
Gravel: Fine-Grain GPU-Initiated Network Messages

Marc S. Orr
UW-Madison

morr@cs.wisc.edu

Shuai Che
AMD Research

shuai.che@amd.com

Bradford M. Beckmann
AMD Research

brad.beckmann@amd.com

Mark Oskin
AMD Research, University of Washington

oskin@cs.washington.edu

Steven K. Reinhardt
Microsoft

stever@microsoft.com

David A. Wood
AMD Research, UW-Madison

david@cs.wisc.edu

ABSTRACT
Distributed systems incorporate GPUs because they provide
massive parallelism in an energy-efficient manner. Unfortunately,
existing programming models make it difficult to route a GPU-
initiated network message. The traditional coprocessor model
forces programmers to manually route messages through the host
CPU. Other models allow GPU-initiated communication, but are
inefficient for small messages.

To enable fine-grain PGAS-style communication between threads
executing on different GPUs, we introduce Gravel. GPU-initiated
messages are offloaded through a GPU-efficient concurrent queue
to an aggregator (implemented with CPU threads), which
combines messages targeting to the same destination. Gravel
leverages diverged work-group-level semantics to amortize
synchronization across the GPU’s data-parallel lanes.

Using Gravel, we can distribute six applications, each with
frequent small messages, across a cluster of eight GPU-accelerated
nodes. Compared to one node, these applications run 5.3x faster,
on average. Furthermore, we show Gravel is more programmable
and usually performs better than prior GPU networking models.

CCS CONCEPTS
Computer methodologies→Massively parallel algorithms;

KEYWORDS
message aggregation, graphics processing unit (GPU), fine-grain
communication, partitioned global address space (PGAS)

ACM Reference format:

Marc S. Orr, Shuai Che, Bradford M. Beckmann, Mark Oskin,
Steven K. Reinhardt, and David A. Wood. 2017. Gravel: Fine-Grain
GPU-Initiated Network Messages. In Proceedings of SC17, Denver,
CO, USA, November 12–17, 2017, 12 pages.

DOI: 10.1145/3126908.3126914

1 INTRODUCTION
GPUs are becoming prominent in high-performance distributed
systems. For instance, consider the Green500 list, which tracks the
most energy-efficient supercomputers—nine of the top ten
systems use GPUs [1]. At the commodity end, cloud platforms
now offer GPU computing [2][3][4]. Multiple GPUs are now being
used in a coordinated fashion to accelerate single applications
ranging from high performance computing [5] to machine
learning [6][7][8][9].

Nevertheless, it is surprisingly difficult to route a network
message between a GPU thread (called a work-item or WI) and the
network interface (NI). One challenge is that WIs coordinating to
access the NI must accommodate the GPU’s data-parallel
architecture, where some WIs execute in lockstep. For example, a
dependency between WIs executing in lockstep (e.g., a spin lock)
can cause deadlock.

A second challenge is managing the cost of
producer/consumer synchronization (e.g., reserving space in a
shared message queue). In particular, synchronization becomes a
bottleneck for irregular applications, which are characterized by
frequent, small, and unpredictable (i.e., input-dependent)
messages. For example, in a graph algorithm it is typical to initiate
a small message (e.g., a few bytes) every time a vertex’s neighbor
resides on a different machine [10]. Prior CPU-based systems,
such as Grappa [11] and GraphLab [12], limit synchronization by
aggregating messages in per-thread buffers. However, this
scheme is a poor fit for GPUs because per-thread aggregation
results in branch-divergence and fails to leverage the GPU’s
memory coalescing hardware.

Despite these challenges, three programming abstractions
have been proposed to access the network from the GPU. We
consider each model and try to apply them to irregular
applications. In each case, we encounter programming difficulties
or, even worse, performance limitations.

The first proposal, called the coprocessor model [13][14],
disallows GPU WIs to access to the NI. Instead, programmers
write CPU code for communication before and after a GPU kernel
and must manually overlap communication and computation for
peak performance. This model’s poor programmability is partially
offset by its ability to generate large messages, which are ideal for
network transmission.

In the second proposal, called the message-per-lane model
[15][16][17], WIs independently access the NI. Compared to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

SC17, November 12–17, 2017, Denver, CO, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5114-0/17/11 $15.00
https://doi.org/10.1145/3126908.3126914

SC’17, November 2017, Denver, Colorado USA M. Orr et al.

2

coprocessor model, this model simplifies programming, but it can
generate small, high-overhead messages. For example,
NVSHMEM enables GPU threads to read and write another GPU’s
memory using partitioned global address space (PGAS) semantics
[17]. Unfortunately, NVSHMEM is limited to GPUs on the same
PCIe or NVLink fabric. Furthermore, it prefers linear/coalescing
access patterns, making it a poor fit for irregular workloads.

Finally, in the third proposal, called coalesced APIs [18][19],
WIs coordinate with their neighbors to access the NI. Compared
to the message-per-lane model, this model is harder to program,
but it uses adjacent WIs to form larger messages. However, for
irregular applications, messages are smaller than the coprocessor
model.

To address the limitations of prior models and enable the GPU
to efficiently initiate small messages, we introduce Gravel.
Semantically, Gravel is similar to NVSHMEM in that it enables
GPU threads to participate in PGAS-style communication. But,
instead of relying on interconnects with limited scalability (e.g.,
NVLink), Gravel targets large, highly scalable interconnects such
as Ethernet and InfiniBand.

Gravel draws inspiration from the GPU’s hardware memory
coalescer, which operates across a data-parallel instruction to
combine accesses to the same cache line. Similarly, network
messages incur overhead that can be amortized by combining
small messages into larger messages. However, the network
induces more overhead, and thus demands a coarser level of
aggregation. Specifically, messages targeting the same node (not
the same cache line) should be combined and message combining
should occur across the GPU (not across a data-parallel
instruction).

In Gravel, GPU-initiated network messages are routed through
a GPU-efficient producer/consumer queue to an aggregator,
which combines messages being sent to the same destination.
Gravel amortizes synchronization across adjacent WIs, similar to
coalesced APIs, but Gravel does not require WIs to synchronize.
Instead, Gravel leverages diverged work-group-level semantics to
enable the GPU to access the network from divergent code.

To make Gravel work on current GPUs, the aggregator is
implemented with CPU threads and software predication is used
to achieve the diverged work-group-level semantic. We believe
that future GPUs can support these features more efficiently in
hardware. For example, we suggest and evaluate two alternatives

to software predication—a work-group-wide reconvergence stack
and fine-grain barriers.

We evaluate Gravel on a cluster of eight AMD APUs connected
by InfiniBand. Compared to one node, Gravel achieves a 5.3x
speedup on average across six irregular applications.
Furthermore, we show that Gravel is more productive and usually
performs better than prior GPU networking models.

2 GPU BACKGROUND
In this section, we first describe how the GPU execution model
maps GPU threads (WIs) to GPU hardware (§2.1). Next, we discuss
the GPU’s single-instruction/multiple-thread (SIMT) paradigm
(§2.2). Finally, we describe how integrated GPUs enable fine-grain
CPU-GPU synchronization, which our work leverages (§2.3).

2.1 GPU Execution Model
GPU hardware (Figure 1) executes wavefronts (WF)—a small
number of WIs (e.g., 64 on AMD GPUs) that execute in lockstep.
Work-groups (WG) comprise one or more WFs that execute on the
same GPU core, called a compute unit (CU). WIs in a WG
communicate using WG-level barriers and hardware caches—
including a programmer-managed scratchpad cache.

