
Lamport Clocks: Verifying a Directory Cache-Coherence Protocol

Manoj Plakal, Daniel J. Sorin, Anne E. Condon, Mark D. Hill
Computer Sciences Department,

University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.

fplakal, sorin, condon,markhill}@cs. wise. edu

Abstract

Modern shared-memory multiprocessors use complex memory sys-
tem implementations that include a variety of non-trivial and inter-
acting optimizations. More time is spent in verl$ving the
correctness of such implementations than in designing the system.
In particular; large-scale Distributed Shared Memory (DSM) sys-
tems usually rely on a directory cache-coherence protocol to pro-
vide the illusion of a sequentially consistent shared address space.
Verifying that such a distributed protocol satisfies sequential con-
sistency is a dificult task. Current formal protocol verification
techniques [18] complement simulation, but are somewhat non-
intuitive to system designers and verl$ers, and they do not scale
well to practical systems.

In this papes we examine a new reasoning technique that is pre-
cise and (we find) intuitive. Our technique is based on Lamport’s
logical clocks, which were originally used in distributed systems.
We make modest extensions to Lamport’s logical clocking scheme
to assign timestamps to relevant protocol events to construct a
total ordering of such events. Such total orderings can be used to
verify that the requirements of a particular memory consistency
model have been satisjed.

We apply Lamport clocks to prove that a non-trivial directory pro-
tocol implements sequential consistency. To do this, we describe
an SC1 Origin 2000~like protocol [12] in detail, provide a times-
tamping scheme that totally orders all protocol events, and then
prove sequential consistency (i.e., a load always returns the value
of the “last” store to the same address in timestamp order).

1 Introduction
Modern high-performance multiprocessor systems are becoming
increasingly complicated. System designers have proposed the use
of a variety of complex and interacting optimizations to improve
performance. This trend ignores the difficulty of verifying that the

This work is supported in part by Wright Laboratory Avionics Directorate. Air Force
Material Command, USAF. under grant #F33615-94-1-1525 and ARPA order no.
B550, National Science Foundation with grants MIP-9225097. MIPS-9625558, CCR
9257241. and CDA-9623632, a Wisconsin Romnes Fellowship, and donations from
Sun Microsystems. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Wright Laboratory Avionics Directorate or the U.S. Gov-
etmtnent

pcrmkho ~EJ make digital or hard copies of all or pd ofGs work for
personal or classroom use is granted without fee prov&d w copies
are not made or distributed for profit or commercial hrn* md w
coPiw bar this notice and the till citation on the fd page. ~~ copy
o*erwiw~ to republish, to post on servers or to redistribute to lists,
requires Prior specific permission ad/or a fee.
SPAA 98 Puerto Vallarta Mexico
CoPyright ACM 1998 0-89791-98%O/q8/ 1j...$5.00

system still behaves correctly. Currently, industrial product groups
spend far more time in verifying their system than in actually
designing and optimizing the system.

A case in point is the design of large-scale cache-coherent shared-
memory systems that are built using distributed-memory nodes
with private caches that are connected by a general interconnection
network. Such hardware Distributed Shared Memory (DSM, [191)
systems operate by sharing memory through a scalable directory
coherence protocol. A directory protocol must present a consistent
view of memory [1, 41 to the processing nodes, with sequential
consistency (SC) [1 i] being a common requirement. The require-
ments of SC (quoting Lamport [111) are:

'the result of any execution is the same as
if the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor
appear in this sequence in the order speci-
fied by its program.‘

The directory itself is a data structure whose entries record, for
every block of memory, the state (i.e., cache access permission)
and the identities of the processors which have cached that block.
The directory is often distributed along with the memory, as is the
case in the protocol that we will verify. Nodes exchange messages
with each other and with the directory to coordinate accesses to
each block of memory.

Determining which messages are necessary requires delving into
the subtleties of directory protocols. In our protocol, for example,
a processor’s message writing a block back to memory must be
acknowledged so that we can distinguish the common case from
the race condition where the directory has already given permis-
sion for the block to another processor and there is a “forwarding”
message in flight.

Current protocol verification techniques based on model-checking
and state-space search [181 do not seem to be intuitive to system
designers, and they do not scale well to systems of a practical size.
Alternatively, protocol optimizations are sometimes justified with
imprecise informal arguments and the results of protocol simula-
tions. We propose a new verification technique that is both precise
(unlike informal arguments) and intuitive (unlike formal argu-
ments). We have applied the technique to a non-trivial directory
protocol that is similar, though not identical, to the protocol used
in the SGI Origin 2000 [121.

Most memory consistency models, including SC, are defined in
terms of a hypothetical ordering of all memory references. We pro-
pose to construct such an ordering by timestamping protocol
events that occur in the system. Our timestamping scheme makes
modest extensions to Lamport’s logical clock scheme [lo]. This
scheme was used to maintain global time and implement mutual
exclusion in a distributed system. We attach logical clocks, which
are merely conceptual devices, to various parts of a multiprocessor
system. These logical clocks are used to assign logical timestamps

67

to the protocol transactions (i.e., actions that cause processors to
change their access permissions to blocks of data), and memory
operations (loads (LDs), and stores (STs)) that occur while a pro-
tocol operates.

The timestamps are split into three positive integral components:
global time, local time, and processor ID. Such 3-tuple timestamps
can be totally ordered using the usual lexicographic ordering. Glo-
bal timestamps order LD and ST operations relative to transactions
“as intended by the designer.” This is made precise in two times-
tamping claims later in our paper. One of these claims is that for
every LD and ST operation on a given block, proper access is
ensured by the most recent transaction on that block in Lamport
time. (in contrast, in real time, a processor may perform a LD oper-
ation on a block after it has answered a request to relinquish the
block [20]). Roughly, the other claim is that, in logical time, trans-
actions are handled by processors in the order in which they are
received by the block’s directory. (In contrast, in real time, a pro-
cessor may receive transaction-related messages “out of order”).

Local timestamps are assigned to LD and ST operations in order to
preserve program order in Lamport time among operations that
have the same global timestamp. Local timestamps are not needed
for transactions. They are used to enable an unbounded number of
LD/ST operations between transactions. Processor ID, the third
component of a Lamport timestamp, is used as an arbitrary tie-
breaker between two operations with the same global and local
timestamps, thus ensuring that all LD and ST operations are totally
ordered.

Sequential consistency is established in a sequence of lemmas,
using the concept of coherence epochs. An epoch is an interval of
logical time during which a node has read-only or read-write
access to a block of data. The life of a block in logical time con-
sists of a sequence of such epochs. One lemma shows that, in Lam-
port time, operations lie within appropriate epochs. That is, each
LD lies within either a read-only or a read-write epoch, and each
ST operation lies within a read-write epoch. Another lemma shows
that the “correct” value of a block is passed from one node to
another between epochs. The proofs of these lemmas build in a
modular fashion upon the timestamping claims, thereby localizing
arguments based on specification details. In other work [23], we
have proved the correctness of a bus protocol using the same proof
structure; the proofs of the lemmas for the bus protocol are exactly
as for the directory protocol of this paper, and only the proofs of
the timestamping claims differ.

