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Abstract 
Motivated by experience gained during the validation of a 
recent Approximate Mean Value Analysis (AMVA) model of 
modern shared memory architectures, this paper re-examines 
the "standard" AMVA approximation for non-exponential 
FCFS queues. We find that  this approximation is often in- 
accurate for FCFS queues with high service time variability. 
For such queues, we propose and evaluate: (1) AMVA esti- 
mates of the mean residual service time at an arrival instant 
that are much more accurate than the standard AMVA es- 
timate, (2) a new AMVA technique that  provides a much 
more accurate estimate of mean center residence time than 
the standard AMVA estimate, and (3) a new AMVA tech- 
nique for computing the mean residence time at a "down- 
stream" queue which has a more bursty arrival process than 
is assumed in the standard AMVA equations. Together, 
these new techniques increase the range of applications to 
which AMVA may be fruitfully applied, so that  for example, 
the memory system architecture of shared memory systems 
with complex modern processors can 'be analyzed with these 
computationally efficient methods. 

1. Introduction 
Approximate Mean Value Analysis (AMVA) is a widely used 
approach to evaluating key computer system performance 
questions [1, 2, 5, 8, 11, 12, 16, 17, 18, 19, 20, 25, 26, 27, 
28, 29]. The wide applicability of the AMVA technique is 
due to both its very low computational expense and its high 
degree of accuracy in producing performance estimates that 
agree with detailed system simulation or system measure- 
ment. These capabilities are achieved through the use of 
heuristic extensions to the Mean Value Analysis equations 
for product form queueing networks. The low computational 
expense is due to extensions, such as the Schweitzer approxi- 
mation [22, 3, 4], that replace the exact equations which are 
recursive in the customer class populations with approxi- 
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mate equations that  are solved iteratively, typically within 
a very small number of iterations. The high degree of accu- 
racy is largely due to heuristic extensions for representing a 
number of important system features such as priority queue- 
ing disciplines, simultaneous resource possession, and FCFS 
queues with class-dependent mean service times [14]. 

The work in this paper is motivated by a recent highly effi- 
cient heuristic AMVA model for evaluating shared memory 
architectures that  contain complex modern processors [24]. 
In that  architecture model, each processor is modeled by a 
FCFS queue. Service times at the processor represent the 
time between memory requests that  miss in the second level 
cache when the processor is active. The measured coefficient 
of variation (CV) of these times [24] was as high as 13 for 
the benchmarks and architecture that were modeled. For 
several of the benchmarks, Figure 1 shows the throughput 
(in units of instructions per cycle, IPC) obtained in [24] by 
(1) a detailed architecture simulator called RSIM, (2) the 
AMVA model with the standard AMVA approximation for 
FCFS centers with high service time CV [14], (3) the AMVA 
model with a new simple heuristic interpolation ("simple in- 
terp") for estimating the mean residual service time of the 
customer in service at an arrival instant at any of the proces- 
sors. Note that the standard AMVA model provides system 
throughput estimates that  have large error compared to the 
RSIM estimates. 

7 Y 7 ' ' .  ' ' 

Figure 1: A r c h i t e c t u r e  T h r o u g h p u t  E s t i m a t e s  

The simple interpolation was found to be sufficiently accu- 
rate for evaluating the shared memory architecture perfor- 
mance over a fairly broad region of the design space [24], but 
the accuracy of the interpolation has not been investigated 
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Figure 2: System Decomposition 

approaches that  are based on convolution or global balance 
are reviewed in [31, 6]. 

Throughout this section and the remainder of this paper, 
the AMVA techniques are defined and evaluated for single 
class queueing network models. There are extensions for 
some types of models with multiple customer classes, but 
evaluation of the accuracy of the approximations for multi- 
ple class models is beyond the scope of this paper. Without  
loss of generality, the techniques are defined assuming that  
the visit count for the given FCFS center with high service 
time variability is equal to one. Table 1 provides the nota- 
tion that  will be used throughout the paper. 

2.1 The Standard AMVA Approximation 
The Schweitzer AMVA equation [22, 3, 4] for the mean resi- 
dence time R at a FCFS queueing center that  has exponen- 
tially distributed service times with mean T is: 

R =  T(l + - ~ - ~ Q )  = 7-[l + ( N - 1 )  tota, ]. (1) 

In the above equation, Q denotes the mean queue length at 
the center, 1-~total denotes the mean total residence time in 
the queueing network, and N denotes the number of cus- 
tomers in the (closed) network. 

When the service times at the FCFS center are not exponen- 
tially distributed and CV~- represents the service time CV, 
the "standard" AMVA approximation for estimating mean 
residence time [14] is given by: 

R = T [ I + - ~ ( Q - U ) ] + - ~ U L  

= ~-[1 + ( N -  1) ] + ( N -  1 ) ~ t ~ L  , (2) 

where U is the server utilization, and L is an estimate of 
the mean residual service time of the customer in service 
at an arrival instant assuming arrivals to the queue occur 
at random points in time, i.e., L = ~(1 + CV2). To our 
knowledge, this heuristic approximation was first proposed 
by Reiser [21] in a paper that applied the approximation for 

solving a queueing network model containing FCFS centers 
with deterministic service times, in which case CV=0. The 
approximation has also been used in a number of other ac- 
curate models that  contain FCFS centers with deterministic 
service times, such as those in [2, 8, 11, 17]. 

