
Facile: A Language and Compiler For
High-Performance Processor Simulators 1

Eric C. Schnarr
QUIQ Incorporated

25 Kessel Court, Suite 201
Madison, WI 53711

schnarr@quiq.com

Mark D. Hill
University of Wisconsin--Madison

1210 West Dayton Street
Madison, Wl 53706

markhill @ cs.wisc.edu

James R. Larus
Microsoft Research
One Microsoft Way

Redmond, WA 98052
larus @ microsoft.com

ABSTRACT
Architectural simulators are essential tools for computer architec-
ture and systems research and development. Simulators, however,
are becoming frustratingly slow, because they must now model
increasingly complex micro-architectures running realistic work-
loads. Previously, we developed a technique called fast-forward-
ing, which applied partial evaluation and memoization to improve
the performance of detailed architectural simulations by as much
as an order of magnitude [14].

While writing a detailed processor simulator is difficult, imple-
menting fast-forwarding is even more complex. This paper
describes Facile, a domain-specific language for writing detailed,
accurate micro-architecture simulators. Architectural descriptions
written in Facile can be compiled, using partial evaluation tech-
niques, into fast-forwarding simulators that achieve significant
performance improvements with far less programmer effort. Facile
and its compiler make this performance-enhancing technique
accessible to computer architects.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications--
specialized application languages; D,3.4 [Programming Lan-
guages]: Processors--optimization, compilers; D.3.3 [Program-
ming Languages]: Language Constructs and Features--
constraints, frameworks; 1.6.2 [Simulation and Modeling] Simu-
lation Languages.

General Terms
Algorithms, Languages, Performance.

Keywords
Micro-architecture simulation, out-of-order processor simulation,
memoization, and partial evaluation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage end that copies bear this notice and the full citation on the first page,
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PLDI 2001 6/01 Snowbird, Utah, USA
© 2001 ACM ISBN 1-58113-414-2/01/06...$5.00

1. INTRODUCTION
Detailed simulation is an essential tool for computer architecture
and systems research and development. As computers, in particu-
lar processor micro-architectures, have become increasingly com-
plex, so have their simulators. While this complexity has greatly
improved processor performance, it has had the opposite effect on
simulator speed. Complex simulators run slowly, which impairs
their usefulness in evaluating processor implementations or devel-
oping software. Moreover, architecture simulators are complex
pieces of software that are difficult to write, debug, and validate.

Facile---our domain-specific language for writing detailed proces-
sor architecture simulators--attacks both problems, with a goal of
making efficient simulators more accessible to computer archi-
tects. We previously showed that programming language imple-
mentation techniques--partial evaluation and memoization--
could increase simulator performance by up to an order of magni-
tude [14]. This approach, called fast-forwarding, was very difficult
to implement by hand, which led to this research on the Facile lan-
guage for describing instruction eneodings, instruction semantics,
and micro-architectural details and on the Facile compiler for
translating a processor description into an efficient simulator. The
compiler uses partial evaluation analyses to translate a simulator
written in Facile into a fast-forwarding simulator, which uses run-
time partial evaluation to greatly improve performance [13].

Instruction-level simulation focuses on modeling instrnctions'
effect on user-visible state; for example, that an add instruction
puts the sum of two registers into a third. These simulators typi-
cally are interpreters, written in a procedural language such as C,
that read instructions from a target executable and execute their
functional behavior. Many approaches have been tried to acceler-
ate this procesS. Some simulators pre-decode target instructions, to
make interpretation easier, e.g., SPIM [6] and SimlCS [10]. Others
compile target instructions into native host instructions and then
directly execute them, e.g., FX!32 [2] and Shade [3].

Architectural or micro-architectural simulation, by contrast, simu-
lates the behavior of a processor implementation by modeling
instructions' effects on processor structures. For example, the reg-
isters used by the add instruction might be dynamically renamed
and the add operation dynamically scheduled on one of several

This work was largely performed as part of Eric Schnarr's Wisconsin
Ph.D. [13]. It was supported in part by the National Science Foundation
with grants M1P-9625558 and EIA-9971256.

321

ALUs. Modem, out-of-order processors are built on complex
micro-architectures, whose simulation is very expensive. SimpleS-
catar, a fast, popular out-of-order simulator, incurs approximately a
4,000 times slowdown [1]. RSiM, an out-of-order multiprocessor
simulator, executes fewer than 15,000 instructions per second on a
SUN Ultra 1/140 workstation, which is approximately a 10,000
times slowdown per processor [I 1]. MXS, the SimOS out-of-order
simulator, also incurs a several thousand times slowdown per pro-
cessor [7].

Techniques that enhance functional simulators offer little benefit
for architectural simulators, most of whose time is spent simulat-
ing an out-of-order pipeline, not interpreting instructions. Fortu-
nately, simulators, like compilers and computer architectures, can
exploit program locality to improve perfomaance. Even detailed
out-of-order simulators spend most of their time modeling a small
number of instruction sequences. Run-time partial evaluation and
memoization permit the rapid re-simulation of these sequences.
This approach is the basis of our fast-forwarding technique.

Writing fast-forwarding simulators is difficult. A programmer
must not only understand and correctly model a proeessor's micro-
architecture, but he or she must also distinguish run-time static and
dynamic data; implement two, tightly-coupled simulation engines;
and ensure that both appropriately model simulator state.

Facile is a new domain-specific programming language for writing
fast-forwarding simulators. It is designed to facilitate the specifica-
tion and implementation of detailed architecture simulators and to
simplify the compiler analyses necessary to automatically produce
a fast-forwarding simulator. For example, a simulator for the
SPARC V9 instruction set running on a MIPS R10000-1ike out-of-
order processor requires less than 2,000 lines of Facile and another
1,000 lines of C code.

The Facile compiler uses a new approach to the classic problem of
partial evaluating an interpreter for a given input program [8].
Unlike much partial evaluation work, fast-forwarding occurs at run
time. In many respects, Faerie is similar to run-time specialization
and code generation systems, though Faeile's domain-specific lan-
guage and limited application domain permits a very fine-grain
and aggressive translation that results in large performance gains.