The rest of this paper is organized as follows. Section 2 is a specifi-
cation of the directory protocol. In Section 3, we describe the
details of the timestamping scheme and prove that the protocol
obeys SC. Section 4 discusses related work in protocol verifica-
tion. Section 5 summarizes our contributions and outlines future
work that can be done with our verification technique.

2 Specification of a Directory-Based Coherence Protocol

2.1 Our Target Multiprocessor System

Our target multiprocessor system (shown in Figure) consists of a
number of processing nodes and directory nodes connected by an
interconnection network. Each processing node consists of a single
processor, one or more levels of cache, and a network interface.
Each directory node consists of a directory that is used to store
protocol state information about a range of blocks of memory.
These memory blocks are also allocated storage at the directory
nodes. Blocks may be present in a processor’s cache in one of three
states: invalid, read-only or read-write.

FIGURE 1. The Target Multiprocessor System

Both the caches and the directory are operated by finite-state-
machine controllers which interact by exchanging messages in
order to implement a coherence protocol. Notice that this system
configuration subsumes the case where each directory node is co-
located with a processing node and the directory controls access to
the local memory owned by that node. We do not assume that the
interconnect guarantees any kind of ordering of messages sent or
received between nodes. We do assume that the network guaran-
tees eventual and reliable delivery of all messages.

2.2 Preliminaries

Our directory protocol is inspired by Culler et aI.‘s description [4]
of the SGI Origin 2000’s protocol [12]. We would like to empha-
size however, that our protocol differs in several respects from
those in the above descriptions. Directory schemes vary in the
manner in which they organize and allocate storage for the direc-
tory, We will assume that each memory block along with its direc-
tory entry is allocated storage in the local memory of some fixed
“home node” for that block. For our purposes, a directory entry
consists of a block state and a set CACHED of node IDS. This
entry can encode one of the following 6 states:

l Idle: No node has a valid cached copy of this block. It is only
valid at the home’s memory.

l Shared: The block is currently cached at one or more nodes in
the read-only state. CACHED contains a node’s ID if and only
if that node had requested a read-only cached copy of this
block.

l Exclusive: The block is currently cached in the read-write state
at exactly one node. CACHED contains this node’s ID.

l Busy-Shared: The block had been in the Exclusive state and
another node has requested the block in the read-only state.
The directory is now in the process of transferring the block.
CACHED contains the ID of the node requesting the block in
the read-only state. Once in Shared, CACHED will re-include
the ID of the original owner.

l Busy-Exclusive: This is similar to the Busy-Shared case above,
with the only differences being that the new requesting node
has requested a read-write copy of the block, and that once in
Exclusive, CACHED will contain only the ID of the new
requester.

68

l Busy-Idle: The block is in the process of going from the Exclu-
sive state to the Idle state. More information about the need for
this state can be obtained from the description of the Writeback
request in Section 2.3.

When busy states behave similarly, we will use Busy-Any to refer
to a block whose state is Busy-Shared, Busy-Exclusive, or Busy-
Idle.

Our protocol is invalidation-based and allows either a single writer
or one or more readers for each block of memory. We will use the
following terms in our protocol description:

l The requesting node of a block is the node which issues a
request (to the home node) for obtaining that block in the
shared or exclusive state.

l The owner node of a block is either the home node (if no node
has cached the block with read-write access) or the node with
read-write access.

2.3 Protocol Specification

We will now informally describe how the protocol is used by a
directory controller to handle requests sent to it by requesting
nodes. Note that we have decoupled the generation of coherence
requests from processor events. For instance, a Get-Shared request
could be generated even before a processor suffers a read miss in
its cache for that block. This may happen, for example, if a pro-
cessing node is trying to tolerate memory latencies by prefetching
blocks into its cache before it references them. The protocol sup-
ports the requests in Table 1.

For each request, there are several possible transactions which
depend on the directory state. Including NACKed transactions (of
which there are three), there are 14 distinct transactions (which are
listed below) in total. Transactions 13 and 14 define transactions
that correspond to a pair of requests, where one request is a Write-
back and the other is a Get-Shared, Get-Exclusive, or Upgrade
request. All other transactions involve only one request.

TABLE 1. Protocol requests

Request

Get-Shared

Get-Exclusive

Upgrade

Writeback

Transactions:

Current Cache
Permission

invalid

invalid

read-only

read-write

Desired Cache
Permission

read-only

read-write

read-write

invalid

Get-Shared: The requester sends a Get-Shared request to the home.
What happens next depends on the state of the block in the home
directory:

1. Idle: The home clears CACHED and adds the requesting
node’s ID to CACHED. It then sends the block to the requester
and sets the state to Shared. The requester loads the block in
the read-only state into its cache’.

1. Here and later, our intended meaning is that the requester waits
until the block arrives, after which it loads the block into its cache
in the appropriate state.

2. Shared: The home adds the requesting node’s ID to CACHED
and sends the block to the requester. The requester loads the
block in the read-only state into its cache.

3. Exclusive: The home changes the state to Busy-Shared,
removes the current owner’s ID from CACHED and adds the
requesting node’s ID to CACHED. It then forwards the request
(along with the identity of the requester) to the current owner
of the block. The owner sends the block directly to the
requester, downgrades the status of the block in its cache to
read-only and sends an update message (with the block) to the
home. The home then stores the block to local memory, adds
the former owner’s ID to CACHED and changes the state to
Shared. The requester loads the block into its cache in the read-
only state.

4. Busy-Any: The home sends the requester a negative acknowl-
edgment (NACK), indicating that the requester should try
again later.

Get-Exclusive: Again, the cases depend on the directory state:

5. Idle: The directory changes the state to Exclusive, clears
CACHED and adds the requesting node ID to CACHED. It
then sends the block to the requester, which loads the block in
the read-write state in its cache.

6. Shared: All cached copies must be invalidated. The home
makes a list of the nodes corresponding to the node IDS in
CACHED and then clears CACHED. It then changes the state
to Exclusive and adds the requesting node’s ID to CACHED.
The home sends invalidations (containing the identity of the
requester) to the nodes in the list it constructed. It then sends
the number of invalidations, along with the block, to the
requester. Each of the sharers invalidates its copy of the block
and sends an acknowledgment to the requester. The requester
waits until it receives all acknowledgments before loading the
block in the read-write state into its cache.

7. Exclusive: The home sets the directory state to Busy-Exclusive,
removes the current owner’s ID from CACHED and adds the
requesting node’s ID to CACHED. It then forwards the request
(along with the identity of the requester) to the owner. The
owner invalidates its copy of the block, sends an acknowledg-
ment with the block to the requester and sends an update mes-
sage to the home. The home then changes the state to
Exclusive. The requester loads the block in the read-write state
into its cache.

8. Busy-Any: The request is NACKed.

Uperade: As before, the cases depend on the directory state, but we
now have to tackle a number of race conditions:

l Idle: This is impossible. This situation, and three other situa-
tions which will be encountered later, will be shown to be
impossible in Appendix B.

