
ld
ster.

ctor

tor
s to

,
cu-
int
ct-
ce
i-
se
ach

];
e

y
he
ort-
v-

the

-
ch
ota-
ce
or

ina-

ns

A Serializability Violation Detector for
Shared-Memory Server Programs

Min Xu
Electrical & Computer Engr. Dept.
University of Wisconsin-Madison

mxu@cae.wisc.edu

Rastislav Bodík
Computer Science Division, EECS
University of California, Berkeley

bodik@eecs.berkeley.edu

Mark D. Hill
Computer Sciences Dept.

University of Wisconsin-Madison
markhill@cs.wisc.edu

Appears in the ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation (PLDI)
Chicago, Illinois, USA, June 12-15, 2005
Abstract

We aim to improve reliability of multithreaded programs by pro-
posing a dynamic detector that detects potentially erroneous pro-
gram executions and their causes. We design and evaluate a
Serializability Violation Detector(SVD) that has two unique goals:
(I) triggering automatic recovery from erroneous executions using
backward error recovery (BER), or simply alerting users that a
software error may have occurred; and (II) helping debug programs
by revealing causes of error symptoms.

Two properties of SVD help in achieving these goals. First, to
detect only erroneous executions, SVD checks serializability of
atomic regions, which are code regions that need to be executed
atomically. Second, to improve usability, SVD does not requirea
priori annotations of atomic regions; instead, SVD approximates
them using a heuristic. Experimental results on three widely-used
multithreaded server programs show that SVD finds real bugs and
reports modest false positives.

Categories and Subject Descriptors.D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics; D.2.4 [Software
Engineering]: Software/Program Verification—Reliability;

General Terms. Algorithms, Languages, Reliability

Keywords. Multithreading, Serializability, Race Conditions

1. Introduction
1.1. Objective
In shared-memory programs, bugs often manifest themselves only
under specific thread interleavings, and sometimes at the worst
time. For example, the 2003 U.S.-Canada power outage went
unnoticed for a crucial period of time; the reason was a data race in
the grid-monitoring system [28,35].

Fortunately, the non-deterministic nature of these timing-depen-
dent bugs can be exploited. If one can detect erroneous executions
on-the-fly, then backward error recovery (BER) can be used to roll
back a part of the erroneous execution; subsequent reexecution
with a conservative thread scheduling may avoid recurrence of the
software error. When BER is not available, detecting erroneous
executions can alert that a software error may have happened. In
the 2003 blackout, an early warning may have prompted the power

grid operators to reboot the grid-monitoring system, which wou
then warn about the power outage before it had become a disa

The goal of this paper is to develop a detector suitable for (I) BER-
based avoidance of erroneous program executions; and (II) alerting
users as software errors occur. We argue that such a dete
should have the following two properties.

Detectonly erroneous executions. Typical detectors strive for
best coverage by detectingpotentialbugs, i.e., bugs that may man-
ifest in executions not directly examined. In contrast, our detec
should detect only erroneous program executions, because it i
be deployed in the following scenarios:

• Bug avoidance with BER.Imagine a detector with low overhead
perhaps implemented in hardware. When an erroneous exe
tion is detected, the execution rolls back to a safe checkpo
and reexecutes (more) serially [30,34]. In this scenario, dete
ing only erroneous executions helps reducing the performan
lost in unnecessary rollbacks. Similarly, detecting only man
fested errors helps avoid overloading operators with fal
alarms. Because unnecessary rollbacks or alarms occur on e
instance of afalse positive, the detector should strive to reduce
dynamic false positives, which include dynamic instances of
identical warnings.

• From symptoms to bugs.Imagine we have captured a failing
multithreaded execution with a deterministic recorder [4,29,38
how do we now find the bug in the execution? Replaying th
execution with the detector will point to an error that actuall
happened in this execution; this error is likely the cause of t
failure. Detecting causes of erroneous executions avoids rep
ing errors that may exist in some other executions, thus impro
ing understanding of the execution at hand. In this scenario,
detector should strive to reducestatic false positives, which are
false warnings related to the same piece of code.

Do not require a priori program annotation. Typical detectors
requirea priori program annotations, such as identification of syn
chronization constructs or annotations of atomic regions, whi
are code regions that need to be executed atomically. The ann
tion effort is non-trivial for server programs, because the sour
code is large and sometimes not fully available, especially f
commercial software. Instead of requiringa priori annotations, we
believe that a dynamic detector that enablesa posterioriexamina-
tions is more applicable to server programs, because the exam
tion is limited to the program trace of a single execution.

1.2. Our Solution
We propose a new detector, calledSerializability Violation Detec-
tor (SVD), that seeks to detect only erroneous program executio

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PLDI’05, June 12-15, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-056-6/05/0006...$5.00.
1

at
s

-
tion

is
tly,
re
ct
n
ic

he
ro-
uld
a-
d,
nd

h
’s
ic

all
r-
y

e-

in
r-

ate-

s or
an
a-
2.

m-
at
or
r
ot
eal

in
es

uch

n

the

he
via
and
ue-
and does not requirea priori program annotation. Three ideas
underlie the design of SVD.
1)Computational units. SVD automatically infers approxima-

tions of atomic regions. We call the inferred atomic regions
Computational Units (CU’s), because the inference heuristic
relies on computational patterns, namely data and control
dependences. Because our heuristic inference does not rely on
any synchronization constructs, it identifies atomic regions
even when locks are mistakenly omitted in the example shown
in Section 2.1. Thanks to the inference, noa priori annotation
is needed.

2)Serializability. SVD detects erroneous executions by deter-
mining whether the execution violated serializability of the
inferred CU’s. Traditionally, serializability is defined for data-
base transactions. In databases, serializability means that the
execution of a group of transactions islogically equivalent to a
serial execution of the same group of transactions. In shared-
memory programs, we apply serializability to atomic regions,
which are approximated by inferred CU’s. A serializable exe-
cution is correct, because it appears that each atomic region
executed atomically. Executions that are not serializable are
often erroneous. We use an efficient yet approximate serializ-
ability test, which ensures that the memory locations read by a
CU are not overwritten by another thread before the CU ends.

3)A posteriori examination. Because inferred CU’s may differ
from the atomic regions, SVD is able to produce a log of CU’s
for the programmer to examinea posteriori. This way, pro-
grammers can discover erroneous executions that are missed
online by SVD due to inherent limitations of inferring CU’s
without anya priori annotations.

We design and evaluate SVD in a post-mortem debugging scenario
with deterministic replay. Our results show that SVD helps find
erroneous executions caused by timing-dependent bugs in
Apache [3] and MySQL [23], without requiringa priori program
annotations. Experimental results on these two server programs
show that SVD reportsfar fewerdynamic false positives andmod-
estly fewerstatic false positives than a data race detector. Experi-
mental results on PostgreSQL [27], a relatively mature server
program, show that although SVD reports more false positives
than the data race detector, the absolute false positives rate is low.
We contribute in the following aspects.

• We propose a novel detector that seeks to detect only erroneous
program executions caused by timing-dependent bugs, without
requiringa priori program annotations.

• We propose a novel method for approximately inferring atomic
regions.

• By applying the detector to large shared-memory server pro-
grams, we show the new detector is suitable for avoiding
(unknown) bugs with BER.

The rest of this paper is organized as follows. In Section 2, we use
three examples to illustrate the key ideas of SVD. In Section 3 we
formalize SVD. In Section 4, we present two versions of SVD
algorithms and outline a hardware implementation. We qualita-
tively analyze SVD in Section 5. After describing our evaluation
methodology in Section 6, we evaluate SVD in Section 7. We
present related work in Section 8 and conclude in Section 9.

2. Overview of SVD
2.1. Inferring Computational Units
To understand how SVD operates, it is useful to pretend first th
programs come witha priori annotations that specify code region
to be executed atomically. We call these code regionsatomic
regions.The programmer implements atomic regions with lock
based critical sections or by means of some other synchroniza
mechanisms, such as signal, monitor or thread fork. A program
buggy when some atomic regions are not implemented correc
e.g., when their critical sections are placed incorrectly or a
entirely missing. SVD seeks to detect if a bug in an incorre
implementation of an atomic region manifested itself in a give
execution. SVD performs the detection by verifying that atom
regions were executed in a serialized way.

Because we assume thata priori annotations of atomic regions are
actually not available, our approach is to infer these regions. T
key feature of our inference is that it does not rely on the synch
nization mechanisms used in the program; such inference wo
likely infer atomic regions that were as buggy as the synchroniz
tions, whose bugs we want to identify in the first place. Instea
SVD infers atomic regions from how shared variables are used a
from data and control dependences.

The result of SVD inference are computational units (CU’s), whic
approximate dynamic instances of atomic regions. That is, CU
are execution paths through atomic regions. (Henceforth, atom
regions refer to dynamic instances of atomic regions.) As we sh
show, SVD computes CU’s online, automatically, without requi
ing a priori program annotations, and without being affected b
(incorrect) synchronization constructs.

Informally, a CU is the largest group of dynamic program stat
ments that follow the following two-partregion hypothesis.
1) A shared variable written in an atomic region is not read aga

in the same atomic region. In other words, true (read-afte
write) dependences through shared variables between st
ments happen only across atomic regions, not within them.

