
..

DECOUPLED COMPRESSED CACHE:
EXPLOITING SPATIAL LOCALITY FOR

ENERGY OPTIMIZATION
..

THE AUTHORS PROPOSE DECOUPLED COMPRESSED CACHE (DCC) TO IMPROVE

PERFORMANCE AND ENERGY EFFICIENCY OF CACHE COMPRESSION. DCC USES DECOUPLED

SUPERBLOCKS AND NONCONTIGUOUS SUB-BLOCK ALLOCATION TO DECREASE TAG

OVERHEAD AND INTERNAL FRAGMENTATION AND TO ELIMINATE THE NEED FOR ENERGY-

EXPENSIVE RECOMPACTION CAUSED BY CHANGES IN COMPRESSED BLOCK SIZE. THE

AUTHORS ALSO DEMONSTRATE A PRACTICAL DESIGN BASED ON A RECENT COMMERCIAL

LAST-LEVEL CACHE DESIGN.

......Caches, especially last-level caches
(LLCs), have long been used to reduce effec-
tive memory latency and increase effective
bandwidth. They also play an increasingly
important role in reducing memory system
energy. Increasing LLC size can improve per-
formance for most workloads, but the
improvement comes at significant area cost.
Cache compression, however, seeks to in-
crease effective cache size—by compressing
and compacting cache blocks—while incur-
ring small area overheads.1,2 Unfortunately,
previous designs limit compression benefits
because of internal fragmentation, limited
tags, and energy-expensive recompaction that
occurs when a block’s size changes.

We propose decoupled compressed cache
(DCC), a technique that uses decoupled
superblocks (also known as sectors3) to
increase the maximum effective capacity to
four times the uncompressed capacity, while

using area overhead comparable to previous
cache-compression techniques. DCC uses
superblocks—four aligned, contiguous cache
blocks that share a single address tag—to
reduce tag overhead. Each 64-byte block in a
superblock is compressed separately and then
compacted into zero to four 16-byte sub-
blocks (or segments). DCC decouples the
address tags by increasing the number of tags
and allowing any sub-block in a set to map to
any tag in that set to reduce fragmentation
within a superblock.3

Decoupling allows sub-blocks of a block
to be noncontiguous, thereby eliminating the
recompaction overheads of previous variable-
size compressed caches.2 An optimized co-
compacted DCC (Co-DCC) design further
reduces internal fragmentation (and increases
effective capacity) by allocating the com-
pressed blocks from a superblock into the
same set of data sub-blocks.

Somayeh Sardashti

David A. Wood

University of

Wisconsin-Madison

0272-1732/14/$31.00�c 2014 IEEE Published by the IEEE Computer Society

...

91

This article makes the following
contributions:

� DCC uses decoupled superblocks to
increase the effective number of tags
with low overhead.

� DCC stores compressed data in non-
contiguous sub-blocks to eliminate re-
compaction overheads when a block’s
compressed size changes.

� DCC provides more effective ca-
pacity, on average, than a conven-
tional cache of twice the size, while
slightly increasing cache area. Viewed
another way, DCC allows a designer
to get approximately the same cache
performance with about half the area.

� Co-DCC further reduces internal
fragmentation by compacting the
blocks of a superblock and allocating
them into the same set of data sub-
blocks.

In this article, we also present a concrete
design for Co-DCC and show how it can be
integrated into a recent commercial LLC
design with little additional complexity.

Potential and limits of compressed caching
Although some data (and most instruc-

tions) are difficult to compress, most work-
loads are highly compressible. In this
article, we use C-PACKþZ, a dictionary-
based algorithm4 with nine-cycle decom-
pression latency. C-PACKþZ achieves an
average compression ratio (that is, the orig-
inal size over compressed size) of 3.9. Thus,
compression has the potential to nearly
quadruple cache size (shown as “Ideal” in
Figure 1).

