blle to a LD by inserting an MB between them. 

5.1.2 An Approximation of Intel IA-32 

The Intel IA-32 memory model is similar to TSO, in that it is a 
variant of processor consistency. We approximate the IA-32 sys- 
tem ordering model by combining the TSO memory model with 
our interpretation of the IA-32 I/O ordering rules [4]. IA-32 has 
two uncached (UC) operations, LDuc and STuc, that are similar to 
our LDio and STio I/O operations, but UC operations are more 
strictly ordered. AlI operations before a UC operation (in program 

TABLE 6. TSO: Partial Program Order at a Processor 

I Operation 2 

LD STpriv sTpub MB LDio STio 

LD A A A A A A 

rl A A A= A A A 
g 

STpriv 

‘G sTpub - I - A A A A 
fi &MB A A A A A A 

0 LDio A A A A D, D 

STio - i - - A’D D _ 
a. Includes the case where both operations are caused by 
the same Store (i.e., OPl is the STprivate and OP2 is the 
STpublic for a given ST). 

order) are ordered before the UC operation, all operations after a 
LDuc are ordered after the LDuc, and all STs after a S’Btc are 
ordered after the STuc. In addition to the UC operations, IA-32 has 
two “write combining” (WC) uncached operations, LDwc and 
S’Bvc. These operations are less strictly ordered than LDio/STio 
operations, and they are well-suited to the access ordering require- 
ments for a video frame buffer. There is no ordering enforced 
between WC operations or between a WC operation and a cache- 
able memory operation. Also, IA-32 has several “serializing 
instructions” which enforce ordering in much the same way as 
memory barriers, and we will simply refer to them as MBs. 

We have made two simplifications in this description of IA-32. 
First, IA-32 has several flavors of cacheable memory operations, 
including Write-through, Write-back, and Write-protected, but we 
will fold them all into ID/ST operations. Second, it supports IN 
and OUT I/O instructions, which are not memory-mapped I/O, but 
instead directly access I/O ports. These I/O instructions are 
ordered just as strongly as MBs, and we do not include them here. 

Table 7 shows the ordering rules at a processor obeying our 
approximation of IA-32. Once again, differences from the SC table 
are shaded. Notice the extra ordering requirements of the LDuc/ 
STuc compared to those of the LDio/STio in Table 4. 

5.13 Compaq Alpha 

The Compaq @EC) Alpha memory model [ 131 is a weakly consis- 
tent model that relaxes the ordering requirements at a given pro- 
cessor between any accesses to different memory locations unless 
ordering is explicitly stated with the use of a Memory Barrier 
(MB). The Alpha memory model is formally detined through the 
use of two orders that must be observed with respect to memory 
accesses. The first order, program issue order, is a partial order on 
the memory operations (LDs, STs) issued by a given processor. 
Issue order relaxes program order in that there is no order between 
accesses to different locations without intervening MBs. Issue 
order enforces order between accesses to the same location, order 
between any access and an MB, and order between MBs. The sec- 
ond order, access order, is a total order of operations on a single 
memory location (regardless of the processors that issued them). 
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‘IABLE 7. “IA-325 Partial Pxwgram Order at a Processor 

Operation 2 

L.D : STpriv STp;d ‘MB LDuc sTuc LDWC- i snvc 
IX> 

LD A A. A ~A’A A - :; 

STpriv _I- A’ ‘A At, ‘; A A A - - 
ii 

STpnb ,‘ w . A*- A A’ A e ‘1 I 

MB A ’ A A .A A A A 1 A , 
LDUC A A A. A A A A j A 

snlc A A A A A _ ‘5 
!; A 

LD”k * I I A A A - ,; w 

SIbG 
II i, - ,_ I d I*, ,),, A ‘, 

’ 
A 

.‘. I ^*, . : i . _ x IL 
A 

c ^- ,I 
a. Includes the case where both operations are for the same ST (i.e., OPl is the STprivate and OP2 is the STpublic for a given ST). 

We previously defined an equivalent memory model, called Wis- 
consin Alpha [3], where an execution of an implementation satis- 
fies the Wisconsin Alpha memory model if there exists a total 
ordering of all loads, stores, and MBs, such that: 

l all of the issue orders are respected, and 

l a load returns the value of the most recent store to the same 
location in this total order. 

This definition of Wisconsin Alpha is reflected in the partial pro- 
gram ordering rules shown in Table 8. Notice that there are no 
ordering requirements between LDs and STs (unless they are to the 
same address). To enforce order between them requires inserting 
an MB between them, which creates the order LD/ST cw MB <w 
LD/ST. 