2) Program statements are related through true dependence
control dependences in atomic regions. In other words,
atomic region does not perform multiple unrelated comput
tions. The precise meaning of “related” is given in Section 3.

To evaluate the power of region hypothesis, we manually exa
ined 14 atomic regions from real programs. We observed th
region hypothesis held on the common paths of all 14 regions. F
example, it holds for the atomic region in JDK 1.4 StringBuffe
class, which contains a subtle synchronization bug [16]. It did n
hold on some rare paths. We discuss in Section 2.3 how to d
with these limitations usinga posteriori examinations.

Figure 1 shows an example of a CU. The simplified code
Figure 1(a) is taken from the MySQL database server, which us
file system locks to guard database tables. In the figure, one s
lock is info→internal_lock. SVD correctly infers the atomic
region, which is implemented correctly as a critical sectio
guarded byinfo→internal_lock. The inferred CU contains four
statements, represented in the figure as an oval. To understand
inference, observe first that the shared variableinfo→tot_lock is
read and subsequently written in the CU, but it is not read in t
CU again. Second, note that the four statements are related
dependences as shown in Figure 1(b). Statements 1.05, 1.06
1.07 are control-dependent on 1.03, and statement 1.06 is tr
2

al
re
nd
ari-
e

en
e

VD
es
ng

s

s
r.
dependent on 1.05 via a local variableregister1. (The true-depen-
dence predecessor of statement 1.03 is not in the CU because it
belongs to the preceding CU; see Section 3.2). Note that SVD per-
forms the inference without using the lockinfo→internal_lock.
(The shared variableinfo→tot_lock is not a lock, despite what its
name may suggest.)

To illustrate how SVD computes a CU in a buggy program, con-
sider the example in Figure 2, where a lock is mistakenly omitted.
The simplified code shown in Figure 2(a) is taken from the
log_config module of the Apache web server. The log_config mod-
ule buffers log messages, generated from multiple threads, in a
shared memory buffer before writing them to a file. In this shown
execution, two threads execute function
ap_buffered_log_writer() simultaneously. Variablelen is thread-
local. Thread-local pointerbuf points to a shared memory buffer

(buf→bufout) and a shared index variable (buf→outcnt). In order
to avoid corrupting data inbuf→bufout, thememcpy() operation
(3.08) and the update tobuf→outcnt (3.09) should be guarded
within a critical section, which is not implemented.

Figure 2(a) shows the CU’s of the two threads. (The broken ov
shows the serializability is violated.) The shared variables a
shown in bold. Figure 2(b) shows that statements 3.05, 3.08 a
3.09 are true-dependent on statement 3.04 via the thread-local v
ablelen. Figure 2(c) shows a similar CU of thread 2. Note that th
inferred CU’s include statements from the atomic region, ev
though the programmer did not implement them correctly (th
locking is missing).

So far, we have not discussed the actual inference algorithm. S
partitions a thread execution into CU’s by following dependenc
in execution order. It groups related instructions into a CU, starti

Figure 1: SVD computes CU’s by observing dependences between program statements; SVD avoids reporting some false positive
that are reported by race detectors. (a) MySQL table locking code. Inferred CU’s are big enough to cover atomic regions
implemented correctly with the lock. The code also contains a harmless data race on shared variableinfo →tot_lock . While
race detectors will report this false positive, SVD will not, because CU’s in the execution are serializable. (b) and (c) Data and
control dependences between statements within a CU. Note that only statements that are executed are included in a CU.

Figure 2: SVD computes CU’s via dependences even when buggy code contains incorrect synchronization; SVD detects erroneou
program executions. (a) Apache’s log_config module contains a data race that corrupts the log messages stored in a shared buffe
SVD detects when corruptions happen by observing serializability of CU’s is violated. (b) and (c) Data and control dependences
between statements within a CU. Note that only statements that are executed are included in a CU.
3

eb
gi-
we
not

u-
e

ace
ame
t
D

se a

not
er

in

.03.
in

n

a new CU whenever it encounters a read from a shared variable.
SVD uses a heuristic to find shared variables. A variable is shared
if it is accessed by more than one threadafter it is accessed by a
CU andbefore the CU ends. Figure 1 and Figure 2 do not show
shared dependences that end CU’s. Yet one can imagine when one
of the shared variables (info→tot_lock and buf→bufout,
buf→bufcnt) is read back by a statements, SVD concludes that a
CU ends just befores. The end of the CU is conservative, because
the atomic region may have ended earlier thans. Figure 3 in
Section 2.3 shows some examples of shared dependences.

2.2. Detecting Serializability Violations
After SVD computes CU’s, it reports erroneous program execu-
tions whenever CU’s are not serializable. To detect serializability
violations, SVD observes thetemporal orderbetween memory
accesses from different threads (i.e., thread interleaving) andcon-
flicts between the accesses. Two accesses conflict if and only if
they access the same variable from different threads and at least
one access is a write.

2.2.1 Finding Erroneous Program Executions
To check serializability, SVD uses a heuristic that tests if conflicts
have happened oninput variablesof a CU. Input variables are
locations not written within the same CU before its first read by the
CU. This check is performed whenever a CU performs a write.
This heuristic is a relaxation of a conservative serializability detec-
tion algorithm presented in Section 3.3. It helps SVD achieve low
false positive rate by allowing unlikely false negatives (Section 4).

Figure 2(a) shows an erroneous execution of the Apache w
server found by SVD. The diamond and dot patterns shows a lo
cal interleaving of statements from the two threads. Note that
can freely reorder those statements that do not conflict, but
those statements that conflict on shared variablesbuf→bufout and
buf→outcnt. Due to the conflicts on shared variables, the exec
tion of the CU of thread 3 is “broken” by thread 4. SVD detects th
serializability violation when 3.09 is writingbuf→outcnt by
observing a conflict (3.05 vs. 4.09).

2.2.2 Avoiding False Positives w.r.t. Race Detection
Another method for detecting erroneous executions is data r
detection. A data race occurs when two threads access the s
variable with nosynchronizationbetween the accesses, where a
least one of the accesses is a write [24]. Serializability helps SV
avoid some false positives reported by race detectors, becau
program execution can beserializableand at the same time contain
data races. Although SVD does report false positives that are
reported by race detectors, we found SVD usually reports few
false positives than race detectors (Section 7.2).

Figure 1(a) shows a correct execution of the table locking code
MySQL that contains data races. Thread 1 updatesinfo→tot_lock
within a critical section (guarded by mutexinfo→internal_lock).
Thread 2 readsinfo→tot_lock without first synchronizing with
thread 1. Data races occur due to statements 1.06, 1.11 and 2
Existing race detectors would conclude the execution shown
Figure 1(a) is erroneous because of the data races.

Figure 3: SVD can miss erroneous executions (i.e. false negatives), but it generates a log for ana posterioriexamination to mitigate
the problem. The buggy code is taken from MySQL, which executes prepared SQL queries. (a) SVD stops growing CU’s when
shared dependences are observed. Variablesfield →query_id and join_tab →used_fields are mistakenlyshared. Because
true dependences are observed on the shared variables, several small CU’s are computed according to the second rule of regio
hypothesis. Therefore, SVD fails to detect this erroneous execution online. We also show a log generated by SVD that enabled ana
posteriori examination, which discovered this bug. (b) and (c) Data and control dependences between statements within a CU. Note
that only statements that are executed are included in a CU.
4

at

e

g

m
the

ic

n

re

l
hile
nt

han
rol

e-
e
. A

y

is

nd
tect
e

re-
for

on-
ict
d-
a

n-
on

,
ead
However, the data races do not indicate an erroneous MySQL exe-
cution; i.e., existing race detectors would report false positives.
The code in thread 1 impliesinfo→tot_lock is never zero for
shared tables, because shared tables must be locked before they are
used andinfo→tot_lock is initially zero. In other words, the predi-
cate of statement 2.03 is never true for shared tables.1 Therefore,
the data races are not harmful. We found that it requires non-trivial
time and effort, even by a programmer who is familiar with
MySQL, to determine the races do not indicate a bug.

SVD avoidsreporting the false positives by observing that serializ-
ability is not violated in Figure 1(a). In this execution, both CU’s
are serializable.

2.3. Logging forA posteriori Examination
Accuracy of SVD is largely determined by how closely CU’s
approximate atomic regions. When CU’s are larger than atomic
regions, SVD may report false positives. When CU’s are smaller,
SVD may miss erroneous executions (false negatives). This section
describes how we mitigate the false negative problem.

SVD logs each statements that reads a variable last written by
another thread; it also logs the remote writerw and the immedi-
ately preceding thread-local writelw to the same variable. The tri-
ple (s, rw, lw)records thatrw overwrote the value thatlw may have
intended to communicate tos. If this local communication is
indeed intended, then we find a likely bug. The programmer exam-
ines the log ina posterioriexamination. The examination allows
discovering, in a post-mortem fashion, more erroneous executions
than SVD can do online. The statements is an input to the CU, so
the log effectively records “shapes” of inferred CU’s.