The rest of this paper is organized as follows. Section 2 describes
how memoizailon works to speed miero-arehitecture simulation.
Section 3 introduces Facile, our new programming language, and
discusses how it supports fast-forwarding simulators. Section 4
describes how Facile's compiler analyzes and optimizes simula-
tors. Section 5 discusses related work. Section 6 presents the per-
formance of a hand-coded out-of-order simulator and an out-of-
order simulator optimized by the Facile compiler.

2. F A S T - F O R W A R D I N G
Fast-forwarding is an application of partial evaluation and
memoization to micro-architecture simulation. This basic execu-
tion model was described previously [14]. Fast-forwarding
improved the performance of a detailed out-of-order processor
simulator 5-12 times over the same simulator without memoiza-
tion. Below is a brief description of this technique, which provides
the run-time framework for this work.

/
/

miss]

Figure 1, Architecture of a fast-forwarding simulator.

2.1. Overview
The basic idea is to capture a simulator's computation of an
instruction's effects on processor micro-architecture in a form that
can be rapidly re-executed. For example, an out-of-order simulator
might record timing and functional effects of one processor cycle,
indexed by the collection of instructions in execution at the start of
the cycle. This example is explored in Section 2.2. Recorded
effects can be quickly re-executed without interpretive overhead or
the need to re-compute, as opposed to simply re-applying, instruc-
tions' effects on processor state.

Most simulators can be modeled as a simulator step function. Each
call to this function advances the simulation by a single step. A
simulator's author determines the amount of calculation performed
in a step, which can range from simulating one processor cycle to
simulating several cycles and instructions. The simulator step
function's implementation determines the granularity of memoiza-
tion, since calls on this function are memoized. If one instruction is
simulated per step, the behavior of individual instructions can be
looked up and replayed. If several instructions are simulated per
step, their combined behavior ean be replayed when the same
group of instructions is encountered.

Consider a simulator step function f This function takes as input
the state of the simulated micro-architecture and returns a new
state that reflects the execution of one simulation step. To fast-for-
ward f, part of its input (i.e., a subset of the micro-architecture
state) is designated run-time static (constant) and used to index a
cache of specialized actions:

f : (Sin × Din) ~ Dou t

As shown above,f 's input is divided into run-time static input (Sin)
and dynamic input (Din) . Run-time static input typically includes
the binary insmactions being simulated and a subset of the proces-
sor pipeline state. Dynamic inputs usually include values in simu-
lated registers, addresses resident in a simulated data cache, etc.

All code infthat depends only on Sin is also run-time smile, so that
in any two calls tof that are passed the same values for Sin,f's run-
time static code produces the same result. Only code that depends
on dynamic clam (Din) can produce a different result.

..... 322

Action Key (run-time static inputs)
cache" \ 't
ent

f

M,,,io0
~ ~ control-
, paths

Dynamic actions

Figure 2. The specialized action cache.

When a fast-forwarding simulator encounters a particular run-time
static input (Sin) for the first time, it both executes f t o effect the
simulation and uses partial evaluation to specializefwith respect
to Sin. The specialized function, fsin : Din ~ Dout, is stored into a
specialized action cache, indexed by Sin. Subsequent calls to f,
with input Sin , execute the less expensive functionfsin instead off.

Figure 1 depicts the architecture of a fast-forwarding simulator. At
the top is the slow/complete simulator, which consists of the un-
specialized simulator stop function. As the slow simulator exe-
cutes, it writes a description of its dynamic behavior--the partially
evaluated function fSin--into the specialized action eaehe. When
the step function encounters a previously seen run-time static
input, the dynamic behavior is found and replayed by a fast/resid-
ual simulator.

A replayed simulation can only re-execute a previously recorded
control flow path. While replaying, the fast simulator verifies that
the control flow path is known and re-executes actions associated
along the path. If the path is not cached, an action cache miss
returns control to the eornpleto simulator.

This process is a dynamic version of the classic partial evaluation
of an interpreter for an input program [8]. An important difference
is that fast-forwarding is a run-time process. Another difference is
that traditional partial evaluation systems generate residual code
for an entire function, which is not feasible because simulator stop
functions are large and must be specialized for many different
inputs. Fast-forwarding addresses these concerns by specializing
only control flow paths executed by the slow simulator and by spe-
cializing these paths on demand. Because of the high degree of
locality in program execution, the specialized action cache remains
a manageable size and actions are heavily reused [14].

Figure 2 illustrates the structure of the specialized action cache. It
contains cache entries, which consist of index keys--the step func-
tion's run-time static input--and the simulator's residual dynamic
actions. Actions are linked together in the order in which they exe-
cute. Actions that select control-flow paths, by examining dynamic
values, have multiple successors.

The simulator records its actions when it executes a control flow
path, so successors of an action may be missing. For example, a
branch that was previously always taken will have no recorded
behavior for the fall-through case. When the fast simulator encoun-
ters a missing action, it incurs an action cache miss and returns to

slow simulation. To recover from the miss, this simulator rolls
back the failed dynamic step function, reads its static input from
the cache entry's index key, and restarts the slow simulator step
function. This simulator executes the new control flow path,
recording its actions, so that the new control flow path can be
replayed in the future.

Recovery from a miss is complicated. Fast simulation may already
have moved beyond the beginning of the simulator's step function
(i.e., the location of a key in the specialized action cache), and
modified dynamic simulator state, before encountering the miss.
Intuitively, the dynamic state should be rolled back to the begin-
ning of the step function call, but this is not always possible.
Instead of rolling the fast simulation back, the slow simulator pro-
ceeds cautiously and does not execute dynamic actions until it
reaches the cache miss. Until then, the slow simulator only per-
forms run-time static operations and stores no new data into the
specialized action cache. ARer reaching the cache miss, the slow
simulator returns to normal execution, executing both run-time
static and dynamic code and adding new actions to the cache.

2.2. Example: Out-Of-Order Simulation
Fast-forwarding is very effective at accelerating the simulation of a
modem, out-of-order micro-architecture. One implementation uses
a simulator step function that takes the current state of the out-of-
order pipeline as its run-time static input and simulates the miere-
architecture until the end of a processor cycle that performs some
dynamic behavior. This approach allows the fast simulator to skip
over most cycle-by-cycle pipeline simulation, replaying only func-
tional instruction behavior and other non-pipeline simulation such
as branch prediction and cache simulation.