These primitives enable WG-level operations, which use the
WIs in a WG to index and process a data array. An important WG-
level operation is reduction, which reduces an array to a single
result (e.g., sum, maximum). For example, given the array,
A=[2,1,0,5], reduce-to-sum returns 2+1+0+5=8. Another
important operation is prefix-sum, which calculates an array’s
running total. For example, the prefix sum of A is [0, 0+2=2,
0+2+1=3, 0+2+1+0=3].

2.2 SIMT Effects
GPU programming languages, like OpenCL [20] and CUDA [21],
are SIMT because they present a WI as the unit of execution. But
GPUs execute WFs, which exposes two performance effects.
Branch divergence, depicted in Figure 2a, occurs when WIs in a
WF encounter different control paths. GPUs use hardware
predication to execute branches, which causes idle execution
units.

Each CU has a coalescer, which operates across the CU’s single
WF-level cache port to combine memory operations that target
the same cache line. Memory divergence, depicted in Figure 2b,
occurs when WIs in a WF access different cache lines and is
undesirable because WFs stall until all of their cache lines are
accessed.

(a) Branch divergence. (b) Memory divergence.

Figure 2. SIMT effects.

wavefront

if {

} else {

}

wait

wait

good:
diverged:

wavefront

Memory

array[0..999]

…

Figure 1. Generic APU architecture.

GPU

Compute Unit (CU)

L1

L2

CPU

core

L1

L2

Memory/IO
Controller

Accelerated Processing Unit (APU)

wavefront

work-group (WG)

scratchpad cache

coalescer

cache port

Gravel: Fine-Grain GPU-Initiated Network Messages SC’17, November 2017, Denver, Colorado USA

 3

2.3 Integrated GPUs vs. Discrete GPUs
We focus on systems that support fine-grain shared virtual
memory (SVM) [20], where the CPU and GPU synchronize
through atomic memory operations. Many integrated GPUs,
including AMD’s Heterogeneous System Architecture (HSA) [22]
and Intel’s Graphics Gen9 [23], support this feature.

In contrast, discrete GPUs rely on generated code to copy data
between the CPU and GPU at kernel boundaries. This approach
provides the illusion of a unified memory, but fails to support
CPU-GPU communication from within a kernel. Discrete GPUs
could use PCIe atomic operations to synchronize with the CPU
from within a kernel. However, discrete GPUs currently lack first-
class (e.g., driver and runtime) support for PCIe atomics and
current PCIe atomic implementations may limit performance.

3 GPU NETWORKING MODELS
This section explores the programmability and operation of each
GPU networking model for irregular applications. The three
previously proposed models—coprocessor, message-per-lane, and
coalesced APIs—are not designed to handle the small and
unpredictable (i.e., input-dependent) messages that frequently
occur in irregular applications. Thus, we first try to understand
how these prior models can accommodate small messages, which
incur very high overhead with a naïve implementation. A
recurring theme is to amortize per-message overhead by
combining messages that share the same destination into large
per-node queues, suitable for network transmission.

Next, we discuss how Gravel simplifies programming an
irregular application by automatically combining small messages.
Specifically, we use four criteria to summarize the benefits and
limitations of each model: (1) SIMT utilization, described in §2.2;
(2) large messages, meaning that messages are large enough to
amortize network overhead; (3) efficient synchronization, meaning
that WIs coordinate to use the NI efficiently; and (4)
programmability, meaning that applications are simpler (e.g.,
fewer lines of code). Table 1 summarizes how each model ranks
across these four criteria.

Throughout this section, we use the GUPS micro-benchmark
to demonstrate programmability issues. In GUPS, a distributed
array, A, is incremented at random offsets obtained from a second
local data structure [24]. Figure 4 shows pseudo-code for each
model and Table 2 shows line counts for real code.

3.1 Coprocessor Model
In the coprocessor model, programmers write CPU code to handle
network communication before and after each GPU kernel.
GPUDirect RDMA [13] and CUDA-aware MPI [14] follow this
model. To implement an irregular application, a programmer
might manually organize messages into per-node queues (Figure
3a), which exposes several low-level issues. Specifically, the
programmer must avoid overflowing a queue, manually send and
receive the queues, and overlap the sends/receives with GPU
execution. The GPU code must efficiently insert messages into the
per-node queues.

The pseudo-code (Figure 4a) avoids overflowing a queue by
chunking the updates (lines 6-7). Specifically, each chunk is sized
to match the per-node queue size. This enables each queue to
handle the worst case, where all WIs send messages to the same
node. Chunking also helps to overlap communication (lines 8-11)
and computation. On the GPU, WGs use WG-level
synchronization (§4.1) to efficiently reserve space in the queues
(line 4). Note, WG-level synchronization occurs once per
destination (lines 2-3), which causes branch and memory
divergence.

(a) Coprocessor model.

(b) Message-per-lane model.

(c) Coalesced APIs.

(d) Gravel.

Figure 3. Mapping applications with frequent, small, and unpredictable messages to GPUs in a distributed system.

GPU CPU
Node 0

network

Node 1

Node 2

Node 3Per-node queues
to Node 1 to Node 2 to Node 3

wg0 wg1

wi0 wi1 wi2 wi3 wi4 wi5 wi6 wi7

GPU
Node 0

network

Node 1

Node 2

Node 3

wg0

wg1

wi0 wi1 wi2 wi3

wi4 wi5 wi6 wi7

Node 0
network

Node 1 (N1)

Node 2 (N2)

Node 3 (N3)
wg0Ψǎ per-node

queues

to N1 to N2 to N3

wg0 wg1

wi0 wi1 wi2 wi3 wi4 wi5 wi6 wi7

wg1Ψǎ per-node
queues

to N2 to N3

GPU GPU
Aggregator

Node 0
network

Node 1

Node 2

Node 3

Per-node queues

to node 1:

to node 2:

to node 3:

wg0 wg1

wi0 wi1 wi2 wi3 wi4 wi5 wi6 wi7

GPU-wide
producer/consumer queue

head tail

Table 1. Ranking different GPU networking models.

 coprocessor
msg-per-

lane
coalesced

APIs
Gravel

SIMT utilization * V * V
large messages V * * V
efficient sync V U V V

programmability U V * V
* Good for prior workloads studied; bad for small unpredictable messages.

SC’17, November 2017, Denver, Colorado USA M. Orr et al.

4

3.2 Message-per-lane Model
In prior work, the message-per-lane model (Figure 3b) requires
programmers to manage GPU-initiated messages in a SIMT-
efficient way (e.g., DCGN [16]) or requires special hardware (e.g.,
GGAS [15] or NVSHMEM [17]). We assume that SIMT issues are
hidden from programmers and note that Gravel’s
producer/consumer queue (§4.2) achieves this effect in software.

Figure 4b shows pseudo-code for the message-per-lane model.
After launching the GPU kernel (line 16), WIs update slices of A
(line 15). Table 2 shows that this model (i.e., 193 lines) is more
programmable than the coprocessor model (i.e., 342 lines).
However, there are two performance issues. First, messages
generated by WIs are too small for efficient network transmission.
Second, we show in §4.1 that the WF width in a modern GPU is
too small to fully amortize synchronization overhead.

