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ABSTRACT 
Distributed systems incorporate GPUs because they provide 
massive parallelism in an energy-efficient manner. Unfortunately, 
existing programming models make it difficult to route a GPU-
initiated network message. The traditional coprocessor model 
forces programmers to manually route messages through the host 
CPU. Other models allow GPU-initiated communication, but are 
inefficient for small messages. 

To enable fine-grain PGAS-style communication between threads 
executing on different GPUs, we introduce Gravel. GPU-initiated 
messages are offloaded through a GPU-efficient concurrent queue 
to an aggregator (implemented with CPU threads), which 
combines messages targeting to the same destination. Gravel 
leverages diverged work-group-level semantics to amortize 
synchronization across the GPU’s data-parallel lanes. 

Using Gravel, we can distribute six applications, each with 
frequent small messages, across a cluster of eight GPU-accelerated 
nodes. Compared to one node, these applications run 5.3x faster, 
on average. Furthermore, we show Gravel is more programmable 
and usually performs better than prior GPU networking models. 
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1 INTRODUCTION 
GPUs are becoming prominent in high-performance distributed 
systems. For instance, consider the Green500 list, which tracks the 
most energy-efficient supercomputers—nine of the top ten 
systems use GPUs [1]. At the commodity end, cloud platforms 
now offer GPU computing [2][3][4]. Multiple GPUs are now being 
used in a coordinated fashion to accelerate single applications 
ranging from high performance computing [5] to machine 
learning [6][7][8][9]. 

Nevertheless, it is surprisingly difficult to route a network 
message between a GPU thread (called a work-item or WI) and the 
network interface (NI). One challenge is that WIs coordinating to 
access the NI must accommodate the GPU’s data-parallel 
architecture, where some WIs execute in lockstep. For example, a 
dependency between WIs executing in lockstep (e.g., a spin lock) 
can cause deadlock. 

A second challenge is managing the cost of 
producer/consumer synchronization (e.g., reserving space in a 
shared message queue). In particular, synchronization becomes a 
bottleneck for irregular applications, which are characterized by 
frequent, small, and unpredictable (i.e., input-dependent) 
messages. For example, in a graph algorithm it is typical to initiate 
a small message (e.g., a few bytes) every time a vertex’s neighbor 
resides on a different machine [10]. Prior CPU-based systems, 
such as Grappa [11] and GraphLab [12], limit synchronization by 
aggregating messages in per-thread buffers. However, this 
scheme is a poor fit for GPUs because per-thread aggregation 
results in branch-divergence and fails to leverage the GPU’s 
memory coalescing hardware. 

Despite these challenges, three programming abstractions 
have been proposed to access the network from the GPU. We 
consider each model and try to apply them to irregular 
applications. In each case, we encounter programming difficulties 
or, even worse, performance limitations. 

The first proposal, called the coprocessor model [13][14], 
disallows GPU WIs to access to the NI. Instead, programmers 
write CPU code for communication before and after a GPU kernel 
and must manually overlap communication and computation for 
peak performance. This model’s poor programmability is partially 
offset by its ability to generate large messages, which are ideal for 
network transmission. 

In the second proposal, called the message-per-lane model 
[15][16][17], WIs independently access the NI. Compared to the 
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coprocessor model, this model simplifies programming, but it can 
generate small, high-overhead messages. For example, 
NVSHMEM enables GPU threads to read and write another GPU’s 
memory using partitioned global address space (PGAS) semantics 
[17]. Unfortunately, NVSHMEM is limited to GPUs on the same 
PCIe or NVLink fabric. Furthermore, it prefers linear/coalescing 
access patterns, making it a poor fit for irregular workloads. 

Finally, in the third proposal, called coalesced APIs [18][19], 
WIs coordinate with their neighbors to access the NI. Compared 
to the message-per-lane model, this model is harder to program, 
but it uses adjacent WIs to form larger messages. However, for 
irregular applications, messages are smaller than the coprocessor 
model. 

To address the limitations of prior models and enable the GPU 
to efficiently initiate small messages, we introduce Gravel. 
Semantically, Gravel is similar to NVSHMEM in that it enables 
GPU threads to participate in PGAS-style communication. But, 
instead of relying on interconnects with limited scalability (e.g., 
NVLink), Gravel targets large, highly scalable interconnects such 
as Ethernet and InfiniBand. 

Gravel draws inspiration from the GPU’s hardware memory 
coalescer, which operates across a data-parallel instruction to 
combine accesses to the same cache line. Similarly, network 
messages incur overhead that can be amortized by combining 
small messages into larger messages. However, the network 
induces more overhead, and thus demands a coarser level of 
aggregation. Specifically, messages targeting the same node (not 
the same cache line) should be combined and message combining 
should occur across the GPU (not across a data-parallel 
instruction). 

In Gravel, GPU-initiated network messages are routed through 
a GPU-efficient producer/consumer queue to an aggregator, 
which combines messages being sent to the same destination. 
Gravel amortizes synchronization across adjacent WIs, similar to 
coalesced APIs, but Gravel does not require WIs to synchronize. 
Instead, Gravel leverages diverged work-group-level semantics to 
enable the GPU to access the network from divergent code. 

To make Gravel work on current GPUs, the aggregator is 
implemented with CPU threads and software predication is used 
to achieve the diverged work-group-level semantic. We believe 
that future GPUs can support these features more efficiently in 
hardware. For example, we suggest and evaluate two alternatives 

to software predication—a work-group-wide reconvergence stack 
and fine-grain barriers. 

We evaluate Gravel on a cluster of eight AMD APUs connected 
by InfiniBand. Compared to one node, Gravel achieves a 5.3x 
speedup on average across six irregular applications. 
Furthermore, we show that Gravel is more productive and usually 
performs better than prior GPU networking models. 

2 GPU BACKGROUND 
In this section, we first describe how the GPU execution model 
maps GPU threads (WIs) to GPU hardware (§2.1). Next, we discuss 
the GPU’s single-instruction/multiple-thread (SIMT) paradigm 
(§2.2). Finally, we describe how integrated GPUs enable fine-grain 
CPU-GPU synchronization, which our work leverages (§2.3). 

