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ABSTRACT

We develop a reuse distance/stack distance based analytical
modeling framework for efficient, online prediction of cache
performance for a range of cache configurations and replace-
ment policies LRU, PLRU, RANDOM, NMRU. Our frame-
work unifies existing cache miss rate prediction techniques
such as Smith’s associativity model, Poisson variants, and
hardware way-counter based schemes. We also show how to
adapt LRU way-counters to work when the number of sets in
the cache changes. As an example application, we demon-
strate how results from our models can be used to select,
based on workload access characteristics, last-level cache
configurations that aim to minimize energy-delay product.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques
; B.3.2 [Memory Structures]: Cache memories

General Terms

Performance

Keywords

Cache, Stack Distance, Reuse Distance, Replacement poli-
cies, LRU, PLRU, RANDOM, NMRU

1. INTRODUCTION
Processor caches are critical components of the memory

hierarchy that exploit locality to keep frequently-accessed
data on chip. Caches can significantly boost performance
and reduce energy usage, but their benefit is highly work-
load dependent. Figure 1 illustrates the miss rates for 16
multithreaded workloads over 5 different sizes of last-level
cache (LLC). Some workloads (e.g., apache) benefit sub-
stantially from larger caches, while others (e.g., equake) are
largely indifferent to the cache size.

In modern power and energy constrained computer sys-
tems, understanding a workload’s dynamic cache behavior is
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Figure 1: LLC Misses-per-thousand-instructions (MPKI) for
our workloads (Section 6). There is significant miss rate
variation depending on the workload and LLC size.

important for making critical resource allocation and schedul-
ing decisions. For example, allocating excess cache capacity
to a workload wastes power, as large caches dissipate signif-
icant leakage power, while allocating insufficient cache ca-
pacity hurts performance and increases main memory power.
Previous research has explored placing some or all of a cache
in low-power mode [4,16,18] or dynamically partitioning the
cache to eliminate resource contention [35,45]. A recent In-
tel processor [22] can dynamically reduce its LLC’s capacity
to save power.

Because a workload’s cache performance can vary with
different execution phases, cache resource decisions must be
made online and depend upon predicting the cache perfor-
mance for configurations different than the current settings.
For example, set-associative caches map each address to a
set, each of which contains a number of ways (lines); since
both sets and ways can be dynamically configured [48], we
need to predict cache performance for many configurations
(see Table 1). Suh, et al. [44] use hardware way-counters to
predict cache miss ratios, but their technique cannot be used
for configurations with a different number of sets. Gordon-
Ross, et al. [20] use a hardware TCAM to track reuse dis-
tances for determining miss ratios for an 8KB L1 cache, with
12% area overhead. However, while 12% overhead may be
acceptable for small L1 caches, it is prohibitively high for
the multi-megabyte LLCs of modern multicore processors.

In this work we study the problem of developing efficient
online techniques for predicting cache miss rates for large
caches that vary in both associativity and number of sets,
and have practical replacement policies such as RANDOM,
NMRU, and PLRU, unlike prior work that has largely fo-
cused on LRU. Our analysis framework is inspired by two
foundational works: Mattson’s stack distance characteriza-
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2 4 8 16 32

2MB 214 213 212 211 210

4MB 215 214 213 212 211

8MB 216 215 214 213 212

16MB 217 216 215 214 213

32MB 218 217 216 215 214

Table 1: Relation between number of sets and associativity
for different cache sizes. Assuming some cache configuration
is the current configuration, there are a total of 25-1=24 pos-
sible other target configurations. An inspection of the table
reveals that at most 4 of these possible 24 configurations can
have the same number of sets as the current configuration.
For example, with 32MB 32-way as the current configura-
tion, target configurations with the same number of sets
(214) are: 2MB 2-way, 4MB 4-way, 8MB 8-way and 16MB-
16-way. Thus, way-counters (Section 5.3) can predict for at
most 4 of 24 possible target configurations at any time.

tion [32] (also used later as reuse distance [8,15]) and Smith’s
associativity model [21,40] for LRU caches.

We show how simple hardware, requiring approximately
2KB of state, can provide the dynamic information needed
to drive the model. As an example application, we demon-
strate that it can be used to select an LLC configuration to
minimize energy-delay product (EDP). The LLC configura-
tion can cause EDP to vary by as much as a factor of 3; using
our model selects a configuration within 7% of optimal.

The major contributions of our work are:

1. We formulate an analytical framework based on gener-
alized stochastic Binomial Matrices [43] for transform-
ing reuse distance distributions (Sections 3, 4).

2. We formulate new miss ratio prediction models for
RANDOM (Section 4.2), NMRU (Section 4.3), PLRU
(Section 4.4) replacement policies.

3. We show that the traditional hardware way-counter
based prediction [44] for varying associativity is a spe-
cial instance of our unified framework (Section 5.3).
Further, we show how way-counter data for LRU may
be transformed to apply to caches with a different
number of sets. (Section 5.3.2)

4. We propose a novel hardware scheme for efficient on-
line estimation of reuse distance/stack distance distri-
butions (Section 5.1).

5. We demonstrate one application of the model in find-
ing the minimum EDP (energy-delay product, [19])
configuration (Section 6). The results are within 7%
of the optimum.

1.1 Model overview and Paper Organization
The central theme of our predictive framework is to de-

couple temporal characteristics in the cache access stream
from characteristics of the replacement policy. The rest of
this paper is divided into five major portions:

Characterizing temporal locality: Section 2 defines
reuse distributions that capture the temporal locality of ad-
dress streams. Section 3 shows how to modify these to apply
for a cache with a different number of sets.

Characterizing replacement policies: Section 4 intro-
duces the notion of cache hit-functions that, when multiplied
with the per-set reuse distribution, produce expected cache
hit ratios. Sections 4.1.1 and 4.1.2 consider optimizations
for LRU hit ratio prediction. Sections 4.2, 4.3 and 4.4 de-
velops new prediction models for RANDOM, NMRU, PLRU
respectively. Section 4.5 discusses prediction accuracy and
computation overheads.

Hardware Support: Section 5.1 presents the novel, low-
cost hardware for estimating reuse distributions. It also dis-
cusses two traditional hardware mechanisms – set-counters
(Section 5.2) and way-counters (Section 5.3).

Example Application: Section 6 shows how our model
can be used to find the minimum EDP configuration.

Epilogue: Section 7 discusses related work and Section 8
concludes the paper.

In our study, caches are characterized by the number of
sets S, associativity A, and replacement policy. We assume a
fixed line size of 64 bytes. Table 1 shows the relation between
S, A and cache size for the configurations we study.

Our models estimate hit ratio (hit/access). This can be
easily converted into other measures: miss ratio=1-hit ra-
tio; miss rate=miss ratio*access/instruction. For evaluating
prediction quality, we obtain address traces of accesses to
a 32MB 32-way LLC in a simulated system (Table 2, Sec-
tion 6) for our workloads (Section 6), run the traces through
a standalone cache simulator (that does not model timing)
and compare measured against predicted metrics.