For example, Figure 3(a) shows an erroneous execution caused by
a MySQL bug that we found during ana posterioriexamination.
Each MySQL query is carried on by a single thread. During execu-
tions of MySQL prepared SQL queries, two variables
(field→query_id and join_tab→used_fields), which are
intended to be thread-local, are shared between threads by mistake.
The variablefield→query_id is intended to distinguish those
fields of a database table (join_tab) that are used by a SQL query.
The variablejoin_tab→used_fields is used to record the total
number of fields used by the query. During the execution, thread 5
initially computes number of fields that it uses (5.08). Then, thread
6 updates the values offield→query_id (6.03) and
join_tab→used_fields (6.08), which later causes the loop of
thread 5 (5.12) to go out-of-bounds based on an inconsistent value
of join_tab→used_fields. This bug crashes MySQL server with a
segmentation fault.

Because the thread-local variables are mistakenly shared, in order
to detect erroneous executions of MySQL, we must detect serializ-
ability violations for those atomic regions that provide mutual
exclusion to the accesses to these variables. However, variables
like field→query_id and join_tab→used_fields are read back
within the atomic regions, violating the second rule of region
hypothesis. SVD fails to report erroneous executions caused by
this bug, because it forms CU’s smaller than the atomic regions.
Unfortunately, serializability for these small CU’s is not violated
during the execution as shown in Figure 3(a). Figure 3(a) shows a
log that contains statements 5.12 and 5.14. When a programmer

examines the log, he can discover this bug by noticing th
join_tab→used_fields and field→query_id are mistakenly
shared. After he fixes the bug, SVD will no longer break th
atomic regions into small CU’s in future executions.

3. Definitions of CU’s and Serializability
This section formalizes the two key ideas behind SVD: inferrin
atomic regions and detecting serializability violations.

3.1. Dynamic Program Dependence Graph
We define computational units usingdynamic program depen-
dence graph(d-PDG). A d-PDGrepresents dependences on apro-
gram traceof a multithreaded program execution. The progra
trace is a sequence of all dynamic statements executed by all
threads, listed in execution order, a total order denoted→. We say
that if dynamic statement is executed before dynam
statement or if . Athread trace of thread is a subse-
quence of the program trace such that all dynamic statements i
were executed by .

A d-PDG is a directed acyclic graph , whose vertices a
dynamic statements and arcs are dependences partitioned intotrue
(), control (), or conflict() dependences. True and contro
dependences exist only between vertices of the same thread, w
conflict dependences exists only between vertices of differe
threads. A true dependence arc exists whenever (I) ;
(II) a location defined in is used in ; and (III) is not
defined on the thread trace between and in a vertex other t

. Note that may be defined by some other thread. A cont
dependence arc exists whenever (I) modifying the predicate
value of the conditional branch would result in not being ex
cuted; and (II) no other conditional branch on the thread trac
between and could be used to bypass the execution of
conflict dependence arc exists whenever (I) ; (II) a
location is written by and read or written by or is read b

and written by ; (III) is not written on the program trace
between and by a vertex other than and ; (IV) and
were executed by different threads. Our d-PDG definition
slightly different from the definition given by Miller and
Choi [21]. In particular, we include conflict dependence arcs a
omit synchronization dependence arcs; we use the former to de
serializability violations (Section 3.3), while we do not rely on th
identification of the latter in the SVD algorithm.

To ensure that d-PDG is acyclic, we assume that vertices cor
spond to atomic operations and are fine-grain enough such that
all arcs we have the property .

In contrast to d-PDG, athreadd-PDG (td-PDG) represents depen-
dences in a thread trace. A td-PDG thus contains all true and c
trol dependences of a given thread trace and omits all confl
dependences. In other words, td-PDG is a result of partitioning a
PDG by thread membership of vertices. A td-PDG is identical to
dynamic dependence graph defined by Agrawal and Horgan [1].

In order to define a computational unit, we partition true depe
dences according to the nature of their locations. Dependences
variables not shared among threads are calledtrue-local depen-
dences, while remaining true dependences are calledtrue-shared
dependences. These two sets of arcs are denoted and
respectively. Note that true-shared dependences are intra-thr
dependences, even though they involve shared variables.1. The predicate of statement 2.03 can be true for thread-local

temporary tables, which need not be locked.

a b→ a
b a b= r t

r
t

V E,()

Et Ec Eh

a b,() b a→
v b a v

b a
b v

a b,()
b a

b a a
a b,() b a→

v b a v
b a v

b a a b a b

a b,() b a→

El Es
5

e

e

er
ce.

y
re

a

te
ns

U
iva-

ny
’s
ti-

by
em
es.

aliz-

a
een
lu-

e

it-
t

il-
s.

if
is
t
se

es-

red
.

3.2. Computational Units (CU)
A computational unit (CU) is an approximation of an atomic
region. (Recall that a CU is neither an over- nor an under-approxi-
mation of an atomic region.) Specifically, a CU is a partition of a
td-PDG determined by region hypothesis. Recall from Section 2
that region hypothesis places two constraints on CU’s.
1) Within an atomic region, a write of a shared location must

not be followed by a read of . In other words, a CU must not
contain any .

2) An atomic region does not perform multiple “independent”
computations. In other words, vertices of each CU must be
weakly connected. (A directed graph is weakly connected if
and only if its underlying undirected graph is connected.)

Unfortunately, the two constraints do not produce a unique parti-
tion of a td-PDG, even under the natural goal that each CU is max-
imal. This is because there is, in general, a choice as to where to
cut a weakly connected graph to satisfy the first constraint. To
make CU’s unique, we define a heuristic that selects unique cuts.
These cuts will be determined in execution order, so that vertices
close in the program are grouped into the same CU.

Our plan is to define a set ofcrossing arcswhose removal will par-
tition a weakly connected component such that a shared arc will be
removed from it. After removing all crossing arcs and all shared
arcs, the largest weakly connected components of td-PDG will
yield a unique set of CU’s.

Definition 1: Let . We say that is across-
ing arc of iff there exists such that (I) ;
and (II) and are weakly connected along arcs of .

Figure 4 shows an example crossing arc. The control dependence
arc is a crossing arc, because there is a shared dependence

such that the vertices and are weakly connected along
arcs of , and precedes in execution order. After the
crossing arc is removed, is no longer in the same weakly
connected component (along local and control arcs).

The following definition operationally defines a unique set of
crossing arcs to remove, thus defining the partitioning of a thread
trace into CU’s.

Definition 2: A reduced dependence graphof a td-PDG is
obtained by removing from arcs as follows.
1) Find an earliest arc2 . An arc is defined to be

earlier than arc if .
2) Remove all crossing arcs of .
3) Remove arc .
4) Repeat step 1, 2, 3 until is empty.

Informally, as illustrated in Figure 4, we cut a td-PDG just befor
the execution reaches the source vertex of each shared arc.

Definition 3: Given a td-PDG , thecomputational unitof a vertex
is the set of vertices that are weakly connected with in th

reduced dependence graph of .

CU’s defined by Definition 3 can overlap in a thread trace. In oth
words, vertices of a CU are not always adjacent in the thread tra
In the following, however, we assumenon-overlappingCU’s so
that we can derive a heuristic to detect serializability violations b
drawing results from database serializability theory as if CU’s a
database transactions.

3.3. Serializability and Strict 2PL
In this subsection, we define CU serializability and we derive
heuristic to detect serializability violations.

In shared-memory programs, CU’s from different threads execu
concurrently. However, correct and incorrect program executio
differ in whether CU’s areserializable.

Definition 4: CU’s of a program trace areserializable iff there
exists anequivalentprogram trace where all statements of each C
are adjacent to each other. We say two program traces are equ
lent if they have identical d-PDGs.

If a thread trace contains only non-overlapping CU’s, then at a
given time the thread is executing at most one CU. All other CU
of the thread are either finished or not started. This model is iden
cal to the serializability model of databases if CU’s are replaced
database transactions [25]. In this case, CU serializability probl
is equivalent to the transaction serializability problem in databas

In databases, a popular method to guarantee transaction seri
ability is the2-Phase Locking (2PL)protocol [14].Strict 2PLpro-
tocol is an important variation of 2PL protocol. In Strict 2PL,
transaction must gain exclusive access to the shared data betw
its initial access to the data and the end of the transaction. Exc
sive access means (I) no other transaction can write a datum if th
transaction is exclusively reading the datum, (II) no other transac-
tion can read or write a datum if the transaction is exclusively wr
ing the datum. Not violating strict 2PL is sufficient yet no
necessary for serializability.

Here, we draw the results from strict 2PL to detect CU serializab
ity violations. We check program traces for strict 2PL violation
In particular, we check whether any statement of a CUk has con-
flicted with a statement from a different thread beforek finishes. A
conflict beforek finishes is equivalent to failing to have exclusive
access to a shared datum. We report a serializability violation
strict 2PL is violated. The detection based on strict 2PL violation
conservative, because not violating strict 2PL is sufficient yet no
necessary for serializability. We choose this heuristic, becau
detecting strict 2PL violations does not require exchanging exc

v
v

e Es∈

y x,() Ec El∪∈ y x,()
b a,() b a,() Es∈ y b→

x a Ec El∪

b a,()
y x,() a x

El Ec∪ y b
y x,()

Figure 4: After the crossing arc is removed, the shared
arc is no longer in the same weakly connected
component (along local and control dependences).

b a,()
y x,()

2. An earliest arc is unique if each vertex read at most one sha
variable (possible if dynamic statements are fine-grain enough)

t
t

e Es∈ b a,()
y x,() b y→

e
e

Es

t
x x

t

6

ors

tate-

re

hm

ole
n

t

ans
ns a

pro-
lso
ss
By

ve
ol-

at
ble
he

ll

e-
rcs
t”.
es-
ly

he
ing
n
by

rts
o
ict
te-

each
he
of a
s,

,

sive information, such as timestamps, between threads. More accu-
rate detection of serializability violations is possible with higher
detection cost. We leave exploring this direction to future work.