3.3 Coalesced APIs.
Coalesced APIs, shown in Figure 3c, are designed to be executed
by all WIs in a WG at the same time and with identical arguments
(e.g., destination, command, payload). GPUnet [18] and GPUrdma
[19] provide coalesced APIs. At first glance, this model seems to
degenerate to the message-per-lane model for small random
messages. However, the pseudo-code in Figure 4c shows that a
tenacious programmer can use the GPU’s scratchpad (lines 18-21)
to sort a WG’s messages by destination (lines 22-25). A counting
sort, where the keys are the destination IDs, works well [25]. The
sort outputs a contiguous list of messages for each destination
targeted by a WG. The pseudo-code then uses a coalesced API,
sync_inc_list, to send each list.

Our coalesced APIs version (318 lines) is 1.6x more code than
our message-per-lane model (193 lines). One issue is the amount
of scratchpad used (i.e., a WG with 256 WIs uses 4 kB of
scratchpad). A second problem is that aggregating across a WG
(instead of the entire GPU) generates small per-node queues.
Finally, a third issue is that coalesced APIs are invoked for each
destination, which degrades SIMT utilization.

3.4 Gravel
In Gravel (Figure 3d), GPU-initiated messages are routed through
a GPU-efficient producer/consumer queue to an aggregator,
which repacks the messages into per-node queues and sends them
to the NI after they become full or exceed a timeout. The
producer/consumer queue interface (§4.2) hides low-level issues
like avoiding deadlock between WIs in a WF or optimizing SIMT
utilization. Thus, Gravel’s pseudo-code (Figure 4b) is identical to
the message-per-lane model, but Gravel performs better for two
reasons.

First, like the coprocessor model, Gravel’s aggregator
generates large messages to amortize network overhead. Second,

Gravel amortizes synchronization across WGs, which is similar to
coalesced APIs—but Gravel does not require WIs to operate in a
WG-synchronous fashion. Instead, we leverage a diverged WG-
level semantic to asynchronously offload messages to the NI (§5).
Another alternative is to offload messages at wavefront
granularity, which is done in prior work like GGAS [15] and
channels [26], but we find that offloading messages at WG
granularity is approximately 3x faster (Figure 6, explained in §4.1).

One last subtle point is that Gravel’s “CPU-side aggregation”
strategy scales better than the “GPU-side aggregation” strategy
described for the coprocessor model and coalesced APIs.
Specifically, as the number of destinations (and per-node queues)
increase, GPU-side aggregation suffers low SIMT utilization
because WIs in the same WG write different queues. Conversely,
in Gravel the GPU always writes messages to a single queue (i.e.,
the producer/consumer queue).

4 PRODUCER/CONSUMER QUEUE DESIGN
We now describe Gravel’s producer/consumer queue, which acts
as the GPU’s interface to Gravel’s aggregator. The queue differs
from CPU queues in two important ways. First, it handles SIMT
correctness and performance issues that occur when exporting

--- GPU kernel ---
 1: gups(B, C, Qs):
 2: for each node targeted by my work-group:
 3: if node == C[GRID_ID]:
 4: MyOff = work_group_level_reserve(&Qs[node])
 5: Qs[node][MyOff] = B[GRID_ID]

--- host code ---
 6: for (idx = 0; idx < len(B), idx += Q_SZ):
 7: gups(&B[idx], C, Qs) # on GPU, GRID_WIDTH=Q_SZ
 8: for each node:
 9: send Qs[node] to node
10: for each node:
11: receive Q from node
12: for each offset in Q:
13: A[offset]++

(a) Coprocessor model.

--- GPU kernel ---
14: gups(A, B, C):
15: shmem_inc(A + B[GRID_ID], C[GRID_ID])

--- host code ---
16: gups(A, B, C) # on GPU, GRID_WIDTH=len(B)

(b) Message-per-lane model & Gravel.

--- GPU kernel ---
17: gups(A, B, C):
18: # allocate data-structures in GPU’s scratchpad
19: int64_t ptrs[WG_SIZE]
20: int dests[NODE_COUNT]
21: int cnts[NODE_COUNT]
22: # After sort: ptrs -> list of per-node Qs; dests
23: # -> destination list and cnts -> list of
24: # per-node Q sizes. dcnt = # of destinations.
25: dcnt = sort(ptrs, dests, cnts, A, B, C)
26: off = 0
27: for (d = 0; d < dcnt; d++):
28: sync_inc_list(&ptrs[off], dests[d], cnts[d])
29: off += cnts[d]

--- host code ---
30: gups(A, B, C) # on GPU, GRID_WIDTH=len(B)

(c) Coalesced APIs.

Figure 4. GUPS pseudo-code. A is the array being updated.
There is a slice of A, at the same virtual address, on each
node. B is a local array of offsets into A. C is a local array of
destinations. GRID_ID is a per-work-item identifier used to
index data.

Table 2. Lines of code for GUPS for each model.

 coprocessor msg-per-lane & Gravel coalesced APIs

host 296 174 187

GPU 46 19 131

total 342 193 318

Gravel: Fine-Grain GPU-Initiated Network Messages SC’17, November 2017, Denver, Colorado USA

 5

messages from the GPU’s data-parallel hardware to the NI.
Second, the queue limits the frequency of shared-memory
synchronization, which is required to coordinate WIs initiating
messages in parallel.

First, §4.1 explains how WG-level synchronization enables the
GPU to export messages at WG granularity. Next, §4.2 details the
producer-consumer synchronization algorithm used to order WIs
and aggregator threads accessing the queue. Finally, §4.3
quantifies the queue’s performance.

4.1 WG-level Synchronization
The GPU interacts with the aggregator through in-memory
queues. For example, to send a message, a WI reserves space in a
queue, deposits the message (e.g., command, payload), and
notifies the NI that the message is ready to be sent. Thus,
producer/consumer synchronization is required to reserve space
and again to notify the NI.

Ignoring (for now) the case where the queue is full, a WI can
reserve space by using a fetch-add to atomically increment the
queue’s write index. In this approach, depicted in Figure 5 (scenes
a and c), shared-memory synchronization occurs at WI
granularity. An alternative, shown in Figure 5 (scenes b and d), is
to leverage SIMT execution so that a leader WI synchronizes

globally on behalf of its WG. Figure 5b shows that this can be
achieved using a few WG-level operations. Specifically, the leader
WI is chosen to be the WI with the largest lane ID using a
reduce-max operation (lines 4-5). Then, a prefix-sum operation
is used to determine each WI’s local offset (line 6); inactive WIs
can cause the local offset to differ from the lane ID. Next, the
leader WI reserves a slot for each WI (lines 7-9). Finally, the leader
WI broadcasts the WG’s queue offset, which is added to each WI’s
local offset (line 10).

Figure 6 shows how WG size impacts the throughput of
Gravel’s producer/consumer queue (§4.2) for 32-byte messages;
details about the processor are in §6. Larger WGs achieve greater
throughput by amortizing atomic operations across more WIs. For
example, a WG with four WFs achieves about 3x more throughput
than a WG with a single WF by reducing the number of atomic
operations by almost 80%. We also measured the throughput of
Gravel’s producer/consumer queue implemented with WI-level
synchronization and found that it is two orders of magnitude
slower (0.06 GB/s).

One issue is that WG-level synchronization requires all of the
WIs in a WG to participate. As a result, Gravel requires explicit
software predication to leverage WG-level synchronization from
divergent code. §5 discusses this issue in detail and explores
diverged WG-level operations as an alternative for future GPUs.

4.2 Producer/consumer Behavior
The producer/consumer queue’s design and operation is
illustrated in Figure 7. Each queue slot is arranged as a two-
dimensional array, where each column holds a WI’s message. This
organization enables messages to be written in a non-divergent
manner. In our implementation, the first row is used to store the
command (e.g., PUT, atomic increment), the second row stores the
destination, and subsequent rows encode arguments (e.g., address,
value).