2. MEASURESOFTEMPORALLOCALITY
In this section we develop metrics of temporal locality in

the address stream that are independent of the cache config-
uration. These metrics will be used for estimating the miss
ratios for arbitrary cache configurations. For our study, all
addresses are line addresses of cache accesses.

Consider an address trace T as a mapping of consecutive
integers in increasing order, representing successive positions
in the trace, to tuples (x, m) where x identifies the address
and m identifies its repetition number. The first occurrence
of address x in the trace is represented by (x, 0). Let t = T−1

denote the inverse function. t(x, m) denotes the position
of the mth occurrence of address x in the trace. We now
introduce a few more definitions.

Reuse Interval: The reuse interval (RI) is defined
only when m > 0 and denotes the portion of the trace en-
closed between the mth and (m− 1)th occurrence of x. For-
mally, RI(x, m) =

(

{(z, m′)|t(x, m − 1) < t(z, m′) < t(x, m)} if m > 0

undefined otherwise

Unique Reuse Distance: This denotes the total num-
ber of unique addresses between two occurrences of the same
address in the trace. Thus,

URD(x, m) =

(

˛

˛

˛

{z|(z, m′) ∈ RI(x, m)}
˛

˛

˛

if m > 0

∞ otherwise

Numerically, this is 1 less than Mattson’s much earlier stack
distance [32].

Absolute Reuse Distance: This denotes the total num-
ber of positions between two occurrences of the same address
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Figure 2: Schematic diagram showing relation between dddk(t)
and dddk−1(T ). Possible URDs for accesses in each sub-
interval are shown in red.

in the trace. Thus, ARD(x, m) =
(

˛

˛

˛

RI(x, m)
˛

˛

˛

= t(x, m) − t(x, m − 1) − 1 if m > 0

∞ otherwise

As an example, in the access sequence a b b c d b a,
URD(a, 1) = 3 and ARD(a, 1) = 5.

2.1 Reuse Distance Distributions
Our study is concerned with average-case behavior. So in-

stead of focusing on each individual point in T , we character-
ize it using probability vectors that reflect average/expected
distributions.

• The unique reuse distance distribution of trace
T is a probability distribution that we denote by row
vector rrr(T ) such that the kth component,
rrrk(T ) = P (URD(x, m) = k), ∀(x, m) ∈ image(T ).
The characterization is lossy in the sense that in gen-
eral, T cannot be recovered from rrr(T ) even upto per-
mutation of entity identifiers (See Appendix A).

• The expected absolute distance distribution of
trace T is a row vector that we denote by ddd(T ) such
that the kth component,
dddk(T ) = E(ARD(x, m)|URD(x, m) = k), ∀(x, m) ∈
image(T )

2.2 ddd(T) Estimation
It is obvious that ARD(x, m) ≥ URD(x, m), ∀x, m. It

then follows that dddk(T ) ≥ k, ∀k such that rrrk(T ) > 0. Also,
ddd0(T ) = 0. We now show how to compute (an approximation
to) ddd(T ) given rrr(T ).

Figure 2 shows a schematic of a trace and organization of
URDs within a reuse interval for some address x. z0, z1,...zk

denote distinct addresses. This is just a conceptual tool
and does not constrain the actual permutation of addresses
in a particular reuse interval. The immediate next access
after reference address x must be something other than x
(otherwise the reuse interval would immediately terminate
with k = 0). Between this first address z0 and the next
different address z1, the only possible URDs of accesses must
be 0. Between z1 and z2, the only possible URDs can be 0
and 1. Extending this reasoning till zk−1 and zk we observe
that dddk(T ) and dddk−1(T ) differ only in the last sub-sequence
which consists of a run of accesses with URDs in {0, 1, .., k−
1}. We approximate the length of this run with the expected
number of trials to success in a geometric distribution with
success probability

P∞
i=k

rrri(T ).
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Figure 3: Actual vs estimated ddd(T ) for oltp.
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Figure 4: Effect of the number of sets (S) on per-set locality
for oltp.

We thus arrive at the following recurrence:

ddd0(T ) = 0

dddk(T ) = dddk−1(T ) +
1

P∞
i=k

rrri(T )
(1)

Expanding the recurrence gives us

dddk(T ) =
k

X

j=1

1
P∞

i=j rrri(T )
=

k
X

j=1

1

1 −
Pj−1

i=0 rrri(T )

This is similar to known approximations for the coupon
collector’s problem assuming a given order of coupons [11].
We have seen good agreement in trends between observed
and estimated values of ddd(T ) as illustrated in Figure 3.
More accurate approximations for ddd(T ) can be considered
if needed at the expense of more computation time.

3. PER-SET LOCALITY
Replacement policy decisions (determining which cache

line to evict) in traditional caches happen for each individual
set. This in turn influences the miss ratio. So it is essential
to determine the locality in the address stream that each
individual set sees on average. We refer to the temporal
locality in the per-set address stream as the per-set locality.

Per-set locality is strongly influenced by the number of
sets (S) in the cache. The set of unique addresses in the
address stream is split among the sets based on the index
mapping function. The address stream that any individual
set sees is the subset of the original address stream consisting
of all accesses to the addresses mapping to that set. S thus
determines the degree to which the address stream is split.
Decreasing S increases URDs of the per-set address streams
since addresses that hitherto mapped to other sets now get
mapped to the reference set, and vice versa.

Accordingly, we extend our previous notations of local-
ity metrics to additionally include S as a parameter. Thus



rrr(T, S) denotes the unique reuse distribution of the sub-
sequence of T that a single set in the cache observes on av-
erage. rrr(T, 1) is the temporal locality of the original address
stream, which is also the per-set locality of a fully-associative
cache (S = 1). Figure 4 illustrates how rrr(T, S) changes with
S for oltp. ddd(T ) is adapted to ddd(T, S) similarly and can be
estimated from rrr(T, S) using Equation 1. For brevity of no-
tation, we will omit specifying one or more parameters when
their values are clear from the context.

As Table 1 shows, cache configurations in our study have
a range of number of sets (210 to 218). For efficiently pre-
dicting miss ratios it is essential to be able to determine how
rrr(S) can be transformed to rrr(S′) for S′ 6= S. The rest of
this section develops a (new) methodology for this.

3.1 rrr(S′) Estimation
For set-associative caches with S′ > 1 we make the simpli-

fying assumption, similar to Smith’s model [21,40], that the
mapping of unique lines to cache sets are independent of each
other. While this assumption does not always hold with the
traditional bit selection index function, some processors use
simple XOR hashing functions that increase uniformity [27].
The uniformity assumption enables both the following model
and the use of uniform set-sampling techniques.