9. Shared: This is handled just like the Shared case for the Ger-
Exclusive request, the only difference being that the home does
not need to send the block in its reply to the requester. The
requester then changes the state of the block in its cache from
read-only to read-write.

10. Exclusive: This means that another node’s Get-Exclusive or
Upgrade request must have beaten this Upgrade request to the
home and the home must have sent an invalidation to the cur-
rent requester. The home NACKs the request, forcing the
requester to re-try with a Get-Exclusive request.

69

I 1. Busy-Any: The request is NACKed.

Writeback: The owner sends a Writeback request to the home
along with the block. One expects that the directory will be in state
Exclusive with CACHED pointing to the requester. Some of the
subtleties of directory protocols, however, are revealed by the other
cases that race conditions make possible:

l Idle: Impossible. See Appendix B.

l Shared: Impossible. See Appendix B.

12. Exclusive: The home stores the block to memory, changes the
state to Idle and sends an acknowledgment to the (former)
owner. The owner then changes the state of the block in its
cache to invalid.

13. Busy-Shared: We have a race condition here. The requester’s
ID is not present in CACHED (proved in Appendix B).
Instead, another node’s ID is present. This means that this
other requester has made a Get-Shared request to the home and
the home has forwarded the request to the current owner
(present requester). The forwarded request and the write-back
have managed to pass each other in the network. Our protocol
resolves this race condition by combining the two requests.
When the home receives the write-back, it changes the state
from Busy-Shared to Shared. It also sends the block returned in
the write-back request to the new requester, as well as a special
“busy” write-back acknowledgment to the former owner which
tells it to ignore the forwarded request. The owner waits for an
acknowledgment from home, buffering any forwarded requests
it receives. When it receives a “busy” acknowledgment, it sets
the state of the block in its cache to invalid and discards the
buffered forwarded request (if any) or remembers to ignore the
first forwarded request it receives (and only after it receives
such a request can it generate a request of its own).

14. Busy-Exclusive: Similar to the Busy-Shared case, but with two
race conditions distinguished by which node’s ID is present in
CACHED:

(a) The requester’s ID is not present. This case is similar to the
race condition in the Busy-Shared case above.

(b) The requester’s ID is present in CACHED. This means that
the requester had originally made a Get-Exclusive request to
the home which caused the former owner to send the block to
the requester and send an update message to the home. Subse-
quently, the requester’s writeback beat the update message to
the home. The home writes the block sent by the requester into
memory, clears CACHED, sends an acknowledgment to the
requester and changes its state to Busy-fdle. When the update
message finally arrives, the home goes to the Idle state. The
requester then sets the state of the block in its cache to invalid.

l Busy-Idle: Impossible. See Appendix B.

2.4 Processor Behavior Requirements

We also need to specify the behavior of a requester/owner with
regard to the requests they can generate and the responses they
need to provide to external requests :

l We assume that a node maintains at most one outstanding
request for each block. Multiple requests for different blocks
are allowed.

NACKed requests need to be re-tried. The new request needs to
take into account the current state of the block and the type of
access to be performed. A re-tried request is equivalent to a
new network transaction and does not continue to use the
resources of the original transaction (which are freed).

Invalidations and forwarded requests for a block should be
buffered until the current outstanding Get-Shared, Get-Exclu-
sive, Upgrade, or Writeback transaction for that block, if any,
has been completed. For example, a node may have requested a
read-only copy of a block, and it may receive an invalidation
before it receives the reply to its request.

Consider a LD/ST operation to block B, call it OP, of some
fixed processor pi. If permission to perform OP was obtained
via transaction T, we say that OP is bound to transaction T. To
ensure forward progress, we require that if transaction T is
issued in order to obtain permission to bind OP, then upon
completion of T (assuming it is not NACKed), OP is bound to
T, even if an invalidation arrived in the meantime.

We assume that in the protocol, if OPt appears before OP2 in
pi’s program order, then the real time at which OPt is bound is
less than or equal to the real time at which OPz is bound. There
is a discussion in Appendix A about when this real time
requirement can be relaxed.

The following two facts give processor responsibilities. Fact 1
says that a processor must ensure thar a load returns the value
of a store it just did (if any) or the value it obtained for the
block otherwise. Fact 2 says that, when a processor sends a
block away, it must send the values of recent processor stores
(if any) or the values it received.

Fact 1: Let LD-OP be a LD from word w of block B at pi that
is bound to transaction T. Let ST-OP be the last ST to word w
of block B by pi (if any) prior to LD-OP in pi’s program order.
(a) If ST-OP is also bound to transaction T, then the value
loaded by LD-OP equals the result of ST-OP.
(b) Otherwise, the value loaded by LD-OP equals the value of
word w of block B received by pi in response to transaction T.

Fact 2: 6uppose that as a result of transaction T2, pi sends
away block B. Let T be the most recent transaction at pi prior
to T2 (in real time) that caused pi to receive block B. Then, the
value of word w of block B sent by pi in response to T2 is the
last ST to word w of block B in pi’s program order that is
bound to T, if any. If no ST to word w of block B is bound to T,
then the value of word w of block B sent by pi is the value
received by pi in response to transaction T.

Note: As long as pi sends the correct value for each word w of
block B, then it is not required to complete all bound LD opera-
tions on block B before invalidating that block. Also, in order that
Facts 1 and 2 apply to the case that T or T2, respectively, is a Get-
Shared at a processor other than pi, we say that in this case proces-
sor pi sends the value of block B to-itself as well as to the other
processor who issued the Get-Shared request. Also, when a pro-
cessor does an Upgrade, we consider that it receives a value from
itself. Thus, corresponding to every transaction of pi to which an
operation is bound, a value is received by pi (possibly from itself).

2.5 Extending the Protocol to allow Silent Eviction

Most protocols allow a node to silently evict a read-only block
from its cache without notifying the Home. The protocol that we
have described in the previous subsections does not include such

70

silent evictions, which we shall refer to as Pur-Shared. The use of
Put-Shared combined with buffering of invalidation messages
leads to a rather subtle race condition. Consider the scenario
depicted in Figure 2. This involves a node Nt which initially had a
block in the read-only state in its cache, evicted it silently and then
proceeded to issue a Ger-Shared request for the same block. Mean-
while, another node N2 has issued a Get-Exclusive request for the
same block and this has beaten the Get-Shared request to the
Home which proceeds to send an invalidation to Nt .

FIGURE 2. Deadlock produced by allowing Put-Shared

3JNV> HOME 3 I.CiETX

The invalidation is buffered and not responded to before a response
to Nt’s Get-Shared request is received. Meanwhile, the Home for-
wards the Get-Shared request to Nz which buffers the request and
does not respond to it until it receives an acknowledgment from
N,. So now, we have deadlock with Nt and N2 each waiting for a
message from the other before they can proceed.