Previous compressed cache designs fail to
achieve this potential for three main reasons.
First, caches must compact compressed
blocks into sets, which introduces an internal
fragmentation problem. In Figure 1, Byte-
Pack represents an idealized compressed
cache with infinite tags, which compacts
compressed blocks on arbitrary byte bounda-
ries. BytePack degrades normalized effective
capacity to 3.1 on average. Second, practical
compressed caches introduce another internal
fragmentation problem by compacting com-
pressed blocks into one or more sub-blocks,
rather than storing compressed data on arbi-
trary byte boundaries.2 Variable-size com-
pression (VSC) techniques relax the mapping
constraint between tags and data and com-
pact compressed blocks into a variable num-
ber of contiguous sub-blocks.2 The column
labeled VSC-Inf in Figure 1 illustrates that
compacting compressed blocks into zero to
four 16-byte sub-blocks (but with infinite
tags per set) degrades normalized effective
capacity from 3.1 to 2.6 on average. Third,
practical compressed caches have a fixed
number of tags per set. The remaining col-
umns in Figure 1 illustrate that reducing the
number of tags, from infinite to a more prac-
tical two times the baseline, degrades the
average normalized effective capacity from
2.6 to 1.7. Furthermore, VSC is not energy
efficient. It must repack the sub-blocks in a
set whenever a block’s size changes to make
contiguous free space. This action can
increase LLC dynamic energy by a factor of
nearly three, on average.

Decoupled compressed cache overview
DCC uses decoupled superblock tags (see

the “Exploiting Spatial Locality” sidebar for

Id
ea

l

Byte
Pac

k

VSC-In
f

VSC-4
X

VSC-3
X

VSC-2
X

4

5
8

2

3

1

N
or

m
 L

LC
 e

ffe
ct

iv
e

ca
p

ac
ity

apache
jbb
oltp
zeus
ammp
applu
equake
mgrid
wupwise
black
canneal
freqmine
m1
m2
m3m3
m4
m5
m6
m7
m8
GEOMEAN

Figure 1. Normalized effective capacity of different compressed cache

designs. Although an ideal compressed cache (Ideal) has the potential to

significantly increase effective cache size, previous designs (such as

VSC-2X) reduce compression effectiveness by limiting the number of tags

and internal fragmentation.

..

TOP PICKS

..

92 IEEE MICRO

more information) to improve cache com-
pression in two ways. First, superblocks
reduce tag overhead, permitting more tags
per set for comparable overhead. Second,
decoupling tags and data reduces internal
fragmentation and, importantly, eliminates
recompaction when the size of a compressed
block changes.

Figure 2 shows how DCC exploits super-
blocks and manages the cache at three granu-
larities: coarse-grained superblocks, singular
cache blocks, and fine-grained sub-blocks.
DCC tracks superblocks, which are groups of
aligned, contiguous cache blocks (Figure 2d),
while it compresses and stores each cache
block as a variable number of sub-blocks.
Figure 2a shows the key components of
DCC for a small, two-way set associative
cache with four-block superblocks, 64-byte
blocks, and 16-byte sub-blocks. DCC con-
sists of a tag array, a sub-blocked back pointer
array, and a sub-blocked data array. DCC is
indexed using the superblock address bits
(“Set Index” in Figure 2e).

DCC tracks superblocks to fit more com-
pressed blocks into the cache while limiting
tag area overhead. DCC explicitly tracks

superblocks using a largely conventional
superblock tag array. Each tag entry (Figure
2b) consists of one tag per superblock and
per-block coherence (C-state) and compres-
sion (Comp) states. Because blocks of a
superblock share an address tag, the tag array
can map more blocks compared with the
same size conventional cache without incur-
ring high area overhead. DCC holds as many
superblock tags as the maximum number of
uncompressed blocks that can be stored. For
example, Figure 2a shows a two-way associa-
tive cache with four-block superblocks. Each
set in the tag array can map eight blocks (that
is, 2 superblocks � 4 blocks/superblock),
while a maximum of two uncompressed
blocks can fit in each set. In the worst-case
scenario—when there is no spatial locality
(that is, all singletons) or when cached data is
uncompressible—DCC can still utilize all
the cache data space, for example, by tracking
two singletons per set.

Although DCC tracks blocks of a super-
block using one tag entry, it allocates or evicts
the blocks to and from the data array sepa-
rately. The data array is a mostly conventional
cache data array, organized into sub-blocks.

...

Exploiting Spatial Locality
Superblocks (also known as sectors) have long exploited coarse-

grained spatial locality to reduce tag overhead. Superblocks associate

one address tag with multiple cache blocks, replicating only the per-

block metadata, such as the coherence state. Figure A1 shows one

set of a four-way associative sectored cache (SC), with four-block

superblocks. Using four-block superblocks reduces the tag area by 70

percent compared with a conventional cache. How-

ever, Figure A1 illustrates that singletons, pairs,

and trios—such as superblocks D, C, and A, respec-

tively—result in internal fragmentation, which can

lead to significantly higher miss rates.