Our simulator encodes the run-time static state of an out-of-order
pipeline in a data structure called the instruction queue. The
instruction queue does not correspond to any micro-architecture
component. It is simply a convenient data structure for represent-
ing run-time static data. The instruction queue is a list of instruc-
tions, in program order, currently in execution. A small amount of
additional information specifies the pipeline stage and latency of
each instruction, e.g., fetched, waiting in out-of-order queue, exe-
cuting, etc.

The left side of Figure 3 shows an example of data in the instruc-
tion queue. The first 11 instructions are in the instruction queue.
Over the next 6 simulated cycles, only run-time static behavior
occurs: the first instruction (¢:l.r) is retired, 9 more instructions are
fetched, several instructions use the simulated ALUs 2, and the load
Cl.d) instruction at address 0x10078 counts down to the next time
it needs to make a dynamic call to the cache simulator.

The right side of Figure 3 shows data in the specialized action
cache for this pipeline state. An entry's key consists of a com-
pressed representation of the instruction queue. The instruction
queue in this example can be compressed into fewer than 40 bytes,
since its contents can be reconstructed from the underlined values.
The first action increments the simulated cycles by 6, for the 6

In this example, the functional simulation of instructions is dynamic,
but separate from micro-architectural timing simulation: Instruetiuns
are first interpreted for their functional behavior, then their pipeline
timing is simulated.

323

Addn
~ 0 0 7 4

0x10078
0xl007c

0xlO080
0xt0084

0x10088

OxlO08c
0x10098

0x1009e
OxlOOa0

I Ox100a4

Out-Of-Order Pipeline State

Instruction Stage Latency
elf %£p done

Xd [%Sp + 0x40], %10 ~kEhg

add %sp, 0x44, %11 92~9. I

su3~ %sp, 0x20, %sp

tst %gl Queue

be 0xi0098 ggg/i~

SOy %gl, %00 queue
sethi %hi (0xSb000) , %o0 fetch

or %o0, 0x148, %00 fetch
aa11 0x3 f378 fetch

nop
0x3f378 save %sp, -96, %sp

0x3f380 sethl %hi(0x75c00), %00

0x3f384 call 0x56ce8

0x3f388 or %o0, 0x2e0, %00

0x56ce8 save %sp, -96, %sp

0x56cee seth£ %hi(0x77000) , %gl

0x56cf0 ld [%gl + 0xl7c], %gl

Ox56ef4 call %gl

Ox56cf8 restore

Previous Action)

Action Cache
Entry

/
Memory

Figure 3. An out-of-order pipeline state with SPARC instructions and resulting specialized action cache entries.

cycles of an-time static execution. The next action calls the cache
simulator for the load at address Ox 10078. The cache simulator has
multiple possible results corresponding to a cache hit or miss. In
this example, the load previously missed in the cache and waited
18 cycles before checking if the value was returned from the next
level of the cache hierarchy. Subsequent fast simulation can replay
these actions, so long as the load again misses in the cache with an
18-cycle delay. If during replay, the load hits in the cache (or
misses with a different delay), then it is an action cache miss and
control returns to the slow simulator.

3. FACILE LANGUAGE
As the previous discussion probably made clear, writing fast-for-
warding simulators is difficult A programmer must not only
understand and correctly model a processor's micro-architecture,
but he or she must also distinguish between run-time static and
dynamic data; implement two, tightly-coupled simulation engines;
ensure that simulator state is appropriately modeled by each; and
transfer control and state between them.

Facile is a new domain-specific programming language for writing
fast-forwarding micro-architecture simulators. It is designed to
facilitate the specification and implementation of detailed architec-
ture simulators and to simplify the compiler analyses necessary to
automatically generate a fast-forwarding simulator.

Section3.1 diseusses Faeile's syntax for describing machine
instructions and illustrates its use in a simple example. Section 3.2
discusses Faeile's support for partial evaluation and memoization.

This support includes language restrictions to simplify compiler
analyses and a framework for writing simulators as step functions.

3.1. Architecture Description
Facile provides a concise syntax for describing a computer's archi-
tecture and instruction set. This syntax is partially derived from the
New Jersey Machine Code Toolkit's description language [12].
This language was the starting point for Facile's instruction
description syntax, because its descriptions are concise, designed
to reduce programmer error, and flexible enough to describe
instruction sets ranging from RISC to Intel x86. Facile extends this
work to include instruction semantics, as well as syntax.

Faerie describes binary encoding of instructions using patterns on
streams of fixed width tokens. Figure 4 illustrates a Facile token,
field, and pattern declarations. These declarations describe the
encoding of two instructions, add and bz (branch if zero), of a fie-
titious RISC ISA. A token declaration defines one fixed width

token instruction[32] fields

op 24:31, rl 19:23, r2 14:18, r3 0:4,
i 13:13, imm 0:12, offset 0:18, fill 5:12;

pat add = op==0x00 &a (i==l I[fill==0);
pat bz = op==0x01;

Figure 4. Instruction encoding in Facile.

......... 324

val PC : stream;

val nPC : stream;

val R = array(32){0};

sem add {

if(i) R[rl] = R[r2] + imm?sext(32);

else R[rl] = R[r2] + R[r3];
};

sem bz {

if(R[rl]==0) nPC = PC + offset?sext(32);
};

FigureS. lnstructionsemanticdescription.

token and names several bit fields contained within that token. The
op field in Figure 4 is contained in bits 24 to 31 of a 32-bit wide
token named i n s t r u c t i o n . For fixed width instruction sets,
such as SPARC and MIPS, one token suffices to encode each
instruction. For variable width instructions, such as Intel's x86,
several tokens may be necessary.

Pattern declarations associate mnemonic names with conditions on
token fields and use these constraints to describe instructions. In
Figure 4, the a d d and bz pattern names are associated with values
0x00 and 0x01 respectively in an instruction's op field. The add
instruction has additional conditions: Either the immediate flag
field (i) must be I or bits 5 through 12 (the f i 11 field) must be 0.

A token stream is a sequence of tokens starting at an address in the
text segment of a simulated executable. The instruction at the front
of a token stream is decoded by matching the binary data at that
location against a pattem.

Unlike the NJ Machine Code Toolkit, Facile describes instruction
semantics as well as instruction encoding. Figure 5 shows the
semantics of the add and bz instructions from Figure 4. First, glo-
bal variables PC, nPC, and R are declared. PC and npC are token
stream variables that represent the current program counter and the
program counter of the next instruction, respectively. R is an array
of integers that holds the contents of the integer register file.