Accesses to a given set can thus be modeled as successive
Bernoulli trials with the success of each trial having prob-
ability 1

S′ . While computing rrr(S′) from rrr(1), we note that
rrrj(S

′) is the sum of the probability of exactly j successes
(j addresses mapping to the reference set) from rrrk(1), ∀k.
The generalized stochastic Binomial Matrix [43] BBB(x, y) has
the value kCjy

jxk−j in row k, column j, where kCj denotes
the jth binomial coefficient and x + y = 1. This is the same
as the probability of exactly j successes in k Bernoulli tri-
als with probability of each success being y. Viewing the
computation of rrr(S′) from rrr(1) through the lens of matrix
multiplication, we recognize that the transformer is a gen-
eralized stochastic Binomial Matrix, BBB(1 − 1

S′ ,
1
S′ ). Thus,

rrr(S′) = rrr(1) ·BBB(1 −
1

S′
,

1

S′
) (2)

It is straight-forward to show that the above transformation
respects

P∞
i=0 rrri(S

′) =
P∞

i=0 rrri(1) = 1. Qualitatively, this
transformation results in a re-distribution of mass with rrr(S′)
getting compressed as S′ is increased and dilated as S′ is
decreased (see Figure 4).

We will now show how to compute rrr(S′) from any starting
cache configuration S. This shows how computations can be
reused instead of always needing to start from the ground
configuration (S = 1) and will also be useful in reasoning
about way-counters (Section 5.3).

Binomial Matrices are invertible (when the second pa-
rameter is non-zero) and closed under multiplication within
the same dimension [43]. Using identities BBB(x, y)BBB(w, z) =
BBB(x + yw, yz) and BBB(x, y)−1 = BBB(−xy−1, y−1), [43], we get

rrr(S′) = rrr(1) ·BBB(1 −
1

S′
,

1

S′
)

= rrr(S) · (BBB(1 −
1

S
,
1

S
))−1 ·BBB(1 −

1

S′
,

1

S′
)

= rrr(S) ·BBB(1 −
S

S′
,

S

S′
) (3)

Equation 3 is a general form of Equation 2. The trans-
former depends only on the ratio of the number of the sets
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Figure 5: LRU prediction with reuse information limited to
n at rrr(210) which is first computed from rrr(1) (Equation 2).

in the current cache to that in the target cache. There are
two cases to consider depending on the value of this ratio:

Case 1, S′ ≥ S: The transformation is always safe in that
the computed probabilities are valid (∈ [0, 1]) even if rrr(S)
has not been computed binomially. Moreover, this allows in-
termediate steps; for example, computing rrr(214) from rrr(1)
is equivalent to first computing rrr(210) from rrr(1) and then
computing rrr(214) from rrr(210). This provides an opportunity
to reuse intermediate computations. So, rrr(S) can be com-
puted once from rrr(1) for the smallest S (210 in our study,
see Table 1) and used for all other target configurations.

Case 2, S′ < S: Since BBB(1− S
S′ ,

S
S′ ) = (BBB(1− S′

S
, S′

S
))−1,

Case 2 transforms can invert Case 1 transforms provided
Case 1 results have not been truncated (see below). Other-
wise, the computed probabilities may not be valid ( 6∈ [0, 1]).

3.2 Matrix dimension and Truncation of rrr

The dimension of BBB is determined by the maximum (per-
set) URD, n, we are interested to maintain to avoid large
computational costs. If rrr is limited to position n, rrr∞(S)
must be adjusted so that rrr∞(S) = 1 −

Pn

i=0 rrr(S).
Assume rrr(210) is available, computed from rrr(1) using Equa-

tion 2. Figure 5 shows predicted miss ratios for oltp with
rrr(210) maintained for various values of n. Section 4.1 ex-
plains LRU prediction. Although the maximum associativ-
ity that we consider is 32, Figure 5 shows that n has to be
much larger than that (≥ 512) for good predictions for larger
caches with S′ > 210, such as 32MB caches (see Table 1).

While n = 512 is good for rrr(210), the equivalent value for
rrr(1) is very large, potentially upto 512 · 210. To appreciate
this, consider the rrr(1) address stream as a merger of the 210

mutually exclusive per-set address streams, each of which
has reuse intervals of upto 512. Determining the long-tailed
rrr(1) distribution or using large matrices to compute rrr(210)
from rrr(1) in software is time-consuming. Section 5.1 pro-
poses low-cost hardware support to approximately estimate
rrr(210) with n = 512.

4. CACHE HIT FUNCTIONS
Given a target cache organization (S′, A′, policy) and a

trace T , our goal is to determine a vector φφφ(rrr(S′), S′, A′, policy)
such that the expected hit ratio for the trace is

h = rrr ·φφφ (4)

The idea is to characterize workload traces by rrr and caches
by φφφ so that the effect on hit ratio for changes in traces or
cache configurations can be readily estimated.
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We call φφφ the cache hit function. The value of the kth com-
ponent, φφφk is the conditional probability of a hit for accesses
x such that URD(x, m) = k where m is the repetition count
for x at that point in the trace when the access happens. φφφk

monotonically decreases with k in this model. This is be-
cause non-eviction of a cache-resident address after accesses
involving k other unique addresses implies non-eviction after
accesses involving k−1 unique addresses and the remaining
accesses. If there are no intervening accesses (k = 0), the
access must be a hit. Accesses hitherto never seen (k = ∞)
must miss. So,

φφφk =

8

>

<

>

:

1 if k = 0

≤ φφφk−1 if k ≥ 1

0 at k = ∞

(5)

Figure 6 shows representative characteristic functions for
common replacement policies. We consider the well-known,
but rarely-implemented1 LRU policy as well as the practical
RANDOM, NMRU, and PLRU policies. Note that RAN-
DOM, NMRU, PLRU have hit functions that are non-zero
beyond A′(=8 in the figure). So, computing rrr · φφφ upto A′

is not sufficient for these replacement policies. For our eval-
uations, we compute the dot-product for 2A′ terms; longer
than that has diminishing returns for our workloads.

Apart from LRU, φφφ is not independent of rrr for different
replacement policies. As we shall show later, φφφ(RANDOM)
depends on ddd, while φφφ(PLRU) may need more information.

4.1 Estimating φφφ(LRU)

For a set-associative LRU cache with associativity A′, it
is well known that all accesses with addresses re-appearing
with less than A′ unique intervening elements must hit and
all other accesses must miss. This leads us to the following
characterization of the LRU hit ratio function.

φφφk(LRU) =

(

1 if 0 ≤ k < A′

0 if k ≥ A′
(6)

Figure 5 shows actual vs estimated (n = 512) miss ratios
for oltp with LRU using Equations 3, 6 and 4. Figure 16
(Appendix F) shows more examples. As observed earlier by
Hill and Smith [21], increasing A′ yields diminishing returns.

4.1.1 Optimization (Smith’s Model)

A naive combination of Equations 4, 6 and 3 results in
PA′−1

i=0 (n − i) = nA′ − A′(A′−1)
2

multiplications with bino-

1LRU is typically not implemented in real caches for asso-
ciativity larger than 4 due to hardware complexity.

mial computations to estimate the hit ratio for a cache with
S′ sets and associativity A′. The number of multiplications
can be reduced by observing that due to the step-function
nature of φφφ(LRU), some of the coefficients will sum to 1.
Expanding the computation and simplifying, we get

h(S′)=

A′−1
X

i=0

rrri(1)+
n

X

i=A′

rrri(1)·

A′−1
X

k=0

iCk·

„

1

S′

«k

·

„

1−
1

S′

«(i−k)

(7)
Equation 7 is an optimized version of Smith’s associativity

model [21, 40]. It requires nA′ − A′(A′ − 1) multiplications

which is A′(A′−1)
2

less than the naive combination. But com-
puting binomial terms is costly and n is usually much larger
than A′.

