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ABSTRACT 
Architectural simulators are essential tools for computer architec- 
ture and systems research and development. Simulators, however, 
are becoming frustratingly slow, because they must now model 
increasingly complex micro-architectures running realistic work- 
loads. Previously, we developed a technique called fast-forward- 
ing, which applied partial evaluation and memoization to improve 
the performance of detailed architectural simulations by as much 
as an order of magnitude [14]. 

While writing a detailed processor simulator is difficult, imple- 
menting fast-forwarding is even more complex. This paper 
describes Facile, a domain-specific language for writing detailed, 
accurate micro-architecture simulators. Architectural descriptions 
written in Facile can be compiled, using partial evaluation tech- 
niques, into fast-forwarding simulators that achieve significant 
performance improvements with far less programmer effort. Facile 
and its compiler make this performance-enhancing technique 
accessible to computer architects. 

Categories and Subject Descriptors 
D.3.2 [Programming Languages]: Language Classifications-- 
specialized application languages; D,3.4 [Programming Lan- 
guages]: Processors--optimization, compilers; D.3.3 [Program- 
ming Languages]: Language Constructs and Features-- 
constraints, frameworks; 1.6.2 [Simulation and Modeling] Simu- 
lation Languages. 

General Terms 
Algorithms, Languages, Performance. 

Keywords 
Micro-architecture simulation, out-of-order processor simulation, 
memoization, and partial evaluation. 
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1. INTRODUCTION 
Detailed simulation is an essential tool for computer architecture 
and systems research and development. As computers, in particu- 
lar processor micro-architectures, have become increasingly com- 
plex, so have their simulators. While this complexity has greatly 
improved processor performance, it has had the opposite effect on 
simulator speed. Complex simulators run slowly, which impairs 
their usefulness in evaluating processor implementations or devel- 
oping software. Moreover, architecture simulators are complex 
pieces of software that are difficult to write, debug, and validate. 

Facile---our domain-specific language for writing detailed proces- 
sor architecture simulators--attacks both problems, with a goal of 
making efficient simulators more accessible to computer archi- 
tects. We previously showed that programming language imple- 
mentation techniques--partial evaluation and memoization-- 
could increase simulator performance by up to an order of magni- 
tude [14]. This approach, called fast-forwarding, was very difficult 
to implement by hand, which led to this research on the Facile lan- 
guage for describing instruction eneodings, instruction semantics, 
and micro-architectural details and on the Facile compiler for 
translating a processor description into an efficient simulator. The 
compiler uses partial evaluation analyses to translate a simulator 
written in Facile into a fast-forwarding simulator, which uses run- 
time partial evaluation to greatly improve performance [13]. 

Instruction-level simulation focuses on modeling instrnctions' 
effect on user-visible state; for example, that an add instruction 
puts the sum of two registers into a third. These simulators typi- 
cally are interpreters, written in a procedural language such as C, 
that read instructions from a target executable and execute their 
functional behavior. Many approaches have been tried to acceler- 
ate this procesS. Some simulators pre-decode target instructions, to 
make interpretation easier, e.g., SPIM [6] and SimlCS [10]. Others 
compile target instructions into native host instructions and then 
directly execute them, e.g., FX!32 [2] and Shade [3]. 

Architectural or micro-architectural simulation, by contrast, simu- 
lates the behavior of a processor implementation by modeling 
instructions' effects on processor structures. For example, the reg- 
isters used by the add instruction might be dynamically renamed 
and the add operation dynamically scheduled on one of several 

This work was largely performed as part of Eric Schnarr's Wisconsin 
Ph.D. [13]. It was supported in part by the National Science Foundation 
with grants M1P-9625558 and EIA-9971256. 
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ALUs. Modem, out-of-order processors are built on complex 
micro-architectures, whose simulation is very expensive. SimpleS- 
catar, a fast, popular out-of-order simulator, incurs approximately a 
4,000 times slowdown [1 ]. RSiM, an out-of-order multiprocessor 
simulator, executes fewer than 15,000 instructions per second on a 
SUN Ultra 1/140 workstation, which is approximately a 10,000 
times slowdown per processor [I 1 ]. MXS, the SimOS out-of-order 
simulator, also incurs a several thousand times slowdown per pro- 
cessor [7]. 

Techniques that enhance functional simulators offer little benefit 
for architectural simulators, most of whose time is spent simulat- 
ing an out-of-order pipeline, not interpreting instructions. Fortu- 
nately, simulators, like compilers and computer architectures, can 
exploit program locality to improve perfomaance. Even detailed 
out-of-order simulators spend most of their time modeling a small 
number of instruction sequences. Run-time partial evaluation and 
memoization permit the rapid re-simulation of these sequences. 
This approach is the basis of our fast-forwarding technique. 

Writing fast-forwarding simulators is difficult. A programmer 
must not only understand and correctly model a proeessor's micro- 
architecture, but he or she must also distinguish run-time static and 
dynamic data; implement two, tightly-coupled simulation engines; 
and ensure that both appropriately model simulator state. 

Facile is a new domain-specific programming language for writing 
fast-forwarding simulators. It is designed to facilitate the specifica- 
tion and implementation of detailed architecture simulators and to 
simplify the compiler analyses necessary to automatically produce 
a fast-forwarding simulator. For example, a simulator for the 
SPARC V9 instruction set running on a MIPS R10000-1ike out-of- 
order processor requires less than 2,000 lines of Facile and another 
1,000 lines of C code. 

The Facile compiler uses a new approach to the classic problem of 
partial evaluating an interpreter for a given input program [8]. 
Unlike much partial evaluation work, fast-forwarding occurs at run 
time. In many respects, Faerie is similar to run-time specialization 
and code generation systems, though Faeile's domain-specific lan- 
guage and limited application domain permits a very fine-grain 
and aggressive translation that results in large performance gains. 