2.1 GPU Execution Model 
GPU hardware (Figure 1) executes wavefronts (WF)—a small 
number of WIs (e.g., 64 on AMD GPUs) that execute in lockstep. 
Work-groups (WG) comprise one or more WFs that execute on the 
same GPU core, called a compute unit (CU). WIs in a WG 
communicate using WG-level barriers and hardware caches—
including a programmer-managed scratchpad cache. 

These primitives enable WG-level operations, which use the 
WIs in a WG to index and process a data array. An important WG-
level operation is reduction, which reduces an array to a single 
result (e.g., sum, maximum). For example, given the array, 
A=[2,1,0,5], reduce-to-sum returns 2+1+0+5=8. Another 
important operation is prefix-sum, which calculates an array’s 
running total. For example, the prefix sum of A is [0, 0+2=2, 
0+2+1=3, 0+2+1+0=3]. 

2.2 SIMT Effects 
GPU programming languages, like OpenCL [20] and CUDA [21], 
are SIMT because they present a WI as the unit of execution. But 
GPUs execute WFs, which exposes two performance effects. 
Branch divergence, depicted in Figure 2a, occurs when WIs in a 
WF encounter different control paths. GPUs use hardware 
predication to execute branches, which causes idle execution 
units.   

Each CU has a coalescer, which operates across the CU’s single 
WF-level cache port to combine memory operations that target 
the same cache line. Memory divergence, depicted in Figure 2b, 
occurs when WIs in a WF access different cache lines and is 
undesirable because WFs stall until all of their cache lines are 
accessed. 

  
(a) Branch divergence. (b) Memory divergence. 

Figure 2. SIMT effects. 
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2.3 Integrated GPUs vs. Discrete GPUs 
We focus on systems that support fine-grain shared virtual 
memory (SVM) [20], where the CPU and GPU synchronize 
through atomic memory operations. Many integrated GPUs, 
including AMD’s Heterogeneous System Architecture (HSA) [22] 
and Intel’s Graphics Gen9 [23], support this feature. 

In contrast, discrete GPUs rely on generated code to copy data 
between the CPU and GPU at kernel boundaries. This approach 
provides the illusion of a unified memory, but fails to support 
CPU-GPU communication from within a kernel. Discrete GPUs 
could use PCIe atomic operations to synchronize with the CPU 
from within a kernel. However, discrete GPUs currently lack first-
class (e.g., driver and runtime) support for PCIe atomics and 
current PCIe atomic implementations may limit performance. 

3 GPU NETWORKING MODELS 
This section explores the programmability and operation of each 
GPU networking model for irregular applications. The three 
previously proposed models—coprocessor, message-per-lane, and 
coalesced APIs—are not designed to handle the small and 
unpredictable (i.e., input-dependent) messages that frequently 
occur in irregular applications. Thus, we first try to understand 
how these prior models can accommodate small messages, which 
incur very high overhead with a naïve implementation. A 
recurring theme is to amortize per-message overhead by 
combining messages that share the same destination into large 
per-node queues, suitable for network transmission. 

Next, we discuss how Gravel simplifies programming an 
irregular application by automatically combining small messages. 
Specifically, we use four criteria to summarize the benefits and 
limitations of each model: (1) SIMT utilization, described in §2.2; 
(2) large messages, meaning that messages are large enough to 
amortize network overhead; (3) efficient synchronization, meaning 
that WIs coordinate to use the NI efficiently; and (4) 
programmability, meaning that applications are simpler (e.g., 
fewer lines of code). Table 1 summarizes how each model ranks 
across these four criteria. 

Throughout this section, we use the GUPS micro-benchmark 
to demonstrate programmability issues. In GUPS, a distributed 
array, A, is incremented at random offsets obtained from a second 
local data structure [24]. Figure 4 shows pseudo-code for each 
model and Table 2 shows line counts for real code. 

3.1 Coprocessor Model 
In the coprocessor model, programmers write CPU code to handle 
network communication before and after each GPU kernel. 
GPUDirect RDMA [13] and CUDA-aware MPI [14] follow this 
model. To implement an irregular application, a programmer 
might manually organize messages into per-node queues (Figure 
3a), which exposes several low-level issues. Specifically, the 
programmer must avoid overflowing a queue, manually send and 
receive the queues, and overlap the sends/receives with GPU 
execution. The GPU code must efficiently insert messages into the 
per-node queues. 

The pseudo-code (Figure 4a) avoids overflowing a queue by 
chunking the updates (lines 6-7). Specifically, each chunk is sized 
to match the per-node queue size. This enables each queue to 
handle the worst case, where all WIs send messages to the same 
node. Chunking also helps to overlap communication (lines 8-11) 
and computation. On the GPU, WGs use WG-level 
synchronization (§4.1) to efficiently reserve space in the queues 
(line 4). Note, WG-level synchronization occurs once per 
destination (lines 2-3), which causes branch and memory 
divergence. 

  
(a) Coprocessor model. 

 

(b) Message-per-lane model. 
 

  
(c) Coalesced APIs. 

 

(d) Gravel. 
 

Figure 3. Mapping applications with frequent, small, and unpredictable messages to GPUs in a distributed system. 
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Table 1. Ranking different GPU networking models. 

 coprocessor  
msg-per-

lane 
coalesced 

APIs 
Gravel 

SIMT utilization * V * V 
large messages V * * V 
efficient sync V U V V 

programmability U V * V 
* Good for prior workloads studied; bad for small unpredictable messages. 
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3.2 Message-per-lane Model 
In prior work, the message-per-lane model (Figure 3b) requires 
programmers to manage GPU-initiated messages in a SIMT-
efficient way (e.g., DCGN [16]) or requires special hardware (e.g., 
GGAS [15] or NVSHMEM [17]). We assume that SIMT issues are 
hidden from programmers and note that Gravel’s 
producer/consumer queue (§4.2) achieves this effect in software. 

Figure 4b shows pseudo-code for the message-per-lane model. 
After launching the GPU kernel (line 16), WIs update slices of A 
(line 15). Table 2 shows that this model (i.e., 193 lines) is more 
programmable than the coprocessor model (i.e., 342 lines). 
However, there are two performance issues. First, messages 
generated by WIs are too small for efficient network transmission. 
Second, we show in §4.1 that the WF width in a modern GPU is 
too small to fully amortize synchronization overhead. 