TABLE 8. Alpha: Partial Program Order at a Processor 

I Operation 2 

1 1 LD ST MB LDio STio 

LD - - I I A, A A 
r( 
a ST _’ _, A”: A A 

1 Sri0 1 - - A.‘: D D 

5.1.4 Release Consistency 

Release consistency (RC), particularly the RCpc flavor, is one of 
the most relaxed memory consistency models [7]. To define con- 
sistency models like this, Gharachorloo et al. developed a general 
framework for memory consistency models, where writes are bro- 
ken into p+ 1 sub-operations, where p is the number of processors 
in the system [6]. This framework, in turn, is based on a system 
abstraction developed by Collier [2]. 

Along these lines, we could expand our partial program order 
tables to reflect that a store in an RC system could appear to be 
broken up into a STphvate and many STpubli,+ with one STpublic at 

each processor. The applicable WriteOP for a LD would be either 
the STptivate or the STpublic at that processor. Moreover, RC has 
two new operations, Acquires and Releases, which can be consid- 
ered to be types of MBs for our purposes. Acquires and Releases 
would be included in the processor partial program order table, and 
the ordering required among them would depend on the flavor of 
RC. For example, the ordering between acquires and releases in an 
RCpc system would be the same as the ordering between LDs and 
STs in a processor consistent system (e.g., TSO). This approach, 
however, could lead to large, unwieldy tables. 

5.2 WI0 Consistency for General Memory Models 

Extending the definition of WI0 from Section 4.2 to incorporate 
memory models other than SC requires that we: 

l Add any new operations, such as LDwc and S%c (which are a 
ReadOP and a WriteOP, respectively). 

l Define what the applicable WriteOPs are for a ReadOP. For 
example, in TSO, the applicable WriteOP for a LD is the most 
TFt S~private at that processor unless the corresponding 

P,,blic 1s also before the L?, in which case it is the most 
recent STpublic 

l Change WI0 property 2 to read: 

2. the value read by every ReadOP operation is the value stored by 
the most recent applicable WriteOP operation to the same address 
in the cw order. 

6 An Implementation that Obeys WI0 for SC 

So far, we have provided abstract specifications of systems that 
include I/O. We now provide a concrete implementation that aims 
to conform to the WI0 specification for SC systems presented in 
Section 4. In this section, we specify a sequentially consistent 
directory-based system consisting of the components described in 
Section 3. This description builds upon the directory protocol 
described in Plakal et al. [12]. The description is divided into 
descriptions of the processor nodes, interconnect, I/O devices, 
bridge and memory nodes. 

Processor nodes: The cache receives a stream of LD/ST/LDio/STio 
operations from the processor and, if it cannot satisfy a request, it 
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issues a transaction.’ The complete list of transactions, including 
block transfer transactions (Rblk/Wblk) that can only be issued by 
devices and which will be discussed later, are shown in Table 9. 
Cache coherence transactions (GETX/GETS/UPG/WB) are 
directed to the home of the memory block in question (i.e., the 
memory node which contains the directory information for that 
block). I/O transactions (Rio/Wio) are directed to a specific I/O 
device and also contain an address of a location within the memory 
of the device (and, if Wio, the data to write as well). The granular- 
ity of access for an I/O transaction is one word (for simplicity of 
exposition). Rios generate a reply message from which the cache 
extracts a register value and passes it to the processor. Wios do not 
generate any reply messages from the target device; in the case that 
a processor issues a Wio and desires a response, it can subse- 
quently query the device with a Rio. Note that each LDio or STio 
generates exactly one Rio or Wio (respectively). This is unlike nor- 
mal cacheable memory transactions where, for example, multiple 
LDs or STs may be issued to the same block after a single GETX 
brought it into the cache. 

TABLE 9. Jkansactions 

Tkansaction I Description 

GETX 

GETS 

UPG 

WB 

Rio 

Wio 

Rblk 

wblk 

Get Exclusive access 

Get Shared access 

Upgrade (Shared to Exclusive) access 

Write Back 

Read I/O - read word from I/O space 

Write I/O - write word to I/O space 

Read Block - read cache block from ordi- 
nary memory 

Write Block - write cache block to ordi- 
nary memory 

Processor nodes must conform to the list of behavior requirements 
specified in Section 2.4 of Plakal et al. [12] (e.g., a processor node 
maintains at most one outstanding request for each block). They 
must also conform to the ordering restrictions laid out in Table 4. 
Thus, they do not issue a LD/ST until all LDios preceding it in pro- 
gram order have been “performed” (i.e., the reply has been written 
into the register by the cache). 