4. Serializability Violation Detector
This section describesSerializability Violation Detector (SVD), a
software-based online detector. To simplify the presentation, we
first give a simple offline,multi-passalgorithm in Section 4.1.
Section 4.2 presents an online algorithm. SVD uses several heuris-
tics to achieveone-passdetection. Section 4.3 presents some prag-
matic considerations when we implement SVD. Finally,
Section 4.4 briefly discusses a potential hardware version of SVD.

4.1. An Offline Algorithm
In this section, we describe an offline, multi-pass algorithm. The
offline algorithm detects serializability violations of a program
execution by scanning the program trace multiple times. To help
understand the basic principles of our detector, we keep the offline
algorithm as simple as possible. Later on in Section 4.2, we give an
online, one-pass algorithm.

4.1.1 Program Traces and Dependence Predecess
The offline algorithm operates on program traces where (I) true-
dependent and control-dependent predecessors of a dynamic s
ment s are known and stored in a data structures.depPred, and
(II) a boolean flagv.sharedindicates whether a variablev is shared.
It is important to note that these two types of information a
required only by the offline algorithm. The online algorithm in
Section 4.2 does not require them. Instead, the online algorit
employs heuristics to compute them on-the-fly.

We assume two selection functions that let us scan either the wh
program trace or each individual thread trace. Functio
next_dyn_stmt_in_P_exec(r)returns the next statements that fol-
lows r regardless of whethers is executed by the same thread tha
executedr. Functionnext_dyn_stmt_in_T_exec(r,t)returns the next
statements that followsr, with the restriction thats andr must be
executed by the same threadt.

4.1.2 Three Passes of the Offline Algorithm
The offline algorithm operates in three passes. The first pass sc
each thread trace and computes CU’s. The second pass assig
unique sequence number to each dynamic statement in the
gram trace, which defines a total order. The second pass a
records where a CU finishes its execution. Finally, the third pa
scans the program trace and checks for strict 2PL violations.
doing so, serializability violations are detected and reported.

Figure 5 shows how the offline algorithm computes CU’s from
thread traces. The key for the algorithm is to find and remo
crossing arcs from a td-PDG as a thread is executing. Using a bo
ean variable,active, the offline algorithm distinguishes those CU’s
that are still “connecting” to future statements and those CU’s th
are “cut” by shared dependence arcs. The offline algorithm is a
to compute CU’s in one pass, which is an important feature for t
online algorithm later.

In Figure 5, the offline algorithm starts by iterating through a
statements for each thread trace. For each variablev that a state-
ment reads, we check whether any statement ins.depPredwrote
v andv is shared (line 4-7). If so, then the CU that contains the pr
decessor is marked inactive (line 8). Therefore, all crossing a
that connect to the CU from a later dynamic statement are “cu
Next, all active CU’s that contain any of ’s dependence predec
sors are merged (line 10), i.e. we build a larger CU that is weak
connected. Finally, is added to the resulting CU (line 13) and t
dependences in the CU are allowed to propagate further by leav
the CU active (line 14). Once CU’s are computed, the informatio
about which statements belong to which CU is stored to be used
future passes of the algorithm.

Figure 6 shows how the offline algorithm detects and repo
potential serializability violations by first assigning a total order t
all statements in a program trace. After that, it checks for str
2PL violations. The second pass iterates through all dynamic sta
ments of a program trace and assigns a unique sequence ID to
of them (line 4). Because we have already computed CU’s in t
first pass, we can record the sequence ID of the last statement
CU (line 5), i.e. when a CU finishes its execution. In the third pas
the offline algorithm checks for conflicts due to a statements0 from
a threadt0 and a statements1 in a CU of a thread other thant0
(line 13-15). If so, line 16 checks for strict 2PL violations. Finally
line 17 reports serializability violations.

Data Structures
// S_T includes memory values (variables) that are being

loaded and stored by a dynamic statement. The sets.dep-
Pred includes statements thats is directly true-dependent
or control-dependent upon. The referencecu points to the
CU that contains this statement.

S_T ::= structure (VAL leftValue,
SET<VAL> rightValues,
SET<S_T> depPred, CU_T cu)

// CU_T includes a set ofS_T, a set of values and a boolean
flag. Variables inshVars are shared and have been writ-
ten by this CU.

CU_T ::= structure (SET<S_T> stmts,
SET<VAL> shVars, bool active)

// T_T is a set ofS_T comprising a thread trace
T_T ::= SET<S_T>

Algorithm
1 forall t in all threads of the program trace {

S_T s
while ((s := next_dyn_stmt_in_T_exec(t,s)) != NIL) {

forall v in s.rightValues {
5 forall st in s.depPred {

if (st.cu.active==TRUE &&
v in st.cu.shVars)// shared dependence
st.cu.active := FALSE

} }
10 s.cu.stmts :=

forall st in s.cu.stmts { st.cu := s.cu } // update cu
s.cu.stmts := s.cu.stmts + s
s.cu.active := TRUE

15 if (s.leftValue.shared)
s.cu.shVars := s.cu.shVars + s.leftValue

} // end of while
// “close” CU’s, after finished scanning a thread trace
forall cu in t {

20 if (cu.active) { cu.active := FALSE }
} }

Figure 5: The offline algorithm scans each thread trace and
computes CU’s.

st cu stmts⋅⋅
st s depPred⋅∈ st cu active⋅⋅ TRUE≡∧

∪

s

s

s

7

m.

ing
ms
ck
While the offline algorithm is simple, it cannot be used online and
requires program traces annotated with extra information. Next,
we approximate the offline algorithm with an online algorithm,
which includes several heuristics.

4.2. An Online Algorithm
Unlike the offline algorithm, SVD computes CU’s and detects seri-
alizability violations in one-pass. Therefore, SVD can be used
online during program execution although its performance over-
head may be high. Furthermore, SVD infers which variables are
shared as well as true and control dependences automatically.
Recall that the offline algorithm requires this extra information.

One of the goals of SVD is to detect erroneous program executions
regardless of whether program source code is available. Therefore,
SVD uses only information that is available from program bina-
ries. In particular, SVD usesdynamic instructionsinstead of
dynamic program statements as the unit of computation and SVD
uses fixed-sizedmemory blocksinstead of variables as the unit of
memory accesses.

As shown in Figure 7, the online detection algorithm of SVD
observes a stream of “events”. An event is either a dynamic
instruction or a remote accessmessagefrom other threads.
Because threads execute in parallel, multiple instances of this algo-
rithm are running simultaneously. Like the offline algorithm, this
algorithm needs a data structure to represent a CU (CU_T’’). In
addition, because dynamic instructions operate on both memory
blocks and registers, we define a memory block data structure

(BLK_T) and a register data structure (REG_T). In the following,
we describe some key heuristics that enable this online algorith

Infer true dependences via CU reference propagation. SVD
automatically infers true dependences online by propagat
unique CU references along program data flow graph as progra
execute. First, SVD keeps a CU reference for each memory blo

Data Structures
// S_T’ records information of a statement
S_T’ ::= structure (int seqId, T_T’ thread,

CU_T’ cu, VAL leftValue,
SET<VAL> rightValues)

// CU_T’ records information about a CU
CU_T’ ::= structure (SET<S_T’> stmts,

int maxSeqId)
// T_T’ is a set of CU’s of a thread trace
T_T’ ::= SET<CU_T’>

Algorithm
1 int gSeqId := 0

S_T’ s
while ((s := next_dyn_stmt_in_P_exec (s)) != NIL) {

s.seqId := gSeqId++ // generate a total order
5 s.cu.maxSeqId := (s.cu.maxSeqId > s.seqId)?

s.cu.maxSeqId : s.seqId
}
while ((s := next_dyn_stmt_in_P_exec (s)) != NIL) {

forall t in all threads in a program trace {
10 if (t != s.thread) {

forall cu in t {
forall st in cu.stmts {

if ((s.leftValue == st.leftValue ||
s.leftValue in st.rightValues ||

15 st.leftValue in st.rightValues) &&
(cu.maxSeqId > s.seqId > st.seqId)) {

report_violation (s, st)
} } } } } }

Figure 6: The offline algorithm scans the total order of a
program trace and records where a CU finishes its execution.
It scans again the program trace and checks for strict 2PL
violations to detect serializability violations.