A problem with the accuracy of the above approximation 
arises for centers that  have high service time CV. In this 
case, the estimated mean residual service time of the cus- 
tomer in service at a random point in time can be quite large 
(e.g., significantly larger than the mean service time at the 
queue). If the average residence time of a customer in the 
rest of the queueing network is smaller than this estimated 
mean residual service time, as was the case for memory re- 
quests in the architecture model discussed in Section 1, the 
customers do not arrive back at the high:CV center at a 
random point in time relative to the service times at the 
center. In this case, as will be shown in Section 3, the stan- 
dard AMVA approximation (L) can greatly overestimate the 
mean residual service time at an arrival instant. This over- 
estimation of the mean residual service time leads to a cor- 
responding overestimation of the mean residence time at the 
center, which was the cause of the very pessimistic estimates 
of system throughput shown in Figure 1 for the model that  
used the standard AMVA approximation. 

2.2 A Simple AMVA Interpolation 
To develop a more accurate estimate of mean residual service 
time at an arrival instant for a FCFS queue with high service 
time CV, r, we define a simple interpolation between the two 
extremes, T and L, where ~" is the mean residual service time 
in the limiting case in which the time spent in the rest of 
the queueing network approaches zero, and L is the mean 
residual service time as would be seen by a random arrival. 
Letting Roth~r denote the mean residence time in the rest 
of the network, the simple interpolation is given by: 

L T -~- Rother 
r ~ L + Roth~T L + Roth~r L. (3) 

This interpolation can be used in place of L in equation (2). 
The more accurate throughput estimates in Figure 1, pro- 
duced by the "simple interp" model, were obtained using 
this simple interpolation at the processor queues. 

2.3 The Decomposition Technique 
The decomposition technique of Zahorjan et al. [31] esti- 
mates the performance measures for queueing networks with 
high-CV FCFS queues using weighted averages of those per- 
formance measures for simpler models. This technique is 
compatible with AMVA since each' of these simpler models 
can be analyzed using standard AMVA techniques. In ad- 
dition to providing accurate mean residence time estimates 
for high-CV FCFS queues, this approach also approximately 
captures the impact of high service variability on other cen- 
ters in the network. 

Consider a closed queueing network model in which there is 
one high-CV FCFS queue with a service time distribution 
that  can be modeled with a two-stage hyperexponential dis- 
tribution, with parameters p, Ta, and Tb. With probability p 
a given customer's service t ime is exponentially distributed 
with mean "ra, and with probability 1 - p  it is exponentially 
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distributed with mean Tb. We assume, without loss of gener- 
ality, that  ~-~ < ~-b, and we denote the average mee/n service 
time by T = pT~ + (1 -- p)'rb. 

The technique of Zahorjan et al. decomposes this model 
into two simpler models, as shown in Figure 2. The simpler 
models are identical to the original model except that,  in one 
of them, customers have mean service time Ta at the FCFS 
center, while in the other they have mean service time ~'b. 
An estimate for the mean network residence time, or the 
mean residence time at a particular center, in the original 
model is given by the sum of p times the corresponding 
mean residence time in the first model and 1 - p times the 
corresponding mean residence time in the second model. 

The definitions of the simpler models, and the manner  in 
which their performance measures are used to estimate those 
for the original model, are based on consideration of the 
transition rate matrices of such models and the use of the 
theory of near-complete decomposability [9]. This theory 
actually suggests a slightly different definition of the simpler 
models, but  in the case where the theory directly applies 
(i.e., p > >  1 - p  and T~ < <  Tb), the results are identical. 
Furthermore, Zahorjan et al. show that, with the simpler 
models defined ms above, accurate results are obtained even 
when the theory does not strictly apply [31]. 

The decomposition technique has two key advantages. First, 
it has a firm theoretical foundation provided by the theory 
of near-complete decomposability [9], as explored in detail 
in [31]. Second, it was found to have high accuracy in [31]. 

The technique can be extended to networks with multiple 
high-CV FCFS queues and to high-CV service time distri- 
butions other than the two-stage hyperexponential distri- 
bution [31]. For example, general Coxian distributions [10, 
13], in which there are a number of exponential stages of 
service connected by transition paths that have fixed proba- 
bilities, may be modeled by decomposing the original model 
into a number of simpler models equal to the" number of 
paths. In some modeling applications, these more general 
distributions may be better able than the two-stage hyperex- 
ponential to capture important distributional characteristics 
of highly variable service times [15]. 

A principal disadvantage of the decomposition technique is 
the complexity of solving the model. For a model that  con- 
tains H FCFS queues with service time distributions mod- 
eled by two-stage hyperexponential distributions, 2 H sim- 
pler models need be analyzed, one for each possible combi- 
nation of service stages for each of the H centers. The com- 
plexity of the approach is increased when modeling more 
complex service time distributions. For some applications, 
particularly those that have many FCFS queues with high 
service time variability and also use decomposition for an- 
alyzing other non-product form system features (e.g., the 
model in [24]), the exponential cost in the number of high- 
CV FCFS queues may render the approach impractical. 

3. FCFS Centers with High Service Time CV 
In this section, we explore the accuracy of AMVA techniques 
for estimating mean residence time at a FCFS queue with 
high service time variability. The results in this section will 

show that the simple AMVA interpolation defined in Sec- 
tion 2.2 is considerably more accurate than the standard 
AMVA approximation, but  that the error for the simple in- 
terpolation can be significant. Therefore, two new AMVA 
techniques will also be developed and evaluated. 