A processor node’s network interface sends all transactions from 
the cache into the interconnection network. In addition, the net- 
work interface will pass a Wio coming from the network to the 
processor’s interrupt register. It also passes all replies to transac- 
tions to the cache. 

Interconnect: The network ensures point-to-point order between a 
processor node and a device node, and it ensures reliable and even- 
tual delivery of all messages. 

Bridge: The I/O bridge performs the following functions: it 
receives Rio/Wios from processor nodes and broadcasts them on 

1. As noted earlier, caches can also proactively issue transactions 
without receiving an operation from their processors. 

the I/O Bus (this has to be done in order of receipt on a per-device 
basis); sends Wio replies from device memory to processor nodes; 
sends Wios (to interrupt registers) from device processors to pro- 
cessor nodes; participates in Rblk/Wblk transactions (discussed 
below) and broadcasts completion acknowledgments on the I/O 
bus. The I/O bridge must obey certain rules. It provides sufficient 
buffering such that it does not have to deny (negative acknowledg- 
ment or NACK) requests sent by processors or devices. It also han- 
dles the re-try of its own NACKed requests (to memory nodes). No 
order is observed in the issue/overlap of Rblk/Wblk transactions. 

Device Nodes: Each device processor can issue LDio/STios to its 
device memory and INTs to processor interrupt registers. INT 
operations are converted to Wio transactions by the I/O bridge. 
These are directed to a specific processor’s interrupt register and 
do not generate reply messages. In addition, a device can also issue 
LDblk and STblk requests, and these operations are converted to 
Rblk and Wblk transactions by the bridge and are directed to the 
home node. The data payload for both requests is a processor 
cache line (equal to a block of memory at a memory node, which is 
equal to the coherence unit for the entire system). Both requests 
generate acknowledgments (ACKs) on the I/O bus (from the 
bridge) and, in the case of the Rblk, the ACK contains the data as 
well. A Wblk request carries the data with it. Also, each LDblk/ 
STblk will generate exactly one Rblk/Wblk (just as with LDio/ 
STios and Rio/Wios). 

Each device memory receives a stream of LDio/STios from its 
device processor. In addition, it also receives a stream of Rio/Wios 
from the bridge (via the I/O bus) which it logically treats as LDio/ 
STios. These two streams are interleaved arbitrarily by the device 
memory. For each incoming Rio, the device memory sends (via the 
bus and the bridge) the value of that location back to the node that 
sent the Rio. LDio/STios operate on device memory like a proces- 
sor’s LD/STs operate on its cache. 

The device processor must obey the ordering rules specified in 
Table 5. For example, an INT is not issued until all LDblk/STblks 
preceding it in “device program order” have been performed (i.e., 
an ACK has been received from the bridge for the corresponding 
Rblk/Wblk). 

Memorv Nodes: Memory nodes operate as described in Plakal et 
al. [12] (with respect to directory state and transactions), with the 
following modifications for handling Rblk/Wblk transactions. Pro- 
tocol actions depend on the state of the block at the home node for 
both transactions. 

Rblk: 

Idle or Shared: the home sends the block to the bridge, which 
broadcasts an ACK with the data on the I/O bus. 

Exclusive: the home changes state to Busy-Rblk, removes the 
current owner’s ID from CACHED, and forwards the request 
to the current owner. The owner sends the block to the bridge, 
invalidates the block in its cache, and sends an update message 
(with the block) to the home, which changes the state to Idle 
and writes the block to memory. The bridge receives the block 
and broadcasts an ACK along with the data on the I/O bus. 

Busy-Any: the home NACKs the request. 
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‘IABLE 10. Example 1 TABLE 11. Example 2 

Dl P2 D3 D3 P4 PS 

send Wio Wl to Dl GETX B 

recv Wio Wl 
): 

J 

send Rio Wl to Dl 

/ 

send Wio W2 to D 
\ 

STio Wl send Rio W2 to D3 
‘4 P 

recv INV B 

recv Rio Wl recv Rio W2 recv a&s/data for B 

LDio Wl; send to P2 
J 

LDio W2; send to P2 revc Wio W2 

\ 
receive W2 STio W2 STB 

LDio W2 

receive Wl 

LDio Wl 

whk 

l Idle: the home stores the block to memory and sends an ACK 
to the bridge. The bridge sends an ACK to the device (via 
broadcast on the I/O Bus). 