The rest of this paper is organized as follows. Section 2 describes 
how memoizailon works to speed miero-arehitecture simulation. 
Section 3 introduces Facile, our new programming language, and 
discusses how it supports fast-forwarding simulators. Section 4 
describes how Facile's compiler analyzes and optimizes simula- 
tors. Section 5 discusses related work. Section 6 presents the per- 
formance of a hand-coded out-of-order simulator and an out-of- 
order simulator optimized by the Facile compiler. 

2. F A S T - F O R W A R D I N G  
Fast-forwarding is an application of partial evaluation and 
memoization to micro-architecture simulation. This basic execu- 
tion model was described previously [14]. Fast-forwarding 
improved the performance of a detailed out-of-order processor 
simulator 5-12 times over the same simulator without memoiza- 
tion. Below is a brief description of this technique, which provides 
the run-time framework for this work. 

/ 
/ 
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Figure 1, Architecture of a fast-forwarding simulator. 

2.1. Overview 
The basic idea is to capture a simulator's computation of an 
instruction's effects on processor micro-architecture in a form that 
can be rapidly re-executed. For example, an out-of-order simulator 
might record timing and functional effects of one processor cycle, 
indexed by the collection of instructions in execution at the start of 
the cycle. This example is explored in Section 2.2. Recorded 
effects can be quickly re-executed without interpretive overhead or 
the need to re-compute, as opposed to simply re-applying, instruc- 
tions' effects on processor state. 

Most simulators can be modeled as a simulator step function. Each 
call to this function advances the simulation by a single step. A 
simulator's author determines the amount of calculation performed 
in a step, which can range from simulating one processor cycle to 
simulating several cycles and instructions. The simulator step 
function's implementation determines the granularity of  memoiza- 
tion, since calls on this function are memoized. If one instruction is 
simulated per step, the behavior of individual instructions can be 
looked up and replayed. If several instructions are simulated per 
step, their combined behavior ean be replayed when the same 
group of instructions is encountered. 

Consider a simulator step function f This function takes as input 
the state of the simulated micro-architecture and returns a new 
state that reflects the execution of one simulation step. To fast-for- 
ward f, part of its input (i.e., a subset of the micro-architecture 
state) is designated run-time static (constant) and used to index a 
cache of specialized actions: 

f :  (Sin × Din) ~ Dou t 

As shown above,f 's input is divided into run-time static input (Sin) 
and dynamic input (Din) . Run-time static input typically includes 
the binary insmactions being simulated and a subset of the proces- 
sor pipeline state. Dynamic inputs usually include values in simu- 
lated registers, addresses resident in a simulated data cache, etc. 

All code infthat  depends only on Sin is also run-time smile, so that 
in any two calls tof that  are passed the same values for Sin,f's run- 
time static code produces the same result. Only code that depends 
on dynamic clam (Din) can produce a different result. 
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Figure 2. The specialized action cache. 

When a fast-forwarding simulator encounters a particular run-time 
static input (Sin) for the first time, it both executes f t o  effect the 
simulation and uses partial evaluation to specializefwith respect 
to Sin. The specialized function, fsin : Din ~ Dout, is stored into a 
specialized action cache, indexed by Sin. Subsequent calls to f, 
with input Sin , execute the less expensive functionfsin instead off. 

Figure 1 depicts the architecture of a fast-forwarding simulator. At 
the top is the slow/complete simulator, which consists of the un- 
specialized simulator stop function. As the slow simulator exe- 
cutes, it writes a description of its dynamic behavior--the partially 
evaluated function fSin--into the specialized action eaehe. When 
the step function encounters a previously seen run-time static 
input, the dynamic behavior is found and replayed by a fast/resid- 
ual simulator. 

A replayed simulation can only re-execute a previously recorded 
control flow path. While replaying, the fast simulator verifies that 
the control flow path is known and re-executes actions associated 
along the path. If the path is not cached, an action cache miss 
returns control to the eornpleto simulator. 

This process is a dynamic version of the classic partial evaluation 
of an interpreter for an input program [8]. An important difference 
is that fast-forwarding is a run-time process. Another difference is 
that traditional partial evaluation systems generate residual code 
for an entire function, which is not feasible because simulator stop 
functions are large and must be specialized for many different 
inputs. Fast-forwarding addresses these concerns by specializing 
only control flow paths executed by the slow simulator and by spe- 
cializing these paths on demand. Because of the high degree of 
locality in program execution, the specialized action cache remains 
a manageable size and actions are heavily reused [14]. 

Figure 2 illustrates the structure of the specialized action cache. It 
contains cache entries, which consist of index keys--the step func- 
tion's run-time static input--and the simulator's residual dynamic 
actions. Actions are linked together in the order in which they exe- 
cute. Actions that select control-flow paths, by examining dynamic 
values, have multiple successors. 

The simulator records its actions when it executes a control flow 
path, so successors of an action may be missing. For example, a 
branch that was previously always taken will have no recorded 
behavior for the fall-through case. When the fast simulator encoun- 
ters a missing action, it incurs an action cache miss and returns to 

slow simulation. To recover from the miss, this simulator rolls 
back the failed dynamic step function, reads its static input from 
the cache entry's index key, and restarts the slow simulator step 
function. This simulator executes the new control flow path, 
recording its actions, so that the new control flow path can be 
replayed in the future. 

Recovery from a miss is complicated. Fast simulation may already 
have moved beyond the beginning of the simulator's step function 
(i.e., the location of a key in the specialized action cache), and 
modified dynamic simulator state, before encountering the miss. 
Intuitively, the dynamic state should be rolled back to the begin- 
ning of the step function call, but this is not always possible. 
Instead of rolling the fast simulation back, the slow simulator pro- 
ceeds cautiously and does not execute dynamic actions until it 
reaches the cache miss. Until then, the slow simulator only per- 
forms run-time static operations and stores no new data into the 
specialized action cache. ARer reaching the cache miss, the slow 
simulator returns to normal execution, executing both run-time 
static and dynamic code and adding new actions to the cache. 