 1: work_item_level_reserve(Q):
 2: return fetch_add(Q.WrIdx, 1);

sample run:
ret: [2,3,4,5]

(a) work-item-level synchronization pseudo-code.

 3: work_group_level_reserve(Q):
 4: lid = LANE_ID; # wi’s WG offset
 5: max = reduce_max(lid);
 6: MyOff = prefix_sum(1);
 7: Qoff = 0;
 8: if lid == max:
 9: Qoff=fetch_add(Q.WrIdx,MyOff+1);
10: return reduce_sum(Qoff)+MyOff;

sample run:
lid: [0,1,2,3]
max: [3,3,3,3]
MyOff:[0,1,2,3]
Qoff: [0,0,0,0]

Qoff: [0,0,0,2]
ret: [2,3,4,5]

(b) work-group-level synchronization pseudo-code.

(c) work-item-level behavior.

(d) work-group-level behavior.

Figure 5. Work-item vs. work-group-level synchronization.

GPU
wg0
wi0 wi1 wi2 wi3

Memory

WrIdx

4 RMWs

GPU
wg0
wi0 wi1 wi2 wi3

Memory

WrIdx

1 RMW

Figure 6. Producer/consumer throughput vs. work-group

size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0

1

2

3

4

5

6

7

1 wavefront 2 wavefronts 4 wavefronts

A
to

m
ic

 o
p

e
ra

ti
o

n
s

 p
e

r
w

o
rk

-i
te

m

(d
y
n

a
m

ic
a

ll
y
 p

ro
fi

le
d

)

G
B

/s

throughput atomics / work-item

Figure 7. Gravel’s producer/consumer behavior.

Node 0
GPU
wg0
wi0 wi1 wi2 wi3

wg1
wi4 wi5 wi6 wi7

Aggregator

t0 t1

N=0

WriteTick =0 ReadTick =0

F=0

N=0

WriteTick =0 ReadTick =0

F=0

N=0

WriteTick =0 ReadTick =0

F=0

Memory

ReadIdx,WriteIdx

N=0

WriteTick =1 ReadTick =0

F=0

ReadIdx

N=0

WriteTick =1 ReadTick =0

n1 n3 n1 n2 F=1

N=0

WriteTick =1 ReadTick =1

n1 n3 n1 n2 F=1

N=1

WriteTick =1 ReadTick =1

F=0

WriteIdx ReadIdx WriteIdx

ReadIdx,WriteIdx ReadIdx,WriteIdx

SC’17, November 2017, Denver, Colorado USA M. Orr et al.

6

In addition to the payload, each queue slot has variables to
synchronize producers (i.e., WIs) and consumers (i.e., aggregator
threads) and avoid overflowing the queue. To obtain an offset into
the queue, fetch-add is used to increment WriteIdx (by
producers) and ReadIdx (by consumers). Three situations require
synchronization. The first occurs when two or more producers
alias to the same array slot. A ticket lock, WriteTick, is used to
synchronize producers. The second situation occurs when two or
more consumers alias to the same array slot. A second ticket lock,
ReadTick, is used to synchronize consumers. Finally, a
full/empty bit, F, is used to arbitrate between a producer that has
the write ticket and a consumer that has the read ticket.

Figure 7, which focuses on the messages initiated by wg0,
demonstrates the queue’s operation. Initially (time), the queue,
which has three slots, is empty. At time , wi3 obtains a write
ticket of 0 after performing a fetch-add operation on
WriteTick. Because the write ticket equals the current ticket, N,
and the full bit, F, is clear, wi3’s WG owns the slot. All four WIs
(i.e., wi0-wi3) write their messages into the slot and wi3 sets the
full bit, F, at time . At time , an aggregator thread, t0, takes
ownership of the slot because the full bit, F, is set and its read
ticket equals the slot’s current ticket, N. Finally, after the
aggregator has consumed the messages, it clears the full bit, F, and
increments the current ticket, N, to release the slot (time).

4.3 Producer/consumer Queue Analysis
Figure 8 shows the throughput of Gravel’s producer/consumer
queue at different message sizes; WGs have four WFs. The left
side of the figure corresponds to small messages (e.g., smaller than
a cache line), which incur large overhead. The right side
corresponds to larger messages that can be managed using
traditional synchronization approaches. The plot demonstrates
that Gravel’s producer/consumer queue achieves high throughput
for small messages. For example, 32-byte messages are processed
at 7 GB/s, which matches the network bandwidth in our system
(§6).

To put Gravel’s performance into perspective, the plot shows
two additional producer/consumer queues, where all producers
and consumers are CPU threads. The first is a simple single-
producer/single-consumer (SPSC) queue [27]. The second is a
multi-producer/multi-consumer (MPMC) queue, which uses the
same synchronization algorithm as Gravel. The only difference is

that each queue slot is organized to be written by a single CPU
thread instead of a GPU WG.

Two factors enable Gravel to offload small messages faster
than the CPU-only queues. The first is WG-level synchronization,
which amortizes producer/consumer synchronization across a
WG—up to 256 messages in our system. In contrast, the other
queues require producer/consumer synchronization for each
message. The second factor is the payload organization, which
allows the WIs in a WG to write messages into the same cache
lines. This is possible because WIs in the same WG execute on the
same CU. Conversely, extra bytes are appended to the payload in
the CPU-only designs to avoid false sharing and this padding adds
significant overhead for small messages. For example, in the SPSC
queue, three cache lines are read/written to send an eight-byte
message—a padded read index, a padded write index, and the
padded payload. Things are worse for the MPMC queue. In
contrast, Gravel’s queue incurs a half-byte of overhead to send the
same eight-byte message.

The performance of large messages, which is not the focus of
this paper, is explained by how each queue uses the evaluated
CPU, which is four-way threaded. The MPMC queue is configured
with two producer threads and two consumer threads. Gravel’s
queue uses all four CPU threads as consumers. Thus, in the limit,
Gravel is limited by the throughput of its four consumer threads,
the MPMC approaches the throughput of 2 threads, and the SPSC
approaches the throughput of a single thread.

5 DIVERGED WG-LEVEL SEMANTIC
Earlier, we described WG-level synchronization (§4.1) and
showed that it helps to amortize synchronization (Figure 6). We
also noted that software predication is required to leverage WG-
level synchronization from divergent code because WG-level
operations must occur within converged control flow [20].

In this section, we first provide an example that requires
network access from diverged control flow, then show how
software predication enables the example to work on current
GPUs (§5.1). Next, we define useful behavior for WG-level
operations that occur in diverged control flow (§5.2). Finally, we
describe how future GPUs can provide this behavior (§5.3).

5.1 Software Predication
To understand how the current behavior of WG-level operations
limits Gravel’s networking capability, consider the example in
Figure 9, which counts the number of incoming edges for each
vertex in a directed graph. For instance, in Figure 9a, v0 has two

Figure 8. Producer/consumer queue throughput.

0

1

2

3

4

5

6

7

8

9

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2

4

2
0
4

8

4
0
9

6

8
1
9

2

1
6
3

8
4

3
2
7

6
8

6
5
5

3
6

B
a
n

d
w

id
th

 (
G

B
/s

)

message size (bytes)

Gravel CPU-only SPSC CPU-only MPMC network bandwidth

small
messages

large
messages

(a) Directed graph.

(b) Desired output.

(c) Work-group execution.