l Shared: the home stores the block to memory, sends invalida- 
tions to all shared copies, sends a count of the copies to the 
bridge and changes the state to Busy-Wblk. The bridge waits 
until it receives all ACKs for the invalidations before broad- 
casting the transaction completion ACK on the I/O Bus. The 
bridge also then sends an ack to the home which enables it to 
change its state to Idle. 

l Exclusive: the home stores the block to memory, sends an 
invalidation to the (previous) owner, sends an ACK to the 
bridge, and changes the state to Busy-Wblk. The former owner 
invalidates its copy and sends an ack to the bridge, which then 
sends an ACK to the device and to the home (which then 
changes its state to Idle). 

l Busy-Any: the home NACKs the request. 

Note that we now have two new ‘Lbusy” home states, Busy-Rblk 
and Busy-Wblk, which serve similar roles as the busy states used in 
the original directory protocol. These modifications make some 
formerly impossible situations possible. In particular, Writebuck 
requests may find the home busy. One solution is to modify this 
transaction case: 

l Writeback on home Busy-Rblk or Busy-Wblk: This is the same 
as when the home is Busy-Shared. 

7 Proof that the Implementation Satisfies WI6 
We show correctness of the implementation described in Section 6 
as follows. We will use a verification technique based on Lam- 
port’s logical clocks [lo] that we have successfully applied to sys- 
tems without I/O [15, 12,3]. The technique relies on being able to 
assign timestamps to operations in a system and then proving that 
the ordering induced by the timestamps has the properties required 
of the implementation. In order to apply our verification technique, 

we tirst describe a timestamping scheme that logically orders all 
ReadOps and WriteOps that occur in any given execution of the 
protocol. Second, we show that the resulting total order satisfies 
properties 1 and 2 of WI0 consistency, as in Section 4.2 for SC. A 
detailed specification of our correctness proof can be found in a 
technical report of this research [9]; the following is a short over- 
view of our approach. 

To specify the timestamping scheme, we augment processors, 
directory, and device processors (all referred to as nodes) with log- 
ical clocks. We stress that these clocks are simply conceptual tools, 
not part of the actual protocol. Using these clocks, a unique times- 
tamp is assigned to each read and write. In addition, a transaction 
that causes a node to change its access permission to a block of 
data or word of I/O is timestamped by that node. Thus, a transac- 
tion may be timestamped by several nodes. Roughly, when an 
event (i.e. read, write, or transaction) to be timestamped “happens” 
at a node, the clock is moved forward in time and the updated time 
on the clock is assigned to that event. Of course, events are not 
atomic and so a central aspect of the timestamping method is the 
determination, from the protocol specification, of exactly when 
(and where) events are timestamped (and thus when they are con- 
sidered to “happen”). In this way, the timestamping scheme pro- 
vides a single, total ordering of all key events in the system. The 
correctness proof then shows that the real system behaves just as if 
the events happened atomically, in the order given by the times- 
tamping scheme. 

Tables 10, 11, and 12 are examples that illustrate how the times- 
tamping scheme works and help in reasoning about correctness of 
our protocol. We need to describe one further aspect of timestamps 
before getting to our examples. Timestamps are split into three 
non-negative integral components: global time, local time, and 
processor ID. As will become clearer from the example, global 
timestamps help to order transactions which happen across nodes, 
whereas local timestamps help to order read and write operations 
that happen internal to a node. Processor ID simply acts as a tie- 
breaker between operations with the same global and local times- 
tamps. 
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TABLE 12. Combined example with timestamps. InitiaIIy, aII clocks (global.locaI) are set to 0.0. 

Dl P2 D3 P4 P5 

send Wio Wl to Dl GETX B 

1.0.1 recv Wio Wl send Rio Wl to Dl send Wio W2 to D3 

1.1.1 STio Wl send Rio W2 to D3 1.0.5 recv INV B 

2.0.1 recv Rio Wl 1.0.3 recv Rio W2 2.04 recv a&s/data for B 

2.1.1 LDio Wl; send to P2 1.1.3 LDio W2; send to P2 

receive W2 2.1.4 ST B 

LDio W2 

receive Wl 

LDio Wl 

2.0.3 recv Wio W2 

2.1.3 STio W2 

The tirst example, shown in Table 10, shows one processor, P2, 
that communicates with two devices, namely Dl and D3. P2 sim- 
ply does a write followed by a read to a word Wl of Dl, followed 
by a read to a word W2 of D3. Because the network preserves 
point to point ordering of messages, Dl first receives the “Wio 
Wl” request, and then the “Rio Wl” request; Dl performs these 
operations in order and returns the value of Wl to P2. Meanwhile, 
D3 handles the “Rio W2” request and returns the value of W2 to 
P2. 