The first new technique, defined in Section 3.1, is an im- 
proved interpolation for estimating the mean residual ser- 
vice time of the customer in service at an arrival instant. We 
evaluate the accuracy of the new interpolation, the previous 
simple interpolation, and the standard AMVA estimate of 
mean residual service time in Section 3.2. 

The second proposed new technique, defined in Section 3.3, 
is a new heuristic method for estimating the mean center res- 
idence time. This technique, "AMVA-Decomp", is inspired 
by the decomposition method reviewed in Section 2.3. Sec- 
tion 3.4 compares the accuracy of the mean center residence 
time estimates obtained using this new "AMVA-Decomp" 
technique, the new interpolation for mean residual service 
time, and the previous techniques reviewed in Section 2. 

The techniques will be systematically evaluated using sim- 
ple networks with two service centers. One center is a FCFS 
queue with service times modeled by a two-stage hyperexpo- 
nential distribution that  has mean T and coefficient of vari- 
ation CV~. The "other" service center, which has exponen- 
tially distributed service times, abstractly models customer 
sojourn times in the rest of the system. We consider two 
extreme cases of customer interference at this other service 
center. In one case, the other service center is a pure delay 
center where all customers receive service in parallel. In the 
second case, the other service center is a single-server queue 
with an arbitrary work-conserving scheduling discipline that  
is oblivious to actual customer service requirements. The 
mean service time at the other center is denoted by Sd or 
Sq, respectively. For these two-queue networks, we can use 
Markov chain techniques to compute the exact mean resid- 
ual service time and mean queue residence time at the FCFS 
center with the high service time CV. More importantly, 
these networks are simple enough that  we can explore the 
system parameter space fairly completely. This allows us to 
determine regions of the parameter space for which a given 
technique is least accurate. 1 

3.1 The New AMVA Interpolation 
In this section, we define a new interpolation for estimating 
the mean residual service time at an arrival instant for a 
FCFS center that  has a service time distribution that is rea- 
sonably well approximated by a two-stage hyperexponential 
distribution. As before, the parameters of the hyperexpo- 
nential distribution are denoted by Ta, Tb, and p, such that  
T =/ r ra  + (1 --p)Tb. The improved interpolation is obtained 
by replacing L in the weighting factors in equation (3) by 
T = - ~ -  as follows: 

~r ' 

T R o ~ .  ~-'l+C"%~v;) 
r ~ T + R o t h ~  T + T + R o t h ~  

(4) 

aEvaluations for larger networks and for FCFS centers with 
other high~CV service time distributions can be found in [7]. 
Those evaluations show relative accuracies of each technique 
similar to the results in this paper. 
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Figure 3: % R e l a t i v e  E r r o r  of  t he  N e w  I n t e r p o l a t i o n  for M e a n  R e s i d u a l  Serv ice  T i m e  
(two-center n e t w o r k s ,  " o t he r "  c e n t e r  is a queueing center, p = 0 . 9 9 )  

This interpolation has the key property that it is exact when 
the mean delay in the rest of the network is exponentially 
distributed with mean Roth~r. To see this, consider a partic- 
ular customer, named A, that  is not at the high-CV FCFS 
center when another customer, named B, enters service at CV~ x Sd/7" 
this center. If B has mean service time equal to T~, then with 

1 10 0.5 
probability ~ A will arrive at the high CV center 

_!_ .~_ 1 , 10 2 "ra Rothe  T 
before B completes service and, in this case, the mean resid- 10 10 
ual life is T~. Similarly, if B has mean service time equal 100 0.5 

1 

~ 7  A will arrive at the 100 2 to Tb, then with probability ~- + rs:7~71 , 100 10 

high CV center before B completes service, and in this case 
the mean residual service time is Tb. Thus, (b) 

r = p R ° t h e r  j - -  1 r 
_~_ 1 Ta + 1" CV~ z S q / T  Std.  

1~othcr Ta R o t h c r  

Ro~h~ ~ 10 0.5 275 
"n L ( 1  - -  p )  1 1 Tb "~- 1 + - -  1 r ( 5 )  + ' 10 2 275 

Ro~he~ ~ Ro,her 10 10 275 
which reduces to the interpolation given in equation (4). 100 0.5 2525 

100 2 2525 
100 10 2525 3.2 Mean Residual Service Time Accuracy 

Table 2 provides results that illustrate the typical accuracy 
of each of three AMVA techniques for estimating the mean 
residual service time at a FCFS center with high service 
time CV: (1) the standard AMVA approximation, (2) the 
simple interpolation given in equation 3, and (3) the new 
interpolation given in equation 4 ("New Interp. ' ) .  

The results in the table are for several parameter sets for the 
simple two-center networks with network population equal 
to 5 customers. Actual values of the mean residual service 
time are derived from numerical solutions of the correspond- 
ing Markov chains. For Table 2(a), in which the second 
center is a delay center, the new interpolation is exact as es- 
tablished in Section 3.1. In Table 2(b), the exact value of the 
mean residence time at the other queueing center (Rothe,.), 
as obtained from the Markov chain analysis, is used in the 
interpolation formulas. Section 4 develops an accurate new 
AMVA technique for estimating this mean residence time. 