Next, semantic declarations associate functional simulation code
with the pattern names add and bz. Instruction add tests the
value of the i field: if i is 1, then it adds an integer register to the
instruction's sign extended immediale field (imm). Otherwise, it
adds two integer registers. The added result is written back to the
integer register file. Instruction bz tests if an integer register is 0,
and alters the next instruction address if true.

The semantic code associated with each instruction can perform
micro-architecture simulation and other tasks in addition to behav-
ioral simulation. The Facile language provides functions, loops,
arrays, and other general programming constructs. These program-
ming features were included in Facile because no single, special-
purpose micro-architectt.re declarative syntax seemed likely to be
able to model all possible micro-arehitecture structures.

Given encoding and semantic functions, the Facile compiler auto-
matically generates a function that decodes a binary instruction,
dispatches to the appropriate simulation code, and simulates func-

val init = system?start pc;

fun main(pc) {

PC = pc; // set global PC variable

nPC = PC + 4; // default value for npc

PC?exec(); // simulate 1 instruction

init = nPC; // prepare next iteration
)

Figu~ 6. Simplifiedsimulatorstep function.

tional and architectural behavior. This function is called from a
user-defined simulator step function.

3.2. Language Support For Fast-Forwarding
Faeile's support for fast-forwarding starts with its organization of
simulator code into a step function. Facile programmers define a
function named m a i n to perform one step in the simulation. This
step can simulate one or more processor cycles, one or more
instructions, or any other appropriate simulation quantum. Faeile's
run-time system repeatedly calls m a i n to advance the simulation.
Calls to m a i n are memoized.

The ma in function receives two kinds of input: run-time static
input is passed as arguments to main . Dynamic input comes from
other sources, such as global variables or from external code not
written in Facile. The arguments to main are the run-time static
keys into the specialized action cache. The programmer defines the
number and type of ma in ' s arguments and controls exactly what
data values are passed to them.

Figure 6 shows a trivial simulator step function that simulates one
target instruction per call. A global variable (i n i t) stores argu-
ment values for the next call to main . At the start of simulation,
init is set to the target program's entry point (start_pc). This
m a i n function has one ran-time static input (pc), whose initial
value comes from i n i t . The body of m a i n copies pc into global
variable PC for use by the simulation code, predicts the value of
nPC (branch instructions may reset it), and simulates one target
instruction. The last statement in m a i n updates i n i t with the pc
for the next call to main .

Facile has several other features that support writing fast-forward-
ing simulators. These include built-in data structures and functions
useful for micro-architecture simulation, and language restrictions
that simplify compiler analysis. The built-in data types include
token streams, condition code values (with functions for comput-
ing them), and double-ended queues useful for modeling micro-
architectures. By including these functions and data types into the
language, their semantics are known, so a compiler can analyze
and transform code that uses them. One built-in support function is
the ? e x e c () attribute used in Figure 6. The ? e x e c () attribute
is applied to a token stream (PC) and uses the declared tokens, pat-
terns, and instruction semantics to decode and simulate one
instruction.

A key language restriction is the absence of pointers, which
increases the precision of the analysis that determines which parts
of a simulator step function can be skipped by fast-forwarding.
Another restriction is the absence of recursion. Non-recursive code
simplifies inter-procedural analyses. It also simplifies the mecha-
nism for recovering from action cache misses, by allowing

325

fun main(pc) {

val npc = pc + 4;

switch(pc) {

pat add:

if(i) N[rl] = R[r2i__~ imm?sext(32);

else R[rl] = R[r2] + R[r3];

pat beq:

if(R[rl] == 0)

npc : pc + offset?sext(32);
}

init = npc;
)

Figure7. Run-~mes ta t l eand dynamiccode(underlined).

dynamic data to be passed from the fast simulator to the slow sim-
ulator in global variables, not a stack.

Facile is sufficiently powerful to model a real instruction set and
complex processor implementation. It has been used to describe
the SPARC-V9 instruction set and a detailed, out-of-order pipeline
with non-blocking data caches, branch prediction, and speculative
execution. Code that is inconvenient in Facile, or that need not be
memoized, can be implemented in other languages, such as C. Fac-
ile provides an interface for calling external code, and memoizes
Facile code correctly despite calls on external functions.

4. COMPILATION AND OPTIMIZATION
The Facile compiler generates an optimized fast-forwarding simu-
lator. The compiler actually generates C code for two simulators--
slow and fast--and generates code to coordinate their communica-
tion through the specialized action cache. This process relies on
binding-time analyses to identify run-time static code and dynamic
basic blocks. The analyses and code generation are described
below.

4.1. Binding-Time Analysis
Binding-time analysis is a technique widely used in partial evalua-
tion to partition a function's code into static and dynamic parts,
starting from an initial division of a function's input In Facile,
binding-time analysis divides a simulator step function into run-
time static and dynamic parts. The run-time static code is a func-
tion of the run-time static input, so its computation can be
memoized and skipped by fast-forwarding. The remaining
dynamic code, on the other hand, must be executed every time.

Figure 7 shows the division of a Facile m a i n function into run-
time static and dynamic parts. Dynamic code is underlined. All
other code is run-time static. Note that this function performs the
same actions as the m a i n function in Figure 6, except that instruc-
tion semantic code is written as a pattern switch statement for
greater clarity.

Binding-time analysis performs an abstract interpretation of the
code, computing two binding time labels--rt-static and dynamic--
instead of actual data values. At the beginning of this interpreta-
tion, the arguments to m a i n (pc) and literal values (e.g., 4) are
labeled rt-static and all global variables are labeled dynamic. The
basic step is to label rt-static the result of expressions whose oper-
ands are all rt-static. For example, the switch statement is rt-static
because it depends only on the rt-static values of pc and the target

executable's text segment 3. Variables assigned a run-time static
value are labeled rt-static until they are re-assigned. Hence, n p c is
rt-static because it depends only on the rt-static values pc and 4.

Code is labeled dynamic when it depends on dynamic data. In the
example, the statement adding a register to an immediate, the state-
ment adding a register to another register, and the condition testing
a register against the value 0 are dynamic. Sub-expressions (not
underlined) in these statements that are rt-static (e.g., register indi-
ces and the added imrnediate value) are skipped by fast-forward-
ing, even though the statements containing them are not.