The basic problem is that of a node which had a block in the read-
only state, silently evicted it and then re-requested it in the read-
only state. If an invalidation message now arrives at the node, does
the invalidation apply to the previous “incarnation” of the block
(i.e., before it was silently evicted) or does it apply to the block
that will be sent in response to the outstanding request?

There are two possible ways in which we can solve this problem.
These methods differ in the way they process invalidations
received for blocks for which a node has an outstanding request.
The node can either buffer the invalidation (as we do) or apply it
immediately (as in the SGI Origin 2000 and DASH). These alter-
natives are described in [4].

One solution is to still allow messages to be buffered until out-
standing requests are completed (or NACKed). The deadlock is
broken by N2 which can recognize this situation when it occurs
i.e., when it receives a forwarded request from the very node from
which it is to receive an acknowledgment. In this case, it can treat
the forwarded request as an implicit acknowledgment and proceed
to bind its stores. N, can then send the data to Nt directly, telling it
to ignore any invalidation that has been buffered by Nt. N, also
sends an update message to the home, as in the normal operation of
the protocol. In case no invalidation has been received yet, NI has
to remember to drop the first invalidation that it sees for that block,
and furthermore it cannot generate any new request for that block
until it receives this invalidation.

The other solution is not to buffer invalidation messages until any
outstanding requests complete, but to apply them immediately,
thus treating them as NACKs. The requesting node will also have
to remember to drop the reply to its original request, and then
make a new request. This is the solution adopted in the SGI Origin
2000 and the DASH (as confirmed in [I3 1). Forward progress con-
siderations are met by the use of higher-level mechanisms that
detect a possible lack of progress and take over with corrective
measures.

We have decided to adopt the first approach in our protocol. The
additions to the protocol are (I) a Put-Shared action, (2) the dead-
lock detection done by a node (as described above) that requests
Exclusive permission for a block from the Home and (3) acknowl-
edgment of all invalidations received for a block that is invalid in
the cache. The Put-Shared action can be performed by any node
that has a read-only copy of a block. After performing this action,
the block’s state in the cache changes to invalid. Note that we call
this an & rather than a transaction (such as Get-Shared, Get-
Exclusive). These terms will be explained further in the next sec-
tion where we provide a forma1 proof of correctness of the protocol
which includes these additions.

3 A Timestamping Scheme and a Proof of Correctness

3.1 Notation and Basic Properties of the Protocol

In this section, we define some notation used to reason about the
protocol. First, we classify all coherence activity that occurs in our
system as being related to either transactions or acrions. Transac-
a are “global” events initiated by a Get-Shared, Get-Exclusive,
Upgrade or Writeback request for a block sent by a node, and
involve the Home node of that block and perhaps one or more
other nodes. Actions are local events that are private to a node and
which other nodes do not need to know about. Currently, the Put-
Shared action is the only example of an action in our protocol.

Next, we define the notion of a per-block Address-state, or A-state,
of a node. The A-state of a block at a node is used to capture the
Home node’s view of the state of the block at that node after the
node has performed, or participated in, a sequence of (non-
NACKED) transactions. In particular, the A-state of a block at a
node will reflect the change in coherence status implied by a mes-
sage sent from the Home (and possibly other nodes). This change
could have been brought about in response to a request made by
that node, or through an invalidation or forwarded request sent by
the Home. A node’s A-state for a block B is defined to be one of
AI, As, or AX (the intended meanings are “invalid”, “shared” and
“exclusive” respectively). The A-state is set to AI when the node
receives an invalidation or a forwarded Get-Exclusive, or an
acknowledgment for its own Writeback request. The A-state is set
to As when the node receives a downgrade, or a response to its
own Get-Shared request. Finally, the A-state is set to AX when the
node receives a response to its own Upgrade or Get-Exclusive
request, along with all associated invalidation acknowledgments.
As a special case, when the protocol performs the deadlock detec-
tion described in Section 2.5, we define the A-state of the node
receiving the invalidation to change from As to At and then to the
A-state appropriate to its original request, when it receives a block
from its former owner. The directory entry for a block also has an
A-state which is one of AI, As or AX (when the busy bit is not set),
according as the directory entry state is Exclusive, Shared or Idle
respectively. This allows us to refer uniformly to the A-state of a
node, where a node could refer to either a processor or a directory.

Note that actions do not change the A-state. So if a processor’s A-
state for a block is Aa, it remains As even after the processor per-
forms a Put-Shared and the block is invalid in the cache. Hence,
the A-state is not just a synonym for the processor’s cache state. It
is important to realize that the A-state is a conceptual device that is
used to reason about the protocol. In a hardware implementation of
this protocol, the cache controller would use the actual cache state
to determine future actions, and not the A-state.

Transactions on a given block are serialized by the block’s direc-
tory. Hence, we can speak about a sequence of transactions on the
same block where the ordering is implied by their serialization at

71

the directory. For each node N, a sequence of t transactions on implies an upgrade at node N. At the moment that N’s A-state
block B (where the order among transactions is seen at the Home) changes, N updates its clock to equal
defines a unique sequence A(l), A(z),..., A(,) of associated A-states
for N, given some initial A-state value at N. If A(l) is not equal to
A~i.l) for some i > 1, we say that the ith transaction in the sequence
“affects” N and that the transaction “implies that N’s A-state for
block B change from A(i-t) to A(i)“. For example, if nodes Nt and
N2 start with an initial state of At, and the sequence of transactions
at the Home is Nt’s Get-Shared, N2’s Get-Exclusive and N2.s
Writeback. Then the sequence of A-states for Nl and N2 is Al, As,
A,, At and At, A,, Ax, At respectively. The Get-Exclusive affects
both nodes as well as the directory node, while the Writeback
affects N2 and the directory. In the special case that a node is the
directory, we say that it is also affected by all transactions resulting
from G&Shared requests, even though no change in the A-state at
the directory may be implied by such a transaction.

Each transaction implies an “upgrade” of A-state (i.e. change from
state A, to As, from A, to Au, or from As to Av) at exactly one
node. Also, each transaction implies a “downgrade’” of A-state (i.e.
change from Ax to As, from Ax to At, or from AS to At) at zero or
more nodes. In the special case that node N is the directory, we say
that N’s A-state “downgrades” as a result of every Get-Shared
transaction, even though its A-state may not be changed by the
transaction. On each transaction, exactly one node upgrades and
zero or more nodes downgrade.

I + max(N’s current clock time, timestamps assigned to T by all
nodes other than N that are affected by T),

and assigns the updated time to transaction T. By Claim I, exactly
those nodes other than N that are affected by transaction T send a
message to N. The above definition of timestamp is well-defined
because N does not upgrade its A-state until it has received a mes-
sage from all other nodes that are affected by transaction T. We can
think of each affected node as sending its timestamp of T along
with its message to N. Thus at the moment that N upgrades its A-
state, it has all of the information needed to timestamp transaction
v.
1.

Claim 3: For a transaction T on block B,

(a) The timestamps of the downgrades associated with T are less
than or equal to the timestamp of the upgrade associated with T.