2.2. Example: Out-Of-Order Simulation 
Fast-forwarding is very effective at accelerating the simulation of a 
modem, out-of-order micro-architecture. One implementation uses 
a simulator step function that takes the current state of the out-of- 
order pipeline as its run-time static input and simulates the miere- 
architecture until the end of a processor cycle that performs some 
dynamic behavior. This approach allows the fast simulator to skip 
over most cycle-by-cycle pipeline simulation, replaying only func- 
tional instruction behavior and other non-pipeline simulation such 
as branch prediction and cache simulation. 

Our simulator encodes the run-time static state of an out-of-order 
pipeline in a data structure called the instruction queue. The 
instruction queue does not correspond to any micro-architecture 
component. It is simply a convenient data structure for represent- 
ing run-time static data. The instruction queue is a list of  instruc- 
tions, in program order, currently in execution. A small amount of 
additional information specifies the pipeline stage and latency of 
each instruction, e.g., fetched, waiting in out-of-order queue, exe- 
cuting, etc. 

The left side of Figure 3 shows an example of data in the instruc- 
tion queue. The first 11 instructions are in the instruction queue. 
Over the next 6 simulated cycles, only run-time static behavior 
occurs: the first instruction (¢:l.r) is retired, 9 more instructions are 
fetched, several instructions use the simulated ALUs 2, and the load 
Cl.d) instruction at address 0x10078 counts down to the next time 
it needs to make a dynamic call to the cache simulator. 

The right side of Figure 3 shows data in the specialized action 
cache for this pipeline state. An entry's key consists of a com- 
pressed representation of the instruction queue. The instruction 
queue in this example can be compressed into fewer than 40 bytes, 
since its contents can be reconstructed from the underlined values. 
The first action increments the simulated cycles by 6, for the 6 

In this example, the functional simulation of instructions is dynamic, 
but separate from micro-architectural timing simulation: Instruetiuns 
are first interpreted for their functional behavior, then their pipeline 
timing is simulated. 
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Figure 3. An out-of-order pipeline state with SPARC instructions and resulting specialized action cache entries. 

cycles of an-time static execution. The next action calls the cache 
simulator for the load at address Ox 10078. The cache simulator has 
multiple possible results corresponding to a cache hit or miss. In 
this example, the load previously missed in the cache and waited 
18 cycles before checking if the value was returned from the next 
level of the cache hierarchy. Subsequent fast simulation can replay 
these actions, so long as the load again misses in the cache with an 
18-cycle delay. If during replay, the load hits in the cache (or 
misses with a different delay), then it is an action cache miss and 
control returns to the slow simulator. 

3. FACILE LANGUAGE 
As the previous discussion probably made clear, writing fast-for- 
warding simulators is difficult A programmer must not only 
understand and correctly model a processor's micro-architecture, 
but he or she must also distinguish between run-time static and 
dynamic data; implement two, tightly-coupled simulation engines; 
ensure that simulator state is appropriately modeled by each; and 
transfer control and state between them. 

Facile is a new domain-specific programming language for writing 
fast-forwarding micro-architecture simulators. It is designed to 
facilitate the specification and implementation of detailed architec- 
ture simulators and to simplify the compiler analyses necessary to 
automatically generate a fast-forwarding simulator. 

Section3.1 diseusses Faeile's syntax for describing machine 
instructions and illustrates its use in a simple example. Section 3.2 
discusses Faeile's support for partial evaluation and memoization. 

This support includes language restrictions to simplify compiler 
analyses and a framework for writing simulators as step functions. 

3.1. Architecture Description 
Facile provides a concise syntax for describing a computer's archi- 
tecture and instruction set. This syntax is partially derived from the 
New Jersey Machine Code Toolkit's description language [12]. 
This language was the starting point for Facile's instruction 
description syntax, because its descriptions are concise, designed 
to reduce programmer error, and flexible enough to describe 
instruction sets ranging from RISC to Intel x86. Facile extends this 
work to include instruction semantics, as well as syntax. 

Faerie describes binary encoding of instructions using patterns on 
streams of fixed width tokens. Figure 4 illustrates a Facile token, 
field, and pattern declarations. These declarations describe the 
encoding of  two instructions, add  and bz (branch if zero), of  a fie- 
titious RISC ISA. A token declaration defines one fixed width 

token instruction[32] fields 

op 24:31, rl 19:23, r2 14:18, r3 0:4, 
i 13:13, imm 0:12, offset 0:18, fill 5:12; 

pat add = op==0x00 &a (i==l I[ fill==0); 
pat bz = op==0x01; 

Figure 4. Instruction encoding in Facile. 
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val PC : stream; 

val nPC : stream; 

val R = array(32){0}; 

sem add { 

if(i) R[rl] = R[r2] + imm?sext(32); 

else R[rl] = R[r2] + R[r3]; 
}; 

sem bz { 

if(R[rl]==0) nPC = PC + offset?sext(32); 
}; 

FigureS. lnstructionsemanticdescription. 

token and names several bit fields contained within that token. The 
op field in Figure 4 is contained in bits 24 to 31 of a 32-bit wide 
token named i n s t r u c t i o n .  For fixed width instruction sets, 
such as SPARC and MIPS, one token suffices to encode each 
instruction. For variable width instructions, such as Intel's x86, 
several tokens may be necessary. 

Pattern declarations associate mnemonic names with conditions on 
token fields and use these constraints to describe instructions. In 
Figure 4, the a d d  and bz  pattern names are associated with values 
0x00 and 0x01 respectively in an instruction's op field. The add  
instruction has additional conditions: Either the immediate flag 
field ( i )  must be I or bits 5 through 12 (the f i 11 field) must be 0. 

A token stream is a sequence of tokens starting at an address in the 
text segment of  a simulated executable. The instruction at the front 
of a token stream is decoded by matching the binary data at that 
location against a pattem. 

Unlike the NJ Machine Code Toolkit, Facile describes instruction 
semantics as well as instruction encoding. Figure 5 shows the 
semantics of the add and bz  instructions from Figure 4. First, glo- 
bal variables PC, nPC, and R are declared. PC and npC are token 
stream variables that represent the current program counter and the 
program counter of the next instruction, respectively. R is an array 
of integers that holds the contents of  the integer register file. 