In all cases shown in Table 2, the new interpolation is more 
accurate than the simple interpolation defined in Section 2.2, 
which is in turn more accurate than the "standard" AMVA 

Table 2: M e a n  R e s i d u a l  Serv ice  T i m e  Estimates 
( t w o - c e n t e r  ne t w or ks ,  N = 5 ,  p= 0 .99 ,  v = 5 0 )  

(a) " O t h e r "  C e n t e r  is a Delay Center 

Std.  S i m p l e  N e w  I n t e r p . /  
A M V A  I n t e r p .  a n d  Actual 

275 
275 
275 

2525 
2525 
2525 

77.8 
181.2 
252.2 

87.0 
340.4 

1249.9 

56.3 
73.2 

132.1 
108.1 
267.1 
853.7 

" O t h e r "  C e n t e r  is a Q u e u e i n g  Center 

S i m p l e  N e w  Actual 
A M V A  I n t e r p .  I n t e r p .  

86.6 
187.4 
252.2 
141.0 
440.6 

1269.0 

63.0 
124.6 
215.9 
260.0 
824.0 

1787.7 

62.0 
117.8 
231.0 
221.0 
727.4 

1777.3 

estimate. Notably, the previous standard AMVA estimate 
can be extremely inaccurate (e.g., more than 1000% error). 
There are also cases where the simple interpolation overes- 
timates the mean residual service time by more than 100%. 

To further investigate the reliability of the new interpola- 
tion, Figure 3 provides relative error contours over a large 
region of the parameter space for the two-center networks in 
which the second center is a queueing center. To obtain the 
contours, the percent error values were computed at a regu- 
lar spacing equal to 9 on the x-axis (starting at C V  2 = 1 and 
ending at 190), and at a regular spacing of 1 on the y-axis 
(starting at 0.5 and ending at 9.5). The contours were com- 
puted using gnuplot [30]. Note that the range of C V  2 values 
on the x-axis covers the range of processor service time CV 
values observed in the architecture model benchmarks (see 
Figure 1). Each contour line corresponds to a particular ab- 
solute value of percent relative error for the mean residual 
service time estimated using the new interpolation. As in 
Table 2(b), the exact value of the mean residence time at the 
other queueing center is used in the interpolation formula. 
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Note that the new interpolation yields results within 15% 
of the exact values over large regions of the two-queue sys- 
tem parameter space. The interpolation is inaccurate only 
for quite small N and maximal interference in the rest of 
the network (i.e., in unlikely contexts). Should this case be 
of interest, howew.~r, the accuracy can be greatly improved 
through a modification of equation (4) in which Rother is 
computed for the :network with one fewer customer, rather 
than for the full population. (That is, since the mean resid- 
ual service time is conditioned on at least one customer be- 
ing at the high-CV center, at most N -  1 customers can be 
in the remainder of the network.) With this modified ver- 
sion of equation (4), accuracy is significantly improved for 
small N. In particular, this method gives exact results for 
the N = 2 case considered in Figure 3. Moreover, a simple 
approximation for Roth~r with population N -  1 is sufficient 
to achieve these accuracy improvements. For example, it is 
sufficient to compute an estimate of Roth¢r(N - 1) by let- 
ting the arrival instant mean queue length with population 
N - 1 be approximated by N-2 ~ 1  N--1  Q(N)  = - ~ Q ( N )  for 
each queueing center in the rest of the network. (In the case 
of the two-queue model, there is only one such center.) 

Although the new interpolation estimate of mean residual 
• service time is quite accurate, using this value in equation (2) 
can give inaccurate estimates of the mean center residence 
time, because the standard AMVA estimates of the mean 
queue length at an arrival instant (i.e., (N - 1 ) ~ 7 )  and 

the probability that  an arrival finds the server busy (i.e., 
( N - l )  ~7~/27 ) can be inaccurate for a FCFS center with high 
service time CV. This motivates the new AMVA technique 
for estimating mean queue residence time developed next. 

3.3 The New AMVA-Decomp Technique 
A key hypothesis leads us to adapt the decomposition tech- 
nique reviewed in Section 2.3, to the AMVA context. That  
is, it may be sufficiently accurate to apply the decomposi- 
tion only at the level of the individual center at which there 
is a high service time CV. Thus, for a FCFS center with a 
service time distribution modeled by the two-stage hyper- 
exponential distribution defined previously, we estimate the 
mean residence time at that  center, R, using: 

R = pRa + (1 - p)Rb, (6) 

where 

R= = Ta(1 + - ~ - ~ Q a ) ,  

.Rb = Tb(1 + - ~ - ~ Q b ) ,  

(~) 

(8) 

Ra 
Q~ = N R~ + other R ' (9)  

Rb 
Qb = N Rb + Rothe,. (10) 

In the above equations, Roth~r is the mean total residence 
time spent at the other centers in the network, which is com- 
puted iteratively together with R within the usual AMVA 
iterative solution framework. 

Note that  the above approach yields identical results to the 
Zahorjan et al. decomposition technique, given that the 
two simpler models of the latter technique are solved using 
AMVA, if the mean total residence time at the other cen- 
ters in the network is identical in each of the two simpler 
models. In Section 3.4, we examine the accuracy of this ap- 
proximation for two-center networks, including systems for 
which this property does not hold. 

A principal advantage of this new AMVA technique is that 
there is no need to solve 2 H separate models to obtain the 
solution for a system that  includes H FCFS centers with 
high service time variability. Only one model is solved, with 
the above modified mean residence time equations at each 
of the H centers. 