4.1.2 Poisson approximation to Binomial

The last sum in Equation 7 is the cumulative binomial sum
up to A′ − 1 with parameters i and 1

S′ . Cypher [13,14] uses
a Poisson approximation to binomial for reducing computa-
tional costs – when i is large and 1

S′ is small, the binomial
distribution can be approximated by a Poisson distribution
with parameter λ = i

S′ . This is easier to compute than with
the binomial coefficients.

We can further optimize Cypher’s approach by substitut-
ing the cumulative Poisson sum with piecewise linear trans-
formations. This involves precomputing the distribution at
a small number of points and storing the values which can
then be used at run-time to compute the miss ratio. Val-
ues of intermediate points can be approximated using linear
interpolation. This method provides good approximations
with reduced computational cost but a moderate storage
overhead. Appendix C shows an example approximation
using ∼7 precomputed points per cache configuration.

4.2 Estimating φφφ(RANDOM)

The RAND replacement algorithm [7] (also popularly called
RANDOM) chooses a line (uniformly) randomly from the
lines in the set for eviction on a miss.

For an A′-way set-associative cache, the probability of re-
placement of a given line on a miss is 1

A′ . Accounting for the
number of misses in between successive reuses of an address
is therefore needed. For expected miss rate θ, the expected
number of misses for a sequence of α accesses is α · θ. This
is why ddd is important for RANDOM whereas LRU works
independent of such information.

We make the simplifying assumption that miss occur-
rences (not specific addresses) are independent and hence
amenable to be modeled as a Bernoulli process. While this
may not be accurate, it allows us to make reasonably good
predictions without tracking additional state.

Let dddk = α. The probability of i misses is estimated by
αCi · θ

i · (1 − θ)(α−i). The probability that a specific line is

not replaced after i misses is
`

1 − 1
A′

´i
. We thus have

h(RANDOM) = rrr · φφφ(RANDOM)

φφφk(RANDOM) =

α|dddk=α
X

i=0

αCi·θ
i·(1 − θ)(α−i)·

„

1 −
1

A′

«i

θ = 1 − h(RANDOM) (8)

To simplify the computation, we approximate Binomial(α,θ)
by Poisson(λ = α · θ). Let q =

`

1 − 1
A′

´

. This gives
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Figure 7: Actual vs estimated miss ratios for oltp with RAN-
DOM replacement policy. LRU estimates are shown as ref-
erence. rrr(210) is first computed from rrr(1) (Equation 2).

φφφk(RANDOM) =

α|dddk=α
X

i=0

αCi · θ
i · (1 − θ)(α−i) · qi

=
∞

X

i=0

αCi · θ
i · (1 − θ)(α−i) · qi

≈
∞

X

i=0

e−λ ·
λi

i!
· qi

= e−λ(1−q)
∞

X

i=0

e−λq ·
(λq)i

i!

= e
−αθ
A′ (9)

The system of equations in 8 can now be approximated
by the following system.

h(RANDOM) = rrr ·φφφ(RANDOM)

φφφk(RANDOM) = e
−dddkθ

A′

θ = 1 − h(RANDOM) (10)

We solve the system of equations in 10 with the initial
value h = rrr0. ddd is estimated using equation 1. Usually 5
or fewer iterations suffice to reach within 1% of a fix-point.
Proof of convergence is presented in Appendix D.

4.2.1 Optimization

A better approximation for A′ = 2 can be obtained by
using the fact that for the reference element not to be evicted
at URD ≥ 2, the previous element must be evicted (since
the set can hold only 2 elements). The probability of the
previous element to be evicted is 1 − φφφ1. For the reference
element to hit at URD = k, it must hit at URD = k − 1
and the above condition must hold. This leads us to the
following approximation.

φφφk = φφφk−1 · (1 −φφφ1), k ≥ 2 (11)

This approximation is possible since the model can exactly
determine the set contents for URD >= 2. For higher asso-
ciativities, exact determination of set contents is difficult.

Figure 7 shows actual vs estimated (n = 512) values of
miss ratios for RANDOM with the estimates computed us-
ing Equations 3, 10, 11 and 4.

4.3 Estimating φφφ(NMRU)

The NMRU (or non-MRU) replacement algorithm differ-
entiates the most recently accessed (MRU) line from other
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Figure 8: Actual vs estimated miss ratios for oltp with
NMRU replacement policy. LRU estimates are shown as
reference. rrr(210) is first computed from rrr(1) (Equation 2).

lines in the set [41]. On a miss, a line is chosen (uniformly)
randomly from among the A′ − 1 non-MRU lines.

At A′ = 2, φφφ(NMRU) = φφφ(LRU). For the rest of the
cases, the framework is similar to that of RANDOM except
that accesses at URD ≤ 1 are guaranteed to hit. More-
over, the replacement logic has A′−1 possible choices for an
eviction in case of a miss. This leads to a few simple mod-
ifications to the system of equations in 10. The modified
system is shown below:

φφφ1(NMRU) = 1

h(NMRU) = rrr · φφφ(NMRU)

φφφk(NMRU) = e
−(dddk−ddd1)θ

A′
−1

θ = 1 − h(NMRU) (12)

Figure 8 shows actual vs estimated (n = 512) values of
miss ratios for NMRU with the estimates computed using
Equations 3, 12 and 4.

4.4 Estimating φφφ(PLRU)

Partitioned LRU [41] (also popularly called pseudo-LRU)
maintains a balanced binary tree that, at each level, differ-
entiates between the two sub-trees based on access recency.
Every internal node is represented by a single bit whose
value decides which of the two subtrees was accessed more
recently. The cache lines are represented by the leaves of
the tree. Whenever a line is accessed, the nodes on the path
from the root to the leaf flip their bit values, thus pointing
to the other subtree at each level. On a miss, the subtree
pointed to is chosen, recursively starting from the root. The
line corresponding to the leaf reached in this way is chosen
for eviction. The bit-values along this path are then flipped.

In the PLRU scheme, the most recently accessed element
is always known but the least recently accessed one is not.
In contrast to the LRU scheme, that maintains a total ac-
cess order between the lines, PLRU maintains only a partial
order. Since there is no difference between partial and total
orders involving 2 elements, PLRU is LRU when A′ = 2.
In contrast to LRU that guarantees exactly A′ − 1 unique
accesses before eviction, PLRU guarantees at least log2(A

′)
(=number of tree levels) unique accesses before the reference
address is evicted.