Figure 9. Using WG-level operations in diverged control
flow.

v0 v1 v2 v3
e0

e1e2
e3

e4
e5

e6
e7

e8 e9

e0 e3 e5 e7
e1 e4 e6 e8
e2 e9

loop 1
loop 2
loop 3

diverged

wg0
wi0 wi1 wi2 wi3

edge list/wi

2 3 3 2
v0 v1 v2 v3

in edges:

Gravel: Fine-Grain GPU-Initiated Network Messages SC’17, November 2017, Denver, Colorado USA

 7

incoming edges—one from v1 and a second from v3. In general,
this problem can be solved by traversing each vertex’s outgoing
edge list and incrementing a counter once for each neighbor
encountered. Figure 9b shows the final counters for the graph in
Figure 9a.

Figure 9c shows one way to distribute this problem using
Gravel. Each GPU WI traverses a vertex’s outgoing edge list.
Figure 11a shows pseudo-code; each WI loops through its edge list
and uses a network operation, shmem_inc, to update a distributed
array of counters. Figure 9c shows that all of the WIs are active
during the first two loops. In the third loop, wi1 and wi2 become
inactive, which prevents wi0 and wi3 from leveraging WG-level
synchronization to access the network.

Figure 11b shows how software predication can solve this
problem. In the code, inactive WIs keep executing with their WG.
Specifically, before entering the loop, WIs coordinate to determine
the number of loop iterations to execute (line 5). Inside the loop,
WIs determine whether they are active (line 7) and if so they
construct a network message (lines 9-11). Finally, the network API
is extended with an extra argument to differentiate active and
inactive WIs (line 12).

Software predication enables WG-level synchronization in
divergent code, but it requires a non-trivial code transformation
and introduces software overhead. Next, we articulate software
predication’s behavior and then consider alternatives to achieve
that behavior.

5.2 Defining Useful Behavior
This section proposes that WG-level operations occurring in
diverged code execute across the active WIs in a WG. Specifically,
a WI is active if it is predicated on when its WG executes a basic
block. Note, our proposal requires a way for the GPU to view the
application’s control flow at WG granularity (instead of WF
granularity) so that it is clear which WIs participate in a given
WG-level operation. Below, we describe two useful diverged WG-
level operations.

Reduction: Active WIs submit a value. Inactive WIs submit
a non-interfering value (e.g., 0 for reduce-to-sum, INT_MAX
for reduce-to-minimum). The reduction of these values is
returned to active WIs.
Prefix Sum: Active WIs submit a value. Inactive WIs
submit the non-interfering value 0. The prefix sum of these
values is returned to active WIs.

More generally, non-interfering values are used to implement
data-parallel operations. For example, a WG-level sort might be
defined such that inactive WIs submit INT_MAX, which will be
placed at the end of the sorted list, where it can be ignored by the
active WIs.

5.3 Supporting Diverged WG-level Operations
WG-level operations use a WG’s WIs to index an array and route
the respective elements through a data-parallel network. For
example, Figure 11a shows a reduce-to-sum network with four
elements and Figure 11b shows an ideal execution with four WIs.
Note that all WIs must be present to submit their values.
Subsequent levels of the network, which are executed by the WIs
that submitted values, are separated by a barrier.

In a diverged WG-level operation, the GPU must determine
which WFs have active WIs and wait for those WFs to arrive. This
is non-trivial because WFs in the same WG progress through the
control flow graph at different rates. Next, we discuss three ways
to determine the WFs with active WIs.

First, it may be possible to automate the code translation for
software predication. One issue with software predication is that
it can cause a completely inactive WF to continue executing, as
depicted in Figure 11c, because it builds off of WG-level
operations. Another approach is to build GPUs that track control
flow at WG granularity instead of WF granularity. For example,
thread block compaction, proposed to mitigate branch divergence,
suggests a WG-level reconvergence stack [28]. Compared to

1: count_in_edges(edge_list, visitors):
 2: for each edge in edge_list:
 3: shmem_inc(&visitors[edge.idx], edge.node)

(a) Ideal pseudo-code to count each vertex’s in edges.
 4: count_in_edges(edge_list, visitors):
 5: loop_cnt = reduce_max(edge_list.size)
 6: for i in range(loop_cnt):
 7: active = i < edge_list.size
 8: idx = 0, node = 0
 9: if active:
10: idx = edge_list[i].idx
11: node = edge_list[i].node
12: shmem_inc(&visitors[idx], node, active)

(b) Pseudo-code modified to use software predication.
13: count_in_edges(edge_list, visitors):
14: if LANE_ID == 0:
15: initfbar fb # create fine-grain barrier object
16: joinfbar fb # start with all work-items
17: for each edge in edge_list:
18: shmem_inc(&visitors[edge.idx], edge.node, fb)
19: if edge + 1 == edge_list.end:
20: leavefbar fb

(c) Pseudo-code modified to use fine-grain barriers.
Figure 10. Diverged work-group-level operation pseudo-

code.

(a) Reduce-to-sum network.

(b) Ideal execution.

(c) SW pred &WG-level exec.

(d) Fine-grain barriers.

Figure 11. Diverged reduce-to-sum operation.

x0 x1 x2 x3
BARRIER

wi0 wi1 wi2 wi3

BARRIER

wi0 wi1

BARRIER

wi0

WG-level BARRIER

wi0 wi1 wi2 wi3

WG-level BARRIER

wi0 wi1 wi2 wi3

WG-level BARRIER

wi0 wi1 wi2 wi3

fine-grain BARRIER

wi0 wi1 wi2 wi3

fine-grain BARRIER

wi0 wi1

fine-grain BARRIER

wi0 wi1

SC’17, November 2017, Denver, Colorado USA M. Orr et al.

8

software predication, this approach does not add software
overhead, but it does allow inactive WFs, as depicted in Figure 11c,
because it essentially expands the GPU’s execution granularity to
the width of a WG.

Finally, fine-grain barriers (fbar), introduced by HSA, can be
used to identify active WIs [22]. An fbar enables barrier
synchronization across a subset of a WG’s WIs. Specifically, HSA
provides primitives to create/destroy an fbar, register/unregister
WIs with an fbar, and synchronize the registered WIs. However,
HSA’s current fbar instruction is not able to distinguish WIs in a
WF, which is required by our proposal. Thus, we argue that future
GPUs should allow an arbitrary set of WIs to be
registered/unregistered with an fbar. This would allow a
compiler to instrument control flow containing WG-level
operations with fbar operations. This idea is demonstrated in
Figure 11c. Unlike the other solutions, this approach does not
cause completely inactive WFs to continue executing (Figure 11d).

6 METHODOLOGY AND WORKLOADS
We prototyped Gravel on an eight-node cluster. Each node has an
AMD APU with four CPU threads and an HSA-enabled integrated
GPU. The nodes are connected by a 56 Gb InfiniBand link. More
details can be found in Table 3.

Gravel’s aggregator is realized by using the integrated CPU to
consume GPU-initiated messages and repack them into per-node
queues. We use MPI to send/receive the queues and allocate three
queues per node (over allocation helps hide network latency).
Each per-node queue is 64 kB, which we found is large enough to
obtain most of the benefit of large messages on our system and
does not consume an excessive amount of memory.

To obtain the necessary thread support, all network requests
are funneled through a dedicated network thread [31]. Upon
receiving a per-node queue, the network thread iterates through
each message and resolves it as a local memory operation (e.g.,
load, store). The aggregator performs best with one CPU thread
because there are several background threads in the system (i.e.,
Gravel’s network thread, an HSA background thread, and an MPI
progress thread).