As with the decomposition technique, the above technique 
is easily extended to FCFS servers with general Coxian ser- 
vice time distributions [10, 13]. In this case, the mean res- 
idence time at the high-CV FCFS center is expressed as a 
weighted sum of conditional mean residence times, with one 
term for each path through the stages of service defining the 
Coxian distribution, and weight equal to the probability of 
following the path. For a given path consisting of multi- 
ple (exponential) stages of service, the mean residence time 
can be estimated using the standard (and quite accurate) 
AMVA approximation for service times with low variabil- 
ity. As in the case of the two-stage hyperexponential service 
time distribution, the average residence time in the rest of 
the system is assumed to be the same regardless of which 
path is active. Investigating the accuracy that  is achieved 
for such service time distributions is beyond the scope of this 
paper, but  results in [7] indicate that  the accuracy is very 
similar to the results reported in this paper for the two-stage 
hyperexponential distribution. 

3.4 Mean Queue Residence Time Accuracy 
Table 3 provides typical results for the accuracy of five tech- 
niques for estimating the mean residence time at a FCFS 
center with high service time variability. Those techniques 
are: (1) the standard AMVA technique, (2) use of the sim- 
ple interpolation to estimate rhean residual service time in 
equation 2, (3) use of the new interpolation to estimate mean 
residual service time in equation 2, (4) the new technique 
proposed in Section 3.3 ("AMVA-decomp"), and (5) the de- 
composition approach ("Decomp.") [31]. 

The techniques are compared for the same two-queue net- 
work parameter sets that  were used in Table 2. The exact 
values for the mean residence time at the FCFS center with 
high CV service times are derived from numerical solutions 
of the corresponding Markov chains. For Table 3(b), the 
exact value of Rother is used in the calculations for all of the 
techniques except for the decomposition approach, in which 
this quanti ty is not used. Rother could instead be computed 
using the accurate approximation developed in Section 4. 

For the models in which the "other" center is a delay center, 
the AMVA-Decomp approximation yields the same results 
as the decomposition approach on which it is based, since 
Roehe,. is identical in the decomposed submodels. For the 
networks in which the second center is a queueing center, 
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T a b l e  3: M e a n  R e s i d e n c e  T i m e  E s t i m a t e s  for F C F S  Q u e u e  w i t h  H i g h  Se rv ice  T i m e  C V  

CV( ~ S~/~- 

( t w o - c e n t e r  n e t w o r k s ,  N = 5, p = 0 . 9 9 ,  ~-=50) 

(a) " O t h e r "  C e n t e r  is a D e l a y  C e n t e r  

Std .  S i m p l e  N e w  A M V A - D e c o m p .  A c t u a l  
A M V A  I n t e r p .  I n t e r p .  a n d  D e c o m p .  

10 0.5 355.2 
10 2 310.9 
10 10 167.6 

100 0.5 825.7 
100 2 786.3 
100 10 606.8 

242.2 
156.3 

71.8 
249.1 
234.2 
157.1 

235.7 
198.6 
113.8 
272.2 
307.7 
323.8 

230.5 
180.7 
105.7 
231.7 
203.6 
189.9 

225.1 
164.8 

96.1 
226.2 
199.3 
177.3 
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we might expect the AMVA-Decomp technique to be less 
accurate, as we would not expect the average residence time 
in the rest of the system (i.e., the mean residence time at the 
second queueing center) to be the same in each of the de- 
composed submodels. However, for the cases considered in 
Table 3, the AMVA-Decomp technique appears to be quite 
accurate in spite of this possibility for error. 

The accuracy of the AMVA-Decomp approach is evaluated 
over a wide range of the parameter space of the two-center 
networks in the contour plots of Figures 4 and 5. In Figure 5, 
as in Table 3(b), the exact value of the mean residence time 
at the other queueing center is used where needed. The key 
conclusions from Table 3 and Figures 4 and 5 are: 

• The standard AMVA estimate of mean queue residence 
time is not very robust. 

• The interpolation techniques can also yield inaccurate 
estimates of the mean queue residence time, since the 
standard AMVA estimates of the mean arrival queue 
length and the probability that  the server is busy at 
an arrival instant are inaccurate. 

• For most regions of the system parameter space, the 
new AMVA-Decomp technique yields estimates of mean 
residence time that  have under 10% error, which is 
similar to the accuracy provided by the significantly 
more costly decomposition approach. Note, however, 
that  we have not yet established that  AMVA can esti- 
mate the mean residence times at downstream centers 
as accurately as can the decomposition approach; this 
question is addressed in Section 4. 

The one context in which the accuracy of AMVA-Decomp is 
substantially poorer than the decomposition technique is the 
case, illustrated in Figure 5, of large N and -~- > 2. How- 
ever, the accuracy of the estimated mean residence time at 
the high-CV center may not be very important in this case, 
as the average residence time in the system is dominated 
by the queueing delay at the "other" center. Section 4 (in 
particular, Figure 8) will show that  the overall mean system 
residence time is accurately predicted for these cases where 
the AMVA-Decomp estimate of mean residence time at the 
FCFS queue with high CV is inaccurate. 

In some cases, the simple interpolation technique for esti- 
mating mean residual service time yields a more accurate 
estimate of mean residence time in the queue than the new 
interpolation technique. This is consistent with the observa- 
tions in [24] that  the simple interpolation was useful for the 
architecture model. However, since the simple interpolation 
is less accurate than the new interpolation in estimating the 
mean residual service time, the cases where it leads to higher 
accuracy in predicting mean queue residence time are due 
to fortuitously compensating errors in the s tandard approx- 
imation of mean arrival queue length and/or  the probability 
that  the server is busy at an arrival instant for the center. 
Furthermore, the results for the simple interpolation in Fig- 
ure 1 are perhaps more accurate than one would expect from 
the results in Table 3(b). This is due to the fact that, in cases 
where the simple interpolation overpredicts mean residence 
time, the error is partially compensated in the throughput 

k k 

O0 0 ............. 0 0 O0 ............. 0 

I I  B I I 

Figure 6: M o d e l  o f  a Bursty  Arrival Process  

estimate because, as noted in Section 1, the bursty arrivals 
at the downstream queues were not modeled. 