Seznec showed that decoupling superblock tags

from data blocks helps reduce internal fragmenta-

tion.1 Decoupled sectored (or superblock) caches

(DSC) increase the number of superblock tags per

set and use per-block back pointers to identify the

corresponding tag. Figure A2 illustrates how decou-

pling can reduce fragmentation by letting two sin-

gletons (that is, blocks F1 and G3) share the same

superblock. DSC uses more tag space than SC but

less than a conventional cache because back

pointers are small.

Reference

1. A. Seznec, “Decoupled Sectored Caches: Conciliating Low

Tag Implementation Cost and Low Miss Ratio,” Proc. 21st

Ann. Int’l Symp. Computer Architecture, 1994, pp. 384-393.

A B CD A0

A1

A2

B0

B1

B2

B3

C0

C2

D3

A:<A2,A1,A0>
B:<B3,B2,B1,B0>
C:<C2,C0>
D:<D3>

Tag array Data array

Unused space

A0 C0B0H0

A1 E1 F1 B1

C2

D3 E3

H2 A2

G3

B2

B3

A B CD E F GH

E:<E3,E1>
F:<F1>
G:<G3>
H:<H2,H0>

Tag array Data array

Reused space

(1) (2)

Figure A. Sectored cache (1) and decoupled sectored cache (2). DSC

reduces internal fragmentation and can fit more blocks in the cache (Block E

to Block H).

...

MAY/JUNE 2014 93

DCC compacts compressed blocks into a
variable number of noncontiguous sub-
blocks in the sub-blocked data array. Fig-
ure 2a shows block A0 compressed into two
sub-blocks (A0.1 and A0.0), which are stored
in sub-blocks 5 and 1 in the data array. DCC
decouples sub-blocks from the superblock
tag using a back pointer array as a level of
indirection. Each back pointer entry corre-
sponds to one sub-block in the data array and
identifies the owner block (Figure 2c). The
back pointer array slightly increases LLC area

(see the “Compressed Cache Overheads”
sidebar); however, it enables low-overhead,
variable-size compression. DCC’s decoupled
design allows a block’s sub-blocks to be non-
contiguous, thus eliminating the need for
recompaction when a block’s size changes.

Co-DCC optimizes DCC to further re-
duce internal fragmentation. Co-DCC treats
blocks from the same superblock as one large
block and dynamically allocates them into
the same set of data sub-blocks, thereby reduc-
ing internal fragmentation within sub-block

Sub-blocked
back pointer

array

Sub-blocked data
array

Index A

Set
index

Blk# Byte

6b

Tag ID Blk#

(c) One BPE:

...

Super-block size
(d) Address space:

(e) Address:

{Tag #1, Blk #0}{Tag A,(I,N), (I,N), (I,N), (VALID,COMP)}

Tag array

Tag A,
Blk #0

A0.1

Super-block
tag

(a) DCC cache layout:

15

Super-block
tag C

st
at

e3
3b1b

C
om

p
3

C
st

at
e2

3b1b

C
om

p
2

C
st

at
e1

3b1b

C
om

p
1

C
st

at
e0

3b1b

C
om

p
0

1b 2b

A0.0

1 5 1

(b) One tag entry:

Tag match and sub-block
selection

YES

YES

Read? Write?

NO

NO

Super-block
miss

Tag match?

Valid block?

Block
miss

Read sub-blocks
and decompress

Compress and
write sub-blocks

Lookup
back pointer array

Replace victim
super-block

Lookup
tag array

Update LRU, tag, and BPEs

Replace victim
super-block

(f) DCC lookup:

Figure 2. A decoupled compressed cache. DCC cache layout (a); one tag entry (b); one back

pointer entry (BPE) (c); address space (d); address (e); and DCC lookup process (f). DCC

exploits superblocks and manages the cache at multiple granularities: coarse-grained

superblocks, singular cache blocks, and fine-grained sub-blocks.

..

TOP PICKS

..

94 IEEE MICRO

boundaries. Co-DCC increases overhead and
complexity in exchange for better cache
compression.

Figure 2f illustrates the DCC lookup pro-
cedure. On a cache lookup, the tag array and
the back pointer array are accessed in parallel.
In the common case of a cache hit, both the
block and its corresponding superblock are
found available (that is, tag matched and
block is valid). In the event of a cache hit, the
result of the tag array and the back pointer
array lookup determines which sub-blocks of
the data array belong to the accessing block.
On a read, the corresponding sub-blocks are
then read out of the data array and decom-
pressed. On a write, the new, compressed size
might be larger, resulting in a block (or a
superblock) eviction if sufficient space is not
available. On the other hand, in case of a cache
miss, DCC allocates the compressed block in
the data array. If its superblock is not available,
DCC allocates it first in the tag array.