Currently, Gravel can support the following non-blocking
network operations: PUT, atomic increment, and a primitive active

message API. PUT and atomic increment operate on a partitioned
global address space (PGAS). Atomic operations (i.e., atomic
increment and active messages) are serialized by routing them
through Gravel’s network thread. Thus, some operations that can
execute locally are still routed through the NI. On our system, this
approach is faster than using concurrent read-modify-write
operations. Furthermore, it simplifies writing active messages.

Six applications are evaluated with the inputs in Table 4. The
graph applications (i.e., PR, SSSP, and color) are derived from
GasCL, which is a single-node graph processing system for GPUs
[32]. The following text summarizes each application.

Giga-updates-per Second (GUPS): Described in §3 [24].
PageRank (PR): Ranks web pages by iteratively sending each

vertex’s rank through its links.
Single-source/shortest-path (SSSP): Calculates the shortest

distance from a source vertex to every other vertex.
Graph coloring (color): Labels each vertex in a graph such

that no two neighbors have the same color.
Kmeans clustering (kmeans): Iteratively groups a set of

Cartesian coordinates into a fixed number of clusters.

Table 3. Node architecture.

Processor
(AMD A10-7850K)

CPU: 2 cores (4 threads); 3.7 GHz;
16 kB L1D; 2 MB L2

GPU: 8 CUs; 720 MHz; 16 kB L1D; 2 MB L2
Memory 32 GB; DDR3-1600; 2 channels

NIC 56 Gb/s InfiniBand card

Software
Ubuntu 14.04; Open MPI 1.10.1; GCC 4.9.3;

HSA runtime 1.0.3

Gravel’s
configuration

24 per-node queues (each 64 kB; 125 µs timeout);
1 MB producer/consumer queue; 1 aggregator

thread

Table 4. Application inputs.
benchmark(s) inputs

GUPS ~180 million updates
PR-1; SSSP-1;

color-1
hugebubbles-00020 [29]

(~21 million vertices, ~64 million edges)
PR-2; SSSP-2;

color-2
cage15 [29]

(~5 million vertices, ~99 million edges)
kmeans 8 clusters, 16 million points

mer human-chr14 [30] (3.6 GB)

Figure 12. Gravel’s scalability.

0

1

2

3

4

5

6

7

8

GUPS PR-1 PR-2 SSSP-1 SSSP-2 color-1 color-2 kmeans mer geo. mean

S
p

e
e

d
u

p

1 node 2 nodes 4 nodes 8 nodes

Gravel: Fine-Grain GPU-Initiated Network Messages SC’17, November 2017, Denver, Colorado USA

 9

Meraculous graph construction (mer): Meraculous uses a
two phases of a genome sequencing pipeline [33]. Phase 1 builds
a distributed hash table and phase 2 traverses it. We evaluate
phase 1 and leave phase 2, which has significant branch
divergence, for future work.

7 RESULTS AND ANALYSIS
In this section, we analyze Gravel’s scalability (§7.1) and then
compare Gravel to prior GPU networking models (§7.2).

7.1 Scalability Analysis
Gravel’s scalability is depicted in Figure 12. Two factors that
impact scalability are the frequency of remote data access (i.e., an
access through the network), and the cost of a remote access
relative to a local access. For each input, Table 5 summarizes the
frequency of remote data access and the average message size,
which influences the cost of a remote access.

Recall that our implementation serializes atomic operations
(i.e., fetch-add and active messages) by routing all of them—
including local operations—through the NI. Thus, the throughput
for atomics is similar for local and remote access. GUPS, kmeans,
and mer, use atomics exclusively. Thus, even though these
applications are dominated by remote accesses, as shown in Table
5, they approach the ideal speedup of 8x.

PR and color use non-atomic operations (i.e., PUT operations)
exclusively. A local PUT is executed by the GPU directly as a store.
Thus, for PR and color, local operations achieve more concurrency
than remote operations because they execute across the GPU’s
massively parallel architecture. In contrast, remote operations are
executed by CPU threads (i.e., Gravel’s network thread) across the
seven receiving machines. We experimented with helper threads

at the receiver to recover some of the lost concurrency, but the
CPU is already saturated. Thus, we observe little benefit.

Finally, SSSP uses atomic operations (i.e., active messages) and
PUT operations. Specifically, SSSP-2 approaches the ideal speedup
because remote access is infrequent and Gravel is able to combine
remote accesses into large messages (i.e., ~58 kB as shown in Table
5). In contrast, remote access occurs more frequently in SSSP-1
and the cost of those accesses is higher because Gravel’s
aggregator is not effective for this input (i.e., messages are ~1.6 kB
on average). As a result, SSSP-1 does not scale as well as other
inputs.

To put these results into perspective, we compared Gravel to
CPU-based distributed systems, which do not to leverage the GPU.
Specifically, Figure 13 shows how Gravel compares to Grappa [11]
for GUPS and PR and to UPC [33] for mer. Notice that Gravel is
significantly faster on one node, where aggregation and
networking are irrelevant. Fundamentally, the GPU’s massively
parallel architecture is better suited to the underlying data-
parallel behavior of these workloads and this advantage translates
to eight nodes, where Gravel continues to outperform CPU-based
systems.

Finally, Figure 14 shows how the per-node queue size, which
determines the maximum size of a network message, affects
GUPS. In general, larger queues provide better multi-node
performance, but the benefit diminishes beyond 32 kB where
network overhead is sufficiently amortized. Thus, to obtain good
performance without using an excessive amount of memory, we
use 64 kB per-node queues.

7.2 Style Comparison
We wrote versions of each application for each GPU networking
model using the methodology described in §3. Gravel performs
equal to or better than the alternative prior GPU networking
models in Figure 15.

First, we summarize the key insights demonstrated by Figure
15. The first two bars in Figure 15 are variants of the coprocessor
model. Specifically, they show that the coprocessor model uses
memory inefficiently and is not aggressive enough to overlap
communication with computation. The third bar in Figure 15,
which is a variant of the message-per-lane model, shows that the
GPU generates messages that are too small for network
transmission. The fourth and fifth bars in Figure 15 are variants
of coalesced APIs. These bars show that packing messages within

Table 5. Network statistics for Gravel at eight nodes.
 Remote access frequency Average message size (bytes)

GUPS 87.5% 65,440
PR-1 37.7% 64,611
PR-2 16.5% 15,700

SSSP-1 30.0% 1,563
SSSP-2 16.2% 57,916
color-1 36.7% 27,258
color-2 16.5% 9,463
kmeans 87.5% 5,656

mer 87.5% 64,822

Figure 13. Gravel vs. CPU-based distributed systems.

0

5

10

15

20

25

GUPS PR-1 PR-2 mer

S
p

e
e

d
u

p

1 CPU node 8 CPU nodes 1 Gravel node 8 Gravel nodes

Figure 14. Gravel’s aggregation sensitivity.

0

0.05

0.1

0.15

0.2

0.25

0.3

64 512 4096 32768 262144G
ig

a
-u

p
d

a
te

s
 p

e
r

s
e

c
o

n
d
 (

G
U

P
S

)

per-node queue size (bytes)

1 node 2 nodes 4 nodes 8 nodes

SC’17, November 2017, Denver, Colorado USA M. Orr et al.

10

a WG is not sufficient. Instead, the GPU-wide aggregation taken
by Gravel is required to obtain peak performance.