Next, semantic declarations associate functional simulation code 
with the pattern names add and bz. Instruction add  tests the 
value of  the i field: if  i is 1, then it adds an integer register to the 
instruction's sign extended immediale field (imm). Otherwise, it 
adds two integer registers. The added result is written back to the 
integer register file. Instruction bz  tests if an integer register is 0, 
and alters the next instruction address if true. 

The semantic code associated with each instruction can perform 
micro-architecture simulation and other tasks in addition to behav- 
ioral simulation. The Facile language provides functions, loops, 
arrays, and other general programming constructs. These program- 
ming features were included in Facile because no single, special- 
purpose micro-architectt.re declarative syntax seemed likely to be 
able to model all possible micro-arehitecture structures. 

Given encoding and semantic functions, the Facile compiler auto- 
matically generates a function that decodes a binary instruction, 
dispatches to the appropriate simulation code, and simulates func- 

val init = system?start pc; 

fun main(pc) { 

PC = pc; // set global PC variable 

nPC = PC + 4; // default value for npc 

PC?exec(); // simulate 1 instruction 

init = nPC; // prepare next iteration 
) 

Figu~ 6. Simplifiedsimulatorstep function. 

tional and architectural behavior. This function is called from a 
user-defined simulator step function. 

3.2. Language Support For Fast-Forwarding 
Faeile's support for fast-forwarding starts with its organization of 
simulator code into a step function. Facile programmers define a 
function named m a i n  to perform one step in the simulation. This 
step can simulate one or more processor cycles, one or more 
instructions, or any other appropriate simulation quantum. Faeile's 
run-time system repeatedly calls m a i n  to advance the simulation. 
Calls to m a i n  are memoized. 

The ma in  function receives two kinds of input: run-time static 
input is passed as arguments to main .  Dynamic input comes from 
other sources, such as global variables or from external code not 
written in Facile. The arguments to main are the run-time static 
keys into the specialized action cache. The programmer defines the 
number and type of ma in ' s  arguments and controls exactly what 
data values are passed to them. 

Figure 6 shows a trivial simulator step function that simulates one 
target instruction per call. A global variable ( i n i t )  stores argu- 
ment values for the next call to main .  At the start of simulation, 
init is set to the target program's entry point (start_pc). This 
m a i n  function has one ran-time static input (pc), whose initial 
value comes from i n i t .  The body of  m a i n  copies pc  into global 
variable PC for use by the simulation code, predicts the value of 
nPC (branch instructions may reset it), and simulates one target 
instruction. The last statement in m a i n  updates i n i t  with the pc 
for the next call to main .  

Facile has several other features that support writing fast-forward- 
ing simulators. These include built-in data structures and functions 
useful for micro-architecture simulation, and language restrictions 
that simplify compiler analysis. The built-in data types include 
token streams, condition code values (with functions for comput- 
ing them), and double-ended queues useful for modeling micro- 
architectures. By including these functions and data types into the 
language, their semantics are known, so a compiler can analyze 
and transform code that uses them. One built-in support function is 
the ? e x e c  ( ) attribute used in Figure 6. The ? e x e c  ( ) attribute 
is applied to a token stream (PC) and uses the declared tokens, pat- 
terns, and instruction semantics to decode and simulate one 
instruction. 

A key language restriction is the absence of pointers, which 
increases the precision of the analysis that determines which parts 
of  a simulator step function can be skipped by fast-forwarding. 
Another restriction is the absence of  recursion. Non-recursive code 
simplifies inter-procedural analyses. It also simplifies the mecha- 
nism for recovering from action cache misses, by allowing 
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fun main(pc) { 

val npc = pc + 4; 

switch(pc) { 

pat add: 

if(i) N[rl] = R[r2i__~ imm?sext(32); 

else R[rl] = R[r2] + R[r3]; 

pat beq: 

if(R[rl] == 0) 

npc : pc + offset?sext(32); 
} 

init = npc; 
) 

Figure7. Run-~mes ta t l eand  dynamiccode(underlined). 

dynamic data to be passed from the fast simulator to the slow sim- 
ulator in global variables, not a stack. 

Facile is sufficiently powerful to model a real instruction set and 
complex processor implementation. It has been used to describe 
the SPARC-V9 instruction set and a detailed, out-of-order pipeline 
with non-blocking data caches, branch prediction, and speculative 
execution. Code that is inconvenient in Facile, or that need not be 
memoized, can be implemented in other languages, such as C. Fac- 
ile provides an interface for calling external code, and memoizes 
Facile code correctly despite calls on external functions. 

4. COMPILATION AND OPTIMIZATION 
The Facile compiler generates an optimized fast-forwarding simu- 
lator. The compiler actually generates C code for two simulators-- 
slow and fast--and generates code to coordinate their communica- 
tion through the specialized action cache. This process relies on 
binding-time analyses to identify run-time static code and dynamic 
basic blocks. The analyses and code generation are described 
below. 

4.1. Binding-Time Analysis 
Binding-time analysis is a technique widely used in partial evalua- 
tion to partition a function's code into static and dynamic parts, 
starting from an initial division of a function's input In Facile, 
binding-time analysis divides a simulator step function into run- 
time static and dynamic parts. The run-time static code is a func- 
tion of the run-time static input, so its computation can be 
memoized and skipped by fast-forwarding. The remaining 
dynamic code, on the other hand, must be executed every time. 

Figure 7 shows the division of a Facile m a i n  function into run- 
time static and dynamic parts. Dynamic code is underlined. All 
other code is run-time static. Note that this function performs the 
same actions as the m a i n  function in Figure 6, except that instruc- 
tion semantic code is written as a pattern switch statement for 
greater clarity. 