(b) The timestamp of the upgrade associated with T is less than the
timestamp of the upgrade associated with any transaction T’ on
block B occurring after T in the serialization order at the directory,
so long as one of T or T’ is a Get-Exclusive or Writeback

The definitions of “affects” and “implies” in the previous two para-
graphs depend only on the sequence of transactions on block B at
B’s directory. In Claim 2 below, we show that the protocol specifi-
cation ensures that, at every node, the actual sequence of changes
to the A-state for block B occurs in the order implied by the serial-
ization of the transactions at B’s directory, even though messages
on successive transactions may be received out of order by a node.

proof: Claim 3 can be proved true for all transactions T by induc-
tion on the serialization order of the transactions at the block’s
directory. The proof of Claim 3(b) relies on Claim 2 and the fact
that the-Lamport order of transactions (as defined by their global
timestamps) is the same as their order in real time at the directory

Claim 1: For each transaction T, a message is sent to every proces-
sor affected bv T. Also, if node N upgrades as a result of T, exactly
those nodes that are affected by tra&&tion T (other than N) send a
message to N.

Now, we need to assign timestamps to LD and ST operations. If
LDs and STs were always performed in program order immedi-
ately after binding, one could simply timestamp an operation by
the current time of the processor’s global clock at the moment the
operation is performed. Our definition is more general, and applies
also to cases where a processor may perform operations out of
order.

The global time stamp of an operation OP (a LD or ST) at pi is set
to be eaual to

proof: Claim 1 can be proved true for all transactions T by induc-
tion on serialization order of the transactions at the block’s direc-
tory.

max(pi’s timestamp of the transaction to which the LDlST is
bound, global timestamp of last LD or ST at pi in program order)

Claim 2: The sequence of A-state changes on block B at a node
occurs in real time in the order implied by the serialization of
transactions on block B at its directory.

m A case-by-case proof of Claim 2 can be found in Appendix
A.

3.2 Timestamping in a Directory Protocol

Imagine that each processor has a global clock that is updated in
real time. In addition, each directory entry has a global clock. The
clocks are used to associate global timestamps with LD and ST
operations and with transactions (thus defining coherence epochs).
Distinct nodes may assign distinct timestamps to the same transac-
tion. We only use global clocks for transactions (i.e., to delineate
epochs); local time will be used to distinguish LD/ST operations
within the same epoch. Note that we do not timestamp the Put-
Shu~rcl action.

Let us first consider the timestamping of transactions. All of the
following applies to a fixed block B. Suppose that a transaction T
implies a downgrade at node N. At the moment that its A-state
changes, N increments its global clock by 1 and assigns the
updated time to that transaction. Suppose that a transaction T

The local timestamp of OP is defined to be 1 if OP is the first oper-
ation in program order with global timestamp t and is otherwise
equal to one plus the local timestamp of the most recent operation
in the program order.

We now consider an example which illustrate the timestamping
scheme. Consider first a scenario containing 2 nodes (Nt and N2)
and 2 blocks of memory (A and B). Nt has block A in the read-
only state, while N2 wants to obtain block A in the read-write state.
Nt also is performing stores to block B. Table 2 shows the scenario
in physical time, while Table 3 shows the scenario in Lamport time
where events have been ordered by their timestamps. We assume
that the global clocks of both processors are initially set to 1.

TABLE 2.2 nodes, 2 blocks, physical time

Time Nl NZ

I send Get-Exclusive store to B
for A

2 bind load from A

3 receive invalidate for
A, send ack

72

TABLE 2.2 nodes, 2 blocks, physical time

9

TABLE 3.2 nodes, 2 blocks, Lamport time

Timestamp N
1.10.2

1.11.2

2

3

3.1.1

receive ack for A

store to A

N2
store to B

load from A

invalidate A,
send ack

Note that, in this example, the Lamport ordering places N2’s load
from A before Nt’s store to A even though they may occur out-of-
order in an aggressive implementation of our protocol, which buff-
ers the invalidation to apply it much later while sending the
acknowledgment immediately [20].

Claim 4: Every LD/ST operation on block B at processor pi is
bound to the most recent (in Lamport time at pi) transaction on
block B that affects pi.

Ecanf; The proof of Claim 4 uses the fact that binding of opera-
tions is done in program order in real time (4th bullet of
Section 2.4). These real-time properties of the protocol can be
relaxed somewhat while maintaining the correctness of this claim.
This issue is discussed and the claim is proved in Appendix A.

3.3 Proof of Sequential Consistency

By construction, the Lamport ordering of LDs and STs within any
processor is consistent with program order. Therefore, to prove
sequential consistency, it is sufficient to show that the value of
every load equals the value of the most recent store.

We frame the proof of sequential consistency in terms of coher-
ence epochs. A coherence epoch is simply a Lamport time interval
[t 1 ,t2) during which a node has access to a block. All LDs and STs
that have global timestamp t where tl I t < t2 are contained in
epoch [tl,tZ). A shared or exclusive epoch for block B at node N
starts at time tl if a transaction with timestamp tt (at N) implies
that N’s A-state for block B changes to As or Ax respectively. The
epoch ends at time t2, where t2 is N’s timestamp of the next trans-
action on block B that implies a change in A-state at N. In the
example from the previous section, the shared epoch of A at N2
ended at global time 2 while A’s exclusive epoch at N, started at
global time 3. We build up to the proof of sequential consistency
using the two timestamping claims of Section 3.2.

Lemma 1 shows that two processors cannot have “conflicting” per-
mission to the same block at the same (Lamport) time. Lemma 2
states that processors do LDs and STs within appropriate epochs.
Finally, Lemma 3 shows that the “correct” block value is passed
among processors and the directory between epochs. Proofs of the
lemmas can be found in Appendix A.

Lemma 1: Exclusive epochs for block B do not overlap with either
exclusive or shared epochs for block B in Lamport time.

Lemma 2:

(a) Every LD/ST operation on block B at pi is contained in some
epoch for block B at pi and is bound to the transaction that caused
that epoch to start.

(b) Furthermore, every ST operation on block B at pi is contained
in some exclusive epoch for block B at pi and is bound to the trans-
action that caused that epoch to start.

Lemma 3: If block B is received by node N at the start of epoch
[tt,t$, then each word w of block B equals the most recent store to
word w prior to tt or the initial value in the directory, if there is no
store to word w prior to global time tl.

The proof of the Main Theorem shows how sequential consistency
follows from the lemmas.

Main Theorem: The value of every load equals the value of the
most recent store or the initial value, if there has been no prior
store.

Emef; Consider a LD at processor pi. Let the LD be bound to
transaction T, which has timestamp tt at processor pi. There are
two cases.

The first case is that the most recent ST has global time stamp at
least tt. In this case, from Lemmas 1 and 2, this ST is also at pro-
cessor pi, and is bound to transaction Tt. Therefore, by Fact 1 (a),
the value of the LD equals the value of the most recent ST.