Data Structures
// FSM_STATE as defined in Figure 8
FSM_STATE ::= enum (Idle, Loaded, Loaded_Shared,

Stored, Stored_Shared, True_Dep)
// CU type
CU_T’’ ::= structure (SET<BLK_T> rs,

SET<BLK_T> ws)
// memory block type
BLK_T ::= structure (CU_T’’ cu, FSM_STATE state)
// register type
REG_T ::= structure (SET<CU_T’’> cuSet)

Subroutines
check_violations() // check serializability violations
merge_and_update() // merge units in a cuSet
deactivate_log_CU() // stop growing a CU & generate log
ctrl_dep_from_stack() // aggregate control dependences
push_ctrl_cu(), pop_ctrl_cu() // control dependence stack
is_instr() // check if an event is an instruction or a message

Algorithm
1 repeat until no more events {

currrentTarget := 0x0 // control reconvergence point
switch (event) {
case (LOAD) args (block, destReg):

5 if (block.state == ‘Stored_Shared’)
deactivate_log_CU(block.cu)

block.cu.rs := block.cu.rs + block
dest_reg.cuSet := { block.cu }
break

10 case (ALU) args (srcR1, srcR2, destR):
destR.cuSet := srcR1.cuSet srcR2.cuSet
break

case (STORE) args (srcReg1, srcReg2, block):
// reg 1, reg2 contain data and addr, respectively

15 dataCuSet := srcReg1.cuSet
addrCuSet := srcReg2.cuSet
ctrlCuSet := ctrl_dep_from_stack()
check_violations(dataCuSet addrCuSet

 ctrlCuSet)
20 block.cu := merge_and_update(dataCuSet)

block.cu.ws := block.cu.ws + block
break

case (BRANCH) args (srcReg, target):
if (target.op == ‘BA’) // ‘BA’ is Branch-Always

25 currentTarget := target.target.pc // if...else...
else currentTarget := target.pc // if...
push_ctrl_cu(srcReg.cuSet, currentTarget)
break

case (REMOTE_ACCESS) args (block):
30 if (block.state == ‘True_Dep’)

deactivate_log_CU(block.cu)
break

} // end of switch
if (is_instr(event) && event.pc == currentTarget)

35 currentTarget := pop_ctrl_cu()
} // end of repeat until

Figure 7: SVD’s online detection algorithm.

∪

∪
∪

8

uc-

n-
ck-

m-
the

d
ds,
al

n
ad,
the

n-
U

u-
pen-
in

s

of a

the

is
em-

D
rd:

nally

ake
en

U
ic
ead

em-
n-
one
in BLK_T.cu. SVD also maintains a set of CU references for each
machine register inREG_T.cuSet. When a memory block is
loaded into a register, the CU reference of the memory block is
stored in the set of CU references of the register (line 8). This tags
the register to be true-dependent on the memory block that is rep-
resented by the unique CU reference. When an arithmetic instruc-
tion is executed, SVD obtains the union of the two sets of CU
references of the two source registers and stores the resulting set in
the CU reference set of the destination register (line 11). Similarly,
this tags the destination register to be true-dependent on the set of
memory blocks that affect the source registers. Finally, when it
comes to store instructions, SVD needs to store the dependences
that are represented by the set of CU references of the source regis-
ter into a single CU reference of the destination memory block.
Therefore, SVD consolidates the dependences by merging all CU’s
pointed to by the set of CU references of the source register
(line 20). Functionmerge_and_update()first merges all CU’s, then
updates old CU references stored in memory blocks and registers
to a reference that is pointing to the new CU. Note that SVD never
explicitly stores the true dependences between td-PDG vertices.
Instead, SVD records enough information so that we know which
CU will contain td-PDG vertices that are weakly connected via
true dependences.

Infer partial control dependences via Skipper heuristic. SVD
infers partial control dependences using a simple heuristic pro-
posed in Skipper [7]. SVD infers only the control dependences of
the if-then-elsetype of control flows. SVD does not infer control
dependences of the loop type control flows. In particular, SVD
keeps a stack of branch instructions and their control flowrecon-
vergence points[11]. When a branch instruction is executed, SVD
first probes the branch target of the instruction and determines the
control flow reconvergence point of the branch instruction (line 24-
26). SVD then pushes the set of CU references that affect the
branch instruction’s outcome and the reconvergence point onto the
stack. Later on, when the control reconvergence point is reached,
SVD pops the top of the stack and updates the variablecurrent-
Target for next reconvergence point (line 34-35).

On line 17, SVD queries control dependences when store instr
tions are executed. Functioncontrl_dep_from_stack()aggregates
all sets of CU references currently stored in the control depe
dence stack. The resulting set of CU references are used in che
ing serializability violations, which will be discussed shortly.

Infer shared memory blocks. In multithreaded programs, mem-
ory blocks are allocated, freed, and reallocated. Therefore, a me
ory block can change between being thread-local or shared in
life time of the program. SVD keeps a state (BLK_T.state) for
each memory block to infer if a block is in thread-local or share
state. Note that although memory blocks are shared by all threa
SVD’s data structures are privately maintained for each individu
thread, i.e. different threads have separateBLK_T.state for the
same memory block.

SVD maintainsBLK_T.state using a finite state machine as show
in Figure 8. The state changes according to the sequence of lo
store, and remote access events that happen to a block. Among
six states, two states (Loaded_Shared andStored_Shared) rep-
resent that a shared block. When SVD detects that a CU is fi
ished, SVD resets the block state of all blocks belonging to the C
to Idle — one of the states that represent a thread-local block.

Detect shared dependence. The purpose of maintaining
BLK_T.state is that SVD can detect when a CU finishes its exec
tion as shared dependences happen. SVD detects shared de
dences on a memory block through two state transitions
Figure 8: (I) a load happens on a block inStored_Shared state
(also shown by line 5-6 in Figure 7) or (II) a remote access happen
on a block inTrue_Dep state (line 30-31 in Figure 7). In both
cases, the block state is changed toIdle as SVD detects the end of
a CU. Functiondeactivate_log_CU()not only removes references
of a CU from the SVD data structures (BLK_T, REG_T, and con-
trol dependence stack), but also changes the state of all blocks
CU to Idle and generates proper entries in the CU log for thea
posteriori examination.

Check for strict 2PL violations. SVD checks for strict 2PL vio-
lations whenever a store instruction is executed (line 18). From
three sets of CU references (Section 4.3 explainsaddrCuSet),
SVD builds a list of memory blocks that the store instruction
control-, true-, or address-dependent upon. For each of these m
ory blocks, SVD checks if any conflict has happenedafter the CU
has accessed the block. For brevity, we do not show how SV
keeps track of conflicts. However, the basic idea is straightforwa
SVD keeps aBLK_T.conflict flag for each memory block, and sets
it as load, store and remote access events are observed, and fi
resets it when a CU ends.

4.3. Pragmatic Considerations
This section presents several pragmatic considerations to m
SVD easier to implement and achieve a better trade-off betwe
false negatives and false positives.

Represent CU with memory blocks, not dynamic instructions.

Instead of using a set of dynamic instructions to represent a C
(which is similar to the offline algorithm that uses a set of dynam
program statements), SVD uses two sets of memory blocks: a r
set and a write set (CU_T’’.rs andCU_T’’.ws) to represent a CU.
This is easier to implement, because SVD does not need to rem
ber an arbitrary number of dynamic instructions. In our impleme
tation, because each dynamic instruction accesses at most

Figure 8: Memory block finite state machine (minimized).
9

es

to
er
en-
cut
re
lse
he
is

not
a

We

n in
l a

mic
y
by

ry
par-
on-

use
h is

z-

ry
is-
ave
memory block, representing CU with memory blocks is strictly
cheaper than representing CU with dynamic instructions. This
approximation, however, introduces aliases when multiple
dynamic instructions access the same memory block. Aliasing
makes SVD infer CU’s more conservatively, because more
dynamic instructions may be included in a CU. We leave studying
the impact of this approximation to future work.

CU’s are weakly connected via only true dependences.By defi-
nition, vertices of a CU should be connected by either true or con-
trol dependence arcs. However, due to implementation constraints,
we have only implemented connecting memory blocks of a CU
through true dependence arcs. As shown on line 20, function
merge_and_update()merges only CU references fromdata-
CuSet. SVD stores the resulting new CU for further dependence
propagation. On the other hand, SVD does check control depen-
dences for serializability violations. We leave weakly connecting
CU vertices via control dependence arcs to future work.

Handle vector, pointer data types (address dependences).SVD
extends the offline algorithm to support vector and pointer data
types by checking conflicts on address-dependent memory blocks
when store instructions are executed. One of the source registers of
a store instruction contains true dependences that affect the address
computation of the store instruction (line 16). SVD computes the
address dependences (addrCuSet) and reports serializability vio-
lations if any conflict happens to any of the memory blocks that
affect the address computation of the store instruction. We do not
propagate address dependences after variables are written to mem-
ory, because we find doing so causes more false positives.

Check only input blocks of a CU. Function check_violations()
checks only the input blocks of a CU (CU_T’’.rs) for conflicts
(line 18). This heuristic is not sufficient to detect all serializability
violations. However, because SVD is conservative in detecting
serializability violations, it is likely SVD reports false positives. In
practice, we found employing this heuristic is more likely to find
erroneous executions that are not serializable, hence, reduces
SVD’s false positives.

Approximate threads with processors.Finally, in our evaluation
infrastructure (Section 6), threads may migrate from one processor
to another. SVD does not have the ability to detect thread migra-
tion. Therefore, SVD approximates threads with processors, i.e.
the algorithm shown in Figure 7 has a running copy for each pro-
cessor in a simulated multiprocessor system.

4.4. Potential Hardware SVD
As more transistors become available on-chip, we believe that the
overhead of the software version SVD can be dramatically reduced
if some parts of it are implemented in hardware. First, hardware
can help SVD infer true and control dependences if we piggyback
CU references propagation to existing hardware data paths. Sec-
ond, multiprocessor caches can help store CU’s. Finally, cache
coherence protocols can help detect serializability violations. We
leave the detailed design and evaluation of hardware SVD to future
work.