The next section considers how to estimate mean residence 
time at a downstream queue that  is visited by customers 
departing from the FCFS center with high service time CV. 

4. Downstream Center Residence Time 
The AMVA approximations for modelling non-exponential 
service times at FCFS queues consider only the impact of the 
service time distribution on the local mean queue residence 
time. When service times are highly variable, however, there 
may be a substantial impact on the "downstream" centers. 
In particular, as noted in [6], if the server utilization is at 
least moderate, a FCFS center with high service time vari- 
ability generates bursty departures, leading to bursty ar- 
rivals and increased queueing at downstream centers. 

In this section, we develop a new AMVA technique that  cap- 
tures the impact of bursty arrivals on the mean residence 
time at a center downstream from a high-CV FCFS center. 
Section 4.1 develops a model of the bursty arrivals, and Sec- 
tion 4.2 develops the new AMVA estimate of mean residence 
time assuming the proposed model of the bursty arrivals. 

4.1 A Model of the Bursty Arrivals 
The arrival process at a center downstream from a high- 
CV FCFS service center is modeled as consisting of bursts 
of customer arrivals, with relatively short interarrival times 
during a burst and relatively long gaps between bursts. The 
inter-burst gaps, and the interarrival times within a burst, 
are modeled with exponential distributions (with different 
means). The number of customer arrivals within a burst is 
modeled with a geometric distribution. 2 

Figure 6 illustrates the following three parameters that  are 
used to characterize the arrival process in this model: 
k: t h e  average number of customer arrivals within a burst, 
I:  the mean interarrival t ime within a burst, and 
B : t h e  mean time between bursts. 

The value of I is (heuristically) determined from the ser- 
vice time distribution(s) at the center(s) that  generates the 
arrivals. For example, consider t he  simple case in which 
arrivals are generated by departures from a single FCFS 
queueing center with service times modeled by a two-stage 

2Fairly straightforward generalizations of the analysis are 
possible for other distributions of interarrival times within a 
burst (such as deterministic) and other distributions of the 
number of arrivals within a burst. 
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hyperexponential distribution. In this case, I is equal to the 
smaller of the mean service times of the two stages. 

Let X denote the overall arrival rate, equal to the center 
throughput which is iteratively computed during the itera- 
tive AMVA solution. If CV~ 2 denotes the squared coefficient 
of variation of interarrival times (to be derived below), k 
and B can be computed from the following two equations: 

k 
= X, (11) 

(k - 1)I + B 

1 2 -~A2I 2 + ~2B 
- 1 = CV~ 2. (12) 

To estimate C V ~ ,  we employ the method proposed by Sev- 
cik et al. [23] for approximating the arrival processes within 
a general network of queues. In this method, CV~ 2 is approx- 
imated by a simple function of the routing probabilities, uti- 
lizations, and the coefficients of variation of the interarrival 
and service times at the "upstream" centers whose depart- 
ing customers may next visit the center of interest. For ex- 
ample, consider again the case that a single FCFS queueing 
center with high-CV service times generates arrivals to a sin- 
gle "downstream" center. Assuming that the arrivals to the 
upstream center are not substantially more (or less) bursty 
than Poisson, an approximation for C V ~  at the downstream 
center, expressed in terms of the squared coefficient of vari- 
ation of service t!mes, CV~ 2, at the upstream center and the 
utilization, U, of the upstream center, is as follows [23]: 

CV~ 2 = 1 + U 2 ( C V }  - 1). (13) 

In a closed network, the length of the queue is bounded 
by the size of the customer population. This is the well- 
known "limited damage" argument (perhaps first articu- 
lated by Buzen, as referenced in [15]) concerning the impact 
of highly variable service times in closed networks. Applying 
this limited damage argument to the bursty arrival model, 
we constrain k so that, for an arrival that  occurs during a 
burst, the average number of customers that  arrived pre- 
viously in the burst plus the average number found at the 
downstream center by the first arrival in the burst is at 
most N -  1. Since the burst size in the arrival model is 
geometrically distributed with mean k, on average there are 
k - 1 prior customer arrivals within the burst. Letting Q~b 
denote the mean queue length during the time intervals be- 
tween bursts (to be derived in Section 4.2), and using the 
standard AMVA approximation for the arrival instant mean 
queue length seen by the first arrival in a burst, we obtain: 

N - 1  
k < N - - - ~ - Q , ~ b .  (14) 

If the bound on the value of k is lower than the value of 
k determined by equations 11 and 12, k is set equal to the 
bound and the value of B is computed from equation (11), 
so as to ensure that the basic "arrival rate = throughput" 
constraint is satisfied. 

4.2 New Mean Residence Time Estimate 
The proposed new technique for estimating mean residence 
time at a queueing center downstream from a high-CV FCFS 
queue employs the model of bursty arrivals described in Sec- 
tion 4.1. The analysis below uses the arrival model that has 

exponential inter-burst gaps, exponential interarrival times 
within a burst, and geometric number of customer arrivals 
within a burst, which has parameters k, I,  and B. 