3.3 Coalesced APIs. 
Coalesced APIs, shown in Figure 3c, are designed to be executed 
by all WIs in a WG at the same time and with identical arguments 
(e.g., destination, command, payload). GPUnet [18] and GPUrdma 
[19] provide coalesced APIs. At first glance, this model seems to 
degenerate to the message-per-lane model for small random 
messages. However, the pseudo-code in Figure 4c shows that a 
tenacious programmer can use the GPU’s scratchpad (lines 18-21) 
to sort a WG’s messages by destination (lines 22-25). A counting 
sort, where the keys are the destination IDs, works well [25]. The 
sort outputs a contiguous list of messages for each destination 
targeted by a WG. The pseudo-code then uses a coalesced API, 
sync_inc_list, to send each list. 

Our coalesced APIs version (318 lines) is 1.6x more code than 
our message-per-lane model (193 lines). One issue is the amount 
of scratchpad used (i.e., a WG with 256 WIs uses 4 kB of 
scratchpad). A second problem is that aggregating across a WG 
(instead of the entire GPU) generates small per-node queues. 
Finally, a third issue is that coalesced APIs are invoked for each 
destination, which degrades SIMT utilization. 

3.4 Gravel 
In Gravel (Figure 3d), GPU-initiated messages are routed through 
a GPU-efficient producer/consumer queue to an aggregator, 
which repacks the messages into per-node queues and sends them 
to the NI after they become full or exceed a timeout. The 
producer/consumer queue interface (§4.2) hides low-level issues 
like avoiding deadlock between WIs in a WF or optimizing SIMT 
utilization. Thus, Gravel’s pseudo-code (Figure 4b) is identical to 
the message-per-lane model, but Gravel performs better for two 
reasons. 

First, like the coprocessor model, Gravel’s aggregator 
generates large messages to amortize network overhead. Second, 

Gravel amortizes synchronization across WGs, which is similar to 
coalesced APIs—but Gravel does not require WIs to operate in a 
WG-synchronous fashion. Instead, we leverage a diverged WG-
level semantic to asynchronously offload messages to the NI (§5). 
Another alternative is to offload messages at wavefront 
granularity, which is done in prior work like GGAS [15] and 
channels [26], but we find that offloading messages at WG 
granularity is approximately 3x faster (Figure 6, explained in §4.1). 

One last subtle point is that Gravel’s “CPU-side aggregation” 
strategy scales better than the “GPU-side aggregation” strategy 
described for the coprocessor model and coalesced APIs. 
Specifically, as the number of destinations (and per-node queues) 
increase, GPU-side aggregation suffers low SIMT utilization 
because WIs in the same WG write different queues. Conversely, 
in Gravel the GPU always writes messages to a single queue (i.e., 
the producer/consumer queue). 

4 PRODUCER/CONSUMER QUEUE DESIGN 
We now describe Gravel’s producer/consumer queue, which acts 
as the GPU’s interface to Gravel’s aggregator. The queue differs 
from CPU queues in two important ways. First, it handles SIMT 
correctness and performance issues that occur when exporting 

--- GPU kernel --- 
 1: gups(B, C, Qs): 
 2:   for each node targeted by my work-group: 
 3:     if node == C[GRID_ID]: 
 4:       MyOff = work_group_level_reserve(&Qs[node]) 
 5:       Qs[node][MyOff] = B[GRID_ID] 
 

--- host code --- 
 6: for (idx = 0; idx < len(B), idx += Q_SZ): 
 7:   gups(&B[idx], C, Qs) # on GPU, GRID_WIDTH=Q_SZ 
 8:   for each node: 
 9:     send Qs[node] to node 
10:   for each node: 
11:     receive Q from node 
12:     for each offset in Q: 
13:       A[offset]++ 

(a) Coprocessor model. 
 

 

--- GPU kernel --- 
14: gups(A, B, C): 
15:   shmem_inc(A + B[GRID_ID], C[GRID_ID]) 
 

--- host code --- 
16: gups(A, B, C) # on GPU, GRID_WIDTH=len(B) 

(b) Message-per-lane model & Gravel. 
 

--- GPU kernel --- 
17: gups(A, B, C): 
18:   # allocate data-structures in GPU’s scratchpad 
19:   int64_t ptrs[WG_SIZE] 
20:   int dests[NODE_COUNT] 
21:   int cnts[NODE_COUNT] 
22:   # After sort: ptrs -> list of per-node Qs; dests 
23:   # -> destination list and cnts -> list of 
24:   # per-node Q sizes. dcnt = # of destinations. 
25:   dcnt = sort(ptrs, dests, cnts, A, B, C) 
26:   off = 0 
27:   for (d = 0; d < dcnt; d++): 
28:     sync_inc_list(&ptrs[off], dests[d], cnts[d]) 
29:     off += cnts[d] 
 

--- host code --- 
30: gups(A, B, C) # on GPU, GRID_WIDTH=len(B) 

(c) Coalesced APIs. 
 

Figure 4. GUPS pseudo-code. A is the array being updated. 
There is a slice of A, at the same virtual address, on each 
node. B is a local array of offsets into A. C is a local array of 
destinations. GRID_ID is a per-work-item identifier used to 
index data. 

Table 2. Lines of code for GUPS for each model. 

 coprocessor msg-per-lane & Gravel coalesced APIs 

host 296 174 187 

GPU 46 19 131 

total 342 193 318 
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messages from the GPU’s data-parallel hardware to the NI. 
Second, the queue limits the frequency of shared-memory 
synchronization, which is required to coordinate WIs initiating 
messages in parallel. 

First, §4.1 explains how WG-level synchronization enables the 
GPU to export messages at WG granularity. Next, §4.2 details the 
producer-consumer synchronization algorithm used to order WIs 
and aggregator threads accessing the queue. Finally, §4.3 
quantifies the queue’s performance. 