The following paragraphs discuss each set of bars in Figure 15
in more detail. The first set of bars, labeled coprocessor, were
generated by configuring the coprocessor model to use the same
amount of buffering as Gravel. Recall, the number of WIs
executing concurrently is limited to avoid overflowing a per-node
queue. Such small per-node queues, which are sufficient for
Gravel, limit the amount of parallelism on the GPU, causing this
version of the coprocessor model to perform worse than Gravel in
all cases. This effect is pronounced for PR and color, where WIs
access the network many times.

In the second set of bars, labeled coprocessor + extra buffering,
we allocate 1 MB for each per-node queue, which is an order of
magnitude more space for per-node queues than Gravel. While
this enables GUPS and SSSP-2 to perform as well as Gravel, most
applications still perform worse. This is because Gravel is more
effective at overlapping communication and computation.
Specifically, in Gravel, per-node queues are sent through the
network as soon as they become full or exceed a timeout, while
the coprocessor model delays sending a message until the GPU
kernel completes. This effect is pronounced for kmeans, which
actually runs slower in the coprocessor model with larger per-
node queues.

The third set of bars, labeled msg-per-lane, bypasses the
aggregator (as described in §3). Figure 15 shows that sending small
messages directly degrades performance. Similarly, the fourth set
of bars, labeled coalesced APIs, shows that combining messages
across a WG (as described in §3) is not sufficient in most cases.
Other than SSSP-1, SSSP-2, and kmeans, coalesced APIs can lead
to messages that are too small.

Finally, the second-to-last set of bars, labeled coalesced APIs +
GPU-wide aggregation, takes messages generated by the coalesced
APIs model and repacks (i.e., aggregates) them into even larger
messages. The effect is very large messages that resemble those
generated by Gravel. Figure 15 shows that this optimization helps
coalesced APIs to perform nearly as well as Gravel. Specifically,
this experiment shows that Gravel’s superior performance over
coalesced APIs can be primarily attributed to the fact that it
aggregates messages across the GPU instead of across a WG. At
the same time, we showed in Section 3.3 (Table 2) that Gravel is

more productive than coalesced APIs, which force programmers
to manually pack messages within a WG.

One interesting case is mer, which uses more scratchpad than
other benchmarks. This scratchpad usage, in combination with
the amount of scratchpad used by the coalesced APIs model, limits
the number of WIs that execute on the GPU concurrently.

8 NETWORKING ON FUTURE GPUS
In this section, we explore how future GPUs can provide better
support for small messages. First, §8.1 suggests replacing Gravel’s
CPU-based aggregator with dedicated hardware. Next, §8.2
evaluates alternatives to software predication.

8.1 Hardware Aggregator
Currently, Gravel uses the integrated CPU to aggregate messages,
which enables us to use current hardware—but this approach is
inefficient. Specifically, we found that, even at eight nodes, the
CPU’s out-of-order, multi-GHz core spends 65% of its time polling
for GPU-initiated messages. Furthermore, these hardware threads
cannot be used for other tasks.

Dedicated hardware could do aggregation in a more energy-
and latency-efficient manner. A hardware aggregator could be
fixed-function logic, but a small programmable core would
provide more flexibility. For example, modern GPUs and NICs
both incorporate control processors that could be used for
aggregation. Placing the aggregator in the GPU would allow it be
used for other purposes (e.g., task aggregation, memory
allocation, etc.) and enable data-parallel optimization (e.g., a GPU-
wide memory coalescer).

8.2 Diverged WG-level Operation Analysis
Gravel uses software predication to achieve the diverged WG-
level semantic on current hardware, but this approach introduces
overhead that could be avoided in a GPU with hardware support.
To test this idea we emulate the alternatives proposed in §5.3.

To emulate a GPU that tracks control flow at WG granularity
we perform synchronization at WF granularity. Specifically, code
without predication (e.g., Figure 11a) works on current GPUs
when the WG size is limited to one WF. Using this methodology,
we observed a 1.28x speedup over software predication for a
modified version of GUPS, called GUPS-mod, where each WI

Figure 15. Style comparison at eight nodes.

0

1

2

3

4

5

GUPS PR-1 PR-2 SSSP-1 SSSP-2 color-1 color-2 kmeans mer geo. mean

S
p

e
e

d
u

p
coprocessor coprocessor + extra buffering msg-per-lane coalesced APIs coalesced APIs + Gravel aggregation Gravel

~
8.0

~
8.0

~
9.0

~
9.9

~
9.9

0.01~

Gravel: Fine-Grain GPU-Initiated Network Messages SC’17, November 2017, Denver, Colorado USA

 11

performs a random number of updates and 95% of WIs perform no
updates (otherwise, the benchmark is too memory bound to
observe interesting performance effects).

Next, we evaluate fine-grain barriers by emulating the desired
behavior in software. We found that our software-based fbar
operations (e.g., Figure 11c) provide a 1.06x speedup over software
predication for GUPS-mod. The software-based fbar incurs
significant overhead and should be viewed as a lower bound.

9 RELATED WORK
GPUs often lack native support for WIs to initiate I/O. DCGN [16],
and GPUfs [34] rely on the CPU to orchestrate I/O. GPUDirect
RDMA optimizes network I/O by allowing the CPU to initiate data
transfers between a discrete Nvidia GPU and the NIC [13]. GPUnet
uses GPUDirect RDMA to provide a coalesced socket API for
GPUs [18]. Specifically, WIs manage sockets by sending a request,
over PCIe, to a CPU with GPUDirect capabilities. GPUnet does not
do Gravel-style message combining and its coalesced APIs are
synchronous, while Gravel’s network APIs are asynchronous.

Semantically, NVSHMEM is similar to Gravel in that it enables
PGAS-style distributed memory for GPUs [17]. NVSHMEM is
limited to GPUs on the same PCIe or NVLink fabric. In contrast,
Gravel supports large commodity networks like Ethernet and
InfiniBand and optimizes for small messages.

Operationally, GGAS [15] and GPUrdma [19] resemble
NVSHMEM by enabling GPU-initiated messages without CPU
involvement. Specifically, the GPU driver is modified to expose
the NIC’s doorbell register and GPU code interacts directly with
the NIC. This contribution is orthogonal to Gravel’s, which
focuses on providing an efficient and programmable interface to
the network. For example, GGAS interacts with the network at
WF granularity, which we showed is not efficient. Meanwhile,
GPUrdma uses coalesced APIs, which are less programmable than
Gravel.

Channels [26] and DTB [35] explore GPU-wide task
aggregation, which is related to GPU-wide message aggregation.
Compared to Gravel, channels was prototyped in a simulator and
does GPU-side aggregation, which is less scalable than Gravel’s
CPU-side aggregation scheme. DTB introduces special hardware
instead of using shared-memory synchronization.

Gravel’s diverged WG-level semantic resembles HSA’s fbar
by enabling a subset of data-parallel lanes to coordinate [22]. It
also resembles unconditional operations, described by Hillis and
Steele [36], which temporarily activate inactive data-parallel lanes
so that they can participate in a data-parallel computation.

CPU-based systems like Grappa [11], GraphLab [12], and GMT
[37], aggregate small network messages. Gravel’s GPU-
compatible aggregation scheme was inspired by these CPU-based
systems.

10 CONCLUSION
Gravel enables GPUs to initiate small network messages and we
showed that it is more programmable and performs better than
prior GPU networking models for all of the workloads and inputs
that we evaluated. Our main contributions were to demonstrate
that data-parallel hardware can be exploited to amortize

synchronization, use this insight to efficiently offload GPU-
initiated network messages to Gravel’s aggregator, and to explore
diverged WG-level semantics.