5. Qualitative Analysis
SVD relies on many heuristics to detect erroneous program execu-
tions. When these heuristics fail, SVD either fails to report errone-
ous executions (false negatives) or mis-reports correct executions

(false positives). This section analyzes the most important caus
of false negatives and false positives.

5.1. False Negatives
Atomic regions contain shared dependences. As shown in
Figure 3, a read to a shared variable (5.14) that follows a write
the same variable (5.03) may exist in an atomic region. In oth
words, atomic regions of a program may contain shared dep
dences. When such behavior exists in a program, SVD can
weakly connected components of td-PDG to infer CU’s that a
smaller than the atomic regions. These small CU’s can cause fa
negatives, because small CU’s may be serializable while t
atomic regions are not serializable. Although we mitigate th
problem by allowinga posterioriexamination to CU’s inferred by
SVD, these false negatives are still harmful, because SVD can
use BER to avoid them online. A better solution is to detect when
shared variable is not meant to be shared by the programmer.
leave exploring this direction to future work.

Atomic regions contain “independent” computations. Not all
statements in an atomic region are weakly connected. As show
Figure 9, an atomic region contains code to dequeue and fil
shared data queue. If bothfield_a andfield_b are read from pro-
gram inputs, i.e. not dependent, then the statements in this ato
region are not weakly connected. Again, small CU’s inferred b
SVD can cause false negatives. SVD mitigates the problem
checking address dependences (on variablehead) before a vari-
able is written to memory. In our experiments with shared-memo
server programs, we have not observed false negatives (by com
ing with another race detector) caused by atomic regions that c
tain “independent” computations.

5.2. False Positives
CU’s that are too large.CU’s that are larger than the atomic
regions can lead to false positives. CU’s can be too large, beca
SVD cuts CU’s when shared dependences are observed, whic
often after atomic regions have finished.

Strict 2PL violation. SVD can report spurious serializability vio-
lations when an execution violates strict 2PL but is still seriali
able.

Finally, our SVDimplementationemploys other heuristics, such as
representing CU’s with memory blocks, using fixed-size memo
blocks, and checking only input blocks for a CU, etc. These heur
tics also can cause false negatives and false positives. We le
detailed studies of their impacts to future work.

Figure 9: An example of an atomic region that contains
independent computations. On the right, address dependences
between statements are shown.
10

re

sin
u-
, 4-
9.

nd

the
g
off
art
ta-
ay

VD.
tups

to

ce

em-

ore
ory
aces
n,

ng
ting
hen

ther
r
ion
efore

ard
ting

The
ens-
yn-
To
Next, we quantitatively evaluate SVD using shared-memory server
programs (Section 6 and Section 7).

6. Evaluation Methods
The major premise of SVD is that it can be integrated with BER to
avoid erroneous executions transparently. Our methodology mea-
sures the success of SVD indirectly by comparing SVD with a
happens-before race detector that we have developed.

By using both detectors on identical executions of three large
shared-memory programs, we measureapparent false negatives
anddynamic false positivesof SVD. Apparent false negatives are
those erroneous program executions that are found by the happens-
before detector but not by SVD. SVD is as effective as the hap-
pens-before detector if no apparent false negatives are found.
Dynamic false positives are those dynamic instances of false posi-
tives reported by SVD. Reporting few dynamic false positives is
important for a detector that is used in BER, because the number of
dynamic false positives is proportional to the performance loss due
to unnecessary rollbacks.

Our methodology favors the happens-before detector, because the
required a priori annotation is available to the happens-before
detector only.

We also evaluate thestatic false positivesand how well a detector
helps programmers understand bugs. These metrics are important
when SVD is used with a post-mortem debugger. Static false posi-
tives do not include multiple warnings from the same static piece
of code. Reporting few static false positives keeps programmers
from being distracted. Helping programmers understand bugs
means they can fix the bugs more quickly. We also report perfor-
mance overhead of SVD.

Next, we describe our evaluation infrastructure and the happens-
before race detector that is used to compare against SVD.

6.1. Simulation-based Deterministic Replay
We use Simics [19], a full-system simulator, at the center of our
evaluation infrastructure. First,full-system simulationprovides a
deterministic and flexible execution environment for shared-mem-
ory programs. Starting from the same simulation checkpoint each
time a program executes in Simics, the thread/process interleaving
is solely determined by an initial random seed. By specifying the
same seed, we can “replay” the same execution in Simics. Second,
Simics provides a flexible implementation platform for SVD,
which needs to capture various execution events, such as register
reads/writes. Not only does Simics enable us to apply SVD to a

wide range of programs, but also it allows us to study a hardwa
design of SVD in future work.

To obtain realistic program execution behavior, we use Wiscon
SMP Performance Model [2,20,37] to model the timing of a sim
lated SMP system, which contains four cache-coherent, 1 GHz
way issue, out-of-order, SPARC processors running Solaris
SVD is entirely hidden from the simulated programs and OS a
therefore does not perturb the simulated program executions.

The disadvantage of the simulator is its slowdown compared to
native execution. We overcome this problem by fast-forwardin
and sampling the simulated executions. Fast-forwarding turns
the detailed timing simulation and helps us simulate only the p
of the program execution that contains the actual bug manifes
tion. Sampling helps us study how long-running programs m
impact SVD.

Table 1 summarizes the three server programs we use to test S
Programs are 285,000 lines of source code or greater. Our se
are derived from actual bug reports to these server programs.The
bug causing crashes in this MySQL setup was not known prior
running SVD. Our setup adequately tests the scalability of SVD.

6.2. The Frontier Race Detector
To compare with SVD, we implemented a happens-before ra
detector called theFrontier Race Detector(FRD). A happens-
before detector detects a race if two threads access a shared m
ory location and the accesses arecausally unorderedin a precise
sense as defined by Lamport [18]. The original happens-bef
detectors compute the causal relationships between mem
accesses based on known synchronization. FRD detects data r
in two passes. In the first pass, without knowing synchronizatio
FRD first computes the tightest races, i.e. those conflicti
accesses that are not causally ordered by any other conflic
accesses. These tightest races are called the frontier races [9]. T
FRD asks the programmer to annotate the frontier races as ei
dataor synchronizationraces. After that, the frontier race detecto
scans the same program trace with the known synchronizat
accesses and finds data races just like a standard happens-b
race detector.

We chose to use the frontier race detector instead of a stand
happens-before detector, because we wanted to avoid annota
the massive amount of source code of the server programs.
frontier detector reports the same set of data races as a happ
before detector. However, it requires us to annotate only the s
chronization operations that actually exist in the program trace.
avoid false sharing, we useword-size blocks in SVD and FRD.

Table 1: Test Programs

Name Description The Erroneous Execution
Apache Apache is a multithreaded open source web server. We use SURGE [5] to generate web

requests that fetches a total of 500MB static web pages. We use apache 2.0.48 and enable a
feature that buffers the access log in memory. Apache has estimated 285,000 lines of code.

Apache silently corrupts its access log with
this setup. The bug was reported and a patch
was available before we applied SVD.

MySQL MySQL is a multithreaded open source database management system (DBMS). We use
MySQL 4.1.1-alpha and an in-house query generator to continuously issue SELECT queries
using the new prepared query interface of MySQL. MySQL has estimated 728,000 lines of
code.

MySQL crashes non-deterministically with
this setup. The crash was reported to MySQL
developers. However, the root cause and a
patch wasnot known before we applied SVD.

PgSQL PostgreSQL (PgSQL) is a multiprocessed open source DBMS. PgSQL significantly differs
from MySQL in database architecture and coding styles. We use PgSQL 8.0.0 beta3 and
OSDL’s DBT-2 benchmark to emulate a medium sized On-Line Transaction Processing
(OLTP) workload that has total 1.4GB database and 20 warehouses. Each warehouse has one
database connection and 15 terminals. PgSQL has estimated 659,000 lines of code.

There arenoknown errors with this setup. Our
purpose is to study how well SVD performs
on error-free execution such as these of
PgSQL.
11

L,

ads

s
nt

y
tal

a-
oth

a
les
we
not
is a

dy
lse
w
the
er-
cu-
ly

is
la-
ata
ver,

bug
t

m-
7. Evaluation Results
Table 2 summarizes our experimental results. We sample multiple
execution segments for the three server programs. We report the
results from both the erroneous execution samples and bug-free
execution samples of Apache and MySQL.

7.1. Apparent False Negatives
In our experiments on Apache and MySQL, we found that SVD
exhibits no apparent false negatives. Both SVD and FRD found
two timing-dependent bugs in the two programs.

Both SVD and FRD found a known timing-dependent bug in
Apache. SVD reported a serializability violation and FRD reported
several data races related to this bug. We have examined the details
of the bug in Section 2 (Figure 2). SVD helped the programmers to
understand the bug by showing that the computation on the buffer
index is “broken”, i.e. the input to the computation is changed by
other threads before the output of the computation is written.

Both SVD and FRD found a bug in MySQL whose root cause was
previously unknown. SVD alsohelped us understandthe bug. In
Section 2, we have described the bug, which caused sever crashes
(Figure 3). We have confirmed the root cause of the bug with the
MySQL developers. SVD found the root cause of the bug by pre-
senting the log of CU inputs and their last thread-local producers
to the programmer. FRD also found this bug through data races on
the mistakenly shared variables. However, it was not easy for us to
find the race and identify it as a bug, because it was reported by
FRD among many other static false positives.