Other complications are not exposed by this example, such as
assignment to global variables. In Figure 7, assignment to 2 n i t is
labeled dynamic because its value is needed after m a i n returns. In
other cases, a global variable is assigned a rt-static value and used
within the body of ma in . In these cases, the analysis labels the
global variable as rt-static from the point at which it is assigned the
value until it is assigned a dynamic value or ma i n returns.

Another complication is ensuring the termination of binding-time
analysis. Abstract interpretation may re-evaluate a basic block of
the subject program each time the binding times of variables are
changed by one or more of the block's predecessors. In the pres-
ence of loops, basic blocks can be re-evaluated several times.

Facile's binding time analysis is guaranteed to reach a fixed-point
and terminate eventually. This is because the binding times of vari-
ables computed by a basic block's predecessors are merged on
entry to the block, a block is re-evaluated only if its merged bind-
ing time data changes, and merged binding times can only change
a finite number of times: 1) There are a finite number of different
binding time labels (n-static and dynamic). 2) There are a finite
number of variables in any given program. 3) When binding time
data is merged, the binding time of each variable never
decreases--e.g., if a variable is n-static from one predecessor and
dynamic from another, then it is dynamic after the merge.

Inter-procedural binding-time analysis is another complication,
although it is simplified by the absence of recursion. Facile uses a
polyvariant (context-sensitive) binding time analysis. This means
that each function can have several divisions corresponding to dif-
ferent labellings of its input--i.e., both its arguments and the glo-
bal variables. Polyvafiant division improves the accuracy of the
analysis, hence the amount of code that can be skipped. However,
polyvariant division also increases code size, since different ver-
sions of a function are generated for each of its divisions. Facile
chooses greater accuracy and the ability to skip more simulation
work over reduced simulator code size.

4.2. Extracting Actions
The next step in producing a fast-forwarding simulator is to orga-
nize the dynamic code identified by binding-time analysis into
basic blocks. These basic blocks constitute the actions used in the
specialized action cache. By replaying dynamic basic blocks in the
same order as the slow simulator executed them, the fast simulator
replays the memoized dynamic behavior.

3. Facile assumes target instructions do not change after they are loaded at
the start of simulation. Target instructions are considered run-time
static.

..... 326

Figure 8. Dynamic control flow graph.

To find dynamic basic blocks, the compiler first constructs a
dynamic control flow graph (dCFG). This representation starts
with a control flow graph of the entire program, and then removes
all rt-static statements. A dynamic basic block is a basic block in
the resulting graph.

Figure 8 shows the dCFG for the simulator in Figure 7. In this
example, each dynamic statement has its own block. In a richer
simulator, a basic block would contain multiple statements. These
basic blocks contain only dynamic code; the run-time smile sub-
expressions are replaced by the plaeeholder s.

After identifying these blocks, each one is assigned an action num-
ber. In Figure 8, blocks are numbered 1 through 4. The specialized
action cache stores these action numbers, not code. The fast simu-
lator replays cached behavior by reading an action number and
jumping to the corresponding code.

The specialized aeilon cache also holds data for run-time static
placeholders (the s's). When the fast simulator executes a
dynamic basic block corresponding to an action, it also reads
placeholder data from the specialized action cache and passes it to
the dynamic code. Plaeeholder data for each action number is
stored immediately after its associated action number.

Notice that block b 3 differs from the others. This block contains a
condition expression in an if statement. The result of this dynamic
expression determines the simulator's control flow path, so this
action can have more than one successor action sequence. To han-
dle this situation, the slow simulator records, in the cache, the
predicate value along with the resulting action sequence. The fast
simulator verifies that the dynamic value matches a previously
recorded value. If not, the action cache misses. This process is a
dynamic result test.

4.3. Slow and Fast Simulators
After binding-time analysis and assigning action numbers, the
compiler has enough information to generate fast and slow ver-
sions of the simulator. The slow simulator contains the complete
simulator code and additional compiler-generated code to write
action numbers and placeholder data into the specialized action
cache. The fast simulator contains only dynamic simulator code
and code to read action nnmbers and data from the cache.

fun fast_main() (

while(true) {

switch(get_next_action number()) {

case INDEXACTION:

verify_static_input();
case i:

read static data(rl, r2, tl);

R[rl] = R[r2] + tl;

case 2:

read static data(rl, r2, r3);

R[rl] = R[r2] + R[r3];

case 3:

read static data(rl);

val t2 = (R[rl] == 0);

verify_dynamic_result(t2);

case 4:

read static_data(npc);

init = npc;
)

}

}

Figure 9. Fas~sidual simulator (pseudo codA.

Figure 9 shows pseudocode for the fast simulator corresponding to
the simulator in Figure 7. This pseudocode uses Facile-like syntax
for simplicity, although the Facile compiler actually generates C
code. The fast simulator consists of a loop surrounding a switch
statement. It reads action numbers from the specialized action
cache and jumps to the corresponding dynamie basic block code.
Each switch case, except the INDEX_ACTION ease, corresponds
to a dynamic basic block. Code in each ease reads run-time smile
data from the eache and executes the dynamic basic block code.

The INDEX_ACTION case handles the end of an action sequence
from one simulator step and the beginning of the next step by veri-
fying that the current value of i n i t matches the next key in the
specialized action cache. Alternatively, the fast simulator could do
a full eacbe lookup to find the next cache entry, but it is faster to
follow the link to the next entry.

Cases I, 2, and 4 read run-time static data from the specialized
action cache and execute their dynamic code. Case 3 contains a
dynamic result test, v e r i f y dynamic r e s u l t (t 2) , that
searches the current action's possible successors to find an action
sequence appropriate for the value in t2. If a successor is found,
the fast simulator continues replaying memoized actions. If none is
found, an action cache miss occurs and control returns to the slow
simulator.

Figure 10 shows pseudocode for the slow simulator. It contains all
source simulator code, plus compiler-added code to write action
numbers and run-time static plaeeholder data into the specialized
action cache. It also contains code to recover from an aeilon cache
miss. This extra code is emboldened.