On a miss, the reference line will be evicted if and only
if the immediately preceding sequence of accesses follows a
particular pattern. These patterns can be described using
regular expressions (see Appendix E). In contrast to RAN-
DOM, not only the number of misses in the reuse interval,



but also the pattern of accesses determines eviction prob-
ability. It is difficult to estimate φφφ(PLRU) by computing
probabilities of the regular expressions since the distance to
misses within the reuse interval as well as the ways occupied
by the intervening elements are not known. Instead, we use
a different approach.

First, we compute φφφ(A′ = 4, PLRU) then compute φφφ(A′ =
8, PLRU) by dividing traffic using a binomial distribution
and applying φφφ(A′ = 4, PLRU) on the divided traffic. We
claim that an 8-way tree can be viewed as a composition of
two 4-way trees with the top-node dividing traffic between
the two subtrees. (See Appendix E, Figure 13 for visualiza-
tion.) Similar observations hold between 8-way and 16-way
trees and so on. This helps us to estimate φφφ(PLRU) for
successively higher associativities. For ease of computation
we assume that the top node divides traffic evenly between
its two constituent sub-trees.

4.4.1 Base case: A′ = 4

Since log2(4) = 2, φφφk is 1 when k ≤ 2. When k ≥ 4,
there are 3 elements in the tree other than the reference
element, but 2 of those cannot be replaced as they have
less than 2 intervening elements for themselves. The only
eviction candidate other than the reference element is the
3rd element with URD 3. Thus, φφφk = φφφk−1 · (1 − φφφ3).

The case that remains is when k = 3. Consider the kth

element. There are two subcases here, each with probability
1
2

assuming that the top node switches evenly between the
two subtrees:

1. It maps to the other subtree on either being present
there (hit) or being allocated there on a miss. So it can-
not affect the reference element. Thus, φφφk = φφφk−1 = 1.

2. It maps to the same subtree as the reference element.
The reference element will be evicted only if the kth

element is not present (miss) and PLRU estimates the
wrong stack. But in 4-way PLRU, there are only 3
admissible total orders of which 2 share the same last
element. So the probability of a correct selection is 2

3
.

The kth element has URD> 2. Using h(LRU) as an
approximation, the probability of a miss for the kth ele-
ment is

P3
i=0 rrri−

P2
i=0 rrri = rrr3. So the hit-probability

for the reference element in this case is approximated
as 2

3
· (1 − rrr3).

Putting the two subcases together,

φφφk =

8

>

>

<

>

>

:

1 if 0 ≤ k ≤ 2

1

2
+

(1 − rrr3)

3
if k = 3

φφφk−1 · (1 − φφφ3) if k ≥ 4

(13)

4.4.2 Recurrence: A′ ≥ 8

Let L = log2(A
′) and ψψψ = φφφ(A′/2). For the first case,

when k ≤ L, φφφk must be 1. For k > L, consider the kth

element. There are two subcases here:

1. It maps to the other subtree. The argument is the
same as given earlier and φφφk = φφφk−1.

2. It maps to the same subtree as the reference element.

If k ≥ A′

2
+ 2, it is likely that there is at least one

other element in the reference subtree apart from the
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Figure 9: Actual vs estimated miss ratios for oltp with
PLRU replacement policy. LRU estimates are shown as ref-
erence. rrr(210) is first computed from rrr(1) (Equation 2).
Section 5.3.1 describes PLRU Way-Counters.
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Figure 10: Relative-error density plot combined over all (16)
workloads.

reference element and the kth element. So, the bino-

mial sum starts with ψψψ2+i. If k ≤ A′

2
+ 1, the A′

2
other elements can all occupy the other subtree. So,
the binomial sum starts with ψψψ1+i.

Putting everything together,

φφφk =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1 if 0 ≤ k ≤ L

φφφk−1

2
+

1

2

k−3
X

i=0

k−3Ci

„

1

2

«(k−3)

·ψψψ2+i if k ≥
A′

2
+ 2

φφφk−1

2
+

1

2

k−2
X

i=0

k−2Ci

„

1

2

«(k−2)

·ψψψ1+i otherwise

(14)
Figure 9 shows actual vs estimated (n = 512) values of

miss ratios for PLRU with the estimates computed using
Equations 3, 13, 14 and 4.

4.5 Estimation Accuracy and Compute Time
Figure 10 shows the cumulative distribution of relative er-

rors in miss ratio prediction for all workloads. More than
90% of predictions have relative errors within 6%. Predic-
tion for LRU is the most accurate.

A major contributor to hit ratio computation time is the
determination of rrr. Subsection 5.1 proposes low-cost hard-
ware to approximate rrr(210), n = 512 online. Assuming this
is available, the average hit ratio computation time per cache
configuration on a Nehalem 2.26 GHz machine were – LRU:
0.020 msec; PLRU: 0.022 msec; RANDOM, NMRU: 0.030
msec. A large fraction of this is due to computation of Equa-
tion 3 (Appendix B shows pseudocode) which takes ∼0.080
msec, but gets amortized for caches with the same S′.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

filtered access access 

insert 

load       hit 
inc 

reset 

read 

read 
inc 

Reference 

address register 

Set 

Filter 

Sampling 

Control 

1024-bit 

Bloom Filter 

9-bit 

Counter 

512-entry 

Histogram array 

Figure 11: Schematic of new hardware support

State Ac!on 

idle 

x = rand() % 10; 

if(x) state = idle 

else state = start-sample 

start-sample 
ref. addr = addr 

state = process-sample 

process-sample 

if(addr == ref. addr) 

    state = end-sample-a 

else { 

    If (hit in Bloom Filter) 

         state = process-sample 

    else { 

         if (counter value == 511)  

              state = end-sample-b 

         else { 

              Increment counter 

              Insert addr into Bloom Filter 

              state = process-sample }}} 

end-sample-a 

Emit URD = counter value 

reset 

state = idle 

end-sample-b 

Emit URD = ∞ 

reset 

state = idle 
 

Figure 12: Sampling Control for new hardware

5. HARDWARE SUPPORT
Section 3.2 discussed that to avoid expensive computa-

tion to determine rrr(1) or compute rrr(210) from rrr(1), we need
hardware support to directly estimate rrr(210). Subsection
5.1 presents our proposed hardware technique to do this.

Subsections 5.2 and 5.3 discuss two traditional hardware
mechanisms that help in cache miss ratio estimation – set-
counters and way-counters.

5.1 New hardware support to estimate reuse
distributions (rrr(210),n = 512)

The definition of unique reuse distance (URD) depends
only on the cardinality of the reuse interval (RI) and not
on the contents of the set. This suggests applicability of
hardware signatures, such as Bloom filters [10], that can
construct compact representations of sets. Whereas shadow
tags store entire tag addresses, a Bloom filter uses only one
bit per hash function to represent each address.

Our proposed hardware, shown in Figure 11, uses a Bloom
filter (to summarize RI), a counter to determine |RI|, and
set-sampling logic. We use a 1024-bit parallel Bloom fil-
ter [37] with two H3 hash functions [12] and a 9-bit counter.
The Bloom filter can be at most half-full (512 elements) be-
fore being reset. Larger Bloom filters can be used to reduce
aliasing errors at the cost of more area/power overhead.

