

Border Control: Sandboxing Accelerators

Lena E. Olson, Jason Power, Mark D. Hill, David A. Wood

University of Wisconsin-Madison

MICRO-48 December 8th, 2015

Executive Summary

- Accelerators access shared host memory
 - + Performance, programmability
 - Bugs, malicious design?
- Protect host from accelerator wild reads/writes
- Border Control
 - provides full host memory safety (sandboxing)
 - does not degrade performance
- Performance overhead ~0.48%

What is an accelerator?

Broadly:

Specialized hardware that can perform a subset of computation tasks with higher performance and/or lower energy than a CPU.

Accelerators are Pervasive

- (GP)GPUs
- ISPs
- DSPs
- Cryptographic
- Neuromorphic
- Approximate
- Database

Accelerators are Programmable

- HSA Model: host, accelerator share memory
- Shared Physical Memory
 - avoid copying data
- Shared Virtual Memory
 - pointer-is-a-pointer semantics
 - improved programmability

Untrusted Accelerators

- May be designed by 3rd parties
- May have bugs
 - Even CPUs have bugs sometimes!
- May be malicious

Threat Model

Protect host from incorrect or malicious accelerators that could perform

stray reads, violating confidentiality

stray writes, violating integrity

of host processes that **do** and **do NOT** run on the accelerator

Principle of Least Privilege

hardware component Every program and every user of the system should operate using the **least** set of **privileges necessary** to complete the job. Primarily, this principle **limits** the **damage** that can result from an accident or error.

> Jerome Saltzer, 1975 Border Control Authors, 2015

Fuzzing PCI express: ... (2/2017)

<u>https://cloudplatform.googleblog.com/2017/02/fuzzing-PCI-</u> <u>Express-security-in-plaintext.html?m=1</u> (added after MICRO'15)

... Since GPUs are designed to directly access system memory, and since hardware has historically been considered trusted, it's difficult to ensure all the settings to keep it contained are set accurately, and difficult to ensure whether such settings even work. ...

The most interesting challenge here is protecting against PCIe's Address Translation Services (ATS). Using this feature, any device can claim it's using an address that's already been translated, and thus bypass IOMMU translation. For trusted devices, this is a useful performance improvement. For untrusted devices, this is a big security threat. ATS could allow a compromised device to ignore the IOMMU and write to places it shouldn't have access to.

Untrusted data path **Translation update path**

Border Control

Border Control: Implementation

- One Border Control instance per accelerator
- Protection Table
 - In system memory
 - Contains all needed permissions by PPN
 - Sufficient for correct design
 - 0.006% physical memory overhead
- Border Control Cache (BCC)
 - Caches recent permissions
 - A 64 byte entry covers 512 4KB pages

Protection Table Design

Flat physically indexed table in memory

- 2 bits (R/W) per physical page
 - Initialized to 0 (no permission)
 - Lazily updated on IOMMU translation
 - Checked on all accelerator memory requests

More details in paper!

- Design of Border Control Cache
- Actions: translation, page table updates, etc.
- IBM CAPI
- Multiprocess accelerators
- Large pages

Methodology

- GPGPU → accelerator safety stress-test
- Simulator: gem5-gpu
 - Moderately-threaded: single core
 - Highly-threaded: eight cores
- Rodinia Benchmarks
- Baseline: fast but unsafe bypassable IOMMU

Takeaway: Average 0.48% performance overhead

Border Control Overheads Highly-Threaded GPU

Takeaway: Average 0.15% performance overhead

Conclusion

- Accelerators pose new security questions¹
- Border Control provides full memory access protection / sandboxing
 - with minimal impact on performance
 - and low storage overhead

1. "Security Implications of Third-Party Accelerators" by Olson, Sethumadhavan, and Hill, CAL 2015

TLB Shootdown Steps

- If page was read-only:
 - update entry in Protection Table and BCC
- If page was read-write:
 - **1**. Invalidate entry in TLB
 - 2. Flush dirty blocks from page in accelerator cache
 - **3.** Update entry in Protection Table and BCC

Simulation Parameters

CPU					
CPU Cores	1				
CPU Caches	64KB L1, 2MB L2				
CPU Frequency	3 GHz				
GPU					
Cores (highly threaded)	8				
Cores (moderately threaded)	1				
Caches (highly threaded)	16KB L1, shared 256KB L2				
Caches (moderately threaded)	16KB L1, shared 64KB L2				
L1 TLB	64 entries				
Shared L2 TLB (trusted)	512 entries				
GPU Frequency	700 MHz				
Memory System					
Peak Memory Bandwidth	180 GB/s				
Border Control					
BCC Size	8KB				
BCC Access Latency	10 cycles				
Protection Table Size	196KB				
Protection Table Access La-	100 cycles				
tency					

Table 3: Simulation configuration details.

Comparison of Configurations

	Safe?	L1 \$	L1 TLB	L2 \$	BCC
ATS-only IOMMU	×	*	1	*	N/A
Full IOMMU	1	_	_	_	N/A
CAPI-like	*	_	_	1	N/A
Border Control-noBCC	<	1	1	1	_
Border Control-BCC	1	1	1	1	1

Table 2: Comparison of configurations under study.

Border Control Cache

33

Border Control Flush Overhead

Information Flow Tracking

- Goal: track untrusted information, prevent it from modifying sensitive data / control
 - e.g., prevent buffer overflow in software
- Hardware-assisted techniques: prevent threats from bugs in *software* (same address space) – different threat than Border Control
- Hardware (e.g. Tiwari et al., ISCA 2011) very powerful technique, but high area/runtime overhead and not transparent to software

Mondriaan

- Replacement for traditional page table + TLB
- Allows fine-grained permissions
- Border Control is independent of the policy for deciding permissions
 - But permission granularity might mean alternate Protection Table organizations are better