Before executing the first statement of a dynamic basic block, the
slow simulator writes that block's action number into the special-
ized aeilon cache. As run-time static placeholder values are com-
puted, they too are written into the cache. The cache orders these

327

fun slow_main(pc) {

val npc : pc + 4;

switch(pc) {

pat add:

if{i) {

memoize_action_number(1);

val tl = imm?sext(32);

memoize static data(rl, r2, tl);

if(Irecover) R[rl] = R[r2] + tl;

} else {

memoize_action_number(2);

memoize_static_data(rl, r2, r3);
if(Irecover) R[rl] = R[r2] + R[r3];

}

pat beq:

memoize_action_number(3);

memoize_static_data(rl);

val t2;

if(recover)
recover_dynaIaicresult(t2);

else {
t2 = (R[rl] == 0);

memoize_dynamic_result (t2) ;
)

if(t2) npc = pc + offset?sext(32);
}

memoizeaction_mamber(4);

memoize static data(n~c);

if(Irecover) init = npc;
}

FigurelO. Siow/eompletesimulaton

actions and data in the same order in which they execute, which is
the order the fast simulator will replay them.

For action 3--the bz instruction's predicate expression--the slow
simulator calls memoize_dynamic_result (t2) to record
the dynamic result. The result is either 1 (true) or 0 (false). The
subsequent memoized actions are valid only if the fast simulator
computes the same result. If the fast simulator computes a different
result, the slow simulator is restarted to produce actions for the
other control-flow path.

The slow simulator also contains code to recover from action
cache misses. Its dynamic statements are guarded by predicates
that allow dynamic code to execute only when the r e c o v e r flag
is false. The r e c o v e r variable is set true when the slow simulator
restarts after an action cache miss. It is changed to false when the
slow simulator catches up to the point at which the action cache
miss occurred.

When fast simulation has an action cache miss (e.g., action 3 com-
putes a dynamic result value not in the cache) the simulator
searches back through the most recently replayed actions until it
finds the last cache entry. The action numbers and dynamic result
values that were replayed since this entry are saved on a stack
called the recovery stack. The arguments to m a i n can be extracted
from the entry's key, and the slow simulator is restarted in recovery
mode (i.e., r e c o v e r set to true).

In this mode, the recovering slow simulator only executes run-time
static statements. The dynamic statements' guards prevent them
from executing, since they have previously run and updated
dynamic simulator state. In this mode, calling an action only veri-
fies that the action number nmtches the expected action number
popped off the recovery stack. Testing action numbers in this way
is not necessary, but is useful to ensure that the fast and slow simu-
lators communicate correctly.

Dynamic result tests do not modify the specialized action cache
either. Instead, they retrieve the dynamic result previously calcu-
lated by the fast simulator and pass it m the slow simulator. This is
necessary, because the slow simulator cannot execute any dynamic
computation until miss recovery has finished.

When the slow simulator caches up to the point at which the action
cache miss occurred, it returns to normal slow simulation. At this
point, all run-time static and dynamic variables have consistent
values, and the specialized action cache is ready to receive new
actions.

5 . R E L A T E D W O R K
Fast-forwarding, like run-time code generation, specializes a pro-
gram, while it executes, for a particular input. Facile, however,
does not currently generate or execute new instructions, instead it
produces an optimized representation of its internal actions that
can be interpreted efficiently. Some contemporary run-time code
generation systems are Fabius, Tempo, and DyC. Fabius performs
run-time code generation for programs written in a functional sub-
set of ML [9]. Tempo supports both compile-time partial evalua-
tion and run-time specialization of C programs [4]. Like Facile, it
uses compile-time binding analysis to identify run-time static code
and specializes the residual dynamic code at run time. DyC spe-
cializes C code with run-time code generation and optimization
[5]. Like Facile, DyC uses simple annotations to identify run-time
static values in a subject program, uses polyvariant binding-time
analysis, and caches specialized code indexed by its run-time static
input. These system are general-propose compilers. It is an inter-
esting open question whether they could analyze the complex code
and state in a detailed simulator well enough to optimize these pro-
grams.

Traditional partial evaluation and run-time code generations sys-
tems, such as those above, generate residual code for functions or
regions, neither of which is practical for this application. The
residual code for a micro-architectural simulator is large and must
be generated for many different static inputs (potentially, the cross
product of instructions and micro-architectural states). Fast-for-
warding specializes, on demand, only the control flow paths that
execute. This saves space in the specialized action cache, at the
cost of a recovery mechanism to handle control-flow path misses.

Facile's domain-specific language, besides facilitating the static
program analysis, greatly simplifies the code for a simulator.
Besides providing a concise syntax for expressing the encoding
and semantics of instructions, the language also provides a frame-
work for writing the architectural simulation and for understanding
the specialization process. Other simulators, such as DyC, rely on
potentially unsafe programmer annotations to ameliorate a lack of
pointer analysis and domain knowledge.

328

800

'1~ 700

O gO0
0

500

400

~4 300

~ 2o0

~ lOO

. i

. i

. i

. = .

6. P E R F O R M A N C E
Fast-forwarding can be very effective at accelerating the simula-
tion of a detailed out-of-order micro-architecture. Section 6.1 dem-
onstrates this acceleration in a hand-coded memoizing out-of-order
simulator written in C. Section 6.2 shows that a similarly large per-
formance improvement is achieved with an automatically opti-
mized simulator written in Facile, although current inefficiencies
in the compiled Facile code prevent it from performing as well as
the simulator coded by hand. Seetion 6.3 discusses the shortcom-
ings of the current Facile compiler implementation, and what can
be done to improve generated simulator performance.

6.1. The Potential of Fast-Forwarding
FastSim [14] is a detailed out-of-order micro-architecture simula-
tor that models the SPARC-V8 ISA running on a MIPS RI0000-
like out-of-order pipeline. FastSim predates Facile. It was written
in C to demonstrate the fast-forwarding technique. We use
FastSim's performance as a baseline to evaluate Facile simulators.

Measurements used the SPEC95 benchmarks. All runs were per-
formed on a Sun Mierosystems Ultra En~rprise E5000, with 167
MHz UltraSPARC processors and 2 GByte of physical memory.
All programs except compress used their "test" input set to reduce
simulation time. Compress, whieh requires less time to execute,
used its "train" input set.

Figure 11 shows the performance of FastSim with and without
fast-forwarding, and compares this performance against the Sim-
pleScalar out-of-order simulator [1]. SimpleScalar is a widely
used, comparable, conventional simulator, that simulates a simi-
larly detailed micro-arehit~ture. Moreover, it is among the fastest
instruction-level out-of-order simulators available.

