
A Serializability Violation Detector for
Shared-Memory Server Programs

Min Xu† Rastislav Bodík‡ Mark Hill†

†University of Wisconsin—Madison
‡University of California, Berkeley

1Serializability Violation Detector: what & why

Our goals:
• infer code intended atomic, ⇒ avoid costly annotations
• detect bugs harmful in this run, ⇒ is this run error-free?

Thread 1

Thread 2

Time

What’s new:
• new “atomic region”, its inference and serializability

Motivation

The Northeastern blackout, August 2003

notice Toronto going dark

The Northeastern blackout, August 2003

notice Toronto going dark

5Investigation revealed

 … a race condition, triggered on August 14th by a
perfect storm of events … . The bug had a window
of opportunity measured in milliseconds.

SecurityFocus, April 7th, 2004

Idea:
If we could detect such harmful bugs as they occur,
we could take a corrective action (e.g., reboot).

Recall we’re interested in harmful bugs:
• bugs that actually caused an error in the observed run …
• rather than in other runs, extrapolated for coverage

6Three applications of the new detector

This paper: software-based detector (slow)
1. Program debugging (post-mortem)

• replay a failed execution, pinpoint responsible bug(s)
• using our low-overhead deterministic recorder [ISCA’03]

Future work: hw-based detector will enable on-the-fly apps
2. Error reporting

• Detect manifested harmful bugs, report them to operator

3. Error avoidance
• Detect manifested harmful bugs, rollback, re-execute

How to build a detector of harmful bugs?

Q1: which correctness
condition?

Q2: should we require
program annotations?

8Q1: which correctness condition?

1.Datarace freedom [Netzer 93]
• “all conflict accesses are ordered by synchronization”
• Neither sound, nor complete

2.Atomicity [Flanagan-Qadeer 03]
• Regions are atomic if serializable in all executions

3.Serializability
• An execution is equivalent to a serial execution of all regions

Serializability: not extrapolated to un-observed executions

9Q2: require program annotations?

Annotate synchronization
• Required by datarace, atomicity detectors
• Harder without source code

Annotate atomic regions
• Required by atomicity, serializability detectors
• A burden for large legacy codes

We are not going to require a priori program annotations

Our detector

Part 1: infers code regions intended to be atomic

Part 2: checks if they are serializable

11
Part 1: Infer approximately the atomic regions

What guides the inference?
• Not the (potentially buggy) program synchronization
• but how shared variables are used in a computation

What is inferred?
• Our “atomic regions” are not syntactic code blocks (eg. methods)
• but the less constrained subgraphs of dynamic PDG

Correctness of inference
• Impossible to infer correctly without programmer knowledge
• our inference is a heuristic …
• … conservative if with post-mortem programmer examination

12Atomic Region Hypothesis

• our hypothesis is based on empirical observations
• holds for 14 out of 14 real atomic regions examined

1.Read shared variables, compute, write shared variables
i.e. all statements weekly connected via true & control dependences

2.Shared variables are not read (again) after they are written
i.e. no share true dependences

Computational Units (CUs): our form of atomic regions
• subgraphs of dynamic PDG (dPDG), formed by partitioning the dPDG
• each partition is a maximal subgraph not violating the hypothesis
a CU is a maximal connected subgraph not read-after-write a shared var

13Example of inference

Note: CU was inferred without examining synchronization
Weak connection: empirically works better than backward slice

read balance

read x

write b

write balance
read b

/* #atomic */
void withdraw(int x) {
 synchronized (this) {
 b = balance;
 }

. . .

 synchronized (this) {
 balance = b - x;
 }
}

CUCUCU

14Cut dPDG into CU’s

• Partition dPDG at . . .
. . . the starting vertices of shared true dependence arcs

• Most of the time CU’s are larger than AR’s, but . . .

x = user_input();
/* #atomic */
synchronized (this) {
 balance = balance - x;
}
. . .
/* #atomic */
synchronized (this) {
 balance = balance - x;
}

write x
read balance

read x
write balance

read balance

read x
write balance

CU

CU

15When does inference fail?

Inferred CU larger than intended atomic region
• yielding false positives (spurious warnings)
• empirically, not too many

Inferred CU smaller than intended atomic region
• yielding false negatives (miss bugs)
• when local variables mistakenly shared (see paper)

adding soundness:
• optional post-mortem examination
• programmer examines if inferred CUs too small

16Part 2: Detect serializability violations

Check for stale values at the end of a CU

More details in the paper

void withdraw(int x) {
 synchronized (this) {
 b = balance;
 }

 synchronized (this) {
 balance = b - x;
 }
}

void deposit(int y) {
 synchronized (this) {
 balance = balance + y;
 }
}

CU

Experimental evaluation

18Experiment setup

Full-system simulator
• GEMS: http://www.cs.wisc.edu/gems
• 4 processors; 4-wide OoO; 1GHz; 4GB; SPARC; Solaris 9
• Detector transparent to OS & applications
• Simulator provides deterministic re-executions

Benchmarks (Production environment setups)
• Apache (w/o, w one known harmful bug)
• MySQL (w/o, w one unknown harmful bug)
• PostgreSQL (w/o any known bug)

19Frontier Race Detector (FRD)

Goal: compare SVD with a datarace detector
• We developed it to avoid a priori annotations

FRD
• Multi-pass detection

• Run1: frontier races = synchronization races ∪ dataraces
• Manually separate synchronization races and dataraces
• Run2: find remaining dataraces

20Performance metrics

False negatives
• Silent on harmful bugs

Dynamic false positives
• Spurious reports -- including duplicates
• bad for online reporting or avoidance applications

Static false positives
• Spurious reports -- not including duplicates
• bad for offline debugging applications

Overhead
• Time & space

21False negatives

No false negatives:
• SVD: detect Apache buffer corruption (on-the-fly)
• SVD: find root cause of a MySQL crash (post-mortem)
• FRD: find the bugs since both are dataraces (post-mortem)

SVD: Soundness provided by post-mortem examination
• No a priori annotation effort required
• The post-mortem examinations take

• ~0.5 hour for Apache
• ~10 hours for MySQL
• ~1 hour for PostgreSQL

22Dynamic false positives

SVD is better than FRD in finding harmful bugs
• datarace detectors reports errors in correct executions
• far fewer dynamic false positives for Apache and MySQL

23Static false positives

• PostgreSQL: mature software, testing removed dataraces?

24SVD overhead

Overhead is high
• Time: up to 60x
• Space: up to 2x
• Room for improvement exists

• Compiler computes PDG
• Seeking hardware implementation

Eventually, should have a low overhead hardware detector

25Conclusion

A dynamic detector for harmful bugs
• 1. Program debugging
• 2. Error reporting
• 3. Error avoidance

SVD
• No a priori program annotations
• Finding harmful bugs in failing runs

Thank you!