To prototype Gravel, we leveraged integrated GPUs to use the
CPU for aggregation. Gravel could work with discrete GPUs, with
the GPU writing to a producer/consumer queue in main memory
over PCIe, and using PCIe atomic operations to synchronize.
Current PCIe implementations may limit performance, but future
interfaces such as CCIX [38] should improve this situation.

Finally, our evaluation was limited to a very small cluster (i.e.,
eight nodes). CPU-based system (e.g., Grappa [11]) that focus on
optimizing communication via aggregation, have shown that they
can scale up to 128 nodes. Larger systems could be organized in a
logical hierarchy (perhaps mirroring the physical network
topology but not required), with multiple levels of aggregation.
For example, a two level hierarchy with each level doing a 16-node
aggregation supports 256 nodes with one indirect hop

ACKNOWLEDGEMENTS
We thank Greg Rogers, Joseph Greathouse, and Brad Benton for
helping to procure and configure the hardware used to prototype
and evaluate Gravel. We also thank Gabe Loh and the anonymous
reviewers for their helpful feedback. This work was performed
while Marc Orr and Steve Reinhardt worked at AMD Research.
AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. OpenCL is a
trademark of Apple Inc. used by permission by Khronos.

REFERENCES
[1] The Green500 List. [Online]. http://www.green500.org/

[2] Amazon Elastic Compute Cloud User Guide for Linux Instances.
[Online]. http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/using_cluster_computing.html.

[3] Microsoft Azure, N Series, GPU enabled Virtual Machines. [Online].

https://azure.microsoft.com/en-us/pricing/details/virtual-
machines/series/#n-series.

[4] Google Cloud Platform: GRAPHICS PROCESSING UNIT (GPU),

Leverage GPUs on Google Cloud for machine learning and scientific
computing. [Online]. https://cloud.google.com/gpu/.

[5] T. Geller. 2011. Supercomputing’s Exaflop Target. In Commun. Of

the ACM.

[6] M. Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems. Google preliminary whitepaper.

[7] D. Yu, K. Yao, and Y. Zhang. 2015. The Computational Network
Toolkit [Best of the Web]. In IEEE Signal Processing Magazine.

[8] R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011. Torch7: A

Matlab-Like Environment for Machine Learning. In BigLearn NIPS

Workshop.

[9] Install GraphLab Create with GPU Acceleration. [Online].
https://dato.com/download/install-graphlab-create-gpu.html/.

[10] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. 2010. Pregel: A System for Large-Scale Graph

Processing. In Proc. of the ACM SIGMOD International Conference
on Management of Data.

[11] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M.

Oskin. 2015. Latency-tolerant Software Distributed Shared Memory.

In Proc. of the USENIX Annual Technical Conference (ATC).

SC’17, November 2017, Denver, Colorado USA M. Orr et al.

12

[12] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. 2012.

PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs. In Proc. of the USENIX Conference on Operating Systems

Design and Implementation (OSDI).

[13] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. Panda.

2013. Efficient Inter-Node MPI Communication Using GPUDirect
RDMA for InfiniBand Clusters with NVIDIA GPUs. In Proc. of the

International Conference on Parallel Processing (ICPP).

[14] H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur, and D. Panda. 2011.

MVAPICH2-GPU: Optimized GPU to GPU Communication for
InfiniBand Clusters. In Proc. of the International Supercomputing

Conference (ISC).

[15] L. Oden and H. Fröning. 2013. GGAS: Global GPU Address Spaces

for Efficient Communication in Heterogeneous Clusters. In Proc. of
the IEEE International Conference Cluster Computing (Cluster).

[16] J. Stuart and J. Owens. 2009. Message Passing on Data-Parallel

Architectures. In Proc. of the IEEE International Symposium on

Parallel Distributed Processing.

[17] S. Potluri, N. Luehr, and N. Sakharnykh. 2016. Simplifying Multi-
GPU Communication with NVSHMEM. [Online]. http://on-

demand.gputechconf.com/gtc/2016/presentation/s6378-nathan-luehr-

simplyfing-multi-gpu-communication-nvshmem.pdf.

[18] S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel, A. Wated, and M.
Silberstein. 2014. GPUnet: Networking Abstractions for GPU

Programs. In Proc. of the USENIX Symp. on Operating Systems

Design and Implementation (OSDI).

[19] F. Daoud, A. Watad, and M. Silberstein. 2016. GPUrdma: GPU-Side

Library for High Performance Networking from GPU Kernels. In

Workshop on Runtime and OS Support for Supercomputers.

[20] OpenCL 2.0 Reference Pages. [Online].
http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/.

[21] CUDA C Programming Guide. [Online].

http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[22] HSA Foundation. 2015. HSA Programmer’s Reference Manual:

HSAIL Virtual ISA and Programming Model, Compiler Writer’s
Guide, and Object Format (BRIG) Version 1.0.1.

[23] S. Junkins. 2016. The Compute Architecture of Intel® Processor

Graphics Gen9. Intel whitepaper, v1.0.

[24] HPC Challenge Benchmark: RandomAccess. [Online].

http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/.

[25] Wikipedia. Counting Sort. [Online].
https://en.wikipedia.org/wiki/Counting_sort.

[26] M. Orr, B. Beckmann, S. Reinhardt, and D. Wood. 2014. Fine-Grain

Task Aggregation and Coordination on GPUs. In Proc. of the

International Symp. on Computer Architecture (ISCA).

[27] H. Levy. 2003. Single Producer Consumer on a Bounded Array
Problem. Course notes. [Online].

https://courses.cs.washington.edu/courses/cse451/03wi/section/prodc

ons.htm.

[28] W. Fung and T. Aamodt. 2011. Thread Block Compaction for
Efficient SIMT Control Flow. In Proc. of the International Symp. on

High Performance Computer Architecture (HPCA).

[29] University of Florida Sparse Matrix Collection. [Online].

http://www.cise.ufl.edu/research/sparse/matrices/.

[30] NERSC. Meraculous Data. [Online].
http://portal.nersc.gov/project/m888/apex/Meraculous_data/.

[31] OpenMPI FAQ. [Online]. https://www.open-

mpi.org/faq/?category=supported-systems#thread-support.

[32] S. Che. 2014. GasCL: A Vertex-Centric Graph Model for GPUs. In

Proc. of the IEEE High Performance Extreme Computing Conference
(HPEC).

[33] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and

Katherine Yelick. 2014. Parallel De Bruijn Graph Construction and

Traversal for De Novo Genome Assembly. In Proc. of the
International Conference for High Performance Computing,

Networking, Storage and Analysis (SC).

[34] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. 2013. GPUfs:

Integrating File Systems with GPUs. In Proc. of the International
Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS).

[35] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili. 2015. Dynamic

Thread Block Launch: a Lightweight Execution Mechanism to
Support Irregular Applications on GPUs. In Proc. of the International

Symp. on Computer Architecture (ISCA).

[36] W. Hillis and G. Steele. 1986. Data Parallel Algorithms. In Comm. of

the ACM.

[37] A. Morari, A. Tumeo, D. Chavarria-Miranda, O. Villa, and M. Valero.
2014. Scaling Irregular Applications through Data Aggregation and

Software Multithreading. In Proc. of the International Parallel and

Distributed Processing Symp. (IPDPS).

[38] CCIX Consortium. Cache Coherent Interconnect for Accelerators
(CCIX). [Online]. http://www.ccixconsortium.com