A practical design for DCC
DCC can be integrated into the LLC of a

recent commercial design with relatively little

additional complexity and, more impor-
tantly, no need for an alignment network.
The AMD Bulldozer processor implements
an 8-Mbyte LLC that is broken into four
2-Mbyte subcaches. Each subcache consists
of four banks that can independently service
cache accesses.5 Figure 3 illustrates the data
array of one bank in LLC and shows how it is
divided into four sequential regions (SRs).
Each sequential region runs one phase (that
is, half a cycle) behind the previous region
and contains a quarter of a cache block (that
is, 16 bytes). Figure 3 shows how block A0’s
four 16-byte sub-blocks (A0.0 to A0.3) are
distributed to the same row in each sequen-
tial region. Each subsequent sequential
region receives the address half a cycle later
and takes half a cycle longer to return the
data. Thus, a 64-byte block is returned in a
burst of four cycles on the same data bus. For
example, A0.1 is returned one cycle after
A0.0 in Figure 4a.

DCC requires only a small change to the
data array to allow noncontiguous sub-
blocks. In Figure 3, block B1 is compressed
into two sub-blocks (B1.0 and B1.1), which
are stored in sequential regions 1 and 2, but

..

Compressed Cache Overheads
Compressed caches can increase cache area because of their

extra metadata. Table A shows the quantitative area overheads of

decoupled compressed cache (DCC), co-compacted DCC (Co-DCC), and

previous work (FixedC and VSC-2X) over the same size conventional

cache (16-way associative, 8-Mbyte last-level cache [LLC]). DCC tracks

four-block superblocks and almost doubles the per-block metadata

largely due to the back pointers. However, because the data array is

much larger than the tag array, Cacti calculates the overall LLC area

overhead as about 6 percent. DCC’s area overhead is similar to FixedC

and VSC-2X, which track twice as many tags per set (for example, 32

tags per 16 blocks). Co-DCC further increases metadata stored per

block, resulting in 16 percent area overhead compared to the

baseline.

Table A also includes the area overhead of (de-)compression units.

Because C-PACKþZ’s decompressors produce 8 bytes per cycle, we

match the cache bandwidth by considering two decompressors per

cache bank. Compression is not on the critical path, so we consider

one compressor per bank. Thus, for an LLC with eight banks, we need

eight compressors and 16 decompressors, resulting in an extra 1.8

percent area overhead.

Compressed caches can also increase LLC per-access dynamic

power and LLC static power because of their extra metadata. DCC,

similar to FixedC and VSC-2X, increases LLC per-access dynamic

power by 2 percent and LLC static power by 6 percent. Co-DCC also

incurs a 6-percent overhead on LLC per-access dynamic power and a

16-percent LLC static power overhead. We model these overheads as

well as the power overheads of (de-)compression in detail in this

work.

Table A. Last-level cache (LLC) area overheads of

different compressed caches.

Components

DCC

(%)

Co-DCC

(%)

FixedC/

VSC-2X (%)

Tag array 2.1 11.3 6.3

Back pointer array 4.4 5.4 0

Compressors 0.6 0.6 0.6

Decompressors 1.2 1.2 1.2

Total area overhead 8.3 18.5 8.1

...

MAY/JUNE 2014 95

not in the same row. To select the correct
sub-block, DCC must send additional
address lines (4 bits for a 16-way associative
cache) to each sequential region (illustrated
by the dotted lines in Figure 3). DCC must
also enforce the constraint that a compressed
block’s sub-blocks are allocated to different
sequential regions to prevent sequential
region conflicts.

Figure 4b illustrates DCC timing when
reading block B1. The back pointer array is
accessed in parallel with the tag array. The
sub-block selection logic then finds the back
pointer entries corresponding to this block
using its block ID (derived from its address)
and the matched tag ID, which is found by
the tag match logic. The sub-block selection
logic can only be partially overlapped with
the tag match logic because it needs the
matched tag ID. To calculate the latency
overhead of the sub-block selection, we
implemented the tag match and the subse-
lection logic in Verilog, synthesized in 45
nm, and scaled to 32 nm.6 The sub-block
selection logic adds less than half a cycle to
the critical path, which we conservatively
assume increases the access latency by one
cycle.