7.2. Static and Dynamic False Positives
Table 2 also compares the reported false positives by both detec-
tors. False positives include both static and dynamic false posi-
tives. The ratio of the static false positives and the actual bugs
found indicates how many distractions the programmers would
have to deal with when using a detector. Thefrequencyof dynamic
false positives (per million instructions per CPU) indicates how
much performance would be lost in unnecessary rollbacks (BER).

For Apache and MySQL, SVD improves the race detection accu-
racy compared to FRD. With fewer static false positives, the pro-
grammer can find timing-dependent bugs more quickly. With
fewer dynamic false positives (order of magnitude fewer for
MySQL), SVD can reduce the unnecessary rollbacks.

For PgSQL, SVD reported more static and dynamic false positives
than FRD. PgSQL has a different shared memory architecture than
other multithreaded programs we have tested. We speculate that
PgSQL developers may have spent more effort making it data race

free. Considering that SVD does not requirea priori annotations
and the low frequency of the dynamic false positives for PgSQ
SVD performs reasonably well for PgSQL.

7.3. Overheads
SVD has significant space and time overheads. The overhe
mainly come from the following:

• Algorithm Complexity. SVD performs dependence calculation
on every instruction of the execution. This incurs a significa
time overhead.

• Recording CU’s. SVD records CU pointer for each memor
block, which means the space overheads is proportional to to
memory footprint of a program.

• Debugging Support. SVD collects detailed debugging inform
tion, such as virtual PC and stack traces, which introduces b
time and space overheads.

In our simulator, SVD incurs a significant slowdown, as high as
factor of 65. For some programs, such as Apache, SVD doub
the memory usage of the simulator. Despite the high overhead,
found SVD is scalable, because its performance overhead did
increase as the program size increases. The scalability of SVD
result of focusing only on particular dynamic executions.

Finally, we sampled long executions (10 seconds in the stea
state) to study if the long executions make SVD report more fa
positives. We found the number of static false positives gro
slowly as the length of the execution increases, which means
main parameter to the number of static false positives is the ex
cised code size during the execution, not the length of the exe
tion. On the other hand, dynamic false positives approximate
increased linearly with the increase of the execution length.

8. Related Work
Another project that proposes online bug avoidance
ReEnact [29]. Using hardware available for thread level specu
tion, ReEnact strives to be both a deterministic debugger for d
races and an on-the-fly race avoidance mechanism. Howe
ReEnact differs from SVD in that it requires ana priori program
annotation to perform race detection and requires a predefined
database to avoid ofknownbugs. SVD, on the other hand, does no
requirea priori annotations and can help avoidunknownbugs if it
is integrated with a BER mechanism.

Existing bug-detectors for shared-memory programs, such asdata
race detectorsand atomicity violation detectors, strive to detect
more bugs, even when a program execution is correct. SVD co

Table 2: Evaluation Results

’
denotes
abuggy

exec.

Segment —
Million

Insts Across
4 CPUs

Samples
Apparent

False
Negatives

Static
False Positives

Dynamic False Positives
Per Million Insts (Total) SVD’s Computational Units

SVD FRD SVD FRD
a posteriori

Examinations
Dynamic CU’s Per
Million Insts (Total)

Apache’ 16 1 0 1 2 0.2 (3) 1.3 (20) 2 324 (5183)

Apache 16 4 N/A 2 3 0.1 (7) 0.3 (16) 48 47 (2976)

MySQL’ 40 1 0 44 91 5.8 (233) 140 (5620) 50 77 (3080)

MySQL 40 6 N/A 60 76 8 (1924) 29(6841) 97 77(18399)

PgSQL 16 16 N/A 46 4 1.8 (456) 0.03 (7) 87 8.6 (2194)
12

e

r-

n
e-
ws

so
ad,
e-

on
1,
-
an

ft,
art
A)
al
not

n

i,
n
vi
e

r.
-

nt
ir

n-
l-
g

n
n

of

d

eb
n.
on
plements these techniques by being a dynamic detector that distin-
guisheserroneous program executions from correct executions.

Netzer and Miller [24] formalize races and point out it is NP-hard
to detect data races without false negatives and false positives.
Practical race detectors often sacrifice detection accuracy in allow-
ing false positives, but not allowing false negatives.

One type of race detector uses thelocksetalgorithm. The lockset
algorithm checks whether each shared variable in a program is
consistently guarded by at least one lock. Eraser [33] uses the
lockset algorithm during program execution to find data races.
RacerX [13] uses the lockset algorithm in compile time to find data
races.

Another type of race detector uses thehappens-beforealgorithm.
The happens-before algorithm checks whether conflicting accesses
to shared variables in a program are ordered by explicit synchroni-
zation. Many false positives reported by the lockset algorithm can
be avoided, because the happens-before algorithm can find syn-
chronization that orders the unlocked accesses found by the lockset
algorithm. Many dynamic race detectors implement the happens-
before algorithm in software [10,17,21,32]. Hardware [22,29] and
Distributed-Shared-Memory [26,31] implementations were also
proposed to reduce the runtime overhead of the detectors.

It is also possible to combine these two algorithms [12]. Choi et al.
have proposed hybrid detectors [8,36] that have both low overhead
(lockset) and high accuracy (happens-before). SVD differs from
both the lockset and the happens-before algorithms in that it does
not requirea priori annotations.

Recently, researchers have noticed that race detectorscannotfind
all timing-dependent bugs. For example, the stale-value
detector [6] finds where stale values are used after critical sections
have ended, because this type of program behavior may be an indi-
cator of timing-dependent bugs.

More generally, atomicity based detectors find atomicity violations
for predefined program code regions. The static atomicity detector
uses a type system to allow programmers to specify atomic
regions, hereby referred to asatomicity annotations. Therefore,
potential bugs of atomicity violations can be found statically [16].
The dynamic atomicity detector tries to automatically infer atom-
icity annotations in Java programs and detects atomicity violations
while monitoring the program executions [15].

SVD differs from atomicity detectors in that they use two different
program safety properties —serializabilityversusatomicity. Ato-
micity requires that the program codes with atomicity annotations
alwaysexecute in series. Atomicity detectors check how synchro-
nization is done in programs. On the other hand, serializability is
concerned with particular program executions. Atomic regions
inferred by SVD may execute in series in certain executions, but
not in others. SVD essentially ignores how synchronization is done
in programs.

9. Conclusions and Future Work
We propose a serializability violation detector (SVD) that can
detect erroneous executions of shared-memory programs without
requiringa priori program annotations. Such a detector is poten-
tially useful in alerting software users as software errors happen
online or in triggering recovery to avoid erroneous executions with
a backward error recovery (BER) mechanism. SVD reports few

dynamic false positives, which makes it particularly suitable to b
used in avoiding erroneous executions caused byunknown bugs.

One of our most important contributions is to propose a new infe
ence method of atomic regions that removes thea priori annota-
tion requirement exists in typical detectors. We exploit regio
hypothesis to infer atomic regions dynamically as programs ex
cute, without program source code. Experimental results sho
that the inference method is effective on real server programs.

In the future, we plan to implement SVD in simulated hardware
that its space and time overheads are reduced. With low overhe
SVD can be integrated with a BER mechanism to avoid (on-th
fly) erroneous executions of server programs.

10. Acknowledgements
This work is supported in part by the National Science Foundati
(NSF), with grants CCF-0085949, CCR-0093275, CCR-010572
EIA/CNS-0103670, CCR-0105721, EIA/CNS-0205286, CNS
0225610, CCR-0243657, CCR-0324878, CCR-0326577 and
award from University of California MICRO program, the Okawa
Research Award, as well as donations from IBM, Intel, Microso
and Sun Microsystems. This work has also been supported in p
by the Defense Advanced Research Projects Agency (DARP
under contract No. NBCHC020056. Hill has a significant financi
interest in Sun Microsystems. The views expressed herein are
necessarily those of DARPA, IBM, Intel, Microsoft, NSF, or Su
Microsystems.

We would like to thank Remzi Arpaci-Dusseau, Mikko Lipast
Barton Miller, and David Wood for useful comments based on a
earlier version of the paper. We thank Jong-Deok Choi, Ra
Rajwar, Milo Martin and Daniel Sorin for discussions. We ar
grateful to Ben Liblit, Alaa Alameldeen, Kevin Moore, Mike
Marty, Bradford Beckmann, Luke Yen for proofreading the pape
Xu is thankful to Jichuan Chang, Hongfei Guo, Shiliang Hu, Yun
peng Li, Yuan Wang and Su Zhang for feedback from differe
perspectives. We thank all anonymous PLDI reviewers for the
detailed reviews that were extremely helpful. We thank UW Co
dor group for simulation support. Finally, we are thankful to deve
opers on the Apache/MySQL/PgSQL mailing lists for answerin
questions.

References
[1] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. I

Proceedings of the SIGPLAN 1990 Conference o
Programming Language Design and Implementation, pages
246–256, June 1990.

[2] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E.
Moore, M. Xu, D. J. Sorin, M. D. Hill, and D. A. Wood.
Simulating a $2M Commercial Server on a $2K PC.IEEE
Computer, 36(2):50–57, Feb. 2003.