The hardware uses a combination of set sampling and time

sampling techniques [24–26, 33, 47]. The set sampling hard-
ware restricts the Bloom filter to addresses matching a sub-
set of the cache index bits. This allows to focus on addresses
mapping to one set of a cache with S = 210, and hence track
rrr(210). Once a set-sample is fixed, the hardware randomly
chooses an address mapping to the set-sample as the ref-
erence address. It then estimates the length of the reuse
interval to the next access with the reference address and
records it in the histogram. This process is repeated. Fig-
ure 12 describes the sampling control state machine.

Assuming 4-byte counters, the size of the histogram array
is 512 × 4 = 2KB. We model the histogram and Bloom
filter arrays in CACTI [39] as direct-mapped SRAM caches
(ITRS-LOP, 32nm technology) with 8-byte line sizes. The
static power is ∼1.2 mW and the dynamic energy per access
is ∼10.8 pJ leading to less than 0.03% of power overhead for
the system simulated (Section 6, Table 2). CACTI numbers
suggest less than 1 sq mm area overhead for the arrays.

The technique can be generalized to estimate rrr(2x) by siz-
ing the Bloom filter, histogram, and set filter appropriately.

5.2 Set-Counters
Set-counters [44] use counters that track the number of

accesses per set or a group of sets. However, since they can
only track changes in the number of accesses per set but not
changes in per-set locality, they would be unable to model
the behavior shown in Figure 4.

5.3 Way-Counters and Shadow Tags
Way-counters [44] increment a counter associated with

each logical stack position (ordered by access recency) on
every cache hit. The number of hits for associativity A′ is
the sum of the counter values from 0 to A′ − 1.

The above assumes A′ ≤ A where A is the associativity of
the current/predicting cache (32MB 32-way in this study).
In applications such as dynamic reconfiguration situations,
this is problematic since the cache may need to be sized
up, not only sized down. Shadow tags [33] (or auxiliary tag
directories [35]) circumvent this difficulty by maintaining a
copy of the tags that is not deactivated during reconfigura-
tions. This always maintains a stack depth to the maximum
desired value and facilitates simulating the effect of hits and
misses on a cache with associativity larger than that of the
current cache. Qureshi, et al. [34] used dynamic set sampling
to reduce storage and power costs of the shadow copy.

Way-counter values, converted to probabilities, estimate
rrr(S) upto length A. The estimation is exact for LRU caches.
Their operation can be understood by deriving Equation 7
from Equation 3 instead of from Equation 2. We get

h(S′)=

A′−1
X

i=0

rrri(S)+

n
X

i=A′

rrri(S)·

A′−1
X

k=0

iCk·

„

S

S′

«k

·

„

1−
S

S′

«(i−k)

Under the assumption S′ = S, h(S′) =
PA′−1

i=0 rrri(S) which
is computationally extremely efficient.

5.3.1 Way-counters for PLRU

In PLRU, the MRU line is known with certainty but the
rest of the logical ordering is not precisely known. Kedzier-
ski, et al. [23] proposed a heuristic for approximating logi-
cal stack positions for PLRU caches to enable way-counter
based prediction . Let waynum be the way number of the
accessed line and pathbits denote the bit-values of the tree



i h j k

(a) 4-way

j e k f b g d i

(b) 8-way

Figure 13: PLRU trees demonstrating non-inclusion. The
8-way tree does not include element h of the 4-way tree.

nodes along the path from the root to the leaf with root bit
in MSB position. Let the function reverse(b) reverse bit
positions in the binary representation of b. The following
heuristic is used to approximate URD(x, m):

ˆURD(x, m) = A − 1 − (reverse(waynum) ⊕ pathbits)
This approach aims to compute rrr · φφφ(LRU) with rrr approx-
imately measured using the above mechanism. However,
apart from the traditional limitations of way-counters (Sec-
tion 5.3), it also ignores the fact that φφφ(PLRU) 6= φφφ(LRU)
for A 6= 2. Interestingly, it fails to accurately estimate
the hit ratio even for a 2-way cache where φφφ(PLRU) =
φφφ(LRU) when the current configuration that does the esti-
mation has A 6= 2 (see, for example, Figure 9 where the cur-
rent/predicting configuration has A=32). In contrast, our
framework overcomes this by decoupling hit ratio estimation
from the organization of the current cache.

5.3.2 Way-Counter Limitations

Way-counters (+shadow tags) have the following funda-
mental limitations:

Fixed number of sets: The relation (S′ = S) that
makes way-counters efficient also implies the restriction that
the number of sets must be fixed. As can be observed from
Table 1, miss ratios for only 4 of 24 configurations can be
predicted at any time; other predictions must be preceded
by (time-consuming) re-training for the changed S′.

However, our framework reveals that Equation 5.3 may
be used to transform way-counter values when S′ ≥ S (also
see discussion for Case 1 in Section 3). With reference to
Table 1, maintaining shadow tags corresponding to S = 210

allows conversion of values for any S′ 6= S. But, Figure
5 shows that to use way-counter values for a cache with a
larger number of sets, the shadow tags and counter values
must be maintained for n(> A) positions.

Replacement policies with stack inclusion: Way-
counters exploit the stack inclusion property [32] of LRU to
predict miss ratios ∀A′ ≤ A. For replacement policies that
do not guarantee stack inclusion (PLRU/RANDOM/NMRU),
this is no longer true.

For example, consider the access sequence: a b c d e d

f e g h f i j i k simultaneously to an 8-way PLRU set
and a 4-way PLRU set. Figure 13 shows the two sets and
associated PLRU trees after the sequence. The arrows in
the figures point to the less recently used subtree. Initially,
both sets were empty and the eviction bits in each tree were
pointing to the “left” subtrees. At the end of the sequence,
the two sets together contain 9 distinct elements (i h j k

e f b g d) whereas a policy satisfying inclusion would have
exactly 8 elements. Thus, maintaining information for 8
ways is not sufficient to accurately predict miss ratios for
both a 4-way and an 8-way cache even if S′ = S.

Tight coupling with replacement policy implemen-

tation: Since way-counters are tightly coupled with the im-
plementation of replacement policies that track stack posi-
tions (e.g. LRU), they are unusable with other policies such
as RANDOM that can also be predicted well using reuse in-
formation. Way-counters depend on the replacement policy
mimicking stack operation, so they run into trouble when
the stack is absent (PLRU/RANDOM/NMRU) (see Section
5.3.1 for a discussion on PLRU) or reconfigured (S′ 6= S).

Shadow Tag overhead: For very large caches, tag area
and power are significant. Loh, et al. [30] propose novel
tag management schemes for such caches. Maintaining ad-
ditional shadow tags in those systems seem difficult.

6. MINIMUM EDP CONFIGURATION
This section describes an application of our technique in

finding the LLC configuration that results in the minimum
full-system EDP.

Table 2 describes the 8-core CMP we use in this study.
We assume an 8-banked L3 cache that is dynamically re-
configurable for a total of 25 configurations (see Table 1).
The access latency is conservatively assumed to be constant
for all configurations. We use 2 copies of our sampling hard-
ware (Section 5.1), but a common histogram array. To eval-
uate power and performance, we perform full-system simu-
lation using GEMS [31] augmented with a detailed timing
and power model. We use CACTI 5.3 [39] to determine the
static power and dynamic activation energy per component.