Binding-time analysis performs an abstract interpretation of the 
code, computing two binding time labels--rt-static and dynamic-- 
instead of actual data values. At the beginning of this interpreta- 
tion, the arguments to m a i n  (pc) and literal values (e.g., 4) are 
labeled rt-static and all global variables are labeled dynamic. The 
basic step is to label rt-static the result of expressions whose oper- 
ands are all rt-static. For example, the switch statement is rt-static 
because it depends only on the rt-static values of pc  and the target 

executable's text segment 3. Variables assigned a run-time static 
value are labeled rt-static until they are re-assigned. Hence, n p c  is 
rt-static because it depends only on the rt-static values pc  and 4. 

Code is labeled dynamic when it depends on dynamic data. In the 
example, the statement adding a register to an immediate, the state- 
ment adding a register to another register, and the condition testing 
a register against the value 0 are dynamic. Sub-expressions (not 
underlined) in these statements that are rt-static (e.g., register indi- 
ces and the added imrnediate value) are skipped by fast-forward- 
ing, even though the statements containing them are not. 

Other complications are not exposed by this example, such as 
assignment to global variables. In Figure 7, assignment to 2 n i t  is 
labeled dynamic because its value is needed after m a i n  returns. In 
other cases, a global variable is assigned a rt-static value and used 
within the body of ma in .  In these cases, the analysis labels the 
global variable as rt-static from the point at which it is assigned the 
value until it is assigned a dynamic value or ma i n  returns. 

Another complication is ensuring the termination of binding-time 
analysis. Abstract interpretation may re-evaluate a basic block of 
the subject program each time the binding times of variables are 
changed by one or more of the block's predecessors. In the pres- 
ence of loops, basic blocks can be re-evaluated several times. 

Facile's binding time analysis is guaranteed to reach a fixed-point 
and terminate eventually. This is because the binding times of vari- 
ables computed by a basic block's predecessors are merged on 
entry to the block, a block is re-evaluated only if its merged bind- 
ing time data changes, and merged binding times can only change 
a finite number of times: 1) There are a finite number of different 
binding time labels (n-static and dynamic). 2) There are a finite 
number of variables in any given program. 3) When binding time 
data is merged, the binding time of each variable never 
decreases--e.g., if a variable is n-static from one predecessor and 
dynamic from another, then it is dynamic after the merge. 

Inter-procedural binding-time analysis is another complication, 
although it is simplified by the absence of recursion. Facile uses a 
polyvariant (context-sensitive) binding time analysis. This means 
that each function can have several divisions corresponding to dif- 
ferent labellings of  its input--i.e., both its arguments and the glo- 
bal variables. Polyvafiant division improves the accuracy of the 
analysis, hence the amount of code that can be skipped. However, 
polyvariant division also increases code size, since different ver- 
sions of a function are generated for each of its divisions. Facile 
chooses greater accuracy and the ability to skip more simulation 
work over reduced simulator code size. 

4.2. Extracting Actions 
The next step in producing a fast-forwarding simulator is to orga- 
nize the dynamic code identified by binding-time analysis into 
basic blocks. These basic blocks constitute the actions used in the 
specialized action cache. By replaying dynamic basic blocks in the 
same order as the slow simulator executed them, the fast simulator 
replays the memoized dynamic behavior. 

3. Facile assumes target instructions do not change after they are loaded at 
the start of simulation. Target instructions are considered run-time 
static. 
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Figure 8. Dynamic control flow graph. 

To find dynamic basic blocks, the compiler first constructs a 
dynamic control flow graph (dCFG). This representation starts 
with a control flow graph of the entire program, and then removes 
all rt-static statements. A dynamic basic block is a basic block in 
the resulting graph. 

Figure 8 shows the dCFG for the simulator in Figure 7. In this 
example, each dynamic statement has its own block. In a richer 
simulator, a basic block would contain multiple statements. These 
basic blocks contain only dynamic code; the run-time smile sub- 
expressions are replaced by the plaeeholder s. 

After identifying these blocks, each one is assigned an action num- 
ber. In Figure 8, blocks are numbered 1 through 4. The specialized 
action cache stores these action numbers, not code. The fast simu- 
lator replays cached behavior by reading an action number and 
jumping to the corresponding code. 

The specialized aeilon cache also holds data for run-time static 
placeholders (the s's). When the fast simulator executes a 
dynamic basic block corresponding to an action, it also reads 
placeholder data from the specialized action cache and passes it to 
the dynamic code. Plaeeholder data for each action number is 
stored immediately after its associated action number. 

Notice that block b 3 differs from the others. This block contains a 
condition expression in an if statement. The result of this dynamic 
expression determines the simulator's control flow path, so this 
action can have more than one successor action sequence. To han- 
dle this situation, the slow simulator records, in the cache, the 
predicate value along with the resulting action sequence. The fast 
simulator verifies that the dynamic value matches a previously 
recorded value. If not, the action cache misses. This process is a 
dynamic result test. 

4.3. Slow and Fast Simulators 
After binding-time analysis and assigning action numbers, the 
compiler has enough information to generate fast and slow ver- 
sions of the simulator. The slow simulator contains the complete 
simulator code and additional compiler-generated code to write 
action numbers and placeholder data into the specialized action 
cache. The fast simulator contains only dynamic simulator code 
and code to read action nnmbers and data from the cache. 

fun fast_main() ( 

while(true) { 

switch(get_next_action number()) { 

case INDEXACTION: 

verify_static_input(); 
case i: 

read static data(rl, r2, tl); 

R[rl] = R[r2] + tl; 

case 2: 

read static data(rl, r2, r3); 

R[rl] = R[r2] + R[r3]; 

case 3: 

read static data(rl); 

val t2 = (R[rl] == 0); 

verify_dynamic_result(t2); 

case 4: 

read static_data(npc); 

init = npc; 
) 

} 

} 

Figure 9. Fas~sidual  simulator (pseudo codA. 

Figure 9 shows pseudocode for the fast simulator corresponding to 
the simulator in Figure 7. This pseudocode uses Facile-like syntax 
for simplicity, although the Facile compiler actually generates C 
code. The fast simulator consists of a loop surrounding a switch 
statement. It reads action numbers from the specialized action 
cache and jumps to the corresponding dynamie basic block code. 
Each switch case, except the INDEX_ACTION ease, corresponds 
to a dynamic basic block. Code in each ease reads run-time smile 
data from the eache and executes the dynamic basic block code. 