4.1 WG-level Synchronization 
The GPU interacts with the aggregator through in-memory 
queues. For example, to send a message, a WI reserves space in a 
queue, deposits the message (e.g., command, payload), and 
notifies the NI that the message is ready to be sent. Thus, 
producer/consumer synchronization is required to reserve space 
and again to notify the NI. 

Ignoring (for now) the case where the queue is full, a WI can 
reserve space by using a fetch-add to atomically increment the 
queue’s write index. In this approach, depicted in Figure 5 (scenes 
a and c), shared-memory synchronization occurs at WI 
granularity. An alternative, shown in Figure 5 (scenes b and d), is 
to leverage SIMT execution so that a leader WI synchronizes 

globally on behalf of its WG. Figure 5b shows that this can be 
achieved using a few WG-level operations. Specifically, the leader 
WI is chosen to be the WI with the largest lane ID using a 
reduce-max operation (lines 4-5). Then, a prefix-sum operation 
is used to determine each WI’s local offset (line 6); inactive WIs 
can cause the local offset to differ from the lane ID. Next, the 
leader WI reserves a slot for each WI (lines 7-9). Finally, the leader 
WI broadcasts the WG’s queue offset, which is added to each WI’s 
local offset (line 10). 

Figure 6 shows how WG size impacts the throughput of 
Gravel’s producer/consumer queue (§4.2) for 32-byte messages; 
details about the processor are in §6. Larger WGs achieve greater 
throughput by amortizing atomic operations across more WIs. For 
example, a WG with four WFs achieves about 3x more throughput 
than a WG with a single WF by reducing the number of atomic 
operations by almost 80%. We also measured the throughput of 
Gravel’s producer/consumer queue implemented with WI-level 
synchronization and found that it is two orders of magnitude 
slower (0.06 GB/s). 

One issue is that WG-level synchronization requires all of the 
WIs in a WG to participate. As a result, Gravel requires explicit 
software predication to leverage WG-level synchronization from 
divergent code. §5 discusses this issue in detail and explores 
diverged WG-level operations as an alternative for future GPUs. 

4.2 Producer/consumer Behavior 
The producer/consumer queue’s design and operation is 
illustrated in Figure 7. Each queue slot is arranged as a two-
dimensional array, where each column holds a WI’s message. This 
organization enables messages to be written in a non-divergent 
manner. In our implementation, the first row is used to store the 
command (e.g., PUT, atomic increment), the second row stores the 
destination, and subsequent rows encode arguments (e.g., address, 
value). 

 1: work_item_level_reserve(Q): 
 2:   return fetch_add(Q.WrIdx, 1); 

sample run: 
ret: [2,3,4,5] 

 

(a) work-item-level synchronization pseudo-code. 
 

 3: work_group_level_reserve(Q): 
 4:   lid = LANE_ID; # wi’s WG offset 
 5:   max = reduce_max(lid); 
 6:   MyOff = prefix_sum(1); 
 7:   Qoff = 0; 
 8:   if lid == max: 
 9:     Qoff=fetch_add(Q.WrIdx,MyOff+1); 
10:   return reduce_sum(Qoff)+MyOff; 

sample run: 
lid:  [0,1,2,3] 
max:  [3,3,3,3] 
MyOff:[0,1,2,3] 
Qoff: [0,0,0,0] 
 
Qoff: [0,0,0,2] 
ret:  [2,3,4,5] 

 

(b) work-group-level synchronization pseudo-code. 
 

  
(c) work-item-level behavior. 

 

(d) work-group-level behavior. 
 

Figure 5. Work-item vs. work-group-level synchronization. 
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Figure 7. Gravel’s producer/consumer behavior. 
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In addition to the payload, each queue slot has variables to 
synchronize producers (i.e., WIs) and consumers (i.e., aggregator 
threads) and avoid overflowing the queue. To obtain an offset into 
the queue, fetch-add is used to increment WriteIdx (by 
producers) and ReadIdx (by consumers). Three situations require 
synchronization. The first occurs when two or more producers 
alias to the same array slot. A ticket lock, WriteTick, is used to 
synchronize producers. The second situation occurs when two or 
more consumers alias to the same array slot. A second ticket lock, 
ReadTick, is used to synchronize consumers. Finally, a 
full/empty bit, F, is used to arbitrate between a producer that has 
the write ticket and a consumer that has the read ticket. 

Figure 7, which focuses on the messages initiated by wg0, 
demonstrates the queue’s operation. Initially (time ), the queue, 
which has three slots, is empty. At time , wi3 obtains a write 
ticket of 0 after performing a fetch-add operation on 
WriteTick. Because the write ticket equals the current ticket, N, 
and the full bit, F, is clear, wi3’s WG owns the slot. All four WIs 
(i.e., wi0-wi3) write their messages into the slot and wi3 sets the 
full bit, F, at time . At time , an aggregator thread, t0, takes 
ownership of the slot because the full bit, F, is set and its read 
ticket equals the slot’s current ticket, N. Finally, after the 
aggregator has consumed the messages, it clears the full bit, F, and 
increments the current ticket, N, to release the slot (time ). 

4.3 Producer/consumer Queue Analysis 
Figure 8 shows the throughput of Gravel’s producer/consumer 
queue at different message sizes; WGs have four WFs. The left 
side of the figure corresponds to small messages (e.g., smaller than 
a cache line), which incur large overhead. The right side 
corresponds to larger messages that can be managed using 
traditional synchronization approaches. The plot demonstrates 
that Gravel’s producer/consumer queue achieves high throughput 
for small messages. For example, 32-byte messages are processed 
at 7 GB/s, which matches the network bandwidth in our system 
(§6). 

To put Gravel’s performance into perspective, the plot shows 
two additional producer/consumer queues, where all producers 
and consumers are CPU threads. The first is a simple single-
producer/single-consumer (SPSC) queue [27]. The second is a 
multi-producer/multi-consumer (MPMC) queue, which uses the 
same synchronization algorithm as Gravel. The only difference is 

that each queue slot is organized to be written by a single CPU 
thread instead of a GPU WG. 