We use 7 SPEComp [6] benchmarks (ammp, equake, fma3d,
gafort, mgrid, swim, wupwise) with “ref” inputs, 5 PAR-
SEC [9] benchmarks (blackscholes, bodytrack, fluidan-
imate, freqmine, swaptions) with “simlarge” inputs, and
4 Wisconsin commercial workloads [2] (apache, jbb, oltp,
zeus). Each workload uses 8 threads and runs for a fixed
amount of work (e.g. #transactions or loop iterations [3])
that corresponds to ∼500M instructions per workload. Each
simulation run starts from a mid-execution checkpoint that
includes cache warmup.

Figure 14a shows, for each workload, the maximum EDP
relative to the minimum EDP for that workload resulting
from the different LLC configurations. The chart below the
figure lists the LLC configurations that resulted in the ex-
tremum points. There exists a significant range of system
EDPs, particularly for the commercial workloads; apache

for example has max EDP more than 3.2x times the min
EDP; inaccurate predictions can thus cause the system to
transition to a severely suboptimal state. The chart also
shows that for 11 of 16 workloads, the min EDP configura-
tion has a cache with a different number of sets than that
of the current/predicting cache.

For this experiment, the configuration using a 32MB 32-
way LLC performs miss ratio and min-EDP predictions.
Figure 14b shows EDP of the configuration identified as the
minimum one, relative to the actual minimum EDP, using
both reuse-models and PLRU way-counters for predicting
LLC miss rates, assuming that the workloads were rerun
with the identified configuration. This also assumes sim-
ple activity counters to track energy consumption in cores,
caches, memory, and performance counters to enable online
linear regression to approximate the relation between LLC
misses and cycles-per-instruction.

For this evaluation, we use the average sampled reuse dis-
tance distribution obtained over all 210 sets as a proxy for the



Core configuration 4-wide out-of-order, 128-entry window, 32-entry scheduler

Functional Units 4 integer, 2 floating-point, 2 mem units

Branch Prediction YAGS 4K PHT 2K Exception Table, 2KB BTB, 16-entry RAS

Disambiguation NoSQ 1024-entry predictor, 1024-entry double-buffered SSBF

Fetch 32-entry buffer, Min. 7 cycles fetch-dispatch time

Inclusive

L1I Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP

L1D Cache private 32KB 4-way per core, 2 cycle hit latency, ITRS-HP

L2 Cache private 256KB 8-way per core, 6 cycle access latency, PLRU, ITRS-LOP

L3 Cache shared, configurable 2–32 MB 2–32 way, 8 banks, 14 cycle access latency, PLRU, ITRS-LOP, serial

Coherence protocol MESI (Modified, Exclusive, Shared, Invalid), directory

On-Chip Interconnect 2D Mesh, 16B bidirectional links

Number of cores 8 On-chip frequency 2132 MHz Technology generation 32nm Temperature 340K

Main Memory 4GB DDR3-1066, 75ns zero-load off-chip latency, 2 memory controllers, closed page, pre-stdby

Table 2: System configuration
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workload blac body flui freq swap ammp equa fma3 gafo mgri swim wupw apac jbb oltp zeus

min. config 2M-2w* 4M-8w 2M-4w 4M-8w 2M-16w 4M-8w 2M-2w*4M-4w* 4M-4w* 32M-32w*4M-32w 8M-32w 32M-16w 32M-8w 16M-8w 32M-8w

max. config 32M-32w*32M-32w*32M-32w*32M-2w32M-32w*32M-16w32M-4w32M-4w32M-32w* 4M-16w 2M-32w32M-32w* 2M-2w* 2M-2w* 2M-2w* 2M-2w*

Reuse config 2M-2w* 2M-4w 2M-4w 2M-8w 2M-2w* 2M-8w 2M-4w 2M-8w 2M-8w 32M-16w 4M-16w16M-16w* 32M-16w 32M-8w 16M-16w* 32M-8w

Way-ctr config 2M-2w* 2M-2w* 2M-2w* 2M-2w* 2M-2w* 2M-2w* 2M-2w*2M-2w* 2M-2w* 32M-32w*4M-4w*16M-16w*32M-32w*32M-32w*32M-32w*32M-32w*

Figure 14: Maximum EDP and that of model-predicted configurations, all relative to the minimum EDP for the same workload,
and with PLRU replacement policy. In the above table, xM-yw denotes an x MB, y-way associative LLC. Caches with the
same number of sets (214) as the current/predicting configuration (32MB 32-way) are marked with a *.

sampled distribution. A practical implementation would ad-
ditionally experience inter-sample variation, but we expect
it to be small for long runs. For way-counters, we assume
that full shadow tags are present for comparison purposes.
In practice, shadow tags would also be set-sampled [34].

Both reuse-models and way-counters predict configura-
tions that are within 7% of the minimum, but reuse models
outperform or are the same as way-counters on all except 3
workloads (equake, gafort, mgrid), both due to their ability
to predict for a different number of sets and being generally
more accurate. The chart below Figure 14b lists the config-
urations chosen by both models. Workloads such as apache
require large caches whereas others such as equake should
be allocated small caches for energy-efficient performance.

7. RELATEDWORK
Characterizing cache behavior using stack distances (also

known as reuse distances or gap) is well known [8,13–15,21,
29, 38, 40, 49]. Analyses can be viewed as being in one of 3
categories: offline, online, and mixed.

In offline algorithms, stack distances are computed offline
from an address trace. Computation to determine the dis-
tribution can be reduced with efficient algorithms [5] or by
approximate analysis [49]. Shi, et al. [38] perform single-pass
stack simulation to project cache performance and to study

the impact of data replication for various L2 cache configu-
rations. Online determination of the stack distance distribu-
tion cannot directly apply techniques from offline methods
due to constraints on computational state and complexity.

Mixed algorithms deal with efficient online trace collection
and offline processing. Tam, et al. [46] use hardware mecha-
nisms for address sampling and post-processing software for
computing stack distance distributions. Since distribution
estimation and hit ratio computation is offline, it cannot
react to workload changes in real time.

Online algorithms deal with all the steps of trace collec-
tion, distribution generation and hit/miss rate computation
online. Agarwal, et al. [1] propose an analytical cache model
that uses a binomial model and metrics for time-average of
total unique number of accesses but predicting miss rates for
set-associative caches is difficult. Suh, et al. [45], Qureshi,
et al. [35] propose mechanisms for partitioning of shared
caches (L2) among competing processes using way-counters.
Suh, et al. [44] also proposes set-counters in LRU order,
with each counter tracking accesses to a group of sets. We
discuss set and way-counters in Sections 5.2 and 5.3 respec-
tively. Gordon-Ross, et al. [20] use a hardware TCAM to
track stack distances for LRU miss-ratio predictions.