Table 12 shows how these reads and writes are timestamped. In our 
timestamping scheme, reads and writes to device memory are 
timestamped at the device (thus ensuring that, in the resulting total 
ordering, the value of a read is that of the most recent write to the 
same word). The Wio and Rio requests to Dl are considered to be 
transactions and so Dl assigns global time 1 to the Wio and global 
time 2 to the Rio request. As with all transactions, the local times- 
tamp for each of these is 0, and the final component of the times- 
tamp is the device ID, which is 1 in our example. When the (local) 
“STio Wl” is performed by Dl, the local time is incremented, and 
thus the timestamp is 1.1.1. Similarly, the timestamp of the “LDio 
Wl” operation is 2.1.1, and the events at D3 are timestamped in a 
manner consistent with those at Dl. Thus, the “STio Wl” appears 
before the “LDio Wl” operations at Dl. This is consistent with our 
specification in Table 4 that reads and writes to a common device 
(in this case, Dl) by a processor should respect program order. 
Also note that, regardless of the relative order in real time of the 
“LDio Wl at Dl” and “LDio W2 at D3,” the “LDio Wl” happens 
before the “LDio W2” in timestamp order simply because Dl’s 
clock is further along than D3’s clock when they perform these 
operations. The timestamps assigned to these operations are also 
independent of whether P2 receives the value of W2 before or after 
P2 receives the value for Wl. So, although the “Rio Wl” appears 
before “Rio W2” in P2’s program order, the “LDio W2” appears 
before the “LDio Wl” in timestamp order. Again, this is consistent 
with Table 4, which that specifies LDios to different devices are 
not constrained to respect program order. 

Our second example, in Table 11, concerns a processor P4 that 
receives exclusive permission for block B, causing processor P5 to 
invalidate its copy of block B. In addition, P4 sends a “Wio W2” to 
D3. Table 12 shows how transactions and operations at D3, P4, and 
P5 are timestamped. The timestamping rules specify that the glo- 
bal timestamp assigned by P4 to the GETX transaction must be 
later than the corresponding INValidate at P5. Imagine that acks 
sent to P4 from P5 include the timestamp of the INValidate. Also, 
in contrast with the fact that reads and writes to devices are times- 
tamped at the device, reads and writes to cacheable memory (and 
thus the “ST B” operation at P4) are timestamped at the processor 
performing the operation. This is because permissions for the 
block reside at the processor, whereas permissions for a word of 
device memory always reside at the device. 

Note that in Table 12, at any single node, the logical timestamps 
are always increasing in real time, while timestamps may be “out 
of order” across nodes in real time. Finally, note that the logical 
timestamps provide a total ordering of all reads and writes; this 
total ordering obtained in our example can be easily seen to satisfy 
the conditions of Section 4.2. 

8 Conclusions 

Although I/O devices are integral parts of computer systems and 
having clean I/O architectures would offer benefits, the commer- 
cial systems with which we are familiar tend to use ad hoc, com- 
plex, and undocumented interfaces. In this paper, we have 
proposed a framework called Wisconsin I/O for formally describ- 
ing I/O architectures. WI0 is an extension of research on memory 
consistency models that incorporates memory-mapped I/O, inter- 
rupts, and device operations that cause side effects. WI0 is defined 
through ordering requirements at each processor and device, and a 
system is considered to obey WI0 if there exists a total order of all 
operations that satisfies these ordering requirements such that the 
value of every read is equal to the value of the most recent write. 
We outlined how to use Lamport clocks to prove that an example 
system that we specified satisfies its WI0 specification. 
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The framework presented here for specifying and analyzing sys- 
tems with I/O can be generalized in several ways that were not pre- 
sented earlier in order to simplify the discussion. For example, 
unlike in Section 6, we can model I/O bridges that do not have 
enough buffering to ensure that, they can sink all incoming 
requests. Also, the definition of Wisconsin I/O consistency is 
parameterized by a n-tuple of partial program orders and is there- 
fore easily generalized to handle an arbitrary set of local ordering 
rules. In the extreme case, each processor and each device would 
have its own table of partial program orders. 
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