The second case is that the most recent ST has global time stamp
less than tl. In this case, by Lemma 2, no ST prior to this LD is
bound to transaction Tt. Therefore, by Fact 1 (b), the value of the
LD equals the value received by pi in response to transaction Tt.
By Lemma 3, this value equals the value of the most recent ST or
the initial value if there has been no prior store. QED.

4 Related Work
Most of the related work in coherence protocol verification is
based on formal methods [181 that use state-space search of finite-
state machines, and theorem-proving techniques. These are rigor-
ous methods that can capture subtle errors but they are currently
limited to small systems because of the state space explosion for
large, complicated systems. For example, the SGI Origin 2000
coherence protocol is verified for a Q-cluster system with one
cache block in [6], the memory subsystem of the Sun S3.mp
cache-coherent multiprocessor system is verified for one cache
block in [17], the correctness of the Stanford FLASH coherence
protocol is verified for small test programs and small configura-
tions in [16], and the SPARC Relaxed Memory Order (RMO)
memory consistency model is verified for small test programs in
[151. In contrast, our approach can precisely verify the operation of
a protocol in a system consisting of any number of nodes and
memory blocks.

A formal approach devised by Shen and Arvind uses term rewrit-
ing to specify and prove the correctness of coherence protocols
[22]. Their technique involves showing that a system with caches
and a system without caches can simulate each other. This
approach lends itself to highly succinct formal proofs. We find
Lamport clocks easier to grasp, while not lacking expressive
power. It is not clear whether or how the two techniques comple-
ment each other. Term rewriting relies on an ordering of rewrite
rules (each of which corresponds to an event) and, as such, may
benefit from the Lamport clock technique which can order events
in logical time.

There is another body of work that delves into memory consis-
tency models that are more aggressive than sequential consistency
[l, 2, 3, 5, 7, 8, 9, 211. Handling more aggressive models leads to

73

formalisms that are more powerful but more complex than we
require (e.g., they must handle non-atomic stores). Furthermore,
much of this work seeks to characterize when programs will
appear sequentially consistent even when running on the more
aggressive hardware, an issue that is moot for us.

Informal intuitive reasoning is more tractable and easier to under-
stand than formal analysis, but it becomes less convincing as it
becomes more informal. Moreover, the flaws in memory system
designs are generally the subtle types of flaws that would be
missed by high-level intuitive reasoning. Informal reasoning is
often combined with extensive simulation in an effort to explore
the state space for bugs in the protocol, but simulation is expensive
and cannot be guaranteed to uncover every obscure bug in a proto-
col. In other work [23], we show that Lamport clocks also offer the
opportunity to analyze, formally or semi-formally, specific parts of
the protocol to prove the validity of an optimization, whereas other
verification techniques often require complete analysis of the sys-
tem before any optimization can be validated. Lamport clocks have
also been used in other research, including a paper by Neiger and
Toueg [141 that uses the clocks to determine what knowledge is
available to each processor in a distributed algorithm.

5 Conclusions and Future Work
Shared-memory systems are becoming increasingly complex and
the need of the hour is for better verification tools that are intuitive,
precise and scalable. We propose a verification framework based
on Lamport’s logical clock scheme that creates a total order of rel-
evant protocol events. This order is a constructive realization of the
ordering hypothesized in the definitions of various memory consis-
tency models. We can then construct proofs that show that the
requirements of a particular memory consistency model are met in
this total order. The notion of coherence epochs arises naturally
from such a logical ordering of events, and this notion clarifies the
operation of the protocol as well as its proof of correctness. We
have presented our technique and then successfully applied this
technique to the proof of a non-trivial directory cache-coherence
protocol. We expect the technique to apply equally well to any
other directory protocol, or a bus-based protocol (as shown in
WI).
Future work with Lamport clocks will extend the range of systems
to which our analysis can be applied, and we plan on devising a
generic proof that can be easily tailored to new systems. The new
systems that will be analyzed may include: clusters of SMPs, sys-
tems with consistent I/O, and systems that obey consistency mod-
els other than sequential consistency. We also believe that Lamport
clocks are a useful tool for reasoning about the possibilities of
deadlock, livelock, and starvation in a directory protocol, and we
intend to explore this area of research.

6 References
[II SaritaV. Adve and Mark D. Hill. Weak Ordering-A New

Definition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 2-14, Seattle,
Washington, May 28-3 I, 1990.

PI Hagit Attiya and Roy Friedman. A Correctness Condition for
High-performance Multiprocessors. In Proceedings of the 24th
Annual ACM Symposium on the Theory of Computing, pages 679-
690, May 1992.

I31 William W. Collier. Reasoning About Parallel Architectures.
Prentice-Hall, Inc., 1992.

[41 David Culler, Jaswinder Pal Singh, and Anoop Gupta. Draft of
Pa&let Computer Architecture: A Hardware/Software Approach,
chapter 8: Directory-based Cache Coherence. Morgan Kaufmann,
1997.

151

161

[71

181

191

[lOI

llll

1121

1131
[l41

1151

1161

[I71

1181

1191

I201

1211

Michel Dubois, Cbristoph Scheurich, and Faye Briggs. Memory
Access Buffering in Multiprocessors. In Proceedings of the 13th
Annual International Symposium on Computer Architecture, pages
434-442, June 1986.

Asgeir Th. Eiriksson and Ken L. McMillan. Using Formal
Verification/Analysis Methods on the Critical Path in Systems
Design: A Case Study. In Proceedings of the Computer Aided
Verification Conference, Liege, Belgium, 1995. appears as LNCS
939. Springer Verlag.

Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L.
Hennessy, and Mark D. Hill. Specifying System Requirements for
Memory Consistency Models. Technical Report CS-TR-I 199,
University of Wisconsin - Madison, December 1993.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip
Gibbons, Anoop Gupta, and John Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-memory Multiprocessors.
In Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 15-26, May 1990.

Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo.
Proving Sequential Consistency of High-Performance Shared
Memories. In Symposium on Parallel Algorithms and
Architectures, pages 292-303, July 199 I.

Leslie Lamport. Time, Clocks and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7):558-565,
July 1978.

Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on
Computers, C-28(9):241-248, September 1979.

James P. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. In Proceedings of the 24th
International Symposium on Computer Architecture, Denver, CO,
June 1997.

Daniel Lenoski. Personal communication, March 1998.

Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and
Common Knowledge in Distributed Systems. Journal of the
Association for Computing Machinery, 40(2):334-367, April
1993.

Seungjoon Park and David L. Dill. An Executable Specification,
Analyzer and Verifier for RMO (Relaxed Memory Order). In
Proceedings of the 7th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 34-41, Santa Barbara,
California, July 17-19, 1995.

Seungjoon Park and David L. Dill. Verification of FLASH Cache
Coherence Protocol by Aggregation of Distributed Transactions.
In Proceedings of the 8th Annual ACM Symposium on ParaNel
Algorithms and Architectures, pages 288-296. Padua, Italy, June
24-26, 1996.

Fong Pong, Michael Browne, Andreas Nowatzyk, and Michel
Dubois. Design Verification of the S3.mp Cache-Coherent Shared-
Memory System. IEEE Transactions on Computers, 47(I): 135-
140, January 1998.