Two factors enable Gravel to offload small messages faster 
than the CPU-only queues. The first is WG-level synchronization, 
which amortizes producer/consumer synchronization across a 
WG—up to 256 messages in our system. In contrast, the other 
queues require producer/consumer synchronization for each 
message. The second factor is the payload organization, which 
allows the WIs in a WG to write messages into the same cache 
lines. This is possible because WIs in the same WG execute on the 
same CU. Conversely, extra bytes are appended to the payload in 
the CPU-only designs to avoid false sharing and this padding adds 
significant overhead for small messages. For example, in the SPSC 
queue, three cache lines are read/written to send an eight-byte 
message—a padded read index, a padded write index, and the 
padded payload. Things are worse for the MPMC queue. In 
contrast, Gravel’s queue incurs a half-byte of overhead to send the 
same eight-byte message. 

The performance of large messages, which is not the focus of 
this paper, is explained by how each queue uses the evaluated 
CPU, which is four-way threaded. The MPMC queue is configured 
with two producer threads and two consumer threads. Gravel’s 
queue uses all four CPU threads as consumers. Thus, in the limit, 
Gravel is limited by the throughput of its four consumer threads, 
the MPMC approaches the throughput of 2 threads, and the SPSC 
approaches the throughput of a single thread. 

5 DIVERGED WG-LEVEL SEMANTIC 
Earlier, we described WG-level synchronization (§4.1) and 
showed that it helps to amortize synchronization (Figure 6). We 
also noted that software predication is required to leverage WG-
level synchronization from divergent code because WG-level 
operations must occur within converged control flow [20]. 

In this section, we first provide an example that requires 
network access from diverged control flow, then show how 
software predication enables the example to work on current 
GPUs (§5.1). Next, we define useful behavior for WG-level 
operations that occur in diverged control flow (§5.2). Finally, we 
describe how future GPUs can provide this behavior (§5.3). 

5.1 Software Predication 
To understand how the current behavior of WG-level operations 
limits Gravel’s networking capability, consider the example in 
Figure 9, which counts the number of incoming edges for each 
vertex in a directed graph. For instance, in Figure 9a, v0 has two 

 
Figure 8. Producer/consumer queue throughput. 
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(b) Desired output. 

 

(c) Work-group execution. 
 

Figure 9. Using WG-level operations in diverged control 
flow. 
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incoming edges—one from v1 and a second from v3. In general, 
this problem can be solved by traversing each vertex’s outgoing 
edge list and incrementing a counter once for each neighbor 
encountered. Figure 9b shows the final counters for the graph in 
Figure 9a. 

Figure 9c shows one way to distribute this problem using 
Gravel. Each GPU WI traverses a vertex’s outgoing edge list. 
Figure 11a shows pseudo-code; each WI loops through its edge list 
and uses a network operation, shmem_inc, to update a distributed 
array of counters. Figure 9c shows that all of the WIs are active 
during the first two loops. In the third loop, wi1 and wi2 become 
inactive, which prevents wi0 and wi3 from leveraging WG-level 
synchronization to access the network. 

Figure 11b shows how software predication can solve this 
problem. In the code, inactive WIs keep executing with their WG. 
Specifically, before entering the loop, WIs coordinate to determine 
the number of loop iterations to execute (line 5). Inside the loop, 
WIs determine whether they are active (line 7) and if so they 
construct a network message (lines 9-11). Finally, the network API 
is extended with an extra argument to differentiate active and 
inactive WIs (line 12). 

Software predication enables WG-level synchronization in 
divergent code, but it requires a non-trivial code transformation 
and introduces software overhead. Next, we articulate software 
predication’s behavior and then consider alternatives to achieve 
that behavior. 

5.2 Defining Useful Behavior 
This section proposes that WG-level operations occurring in 
diverged code execute across the active WIs in a WG. Specifically, 
a WI is active if it is predicated on when its WG executes a basic 
block. Note, our proposal requires a way for the GPU to view the 
application’s control flow at WG granularity (instead of WF 
granularity) so that it is clear which WIs participate in a given 
WG-level operation. Below, we describe two useful diverged WG-
level operations. 

Reduction: Active WIs submit a value. Inactive WIs submit 
a non-interfering value (e.g., 0 for reduce-to-sum, INT_MAX 
for reduce-to-minimum). The reduction of these values is 
returned to active WIs. 
Prefix Sum: Active WIs submit a value. Inactive WIs 
submit the non-interfering value 0. The prefix sum of these 
values is returned to active WIs. 

More generally, non-interfering values are used to implement 
data-parallel operations. For example, a WG-level sort might be 
defined such that inactive WIs submit INT_MAX, which will be 
placed at the end of the sorted list, where it can be ignored by the 
active WIs. 

5.3 Supporting Diverged WG-level Operations 
WG-level operations use a WG’s WIs to index an array and route 
the respective elements through a data-parallel network. For 
example, Figure 11a shows a reduce-to-sum network with four 
elements and Figure 11b shows an ideal execution with four WIs. 
Note that all WIs must be present to submit their values. 
Subsequent levels of the network, which are executed by the WIs 
that submitted values, are separated by a barrier. 

In a diverged WG-level operation, the GPU must determine 
which WFs have active WIs and wait for those WFs to arrive. This 
is non-trivial because WFs in the same WG progress through the 
control flow graph at different rates. Next, we discuss three ways 
to determine the WFs with active WIs. 

First, it may be possible to automate the code translation for 
software predication. One issue with software predication is that 
it can cause a completely inactive WF to continue executing, as 
depicted in Figure 11c, because it builds off of WG-level 
operations. Another approach is to build GPUs that track control 
flow at WG granularity instead of WF granularity. For example, 
thread block compaction, proposed to mitigate branch divergence, 
suggests a WG-level reconvergence stack [28]. Compared to 

1: count_in_edges(edge_list, visitors): 
 2:   for each edge in edge_list: 
 3:     shmem_inc(&visitors[edge.idx], edge.node) 

(a) Ideal pseudo-code to count each vertex’s in edges. 
 4: count_in_edges(edge_list, visitors): 
 5:   loop_cnt = reduce_max(edge_list.size) 
 6:   for i in range(loop_cnt): 
 7:     active = i < edge_list.size 
 8:     idx = 0, node = 0 
 9:     if active: 
10:       idx = edge_list[i].idx 
11:       node = edge_list[i].node 
12:     shmem_inc(&visitors[idx], node, active) 

(b) Pseudo-code modified to use software predication. 
13: count_in_edges(edge_list, visitors): 
14:   if LANE_ID == 0: 
15:     initfbar fb # create fine-grain barrier object 
16:   joinfbar fb # start with all work-items 
17:   for each edge in edge_list:      
18:     shmem_inc(&visitors[edge.idx], edge.node, fb) 
19:     if edge + 1 == edge_list.end: 
20:       leavefbar fb 

(c) Pseudo-code modified to use fine-grain barriers. 
Figure 10. Diverged work-group-level operation pseudo-

code. 
 