For simplicity, the mean residence time approximation is 
developed for the case of exponentially distributed service 
times at the downstream queue, although it can be modified 
for other service time distributions. For clarity and without 
loss of generality, we also assume that the visit count at the 
center of interest (i.e., the downstream queueing center in 
this case) is equal to one. 

To develop the mean residence time approximation, we make 
the assumption that the downstream center never idles dur- 
ing a burst of arrivals. We expect that the assumption will 
be fairly reasonable in many if not most cases where bursti- 
ness in the arrival process has significant impact, due to two 
key observations. First, in the cases where burstiness is most 
pronounced, I < <  B. Second, if I < <  B and k is reason- 
ably small (e.g., due to k being constrained by the size of 
the network customer population) then if there is substan- 
tial queueing at the downstream center, I can be expected 
to be significantly smaller than the mean service time at the 
downstream center, Sd . . . .  Conversely, if I > Sd . . . .  we can 
expect that either there is not much queueing at the down- 
stream center or the arrivals are not very bursty. In that  
case, R can simply be estimated using equation (1). 

Under the assumption that  the downstream queueing center 
never idles during a burst of arrivals, the residence time of 
a customer is equal to the sum of (1) the customer's own 
service time, (2) the service times of those customers found 
at the center by the first arrival in the burst (less any service 
time already acquired by the customer in service at the lead 
arrival instant),  and (3) the service times of the prior, cus- 
tomers within the same burst, minus the time from the start 
of the burst until  the customer's arrival. 3 Since on average 
there are k - 1 prior arrivals within the burst, the average 
time from the start of the burst until  the customer's arrival 
is ( k -  1)!. Thus, 

R = S d o ~ n  ( l + - - ~ Q ~ b + ( k - 1 ) ) - ( / ~ - l ) I ,  (15) 

where Qnb is the mean queue length during time intervals 
between bursts. Note that  this equation only makes sense 
if I < Sd . . . .  As noted above, if 1 > Sd . . . .  R can be 
estimated using equation (1). 

To obtain an expression for Q~b, we first note that there is a 
simple relationship between the overall mean queue length 
(Q = R X ,  as computed during the iterative AMVA solu- 
tion), Qnb, and the mean queue length during a burst, Qb. 
Since the average duration of a burst is (k - 1)I, and the 
average time between bursts is B, we have: 

B (k - 1)I (16) 
Q = Q ~ b B + ( k _ I ) i  + Q b B + ( k - 1 ) I "  

Furthermore, the assumption that the center never idles in 
the midst of a burst of arrivals allows Qb to be written in 

aOur description assumes FCFS service, although if service 
times are exponentially distributed, any work conserving 
scheduling discipline that  is oblivious to actual customer 
service requirements will give the same mean residence time. 
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T a b l e  4: E s t i m a t e s  of  M e a n  R e s i d e n c e  T i m e  a t  Q u e u e i n g  C e n t e r  w i t h  B u r s t y  A r r i v a l s  
( t w o - c e n t e r  m o d e l s  w i t h  q u e u e i n g  c e n t e r ,  N ~ 5 ,  p----0.99, ~'----50) 

m m  Std.  A M V A -  A M V A - D e c o m p . -  D e c o m p ,  A c t u a l  
A M V A  D e c o m p .  B u r s t y  

10 0.5 33.8 
10 2 353.8 
10 10 2441.4 

100 0.5 28.3 
100 2 176.4 
100 10 2293.4 

40.7 
416.3 

2436.8 
40.4 

361.3 
2362.8 

4 0 . 7  
4 6 4 . 6  

2 4 9 5 . 0  
78 .6  

482 .1  
2496 .2  

47.8 
452.2 

2449.6 
104.1 
483.0 

2468.8 

53.4 
431.5 

2439.4 
96.4 

473.2 
2450.7 

T a b l e  5: E s t i m a t e s  of  M e a n  S y s t e m  R e s i d e n c e  T i m e  
( t w o - c e n t e r  m o d e l s  w i t h  q u e u e i n g  c e n t e r ,  N = 5 ,  p----0.99, T----50) 

CV/ S~/r Std .  A M V A -  A M V A - D e c o m p . -  D e c o m p .  A c t u a l  
A M V A  D e c o m p .  B u r s t y  

10 0.5 383.5 
10 2 558.1 
10 10 2515.9 

100 0.5 852.6 
100 2 923.7 
100 10 2558.3 

259.6 
526.5 

2516.3 
262.9 
553.1 

2536.8 

259.6 
572.0 

2574.1 
286.5 
672.3 

2669.2 

261.7 
562.8 

2540.4 
307.6 
676.1 

2656.7  

257.9 
543.7 

2512.7 
302.4 
659.4 

2605.5 

terms of Qnb and the parameters of the arrival model, as 
follows. Consider a burst that consists of j customer arrivals 
(and thus j - 1 interarrivM periods each of average length I).  
The mean queue length during this burst, QbU, is given by 
the mean number in the queue at the beginning of the burst  
(Qnb), plus the time average of the number of customers 
that  arrive to the queue during the burst, minus the time 
average of the number of customers that  depart the queue 
during the burst. Since the queue is draining at a rate of one 
unit  of work per unit  of time during the entire burst  period, 
the time average of the number of customers that  depart 