[3] Apache HTTP Server Project. http://www.apache.org/.
[4] D. F. Bacon and S. C. Goldstein. Hardware-Assisted Replay

Multiprocessor Programs.Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, publishe
in ACM SIGPLAN Notices, pages 194–206, 1991.

[5] P. Barford and M. Crovella. Generating Representative W
Workloads for Network and Server Performance Evaluatio
In Proceedings of the 1998 ACM Sigmetrics Conference
Measurement and Modeling of Computer Systems, pages 151–
160, June 1998.
13

s

r

?:

6.
o

.

g.

el
in

-

e

ce

ly

nd
or

on

ort
da.

In
d
n

n
on
[6] M. Burrows and K. R. M. Leino. Finding stale-value errors in
concurrent programs. Technical report, Compaq Systems
Research Center Technical Note (2002-04), May 2002.

[7] C.-Y. Cher and T. N. Vijaykumar. Skipper: a microarchitecture
for exploiting control-flow independence. InProceedings of
the 34th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 4–15, Dec. 2001.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. InProceedings of the
SIGPLAN 2002 Conference on Programming Language
Design and Implementation, pages 258–269, June 2002.

[9] J.-D. Choi and S.-L. Min. Race Frontier: Reproducing Data
Races in Parallel-Program Debugging. InProceedings of the
3rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), pages 145–154, July 1991.

[10] M. Christiaens and K. D. Bosschere. TRaDe, a topological
approach to on-the-fly race detection in java programs. In
Proceedings of the Java Virtual Machine Research and
Technology Symposium (JVM’01), 2001.

[11] J. D. Collins, D. M. Tullsen, and H. Wang. Control Flow
Optimization Via Dynamic Reconvergence Prediction. In
Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 129–140, Dec. 2004.

[12] A. Dinning and E. Schonberg. The Empirical Comparison of
Monitoring Algorithms for Access Anomaly Detection. In
Proceedings of the 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPOPP),
pages 1–10, Mar. 1990.

[13] D. Engler and K. Ashcraft. RacerX: effective, static detection
of race conditions and deadlocks. InProc. 19th Symposium on
Operating System Principles, pages 237–252, Oct. 2003.

[14] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database
system.Communications of the ACM, 19(11):624–633, 1976.

[15] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. InProceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 256–267, 2004.

[16] C. Flanagan and S. Qadeer. A Type and Effect System for
Atomicity. In Proceedings of the SIGPLAN 2003 Conference
on Programming Language Design and Implementation, June
2003.

[17] Y.-K. Jun and K. Koh. On-the-Fly Detection of Access
Anomalies in Nested Parallel Loops. InProceedings of the
ACM/ONR Workshop on Parallel and Distributed Debugging
(PADD), pages 107–117, 1993.

[18] L. Lamport. Time, Clocks and the Ordering of Events in a
Distributed System.Communications of the ACM, 21(7):558–
565, July 1978.

[19] P. S. Magnusson et al. Simics: A Full System Simulation
Platform.IEEE Computer, 35(2):50–58, Feb. 2002.

[20] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Timing-
First Simulation. InProceedings of the 2002 ACM Sigmetrics
Conference on Measurement and Modeling of Computer
Systems, pages 108–116, June 2002.

[21] B. P. Miller and J.-D. Choi. A Mechanism for Efficient
Debugging of Parallel Programs. InProceedings of the
SIGPLAN 1988 Conference on Programming Language
Design and Implementation, pages 135–144, June 1988.

[22] S. L. Min and J.-D. Choi. An Efficient Cache-based Acces
Anomaly Detection Scheme. InProceedings of the Fourth
International Conference on Architectural Support fo
Programming Languages and Operating Systems, pages 235–
244, Apr. 1991.

[23] MySQL AB. http://www.mysql.com/.
[24] R. H. B. Netzer and B. P. Miller. What are Race Conditions

Some Issues and Formalizations.ACM Letters on
Programming Languages and Systems, 1(1):74–88, Mar. 1992.

[25] C. Papadimitriou. The Theory of Database Concurrency
Control. Computer Science Press, Rockville, Maryland, 198

[26] D. Perkovic and P. Keleher. A Protocol-Centric Approach t
On-The-Fly Race Detection.IEEE Transactions on Parallel
and Distributed Systems, 11(10):1058–1072, Oct. 2000.

[27] PostgreSQL Global Development Group
http://www.postgresql.org/.

[28] K. Poulsen. SecurityFocus News: Tracking the blackout bu
http://www.securityfocus.com/news/8412.

[29] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Lev
Speculation Mechanisms to Debug Data Races
Multithreaded Codes. InProceedings of the 30th Annual
International Symposium on Computer Architecture, pages
110–121, June 2003.

[30] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors. InProceedings of the 29th
Annual International Symposium on Computer Architectur,
pages 111–122, May 2002.

[31] B. Richards and J. R. Larus. Protocol-based Data-ra
Detection. In SIGMETRICS symposium on Parallel and
Distributed Tools, pages 40–47, 1998.

[32] M. Ronsse and K. D. Bosschere. Non-intrusive On-the-f
Data Race Detection using Execution Replay. InAutomated
and Algorithmic Debugging, Nov. 2000.

[33] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, a
T. Anderson. Eraser: A Dynamic Data Race Detector f
Multithreaded Programs.ACM Transactions on Computer
Systems, 15(4):391–411, Nov. 1997.

[34] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery. In
Proceedings of the 29th Annual International Symposium
Computer Architecture, pages 123–134, May 2002.

[35] U.S.-Canada Power System Outage Task Force. Final Rep
on the August 14th Blackout in the United States and Cana
Technical report, Department of Energy, 2004.

[36] C. von Praun and T. Gross. Object-Race Detection.
Proceedings of the Conference on Object-Oriente
Programming, Systems, Languages and Applicatio
(OOPSLA), Oct. 2001.

[37] Wisconsin Multifacet GEMS Simulator.
http://www.cs.wisc.edu/gems/.

[38] M. Xu, R. Bodík, and M. D. Hill. A “Flight Data Recorder” for
Enabling Full-system Multiprocessor Deterministic Replay. I
Proceedings of the 30th Annual International Symposium
Computer Architecture, pages 122–133, June 2003.
14

	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	1.1. Objective
	Detect only erroneous executions
	Do not require a priori program annotation.

	1.2. Our Solution

	2. Overview of SVD
	2.1. Inferring Computational Units
	Figure 1: SVD computes CU’s by observing dependences between program statements; SVD avoids repor...
	Figure 2: SVD computes CU’s via dependences even when buggy code contains incorrect synchronizati...

	2.2. Detecting Serializability Violations
	2.2.1 Finding Erroneous Program Executions
	2.2.2 Avoiding False Positives w.r.t. Race Detection
	Figure 3: SVD can miss erroneous executions (i.e. false negatives), but it generates a log for an...

	2.3. Logging for A posteriori Examination

	3. Definitions of CU’s and Serializability
	3.1. Dynamic Program Dependence Graph
	3.2. Computational Units (CU)
	Definition 1: Let . We say that is a crossing arc of iff there exists such that (i)�; and (ii)� a...
	Figure 4: After the crossing arc is removed, the shared arc is no longer in the same weakly conne...

	Definition 2: A reduced dependence graph of a td-PDG is obtained by removing from arcs as follows.
	Definition 3: Given a td-PDG , the computational unit of a vertex is the set of vertices that are...

	3.3. Serializability and Strict 2PL
	Definition 4: CU’s of a program trace are serializable iff there exists an equivalent program tra...

	4. Serializability Violation Detector
	4.1. An Offline Algorithm
	Figure 5: The offline algorithm scans each thread trace and computes CU’s.
	4.1.1 Program Traces and Dependence Predecessors
	4.1.2 Three Passes of the Offline Algorithm

	4.2. An Online Algorithm
	Figure 6: The offline algorithm scans the total order of a program trace and records where a CU f...
	Figure 7: SVD’s online detection algorithm.
	Infer true dependences via CU reference propagation
	Infer partial control dependences via Skipper heuristic
	Figure 8: Memory block finite state machine (minimized).

	Infer shared memory blocks
	Detect shared dependence
	Check for strict 2PL violations

	4.3. Pragmatic Considerations
	Represent CU with memory blocks, not dynamic instructions
	CU’s are weakly connected via only true dependences
	Handle vector, pointer data types (address dependences)
	Check only input blocks of a CU
	Approximate threads with processors

	4.4. Potential Hardware SVD

	5. Qualitative Analysis
	5.1. False Negatives
	Atomic regions contain shared dependences
	Atomic regions contain “independent” computations
	Figure 9: An example of an atomic region that contains independent computations. On the right, ad...

	5.2. False Positives
	CU’s that are too large
	Strict 2PL violation

	6. Evaluation Methods
	6.1. Simulation-based Deterministic Replay
	Table 1: Test Programs

	6.2. The Frontier Race Detector

	7. Evaluation Results
	7.1. Apparent False Negatives
	Table 2: Evaluation Results

	7.2. Static and Dynamic False Positives
	7.3. Overheads

	8. Related Work
	9. Conclusions and Future Work
	10. Acknowledgements
	References

	A Serializability Violation Detector for Shared-Memory Server Programs
	Min Xu
	Rastislav Bodík
	Mark D. Hill