  
(a) Reduce-to-sum network. 

 

(b) Ideal execution. 
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Figure 11. Diverged reduce-to-sum operation. 
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software predication, this approach does not add software 
overhead, but it does allow inactive WFs, as depicted in Figure 11c, 
because it essentially expands the GPU’s execution granularity to 
the width of a WG. 

Finally, fine-grain barriers (fbar), introduced by HSA, can be 
used to identify active WIs [22]. An fbar enables barrier 
synchronization across a subset of a WG’s WIs. Specifically, HSA 
provides primitives to create/destroy an fbar, register/unregister 
WIs with an fbar, and synchronize the registered WIs. However, 
HSA’s current fbar instruction is not able to distinguish WIs in a 
WF, which is required by our proposal. Thus, we argue that future 
GPUs should allow an arbitrary set of WIs to be 
registered/unregistered with an fbar. This would allow a 
compiler to instrument control flow containing WG-level 
operations with fbar operations. This idea is demonstrated in 
Figure 11c. Unlike the other solutions, this approach does not 
cause completely inactive WFs to continue executing (Figure 11d). 

6 METHODOLOGY AND WORKLOADS 
We prototyped Gravel on an eight-node cluster. Each node has an 
AMD APU with four CPU threads and an HSA-enabled integrated 
GPU. The nodes are connected by a 56 Gb InfiniBand link. More 
details can be found in Table 3. 

Gravel’s aggregator is realized by using the integrated CPU to 
consume GPU-initiated messages and repack them into per-node 
queues. We use MPI to send/receive the queues and allocate three 
queues per node (over allocation helps hide network latency). 
Each per-node queue is 64 kB, which we found is large enough to 
obtain most of the benefit of large messages on our system and 
does not consume an excessive amount of memory. 

To obtain the necessary thread support, all network requests 
are funneled through a dedicated network thread [31]. Upon 
receiving a per-node queue, the network thread iterates through 
each message and resolves it as a local memory operation (e.g., 
load, store). The aggregator performs best with one CPU thread 
because there are several background threads in the system (i.e., 
Gravel’s network thread, an HSA background thread, and an MPI 
progress thread). 

Currently, Gravel can support the following non-blocking 
network operations: PUT, atomic increment, and a primitive active 

message API. PUT and atomic increment operate on a partitioned 
global address space (PGAS). Atomic operations (i.e., atomic 
increment and active messages) are serialized by routing them 
through Gravel’s network thread. Thus, some operations that can 
execute locally are still routed through the NI. On our system, this 
approach is faster than using concurrent read-modify-write 
operations. Furthermore, it simplifies writing active messages. 

Six applications are evaluated with the inputs in Table 4. The 
graph applications (i.e., PR, SSSP, and color) are derived from 
GasCL, which is a single-node graph processing system for GPUs 
[32]. The following text summarizes each application. 

Giga-updates-per Second (GUPS): Described in §3 [24]. 
PageRank (PR): Ranks web pages by iteratively sending each 

vertex’s rank through its links. 
Single-source/shortest-path (SSSP): Calculates the shortest 

distance from a source vertex to every other vertex. 
Graph coloring (color): Labels each vertex in a graph such 

that no two neighbors have the same color. 
Kmeans clustering (kmeans): Iteratively groups a set of 

Cartesian coordinates into a fixed number of clusters. 

Table 3. Node architecture. 

Processor 
(AMD A10-7850K) 

CPU: 2 cores (4 threads); 3.7 GHz; 
16 kB L1D; 2 MB L2 

GPU: 8 CUs; 720 MHz; 16 kB L1D; 2 MB L2 
Memory 32 GB; DDR3-1600; 2 channels 

NIC 56 Gb/s InfiniBand card 

Software 
Ubuntu 14.04; Open MPI 1.10.1; GCC 4.9.3; 

HSA runtime 1.0.3 

Gravel’s 
configuration 

24 per-node queues (each 64 kB; 125 µs timeout); 
1 MB producer/consumer queue; 1 aggregator 

thread 
 

Table 4. Application inputs. 
benchmark(s) inputs 

GUPS ~180 million updates 
PR-1; SSSP-1; 

color-1 
hugebubbles-00020 [29] 

(~21 million vertices, ~64 million edges) 
PR-2; SSSP-2; 

color-2 
cage15 [29] 

(~5 million vertices, ~99 million edges) 
kmeans 8 clusters, 16 million points 

mer human-chr14 [30] (3.6 GB) 
 

 
Figure 12. Gravel’s scalability. 
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Meraculous graph construction (mer): Meraculous uses a 
two phases of a genome sequencing pipeline [33]. Phase 1 builds 
a distributed hash table and phase 2 traverses it. We evaluate 
phase 1 and leave phase 2, which has significant branch 
divergence, for future work. 

7 RESULTS AND ANALYSIS 
In this section, we analyze Gravel’s scalability (§7.1) and then 
compare Gravel to prior GPU networking models (§7.2). 

7.1 Scalability Analysis 
Gravel’s scalability is depicted in Figure 12. Two factors that 
impact scalability are the frequency of remote data access (i.e., an 
access through the network), and the cost of a remote access 
relative to a local access. For each input, Table 5 summarizes the 
frequency of remote data access and the average message size, 
which influences the cost of a remote access. 

Recall that our implementation serializes atomic operations 
(i.e., fetch-add and active messages) by routing all of them—
including local operations—through the NI. Thus, the throughput 
for atomics is similar for local and remote access. GUPS, kmeans, 
and mer, use atomics exclusively. Thus, even though these 
applications are dominated by remote accesses, as shown in Table 
5, they approach the ideal speedup of 8x. 