The INDEX_ACTION case handles the end of an action sequence 
from one simulator step and the beginning of the next step by veri- 
fying that the current value of i n i t  matches the next key in the 
specialized action cache. Alternatively, the fast simulator could do 
a full eacbe lookup to find the next cache entry, but it is faster to 
follow the link to the next entry. 

Cases I, 2, and 4 read run-time static data from the specialized 
action cache and execute their dynamic code. Case 3 contains a 
dynamic result test, v e r i f y  dynamic  r e s u l t ( t 2 ) ,  that 
searches the current action's possible successors to find an action 
sequence appropriate for the value in t2.  If a successor is found, 
the fast simulator continues replaying memoized actions. If none is 
found, an action cache miss occurs and control returns to the slow 
simulator. 

Figure 10 shows pseudocode for the slow simulator. It contains all 
source simulator code, plus compiler-added code to write action 
numbers and run-time static plaeeholder data into the specialized 
action cache. It also contains code to recover from an aeilon cache 
miss. This extra code is emboldened. 

Before executing the first statement of a dynamic basic block, the 
slow simulator writes that block's action number into the special- 
ized aeilon cache. As run-time static placeholder values are com- 
puted, they too are written into the cache. The cache orders these 

327 



fun slow_main(pc) { 

val npc : pc + 4; 

switch(pc) { 

pat add: 

if{i) { 

memoize_action_number(1); 

val tl = imm?sext(32); 

memoize static data(rl, r2, tl); 

if(Irecover) R[rl] = R[r2] + tl; 

} else { 

memoize_action_number(2); 

memoize_static_data(rl, r2, r3); 
if(Irecover) R[rl] = R[r2] + R[r3]; 

} 

pat beq: 

memoize_action_number(3); 

memoize_static_data(rl); 

val t2; 

if(recover) 
recover_dynaIaicresult(t2); 

else { 
t2 = (R[rl] == 0); 

memoize_dynamic_result (t2) ; 
) 

if(t2) npc = pc + offset?sext(32); 
} 

memoizeaction_mamber(4); 

memoize static data(n~c); 

if(Irecover) init = npc; 
} 

FigurelO. Siow/eompletesimulaton 

actions and data in the same order in which they execute, which is 
the order the fast simulator will replay them. 

For action 3--the bz instruction's predicate expression--the slow 
simulator calls memoize_dynamic_result (t2) to record 
the dynamic result. The result is either 1 (true) or 0 (false). The 
subsequent memoized actions are valid only if the fast simulator 
computes the same result. If the fast simulator computes a different 
result, the slow simulator is restarted to produce actions for the 
other control-flow path. 

The slow simulator also contains code to recover from action 
cache misses. Its dynamic statements are guarded by predicates 
that allow dynamic code to execute only when the r e c o v e r  flag 
is false. The r e c o v e r  variable is set true when the slow simulator 
restarts after an action cache miss. It is changed to false when the 
slow simulator catches up to the point at which the action cache 
miss occurred. 

When fast simulation has an action cache miss (e.g., action 3 com- 
putes a dynamic result value not in the cache) the simulator 
searches back through the most recently replayed actions until it 
finds the last cache entry. The action numbers and dynamic result 
values that were replayed since this entry are saved on a stack 
called the recovery stack. The arguments to m a i n  can be extracted 
from the entry's key, and the slow simulator is restarted in recovery 
mode (i.e., r e c o v e r  set to true). 

In this mode, the recovering slow simulator only executes run-time 
static statements. The dynamic statements' guards prevent them 
from executing, since they have previously run and updated 
dynamic simulator state. In this mode, calling an action only veri- 
fies that the action number nmtches the expected action number 
popped off the recovery stack. Testing action numbers in this way 
is not necessary, but is useful to ensure that the fast and slow simu- 
lators communicate correctly. 

Dynamic result tests do not modify the specialized action cache 
either. Instead, they retrieve the dynamic result previously calcu- 
lated by the fast simulator and pass it m the slow simulator. This is 
necessary, because the slow simulator cannot execute any dynamic 
computation until miss recovery has finished. 

When the slow simulator caches up to the point at which the action 
cache miss occurred, it returns to normal slow simulation. At this 
point, all run-time static and dynamic variables have consistent 
values, and the specialized action cache is ready to receive new 
actions. 

5 .  R E L A T E D  W O R K  
Fast-forwarding, like run-time code generation, specializes a pro- 
gram, while it executes, for a particular input. Facile, however, 
does not currently generate or execute new instructions, instead it 
produces an optimized representation of its internal actions that 
can be interpreted efficiently. Some contemporary run-time code 
generation systems are Fabius, Tempo, and DyC. Fabius performs 
run-time code generation for programs written in a functional sub- 
set of ML [9]. Tempo supports both compile-time partial evalua- 
tion and run-time specialization of C programs [4]. Like Facile, it 
uses compile-time binding analysis to identify run-time static code 
and specializes the residual dynamic code at run time. DyC spe- 
cializes C code with run-time code generation and optimization 
[5]. Like Facile, DyC uses simple annotations to identify run-time 
static values in a subject program, uses polyvariant binding-time 
analysis, and caches specialized code indexed by its run-time static 
input. These system are general-propose compilers. It is an inter- 
esting open question whether they could analyze the complex code 
and state in a detailed simulator well enough to optimize these pro- 
grams. 

Traditional partial evaluation and run-time code generations sys- 
tems, such as those above, generate residual code for functions or 
regions, neither of  which is practical for this application. The 
residual code for a micro-architectural simulator is large and must 
be generated for many different static inputs (potentially, the cross 
product of instructions and micro-architectural states). Fast-for- 
warding specializes, on demand, only the control flow paths that 
execute. This saves space in the specialized action cache, at the 
cost of a recovery mechanism to handle control-flow path misses. 