FastSim without fast-forwarding performed comparable to Sim-
pleScalar: FastSim was 1.1-2.1 (mgfid-gce) times faster than Sim-
pleScalar. With fast-forwarding, FastSim's performance improved
by an order of magnitude, making it 8.5-14.7 (fpppp-ijpeg) times
faster then SimpleScalar. FastSim with fast-forwarding ran 4.9-
11.9 (li-mgrid) times faster than FastSim without this technique,
while computing exactly the same simulated cycle counts.

The reason for FastSim's high performance is that nearly all target
instructions are simulated by the fast simulator, which skips most
of the out-of-order pipeline simulation work. Table 1 shows the

~ w i t h rn em oizat ion

m w ithout mem oizat ion

El Sire pie Scalar

Figure 11. FastSim (pre-Facile) performance, with and without memoization, vs. SimpleScalar performance.

percentage of instructions simulated by the fast simulator. In the
worst case--gee--99.689% of instructions were replayed by fast
simulation. The overhead of out-of-order pipeline simulation,
which accounts for the majority of un-memoized simulation time,
was nearly eliminated from the simulator execution.

Table 1: Percentage of instructions fast-forwarded.

Integer % Floating-point %
benchmarks Fast-Fwd. benchmarks Fast-Fwd.
099.go 99.901% 101.tomcatv 99.997%
124.m88ksim 99.987% 102.swim 99.977%
126.gec 99.689% 103,su2cor 99.974%
129.compress 99.923%, 104.hydro2d 99.972%
130.1i 99.997% 107.mgfid 99.999%
132.ijpeg 99.797% 110,applu 99.999%
134.perl 99.978% 125.turb3d 99.999%
147.vortex 99.992% 141.apsi 99.998%

145,fpppp 99.987%
146.wave5 99.995%

Fast-forwarding trades memory consumption for speed. A
memoizing simulator may consume significantly more memory
than a conventional simulator. Table 2 shows the amount of data
memoized during simulation of the SPEC95 benchmarks. Most
benchmarks generated relatively little data, but a few benchmarks
produced over 100 MB of data. The worst ease was go, which
required nearly 900 MB to simulate its test input set.

Table 2: Quantity of memoized data.

Integer MBytes Floating-point MBytes
Benchmarks Cached Benchmarks Cached
099.go 889.4 101.tomcatv 5.6
124.m88ksim 4.6 102.swim 16.8
126.gee 296.0 103.su2cor 32.8
129.compress 2.8 104.hydro2d 35.5
130.1i 3.2 107.mgfid 9.5
132.ijpeg 199.5 110.applu 19.5
134.perl 142.9 125.turb3d 10.4

108.6 147.vo~ex 141 .apsi 20.3
145 .fpppp 25.4
146.wave5 38.3

329

o

o

180

160

t40

120
~00

80

60

4O

20

0

g. ooO,

Figure 12. Pertbrmanee of out-of-order Facile simulator with and without fast-forwarding.

W with m ern otzation

Mwi thou t m em oization

E3 SimpteScalar

Memory utilization can be limited by fixing a maximum cache size
and clearing the cache when it fills [14]. Just as when the program
starts, new actions and data are memoized by the slow sinmlator.
Using this simple policy, cache size can be reduced by a factor of
ten, with little impact on memoized simulator performance.

6.2. Facile Simulator Performance
The previous section quantified the effectiveness of fast-forward-
ing, when applied by hand to out-of-order simulation. An out-of-
order simulator written in Facile and optimized by Faeile's com-
piler achieves comparable performance gains. We implemented an
out-of-order micro-architecture simulator in Facile. Like FastSim,
our new simulator models branch prediction, speculative execu-
tion, non-blocking caches, and register renaming. A 32-instruction
out-of-order pipeline window is used, which is similar in complex-
ity to the R10000 pipeline modeled by FastSim. As in FastSim, the
branch predictor and cache simulator are not memoized, while the
pipeline simulator (including register renaming) is memoized.
Unlike FastSim, direct execution is not used and the target instruc-
tions' semantics are executed out-of-order. 4 This simulator con-
sists of 1,959 non-comment, non-blank lines of Facile code and
992 lines of C code. By contrast, a functional simulator required
703 lines of Facile code and an in-order pipeline with reservation
tables required 965 lines of Facile and 11 lines of C code.

We measured the SPEC95 benchmarks on the same 167 MHz
UltraSPARC host. Compress ran with its "train" input set, and all
other benchmarks ran with their "test" input sets. We simulated the
benchmarks with and without memoization. With memoization,
the specialized action cache was limited to 256 Mbytes and cleared
when full. When memoization was not used, only the slow simula-
tor was generated, with no extra code for fast-forwarding or
manipulating the cache.

Figure 12 shows the performance of the out-of-order simulator
written in Facile, with and without fast-forwarding, compared to
SimpleScalar. Fast-forwarding improved simulator performance
2.8-23.8 (gcc-fpppp) times over the same simulator without this
technique. The harmonic mean of the performance improvement

4. FastSim uses direct execution to simulate target instruction semantics
in-order. An out-of-order simulator that calculates simulated execution
time runs intermittently as a co-routine of the direct execution.

was 8.3. This is comparable to the order-of-magnitude acceleration
achieved by hand in FastSim.

Nevertheless, the current Facile compiler produces relatively inef-
ficient code. The Facile simulator ran at a sixth of the speed of the
hand-coded FastSim simulator. In spite of its inefficiency, the fast-
forwarding Facile simulator ran the SPEC benchmarks 1.5 times
faster than SimpleScalar (harmonic mean). Facile performs worse
for only one benchmark (gcc), which required significantly more
than the 256 MB of memory allocated to the specialized action
cache in these experiments. A larger cache would have improved
Facile performance for this benchmark.

6.3. Future Compiler Optimizations
Although we have no measurements to demonstrate that the ineffi-
ciencies in Facile's compiler can be corrected, examination shows
several ways its generated code can be improved, given more time
and manpower. Here of some of the most obvious potential
improvements:

1. In the fast simulator, the switch on action numbers is inefficient
and could be rewritten as indirect function calls or, in gce, an
indirect goto. Gce compiles an indirect goto into a single indi-
rect jump instruction, which should run significantly faster than
the current index calculation, load, bounds check, and indirect
jump generated for a switch statement.