Fong Pong and Michel Dubois. Verification Techniques for Cache
Coherence Protocols. ACM Computing Surveys, 29(1):82-126,
March 1997.

J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared
Memory: Concepts and Systems. IEEE Parallel and Distributed
Technology, pages 63-79, 1996.

Christoph Scheurich. Access Ordering and Coherence in Shared
Memory Multiprocessors. Ph.D. Dissertation CENG 89- 19,
University of Southern California, May 1989.

Dennis Shasha and Marc Snir. Efficient and Correct Execution of
Parallel Programs that Share Memory. ACM Transactions on
Programming Languages and Systems, 10(2):282-3 12, April
1988.

74

WI Xiaowei Shen and Arvind. Specification of Memory Models and
Design of Provably Correct Cache Coherence Protocols. Group
Memo 398. Massachusetts Institute of Technology, June 1997.

v31 Daniel i. Sorin, Manoj Plakal, Mark D. Hill, and Anne E. Condon.
Lamport Clocks: Reasoning About Shared-Memory Correctness.
Technical Report CS-TR-1367, University of Wisconsin-Madison,
March 1998.

Appendix A: Proofs of Claim 2, Claim 4, and the Lemmas

Claim 2: The sequence of A-state changes on block B at a node
occurs in real time in the order implied by the serialization of
transactions on block B at its directory.

m Claim 2 is easily seen to be true for block B’s directory
entry since the directory processes transactions in order. Now, sup-
pose that Tt and T2 are two transactions affecting block B of pt.
where Tt occurs before T2 in the transaction serialization order at
the directory, and that T2 is the first transaction after T, on block B
that affects pi. From Claim 1, a message is sent to pi both as a
result of Tt and Tz (although these may not arrive at pi in order).
We need to show that the change in A-state resulting from Tt at pi
occurs before the change in A-state resulting from T2. We consider
two cases.

C&,g& pi requests transaction T,. If pi receives messages
relating to transaction Tz before pi has changed its A-state cor-
responding to Tt (transactions 3,6,7,9 from Section 2.3). then
pi buffers such messages until all processing of transaction Tt
has been completed (refer to the 3rd bullet in Section 2.4). Oth-
erwise (transactions I ,2,5,9,12,13,14), there is no that way pi’s
A-state could change due to T2 before finishing Tt.

Case ‘& pi does not request transaction Tt. First, suppose that
Tt implies that pi’s A-state changes from Ax to As or At.
Therefore, Tt must result from a Get-Shared or Get-Exclusive
request from a processor, pi, other than pi. In these cases (trans-
actions 3 and 7 from Section 2.3), the directory enters the busy
state and remains in that state until it receives a response from
pj, at which point pi’s state has been changed to As or At as
appropriate. Therefore, the change in A-state at pi implied by
Tt occurs before the directory leaves the busy state. T2 is not
NACKed, and so the directory does not send a message to pi
regarding transaction T2 until after leaving the busy state for
Tt. Furthermore, pi does not change its A-state as a result of T2
until it receives a message from the directory regarding T2.
Therefore, the change in A-state corresponding to T2 occurs
after the change in A-state corresponding to Tt.
The only other possible case is that Tt implies that pi’s state
changes from As to At. Hence, Tt must result from a Get-
Exclusive or Upgrade request from a processor, pjq other than
pi* In this case, the only way that T2 can affect pi is if T2 is
requested by pi. T2 could be a Get-Shared, a Get-Exclusive or
an C&rude, since the actual state of the block B in pi’s cache
could be either read-only, or invalid due to a Put-Shared action
which does not affect the A-state. If T2 is a Get-Shared or Get-
Exclusive then, by the definition of A-state in Section 3. I, the
A-state at pi changes from As to At (due to Tt) and then imme-
diately to As or Ax (due to T2), as appropriate. If T2 is an
Upgrade, it is NACKed by the directory (due to Tt, transaction
10 from Section 2.3). Since T2 affects pi* it cannot be a
NACKed request, and therefore it must be requested by pi after
pi has changed its state to At. QED.

Claim 4: Every LD/ST operation on block B at processor pi is
bound to the most recent (in Lamport time at pi) transaction on
block B that affects pi.

Erpef; Let OP2 be a LD or ST operation on block B with global
timestamp t2. Since OPz’s timestamp is t2,0PZ cannot be bound to
a transaction with timestamp greater than t2. Let Tt be the transac-
tion on block B with the largest timestamp, say tl, at pi such that tt
<tZ. We need to show that OP2 is not bound to a transaction occur-

ring earlier than Tt; hence OP2 must be bound to Tt.

Let OPt be the earliest LD/ST operation (not necessarily to block
B) in pi’s program order with the global time stamp t2. Note that
OP, may equal OP2. Also, since OPt is the first OP with global
timestamp t2, OPt must be bound to the transaction with times-
tamp t2 at pi. By the fact that the Lamport order at pi equals the
real-time order of changes of A-state at pi, the order in which
changes in A-state at a processor are written in real time is the
same as the Lamport ordering of the corresponding transactions at
that processor. Hence, the value of the A-state for block B at the
real time that OP, is bound must be the value implied by a transac-
tion on block B occurring no earlier than Tt. Since OP2 is bound in
real time no later than OPt is bound, it cannot be bound to a trans-
action occurring earlier than Tt, as required. QED.

Comment: the proof of Claim 4 uses two facts about the protocol
relating real time to Lamport time: (a) the order in which changes
in A-state at a processor are written in real time is the same as the
Lamport ordering of the corresponding transactions at that proces-
sor, and (b) binding occurs sequentially in real time. However, the
protocol can be relaxed while maintaining the correctness of Claim
4. For example, suppose that the A-states are updated periodically
(using queues to order pending updates) and that during an update
of transactions with timestamps in the range [tt.t2), the binding
process is suspended. The order in which the A-states are updated
need not agree with the order of the corresponding transactions, as
long as at the end of the update period, the A-state value of each
block equals that implied by the most recent transaction prior to
that with timestamp t2. Once the A-states are up to date, binding of
LD/STs can be resumed. Binds of the next contiguous block of
LD/ST operations on blocks for which the A-state is set appropri-
ately can be performed out of order, thus relaxing the real time
ordering assumption for binds, as long as potential changes in A-
state are being queued until the binding process is again sus-
pended.

Lemma 1: Exclusive epochs for block B do not overlap with either
exclusive or shared epochs for block in Lamport time.

&tr& Let [tt ,t2) be an exclusive epoch for block B at node N. Let
transaction Tt cause the epoch to begin. We claim that no node has
an epoch for block B that overlaps with [tt,tz).

We first argue that no epoch for block B that starts prior to time tt
overlaps with [tt,t2). By Claim 3 (b), such an epoch E would have
to result from a transaction occurring before Tt in the serialization
order. Therefore, the end of epoch E would have to result from
some transaction Tu on block B occurring no later than Tt (possi-
bly To = Tt). Claim 3 (a) ensures that the end of epoch E must be
less than or equal to the timestamp of To at a unique node, say Nz,
that upgrades its A-state as a result of To. Also, by Claim 3 (b)
again, the timestamp of To by N2 must be less than the timestamp
of Tt by N. Hence E ends in Lamport time before [tt,tz) starts.