Facile's domain-specific language, besides facilitating the static 
program analysis, greatly simplifies the code for a simulator. 
Besides providing a concise syntax for expressing the encoding 
and semantics of instructions, the language also provides a frame- 
work for writing the architectural simulation and for understanding 
the specialization process. Other simulators, such as DyC, rely on 
potentially unsafe programmer annotations to ameliorate a lack of 
pointer analysis and domain knowledge. 
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6. P E R F O R M A N C E  
Fast-forwarding can be very effective at accelerating the simula- 
tion of a detailed out-of-order micro-architecture. Section 6.1 dem- 
onstrates this acceleration in a hand-coded memoizing out-of-order 
simulator written in C. Section 6.2 shows that a similarly large per- 
formance improvement is achieved with an automatically opti- 
mized simulator written in Facile, although current inefficiencies 
in the compiled Facile code prevent it from performing as well as 
the simulator coded by hand. Seetion 6.3 discusses the shortcom- 
ings of the current Facile compiler implementation, and what can 
be done to improve generated simulator performance. 

6.1. The Potential of Fast-Forwarding 
FastSim [14] is a detailed out-of-order micro-architecture simula- 
tor that models the SPARC-V8 ISA running on a MIPS RI0000- 
like out-of-order pipeline. FastSim predates Facile. It was written 
in C to demonstrate the fast-forwarding technique. We use 
FastSim's performance as a baseline to evaluate Facile simulators. 

Measurements used the SPEC95 benchmarks. All runs were per- 
formed on a Sun Mierosystems Ultra En~rprise E5000, with 167 
MHz UltraSPARC processors and 2 GByte of physical memory. 
All programs except compress used their "test" input set to reduce 
simulation time. Compress, whieh requires less time to execute, 
used its "train" input set. 

Figure 11 shows the performance of FastSim with and without 
fast-forwarding, and compares this performance against the Sim- 
pleScalar out-of-order simulator [1]. SimpleScalar is a widely 
used, comparable, conventional simulator, that simulates a simi- 
larly detailed micro-arehit~ture. Moreover, it is among the fastest 
instruction-level out-of-order simulators available. 

FastSim without fast-forwarding performed comparable to Sim- 
pleScalar: FastSim was 1.1-2.1 (mgfid-gce) times faster than Sim- 
pleScalar. With fast-forwarding, FastSim's performance improved 
by an order of magnitude, making it 8.5-14.7 (fpppp-ijpeg) times 
faster then SimpleScalar. FastSim with fast-forwarding ran 4.9- 
11.9 (li-mgrid) times faster than FastSim without this technique, 
while computing exactly the same simulated cycle counts. 

The reason for FastSim's high performance is that nearly all target 
instructions are simulated by the fast simulator, which skips most 
of the out-of-order pipeline simulation work. Table 1 shows the 
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Figure 11. FastSim (pre-Facile) performance, with and without memoization, vs. SimpleScalar performance. 

percentage of instructions simulated by the fast simulator. In the 
worst case--gee--99.689% of instructions were replayed by fast 
simulation. The overhead of out-of-order pipeline simulation, 
which accounts for the majority of un-memoized simulation time, 
was nearly eliminated from the simulator execution. 

Table 1: Percentage of instructions fast-forwarded. 

Integer % Floating-point % 
benchmarks Fast-Fwd. benchmarks Fast-Fwd. 
099.go 99.901% 101.tomcatv 99.997% 
124.m88ksim 99.987% 102.swim 99.977% 
126.gec 99.689% 103,su2cor 99.974% 
129.compress 99.923%, 104.hydro2d 99.972% 
130.1i 99.997% 107.mgfid 99.999% 
132.ijpeg 99.797% 110,applu 99.999% 
134.perl 99.978% 125.turb3d 99.999% 
147.vortex 99.992% 141.apsi 99.998% 

145,fpppp 99.987% 
146.wave5 99.995% 

Fast-forwarding trades memory consumption for speed. A 
memoizing simulator may consume significantly more memory 
than a conventional simulator. Table 2 shows the amount of data 
memoized during simulation of the SPEC95 benchmarks. Most 
benchmarks generated relatively little data, but a few benchmarks 
produced over 100 MB of data. The worst ease was go, which 
required nearly 900 MB to simulate its test input set. 

Table 2: Quantity of memoized data. 

Integer MBytes Floating-point MBytes 
Benchmarks Cached Benchmarks Cached 
099.go 889.4 101.tomcatv 5.6 
124.m88ksim 4.6 102.swim 16.8 
126.gee 296.0 103.su2cor 32.8 
129.compress 2.8 104.hydro2d 35.5 
130.1i 3.2 107.mgfid 9.5 
132.ijpeg 199.5 110.applu 19.5 
134.perl 142.9 125.turb3d 10.4 

108.6 147.vo~ex 141 .apsi 20.3 
145 .fpppp 25.4 
146.wave5 38.3 
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Figure 12. Pertbrmanee of out-of-order Facile simulator with and without fast-forwarding. 
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Memory utilization can be limited by fixing a maximum cache size 
and clearing the cache when it fills [14]. Just as when the program 
starts, new actions and data are memoized by the slow sinmlator. 
Using this simple policy, cache size can be reduced by a factor of 
ten, with little impact on memoized simulator performance. 

6.2. Facile Simulator Performance 
The previous section quantified the effectiveness of fast-forward- 
ing, when applied by hand to out-of-order simulation. An out-of- 
order simulator written in Facile and optimized by Faeile's com- 
piler achieves comparable performance gains. We implemented an 
out-of-order micro-architecture simulator in Facile. Like FastSim, 
our new simulator models branch prediction, speculative execu- 
tion, non-blocking caches, and register renaming. A 32-instruction 
out-of-order pipeline window is used, which is similar in complex- 
ity to the R10000 pipeline modeled by FastSim. As in FastSim, the 
branch predictor and cache simulator are not memoized, while the 
pipeline simulator (including register renaming) is memoized. 
Unlike FastSim, direct execution is not used and the target instruc- 
tions' semantics are executed out-of-order. 4 This simulator con- 
sists of 1,959 non-comment, non-blank lines of Facile code and 
992 lines of C code. By contrast, a functional simulator required 
703 lines of Facile code and an in-order pipeline with reservation 
tables required 965 lines of Facile and 11 lines of C code. 