2. The slow simulator can be divided into two separate functions:
one for normal slow simulation and another for recovering from
a miss, making both tasks much faster. This change would elim-
inate the if-statement guards around dynamic statements in the
slow simulator. Dynamic statements could simply be left out of
the recovery version of the simulator. The normal slow simula-
tor would have dynamic statements without guards. This opti-
mization would help since the slow simulator is so much slower
that it still accounts for a significant fraction of simulator exe-
cution time, although most cycles/instructions are simulated by
the fast simulator.

3. With liveness analysis, many statements that support memoiza-
tion, but act on variables that are not live, could be identified
and removed. Of particular interest are non-live global variables
that are run-time static at the end of a step function. Since glo-
bal variables are considered dynamic at the start of a step func-

330

tion call, the Facile compiler generates extra statements at the
end of the function to make their run-time static values dynamic
for the next iteration. This in turn causes extra data to be written
into the specialized action cache, which happens whenever a
ran-time static value becomes dynamic. Skipping this unneces-
sary work for variables that are not live would both reduce the
number of statements in the fast and slow simulators, and
reduce the amount of data in the action cache.

4. Many variables, stored globally to allow communication of
dynamic values between the fast and slow simulators during
miss recovery, are unnecessarily duplicated by our implementa-
tions of function inlining and polyvariant division. Reducing
this duplication would reduce a simulator's memory footprint,
improving its cache performance.

5. Although our binding-time analysis currently detects static, run-
time static and dynamic code and data, it does not perform par-
tial evaluation at compile time. In our experience, micro-archi-
tecture simulators do not contain much compile-time static
code, but constant folding and similar optimizations may bene-
fit both the slow and fast simulators. The analysis (i.e., binding-
time analysis) is already in place, making these optimizations a
worthwhile addition to the compiler.

A more radical optimization would be to apply ran-time code gen-
eration and optimization to actions, similar to DyC [5]. As cur-
rently implemented, fast-forwarding stores action numbers in the
specialized action cache and interprets them. With run-time code
generation, a simulator could write native host instructions directly
into the action cache. This would eliminate the overhead of reading
action numbers and dispatching to dynamic basic block code, and
reduce the overhead of reading placeholder data from the cache,
both of which are bottlenecks to faster simulator performance.

7. CONCLUSION
Fast-forwarding is a very effective technique for accelerating com-
plex detailed processor simulation, but is difficult to implement by
hand. The Facile language simplifies both writing instruction-level
micro-architecture simulators and the compiler analyses needed to
generate a memoizing simulator. Simulators written in Facile can
be compiled to use fast-forwarding and have demonstrated the
same order of magnitude performance improvement seen in a
hand-coded memoizing simulator. Facile makes the fast-forward-
ing optimization accessible to simulator writers.

Although the current incarnation of Facile's compiler produces rel-
atively inefficient code, its fast-forwarding still makes out-of-order
simulation faster than similarly detailed out-of-order simulators
without memoization. There is a lot of room for improvement in
the Facile compiler. Additional time and effort should bring the

performance of automatically optimized simulators closer to the
performance of hand coded simulators, like FastSim.

For more information about Facile and fast-forwarding, see the
FastSim web pages at http://www.cs.wisc.edu/-wwt/fastsim. They
contain descriptions and examples of Facile, FastSim, and fast-for-
warding, and contain links to related publications.

ACKNOWLEDGMENTS
Many thanks to Ras Bodik, Charles Consel, Manuvir Das, Jakob
Rehof, and Anne Rogers for their helpful comments.

REFERENCES
[1] Burger, D. and Austin, T.M., "The SimpleScalar Tool Set,

Version 2.0," Tech Report #1342, University of Wisconsin-
Madison, Department of Computer Sciences, June 1997.

[2] Chemoff, A., et.al, "FX!32 a profile-directed binary transla-
tor," in IEEE Micro98, March-April 1998, 18 (2) 56-64.

[3] Cmelik, B. and Keppel, D., "Shade: A Fast Instruction-Set
Simulator for Execution Profiling," in Proceedings of
SIGMETRICS94, (Nashville TN, May 1994), 128-137.

[4] Consel, C. and Noel, F., "A General Approach for Run-Time
Specialization and its Application to C," in Proceedings of
POPL96 (St. Petersburgh Beach FL, January 1996), 145-156.

[5] Grant, B., et.al, "An Evaluation of Staged Run-time Optimi-
zations in DyC," in Proceedings of PLDI99 (Atlanta GA,
May 1999), 293-304.

[6] Hennessy, J. and Patterson, D., Computer Organization and
Design: The Hardware-Software Interface (Appendix A, by
James R. Lares), Morgan Kaufman, 1993.

[7] Herrod, S., et.al, "The SimOS Simulation Environment,"
Computer Systems Laborato~, Stanford University, 1996.

[8] Jones, N.D., Gomard, C., and Sestoft, P., Partial Evaluation
and Automatic Program Generation, Prentice Hall, 1993.

[9] Lee, P. and Leone, M., "Optimizing ML with Run-Time Code
Generation," in Proceedings of PLD[96 (Philadelphia PA,
May 1996), 137-148.

[10] Magnusson, RS., et.al, "SimICS/sun4m: A Virtual Worksta-
tion," in Proceedings of USENIX98 Technical Conference
(New Orleans LA, June 1998).

[11] Pai, V.S., Ranganathan, P., and Adve, S.V., "RSIM: An Exe-
cution-Driven Simulator for ILP-Based Shared-Memory Mul-
tiproeessors and Uniprocessors," in the Workshop on
Computer Architecture Education held in conjunction with
HPCA97, (San Antonio TX, February 1997).

[12] Ramsey, N. and Fernandez, M., "The New Jersey Machine-
Code Toolkit," in Proceedings of USENIX95 Technical Con-
ference (New Orleans LA, January 1995), 289-302.

[13] Schnarr, E., Applying Programming Language Implementa-
tion Techniques To Processor Simulation, Ph.D. Dissertation,
University &Wisconsin-Madison, Fall 2000.

[14] Schnarr, E. and Larus, J.R., "Fast Out-Of-Order Processor
Simulation Using Memoization," in Proceedings of
ASPLOS98 (San Jose CA, October 1998), 283-294.

331