PR and color use non-atomic operations (i.e., PUT operations) 
exclusively. A local PUT is executed by the GPU directly as a store. 
Thus, for PR and color, local operations achieve more concurrency 
than remote operations because they execute across the GPU’s 
massively parallel architecture. In contrast, remote operations are 
executed by CPU threads (i.e., Gravel’s network thread) across the 
seven receiving machines. We experimented with helper threads 

at the receiver to recover some of the lost concurrency, but the 
CPU is already saturated. Thus, we observe little benefit. 

Finally, SSSP uses atomic operations (i.e., active messages) and 
PUT operations. Specifically, SSSP-2 approaches the ideal speedup 
because remote access is infrequent and Gravel is able to combine 
remote accesses into large messages (i.e., ~58 kB as shown in Table 
5). In contrast, remote access occurs more frequently in SSSP-1 
and the cost of those accesses is higher because Gravel’s 
aggregator is not effective for this input (i.e., messages are ~1.6 kB 
on average). As a result, SSSP-1 does not scale as well as other 
inputs. 

To put these results into perspective, we compared Gravel to 
CPU-based distributed systems, which do not to leverage the GPU. 
Specifically, Figure 13 shows how Gravel compares to Grappa [11] 
for GUPS and PR and to UPC [33] for mer. Notice that Gravel is 
significantly faster on one node, where aggregation and 
networking are irrelevant. Fundamentally, the GPU’s massively 
parallel architecture is better suited to the underlying data-
parallel behavior of these workloads and this advantage translates 
to eight nodes, where Gravel continues to outperform CPU-based 
systems. 

Finally, Figure 14 shows how the per-node queue size, which 
determines the maximum size of a network message, affects 
GUPS. In general, larger queues provide better multi-node 
performance, but the benefit diminishes beyond 32 kB where 
network overhead is sufficiently amortized. Thus, to obtain good 
performance without using an excessive amount of memory, we 
use 64 kB per-node queues. 

7.2 Style Comparison 
We wrote versions of each application for each GPU networking 
model using the methodology described in §3. Gravel performs 
equal to or better than the alternative prior GPU networking 
models in Figure 15. 

First, we summarize the key insights demonstrated by Figure 
15. The first two bars in Figure 15 are variants of the coprocessor 
model. Specifically, they show that the coprocessor model uses 
memory inefficiently and is not aggressive enough to overlap 
communication with computation. The third bar in Figure 15, 
which is a variant of the message-per-lane model, shows that the 
GPU generates messages that are too small for network 
transmission. The fourth and fifth bars in Figure 15 are variants 
of coalesced APIs. These bars show that packing messages within 

Table 5. Network statistics for Gravel at eight nodes. 
 Remote access frequency Average message size (bytes) 

GUPS 87.5% 65,440 
PR-1 37.7% 64,611 
PR-2 16.5% 15,700 

SSSP-1 30.0% 1,563 
SSSP-2 16.2% 57,916 
color-1 36.7% 27,258 
color-2 16.5% 9,463 
kmeans 87.5% 5,656 

mer 87.5% 64,822 
  

Figure 13. Gravel vs. CPU-based distributed systems. 
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Figure 14. Gravel’s aggregation sensitivity. 
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a WG is not sufficient. Instead, the GPU-wide aggregation taken 
by Gravel is required to obtain peak performance. 

The following paragraphs discuss each set of bars in Figure 15 
in more detail. The first set of bars, labeled coprocessor, were 
generated by configuring the coprocessor model to use the same 
amount of buffering as Gravel. Recall, the number of WIs 
executing concurrently is limited to avoid overflowing a per-node 
queue. Such small per-node queues, which are sufficient for 
Gravel, limit the amount of parallelism on the GPU, causing this 
version of the coprocessor model to perform worse than Gravel in 
all cases. This effect is pronounced for PR and color, where WIs 
access the network many times. 

In the second set of bars, labeled coprocessor + extra buffering, 
we allocate 1 MB for each per-node queue, which is an order of 
magnitude more space for per-node queues than Gravel. While 
this enables GUPS and SSSP-2 to perform as well as Gravel, most 
applications still perform worse. This is because Gravel is more 
effective at overlapping communication and computation. 
Specifically, in Gravel, per-node queues are sent through the 
network as soon as they become full or exceed a timeout, while 
the coprocessor model delays sending a message until the GPU 
kernel completes. This effect is pronounced for kmeans, which 
actually runs slower in the coprocessor model with larger per-
node queues. 

The third set of bars, labeled msg-per-lane, bypasses the 
aggregator (as described in §3). Figure 15 shows that sending small 
messages directly degrades performance. Similarly, the fourth set 
of bars, labeled coalesced APIs, shows that combining messages 
across a WG (as described in §3) is not sufficient in most cases. 
Other than SSSP-1, SSSP-2, and kmeans, coalesced APIs can lead 
to messages that are too small. 

Finally, the second-to-last set of bars, labeled coalesced APIs + 
GPU-wide aggregation, takes messages generated by the coalesced 
APIs model and repacks (i.e., aggregates) them into even larger 
messages. The effect is very large messages that resemble those 
generated by Gravel. Figure 15 shows that this optimization helps 
coalesced APIs to perform nearly as well as Gravel. Specifically, 
this experiment shows that Gravel’s superior performance over 
coalesced APIs can be primarily attributed to the fact that it 
aggregates messages across the GPU instead of across a WG. At 
the same time, we showed in Section 3.3 (Table 2) that Gravel is 

more productive than coalesced APIs, which force programmers 
to manually pack messages within a WG. 

One interesting case is mer, which uses more scratchpad than 
other benchmarks. This scratchpad usage, in combination with 
the amount of scratchpad used by the coalesced APIs model, limits 
the number of WIs that execute on the GPU concurrently. 

8 NETWORKING ON FUTURE GPUS 
In this section, we explore how future GPUs can provide better 
support for small messages. First, §8.1 suggests replacing Gravel’s 
CPU-based aggregator with dedicated hardware. Next, §8.2 
evaluates alternatives to software predication. 