1 times the expected age, during the burst is equal to ~ - ~  
or residual life, of the burst at a random instant. Since the 
duration of a burst has a j - 1 stage Erlang distribution, the 
second moment of the burst duration is ( j  - 1 ) j I  2. Thus, 

j --1 ~ i = 1  i I  1 ( j  - 1 ) j I  2 
Qbu = Q~b + - -  

(j - 1)I Sdown 2(j -- 1)I 

= (?n~ + y J [  (17) 
2 2Sdown " 

The equation for Qb can be obtained by forming a weighted 
average with the above expression, where the weight for the 
j t h  term is the fraction of the time occupied by arrival bursts 
that consists of bursts of size j ,  and is given by the proba- 
bility of a burst of size j multiplied by (j-1)r ~=]S/" For geometri- 
cally distributed burst sizes, this yields, after simplification: 

k I  
Ob = Qnb + k Sdown (18) 

Equations (11), (16), and (18) yield: 

Qnb == Q - x I ( k  - 1 ) ( S d o ~  -- I )  (19) 
Sdown 

4.3 Validation Results 
Tables 4 and 5 provide results that illustrate the typical 
accuracy of four approaches for capturing the performance 
impact of highly variable service times at a FCFS center. 

These approaches a r e :  (1) the standard AMVA approxi- 
mation at the high-CV FCFS center, with no at tempt to 
model the bursty arrivals generated downstream, (2) the 
approach proposed in Section 3.3 for estimating mean res- 
idence time at the high-CV FCFS center with no at tempt 
to model the bursty arrivals ("AMVA-Decomp"), (3) the 
approach proposed in Section 3.3 for mean residence time 
at the high-CV FCFS center together with the AMVA tech- 
nique proposed in this section for estimating mean residence 
time at the downstream queueing center ("AMVA-Decomp- 
Bursty"), and (4) the decomposition approach of Zahorjan 
et al. ("Decomp.") [31]. 

Table 4 provides, for each technique, the estimates of the 
mean residence time at the downstream queueing center 
with bursty arrivals, while Table 5 provides the estimates 
of the mean total system residence time. These tables are 
for the same two-center model configurations that were used 
in Tables 2(b) and 3(b). As before, exact values of the per- 
formance metrics are derived from numerical solution of the 
corresponding Markov chains. 

The reliability of the AMVA-Decomp-Bursty approach, which 
uses the decomposition-based AMVA approximation for es- 
t imating mean residence time at the high-CV center and the 
proposed AMVA technique for modelling bursty arrivals at 
the downstream queue, is explored more fully for the two- 
center systems in Figures 7 and 8. These figures show con- 
tours for the absolute value of the percent relative error in 
the mean residence time at the center with bursty arrivals, 
and the mean system residence time, respectively. 

As shown in Table 4 and Figure 7, the combined use of 
the new decomposition-based AMVA technique and the pro- 
posed technique for modelling bursty arrivals at the down- 
stream center-generally yields an accurate estimate of mean 
residence time at a queueing center downstream from a high- 
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CV FCFS center. The only cases in which relative errors are 
large are when Sq/T is small (and thus I is close to or larger 
than Sq). In such cases, the mean residence time at the 
downstream center is only a small contributor to the overall 
mean system residence time. 

The results in Table 5 and Figure 8 show that, for the cases 
considered, the combined use of the new AMVA-Decomp 
technique and the new technique for modeling bursty ar- 
rivals yields mean system residence time estimates that are 
within 10% of the exact values over much of the two-queue 
model parameter space. Thus, these methods together have 
accuracy similar to the more costly decomposition approach. 

5. Conclusions 
This paper has examined AMVA approximations for FCFS 
queues with non-exponential service times. Prior case stud- 
ies that we are aware of in which the previous standard 
AMVA technique has been applied successfully to such queues, 
have been only for the case of low service time variability. 
As also observed in [6], the results in this paper have shown 
that the standard AMVA approximation cannot be recom- 
mended for high service time CV. 

To model FCFS centers with high service time variability, 
this paper proposes new AMVA approximations that cap- 

ture both the impact of high service time variability on 
local queueing delays and the impact of such variability 
on queueing delays at downstream queueing centers. The 
new approximations are simpler to apply than the previ- 
ously proposed AMVA-compatible decomposition technique 
in [31], particularly if the model includes multiple FCFS 
queues with high service time variability, or if decomposi- 
tion is needed for other non-separable system features. 

The new techniques have been evaluated using two-center 
queueing networks that represent a wide range of contexts 
in which the techniques might be applied. The results in this 
paper as well as in [7] show that the new AMVA-Deeomp 
technique, together with the proposed model and analysis of 
bursty arrivals at the downstream queueing centers, can be 
expected to be quite accurate in practice for these contexts. 
In particular, the estimates of mean system residence time 
have less than 15% error over the entire parameter space 
considered in this paper, and less than 10% error over most 
of that  parameter space. The results in this paper show that  
the new techniques greatly increase the range of applicability 
of AMVA as compared with the previous standard AMVA 
approximation for FCFS centers with high service time CV. 

Future research includes: (1) developing and evaluating the 
accuracy of the new AMVA techniques for multi-class mod- 
els, (2) further evaluating the AMVA-Decomp technique for 
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F C F S  centers wi th  o ther  Coxian service t ime dis t r ibut ions 
tha t  have high coefficients of variat ion,  (3) ex tending  the 
model  of the burs ty  arrivals at  the  downs t ream center  for 
more complex dis t r ibut ions  at  the  ups t ream high-CV F C F S  
center  and for the  case tha t  arrivals occur  from mul t ip le  
ups t r eam queues or to mul t ip le  downs t ream queues. 
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