Clearly, the only epoch starting at time tt is at node N, since N is
the only processor whose A-state is not At after transaction Tt. To
complete the proof, we note that the next transaction, say T2, on
block B after Tt must be assigned timestamp t2 by N. If node N2
upgrades its A-state as a result of T2, Claim 3 (a) ensures that N2’s
timestamp of T2 must be greater than t2. Hence, by Claim 3 (b), if

75

an epoch E starts as a result of transaction T2 or a transaction later
than T,, E must start at a time greater than t2, as required. QED.

Lemma 2: (a) Every LDlST operation on block B at pi is con-
tained in some epoch for block B at pi and is bound to the transac-
tion that caused that epoch to start. (b) Furthermore, every ST
operation on block B at pi is contained in some exclusive epoch for
block B at pi and is bound to the transaction that caused that epoch
to start.

m Let OP be a LD/ST on block B with global timestamp t2. By
Claim 4, OP is bound to the most recent transaction at pi no later
than t2, say Tt, that affects block B of pi. Let tl be pi’s timestamp
of Tt. Part (a) of Lemma 2 then follows for the following reasons:
Since OP is bound to Tt, T, must imply that pi’s A-state for bJock
B changes to As or Ax and so an epoch for block B at pi starts at
time tt. Moreover, since Tt is the most recent transaction no later
than t2 that affects block B of pi, the epoch starting at tt must end
at some time later than t2. Therefore, OP is contained in some
epoch for block B at pi and is bound to the transaction that caused
that epoch to start. Part (b) follows from the further observation
that if OP is a ST then Tt must cause an exclusive epoch to start at
pi. QED.

Lemma 3: If block B is received by node N at the start of epoch
[tl,t2), then each word w of block B equals the most recent store to
word w prior to t, or the initial value in the directory, if there is no
store to word w prior to global time tt.

Ecppf; We prove the claim for all nodes by induction on epoch
starting time t,. The basis case is the first action that causes block
B to be sent. In this case the block is sent from the directory and
equals the initial value of the block in the directory.

Suppose that the claim is true for all epochs with starting time less
than tt, and suppose that block B is sent from node No to node Nt
in response to transaction Tt, which has timestamp tl at Nt. First,
suppose that No is not equal to NI. Let transaction To be the most
recent action on block B prior to Tt in serialization order. Since No
sends block B in response to Tt, To must be cause an exclusive
epoch to start at No and therefore affects NO. Let To have times-
tamp to at No. From Claim 3, No’s exclusive epoch for block B
starting at time to must end prior to time t,. Moreover, since To and
Tt are consecutive transactions on block B in serialization order,
there is no epoch at any processor between the time that No’s
epoch ends and N,‘s epoch begins at time tt.

We consider two cases. The first case is that the last ST to word w
of block B prior to time tt is actually prior to tw Therefore, no STs
to word w of block B are bound to Tt. By Fact 2, the value Wo of
word w of block B sent by NO is the value received by No in
response to To. By the induction hypothesis, Wo equals the value
of the most recent store to word w of block B prior to time b or the
initial value of word w in the directory, if no prior store. Therefore,
the value sent by No equals the value of the most recent store or the
initial value in the directory, if no prior store.

The second case is that the last ST to word w of block B prior to
time tl occurs after time b. By Claim 4 and Lemma 2 (b), such STs
must be done by node No. By Fact 2, in this case the value of word
w of block B sent by No in response to T, is the last ST to word w
of block B in pi’s program order that is bound to To. Moreover, the
last ST bound to To has global time stamp less than tt. Therefore,
the value sent by No equals the value of the most recent store to
word w of block B. This completes the proof of Lemma 3 in the
case that, in response to T,, block B is sent by a node other than pi.

The situation in which No=Nt, (i.e., in response to Tt, the value of
block B is sent from pi to itself) is similar, but only the first case
above can arise. QED.

Appendix B: Impossible ‘Ikansactions

!&grade with Directorv be- Assume that pi is the processor
performing the Upgrade on block B and that it obtained read-only
access with transaction T. Some other processor must have per-
formed a Get-Exclusive or Upgrade and then a Writeback before
pi’s Upgrade reached the directory. Let transaction T’ be the first
Get-Exclusive or Upgrade transaction on block B after T in the
serialization order, and assume that it occurs at processor pj. T’
(via transactions 6 or 9 for Get-Exclusive or Upgrade, respec-
tively) ensures that pj must wait for an acknowledgmenr from pi
before obtaining read-write access. In turn, pi cannot send an
acknowledgment until its Upgrade is processed by the directory.
Until then, pj cannot do a Writeback, and thus the Directory cannot
be Idle.

Writeback: Assume that pi is the processor performing the Write-
back on block B and that it obtained read-write access with trans-
action T.

l Directory is Idle: Some other processor must have performed a
Get-Exclusive and then a Writeback before pi’s Writeback
reached the directory. Let transaction T’ be the first Get-Exclu-
sive transaction on block B after T in the serialization order
and assume that it occurs at processor pj. However, T’ (transac-
tion 7) ensures that the directory will go into Busy-Exclusive
until it receives a message from pi. Hence, pj cannot obtain
read-write access before pi’s Writeback has been processed by
the directory, because pj cannot receive a reply from the Home
until pi’s Writeback request is received and processed by the
directory.

. Directory is Shared: For the directory to be Shared, some other
processor must have performed a Get-Shared before pi’s Write-
buck reached the directory. Let transaction T’ be the first Get-
Shared transaction on block B after T in the serialization order
and assume it occurs at processor pj. However, T’ (transaction
3) ensures that the directory will go into Busy-Shared until it
receives a message from pi. Therefore, pi’s Writebuck cannot
see a Shared directory.

l Directory is Busy-Shared: Some other processor must have
performed a Get-Shared before pi’s Writeback reached the
directory. Let transaction T’ be the first Get-Shared transaction
on block B after T in the serialization order and assume it
occurs at processor pj. T’ (transaction 3) ensures that the direc-
tory will go into Busy-Shared until it receives a message from
pi. Once the directory enters Busy-Shared, CACHED only con-
tains pj’s ID. Therefore, pi’s ID cannot be in CACHED.

. Directory is Busy-Idle: Some other processor, p, must have
performed a Get-Exclusive, received the block f rom pi, and
performed a Writeback that beat pi’s update message to the
directory. At this point, any processor that makes a Get-Shared,
Get-Exclusive, or Upgrade request for B will get NACKed
(transactions 4, 8, and 11). Only pi can change the state out of
Busy-Idle, and this will happen when its update message
arrives at the directory. No Writeback can occur while in Busy-
Idle because no processor has read-write access (pi is already
in the invalid state once it has sent the block to pj).

76