We measured the SPEC95 benchmarks on the same 167 MHz 
UltraSPARC host. Compress ran with its "train" input set, and all 
other benchmarks ran with their "test" input sets. We simulated the 
benchmarks with and without memoization. With memoization, 
the specialized action cache was limited to 256 Mbytes and cleared 
when full. When memoization was not used, only the slow simula- 
tor was generated, with no extra code for fast-forwarding or 
manipulating the cache. 

Figure 12 shows the performance of the out-of-order simulator 
written in Facile, with and without fast-forwarding, compared to 
SimpleScalar. Fast-forwarding improved simulator performance 
2.8-23.8 (gcc-fpppp) times over the same simulator without this 
technique. The harmonic mean of the performance improvement 

4. FastSim uses direct execution to simulate target instruction semantics 
in-order. An out-of-order simulator that calculates simulated execution 
time runs intermittently as a co-routine of the direct execution. 

was 8.3. This is comparable to the order-of-magnitude acceleration 
achieved by hand in FastSim. 

Nevertheless, the current Facile compiler produces relatively inef- 
ficient code. The Facile simulator ran at a sixth of the speed of the 
hand-coded FastSim simulator. In spite of its inefficiency, the fast- 
forwarding Facile simulator ran the SPEC benchmarks 1.5 times 
faster than SimpleScalar (harmonic mean). Facile performs worse 
for only one benchmark (gcc), which required significantly more 
than the 256 MB of memory allocated to the specialized action 
cache in these experiments. A larger cache would have improved 
Facile performance for this benchmark. 

6.3. Future Compiler Optimizations 
Although we have no measurements to demonstrate that the ineffi- 
ciencies in Facile's compiler can be corrected, examination shows 
several ways its generated code can be improved, given more time 
and manpower. Here of some of the most obvious potential 
improvements: 

1. In the fast simulator, the switch on action numbers is inefficient 
and could be rewritten as indirect function calls or, in gce, an 
indirect goto. Gce compiles an indirect goto into a single indi- 
rect jump instruction, which should run significantly faster than 
the current index calculation, load, bounds check, and indirect 
jump generated for a switch statement. 

2. The slow simulator can be divided into two separate functions: 
one for normal slow simulation and another for recovering from 
a miss, making both tasks much faster. This change would elim- 
inate the if-statement guards around dynamic statements in the 
slow simulator. Dynamic statements could simply be left out of 
the recovery version of the simulator. The normal slow simula- 
tor would have dynamic statements without guards. This opti- 
mization would help since the slow simulator is so much slower 
that it still accounts for a significant fraction of simulator exe- 
cution time, although most cycles/instructions are simulated by 
the fast simulator. 

3. With liveness analysis, many statements that support memoiza- 
tion, but act on variables that are not live, could be identified 
and removed. Of particular interest are non-live global variables 
that are run-time static at the end of a step function. Since glo- 
bal variables are considered dynamic at the start of a step func- 
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tion call, the Facile compiler generates extra statements at the 
end of the function to make their run-time static values dynamic 
for the next iteration. This in turn causes extra data to be written 
into the specialized action cache, which happens whenever a 
ran-time static value becomes dynamic. Skipping this unneces- 
sary work for variables that are not live would both reduce the 
number of statements in the fast and slow simulators, and 
reduce the amount of data in the action cache. 

4. Many variables, stored globally to allow communication of 
dynamic values between the fast and slow simulators during 
miss recovery, are unnecessarily duplicated by our implementa- 
tions of function inlining and polyvariant division. Reducing 
this duplication would reduce a simulator's memory footprint, 
improving its cache performance. 

5. Although our binding-time analysis currently detects static, run- 
time static and dynamic code and data, it does not perform par- 
tial evaluation at compile time. In our experience, micro-archi- 
tecture simulators do not contain much compile-time static 
code, but constant folding and similar optimizations may bene- 
fit both the slow and fast simulators. The analysis (i.e., binding- 
time analysis) is already in place, making these optimizations a 
worthwhile addition to the compiler. 

A more radical optimization would be to apply ran-time code gen- 
eration and optimization to actions, similar to DyC [5]. As cur- 
rently implemented, fast-forwarding stores action numbers in the 
specialized action cache and interprets them. With run-time code 
generation, a simulator could write native host instructions directly 
into the action cache. This would eliminate the overhead of reading 
action numbers and dispatching to dynamic basic block code, and 
reduce the overhead of reading placeholder data from the cache, 
both of which are bottlenecks to faster simulator performance. 

7. CONCLUSION 
Fast-forwarding is a very effective technique for accelerating com- 
plex detailed processor simulation, but is difficult to implement by 
hand. The Facile language simplifies both writing instruction-level 
micro-architecture simulators and the compiler analyses needed to 
generate a memoizing simulator. Simulators written in Facile can 
be compiled to use fast-forwarding and have demonstrated the 
same order of magnitude performance improvement seen in a 
hand-coded memoizing simulator. Facile makes the fast-forward- 
ing optimization accessible to simulator writers. 

Although the current incarnation of Facile's compiler produces rel- 
atively inefficient code, its fast-forwarding still makes out-of-order 
simulation faster than similarly detailed out-of-order simulators 
without memoization. There is a lot of room for improvement in 
the Facile compiler. Additional time and effort should bring the 

performance of automatically optimized simulators closer to the 
performance of hand coded simulators, like FastSim. 

For more information about Facile and fast-forwarding, see the 
FastSim web pages at http://www.cs.wisc.edu/-wwt/fastsim. They 
contain descriptions and examples of Facile, FastSim, and fast-for- 
warding, and contain links to related publications. 
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