Cypher proposes methods [13,14] for online estimation of
stack distances using hash tables. In that work, the effective



distance to be tracked is reduced using filter fraction metrics
which are then applied to a Poisson prediction model. How-
ever, computing filter fractions are difficult, require addi-
tional logic and could be subject to approximations depend-
ing on available hardware state. In contrast, our scheme
uses set sampling that does not require complex filter logic,
and Bloom filters for compact representation of sets.

The Binomial model has been successfully used to analyze
cache behavior for other applications. Stone, et al. [42],
Falsafi, et al. [17] use binomial probability models to model
cache reload transients due to context switches based on the
footprints of the competing programs and cache size. Other
models, e.g. Markov models have also been used to analyze
the behavior of context switch misses [28].

Reineke, et al. [36] prove relations on best and worst-case
bounds of cache performance for several replacement poli-
cies. Our work, in contrast, studies average case behavior.

8. CONCLUSIONS
The central theme of this paper is an online modeling

framework, new analytical models, and efficient hardware
support, to predict cache performance at runtime for a range
of replacement policies. It uses the concept of stack distances
and transformations of probability vectors with Binomial
matrices. The framework unifies previous analytical mod-
els such as Smith’s associativity model, Cypher’s Poisson
model, and hardware techniques such as way-counters. We
have discussed limitations of set and way-counters, given a
method to convert way-counter values for caches with a dif-
ferent number of sets and shown that this requires maintain-
ing shadow tags for more than the maximum associativity.
We have also proposed a new predictor that is decoupled
from the cache configuration, uses hardware signatures for
compact representation of reuse intervals and can be used
as an alternative to way-counters. Extending the models to
other replacement policies is the focus of our ongoing work.
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APPENDIX

A. LOSSY SUMMARIZATION
Consider two traces TA and TB such that they have dis-

joint sets of entities and different values of reuse metrics.
Let TAB denote a new trace formed from concatenating, in
order, sequences represented by TA and TB . This operation
is not commutative, that is, TAB and TBA are distinct, yet
have the same values for the reuse metrics. So the reverse
mapping from rrr(T ) to T is not unique. The argument can
be extended to show that any trace characterization using
position-agnostic metrics must be lossy.

B. EQUATION 3 PSEUDO-CODE WITH

POISSON APPROXIMATION

void init() {
int i;
for(i=0;i<9;i++)

precomputed_exp_inc[i]=exp(-1.0/(1<<i));
for(i=1;i<64;i++)

precomputed_v[i]=1.0/i;
}

void compute_per_set_r(int num_set_bits, int max_assoc) {
const double *ptr=&r_histogram[0];
double s3=precomputed_exp_inc[num_set_bits];
double s2=1.0;
double base_lambda=1.0/(1<<num_set_bits);
double lambda=0;
int i, rd;
for(i=0;i<512;i++) {

double s1=s2;
for(rd=0;rd<2*max_assoc;rd++) {

per_set_r[num_set_bits][rd]+=ptr[i]*s1;
s1*=lambda*precomputed_v[rd+1];

}
s2*=s3;
lambda+=base_lambda;

}
}

compute_per_set_r computes Equation 3, using Poisson ap-
proximation to Binomial, assuming rrr(210) upto n = 512 is

available. num set bits ∈ [1, 8] = log2(
S′

S
). The computa-

tion is done for 2A′ terms (Section 4). Time taken depends
on A′: 0.006 msec for A′ = 2 to 0.080 msec for A′ = 32.
Time is measured using the gettimeofday() library func-
tion and does not include time taken by init().

C. PIECEWISELINEARAPPROXIMATION

FOR LRU
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Figure 15: cumulative Poisson and piece-wise linear
approximations for two cache configurations.

Figure 15 shows the cumulative Poisson transformer (Cypher’s
approach [13,14]) for two very different cache organizations.
The triangles and the dashed lines show the selected points
for a piece-wise linear approximation that uses 7 or fewer
points per transformer (with a common point (0,1)).

D. CONVERGENCE FOR RANDOM
First note that if a fix-point exists, the solution satisfies

the general conditions of φφφ (Equation 5). This is because
ddd0 = 0 (Equation 1) and from Equation 10,

φφφk

φφφk−1
= e

−(dddk−dddk−1)θ

A′ = e
−

„

θ/A′

P

∞

i=k
rrri(T )

«

≤ 1 (15)

Let H denote a fix-point and h0, h1, h2, ... denote succes-
sive approximations. By re-arranging the system of equa-
tions in 10 we have

hj+1 = rrr0 +
n

X

i=0

rrrie
dddi(−1+hj)

A′ (16)

Since the exponential function is monotonic, H must be
unique. Since 0 ≤ rrri ≤ 1, ∀i, rrr0 ≤ H ≤ 1.

Also, it is easy to show that hj ≥ hj−1 =⇒ hj+1 ≥ hj .
Thus, successive iterations produce a chain of values rrr0 =
h0 ≤ h1 ≤ h2....

We will now prove that hj ≤ H, ∀j. This is true at j = 0.
For induction, let hj = H − ǫ with ǫ ≥ 0. Then,

hj+1 = rrr0 +
n

X

i=0

rrrie
dddi(−1+hj)

A′

= rrr0 +
n

X

i=0

rrrie
dddi(−1+H)

A′ · e−
dddiǫ

A′

≤ rrr0 +
n

X

i=0

rrrie
dddi(−1+H)

A′ = H (17)

This shows a convergence chain rrr0 = h0 ≤ h1 ≤ h2... ≤ H.

E. PLRU REGULAR EXPRESSIONS
Since the PLRU tree is symmetric, we can fix any way

as reference without loss of generality. Let the immediate
neighbor be denoted by Q0, the next two neighbors be col-
lectively denoted by Q1 and so on with the most distant
group of A/2 neighbors denoted by Qlog2(A)−1. To calculate
the probability that the reference line will be evicted on a
particular miss we need to consider the immediate past se-
quence of accesses to that set. A necessary and sufficient
condition for the reference line to be evicted is for the suf-
fix of the trace to have accesses that match the particular
regular expression described below.

A = 2 : Q+
0

A = 4 : Q0Q
+
1

A = 8 : Q0(Q1 + Q2)
∗Q1Q

+
2

A = 16 : Q0(Q1 + Q2 + Q3)
∗Q1(Q2 + Q3)

∗Q2Q
+
3

A = 32 : Q0(Q1 + Q2 + Q3 + Q4)
∗Q1(Q2 + Q3 + Q4)

∗

Q2(Q3 + Q4)
∗Q3Q

+
4

F. MODEL ESTIMATES
Figure 16 show actual vs estimated miss ratios for the

other commercial workloads: apache, jbb and zeus. For
these workloads, h(LRU) can well-approximate h(PLRU)
but not h(RANDOM) or h(NMRU). Figure 10 (Section
4.5) shows consolidated prediction errors for all workloads.
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Figure 16: Actual vs estimated miss ratios for apache, jbb, zeus. rrr(210) is first computed from rrr(1) (Equation 2). Section
5.3.1 describes PLRU Way-Counters.