8.1 Hardware Aggregator 
Currently, Gravel uses the integrated CPU to aggregate messages, 
which enables us to use current hardware—but this approach is 
inefficient. Specifically, we found that, even at eight nodes, the 
CPU’s out-of-order, multi-GHz core spends 65% of its time polling 
for GPU-initiated messages. Furthermore, these hardware threads 
cannot be used for other tasks. 

Dedicated hardware could do aggregation in a more energy- 
and latency-efficient manner. A hardware aggregator could be 
fixed-function logic, but a small programmable core would 
provide more flexibility. For example, modern GPUs and NICs 
both incorporate control processors that could be used for 
aggregation. Placing the aggregator in the GPU would allow it be 
used for other purposes (e.g., task aggregation, memory 
allocation, etc.) and enable data-parallel optimization (e.g., a GPU-
wide memory coalescer). 

8.2 Diverged WG-level Operation Analysis 
Gravel uses software predication to achieve the diverged WG-
level semantic on current hardware, but this approach introduces 
overhead that could be avoided in a GPU with hardware support. 
To test this idea we emulate the alternatives proposed in §5.3. 

To emulate a GPU that tracks control flow at WG granularity 
we perform synchronization at WF granularity. Specifically, code 
without predication (e.g., Figure 11a) works on current GPUs 
when the WG size is limited to one WF. Using this methodology, 
we observed a 1.28x speedup over software predication for a 
modified version of GUPS, called GUPS-mod, where each WI 

 
Figure 15. Style comparison at eight nodes. 

0

1

2

3

4

5

GUPS PR-1 PR-2 SSSP-1 SSSP-2 color-1 color-2 kmeans mer geo. mean

S
p

e
e

d
u

p
coprocessor coprocessor + extra buffering msg-per-lane coalesced APIs coalesced APIs + Gravel aggregation Gravel

~
8.0

~
8.0

~
9.0

~
9.9

~
9.9

0.01~



Gravel: Fine-Grain GPU-Initiated Network Messages   SC’17, November 2017, Denver, Colorado USA 

 11 

performs a random number of updates and 95% of WIs perform no 
updates (otherwise, the benchmark is too memory bound to 
observe interesting performance effects). 

Next, we evaluate fine-grain barriers by emulating the desired 
behavior in software. We found that our software-based fbar 
operations (e.g., Figure 11c) provide a 1.06x speedup over software 
predication for GUPS-mod. The software-based fbar incurs 
significant overhead and should be viewed as a lower bound. 

9 RELATED WORK 
GPUs often lack native support for WIs to initiate I/O. DCGN [16], 
and GPUfs [34] rely on the CPU to orchestrate I/O. GPUDirect 
RDMA optimizes network I/O by allowing the CPU to initiate data 
transfers between a discrete Nvidia GPU and the NIC [13]. GPUnet 
uses GPUDirect RDMA to provide a coalesced socket API for 
GPUs [18]. Specifically, WIs manage sockets by sending a request, 
over PCIe, to a CPU with GPUDirect capabilities. GPUnet does not 
do Gravel-style message combining and its coalesced APIs are 
synchronous, while Gravel’s network APIs are asynchronous. 

Semantically, NVSHMEM is similar to Gravel in that it enables 
PGAS-style distributed memory for GPUs [17]. NVSHMEM is 
limited to GPUs on the same PCIe or NVLink fabric. In contrast, 
Gravel supports large commodity networks like Ethernet and 
InfiniBand and optimizes for small messages. 

Operationally, GGAS [15] and GPUrdma [19] resemble 
NVSHMEM by enabling GPU-initiated messages without CPU 
involvement. Specifically, the GPU driver is modified to expose 
the NIC’s doorbell register and GPU code interacts directly with 
the NIC. This contribution is orthogonal to Gravel’s, which 
focuses on providing an efficient and programmable interface to 
the network. For example, GGAS interacts with the network at 
WF granularity, which we showed is not efficient. Meanwhile, 
GPUrdma uses coalesced APIs, which are less programmable than 
Gravel. 

Channels [26] and DTB [35] explore GPU-wide task 
aggregation, which is related to GPU-wide message aggregation. 
Compared to Gravel, channels was prototyped in a simulator and 
does GPU-side aggregation, which is less scalable than Gravel’s 
CPU-side aggregation scheme. DTB introduces special hardware 
instead of using shared-memory synchronization. 

Gravel’s diverged WG-level semantic resembles HSA’s fbar 
by enabling a subset of data-parallel lanes to coordinate [22]. It 
also resembles unconditional operations, described by Hillis and 
Steele [36], which temporarily activate inactive data-parallel lanes 
so that they can participate in a data-parallel computation. 

CPU-based systems like Grappa [11], GraphLab [12], and GMT 
[37], aggregate small network messages. Gravel’s GPU-
compatible aggregation scheme was inspired by these CPU-based 
systems. 

10 CONCLUSION 
Gravel enables GPUs to initiate small network messages and we 
showed that it is more programmable and performs better than 
prior GPU networking models for all of the workloads and inputs 
that we evaluated. Our main contributions were to demonstrate 
that data-parallel hardware can be exploited to amortize 

synchronization, use this insight to efficiently offload GPU-
initiated network messages to Gravel’s aggregator, and to explore 
diverged WG-level semantics. 

To prototype Gravel, we leveraged integrated GPUs to use the 
CPU for aggregation. Gravel could work with discrete GPUs, with 
the GPU writing to a producer/consumer queue in main memory 
over PCIe, and using PCIe atomic operations to synchronize. 
Current PCIe implementations may limit performance, but future 
interfaces such as CCIX [38] should improve this situation. 

Finally, our evaluation was limited to a very small cluster (i.e., 
eight nodes). CPU-based system (e.g., Grappa [11]) that focus on 
optimizing communication via aggregation, have shown that they 
can scale up to 128 nodes. Larger systems could be organized in a 
logical hierarchy (perhaps mirroring the physical network 
topology but not required), with multiple levels of aggregation. 
For example, a two level hierarchy with each level doing a 16-node 
aggregation supports 256 nodes with one indirect hop 
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