Figure 4b shows how the matching sub-
blocks are returned and fed directly into the
decompression logic, which accepts 16 bytes
per cycle and has a small first-in, first-out
(FIFO) buffer to rate match. Decompression
starts as soon as the first sub-block arrives (for
example, B1.0), depending on which sequen-
tial region it resides in. Because sub-block

B1.0 resides in sequential region 1, there is
one extra cycle (worst case is three cycles).
Note that because the decompression latency
is deterministic (nine cycles), DCC can
determine at the end of sub-block selection
when the data will be ready and whether the
decompression hardware can be bypassed.
Thus, even though completion times vary,
DCC has ample time to arbitrate for the
response network.

Evaluation
We evaluate DCC using a full-system

simulator based on GEMS.7 We model a
multicore system with eight out-of-order
cores; per-core private 32-Kbyte, 8-way L1
instruction and data caches;; per-core private
256-Kbyte, 8-way L2 caches; and one shared
8-Mbyte, 16-way L3 cache.8 We use
CACTI 6.59 to model power at 32 nm. We
also use a detailed DRAM power model based
on Micron Technology’s power model.10 In
this section, we report total system energy,
which includes energy consumption of pro-
cessors (cores and caches), on-chip network,
and off-chip memory. For DCC and Co-
DCC, we use four-block superblocks, 64-byte
blocks, and 16-byte sub-blocks. With these
parameters, DCC has similar area overhead as
FixedC, which doubles the number of tags
and compresses a block to half, if possible,
and VSC-2X, which doubles tags but com-
presses a block into zero to four 16-byte
sub-blocks (see the “Compressed Cache Over-
heads” sidebar).

Our evaluations use representative multi-
threaded and multiprogrammed workloads
from commercial workloads (apache, jbb,
oltp, zeus),11 SPEC-OMP (ammp, applu,
equake, mgrid, wupwise),12 Parsec (black-
scholes, canneal, freqmine),13 and mixes of
SPEC CPU2006 benchmarks denoted
as m1 to m8 (bzip2, libquantum-bzip2,
libquantum, gcc, astar-bwaves, cactus-mcf-
milc-bwaves, gcc-omnetpp-mcf-bwaves-lbm-
milc-cactus-bzip, omnetpp-lbm).

Improved cache efficiency
Compressed caches improve the cache’s

effective capacity by fitting more blocks into
the same space. They can achieve the benefits
of larger cache sizes with lower area and
power overheads.

B
 p

ha
se

 fl
op

A
 p

ha
se

 fl
op

A
 p

ha
se

 fl
op

B
 p

ha
se

 fl
op

A0: uncompressed; B1 is compressed to 2 sub-blocks

SR0SR1SR2SR3

A0.3 A0.2

B1.1

A0.1
B1.0

A0.0
N

Set addr

4 SR1 addr
4 SR0 addr

4 SR2 addr
4 SR3 addr

Read data

Figure 3. DCC data array organization. The data array is divided into four

sequential regions, each containing a sub-block of a cache block.

..

TOP PICKS

..

96 IEEE MICRO

� Result 1: By exploiting spatial locality,
DCC achieves on average 2.2� (and
up to 4�) higher LLC effective
capacity compared to the baseline,
resulting in 18 percent lower LLC
miss rate on average and up to 38
percent lower LLC miss rate.

� Result 2: Co-DCC further improves
the effective cache capacity by reduc-
ing internal fragmentation within
data sets. It achieves on average 2.6�
(and up to 4�) higher effective
capacity and 24 percent (up to 42
percent) lower LLC miss rate.

� Result 3: DCC and Co-DCC provide
significantly higher effective cache
capacity and lower miss rate than Fix-
edC and VSC-2X. DCC and Co-
DCC also perform better on average
than a cache with twice the capacity
(2� baseline) while incurring much
lower area overhead.

Figure 5a shows LLC effective capacity of
different techniques normalized to baseline.
We calculate the effective cache capacity by
counting valid LLC cache blocks periodically.
DCC can significantly improve LLC effective
capacity and LLC miss rate (misses per kilo
executed instructions [MPKI]) for many
applications by fitting more compressed

blocks. DCC benefits differ per workload,
depending on workload sensitivity to cache
capacity, compression ratio, and spatial
locality. It achieves the greatest benefit for
cache-sensitive workloads with good com-
pressibility and spatial locality (such as apache
and omnetpp-lbm/m8). Workloads with low
spatial locality (such as canneal) or low com-
pression ratio (such as wupwise) observe lower
improvements. Cache-insensitive workloads
(such as blackscholes) also do not benefit from
compression.

Overall performance and energy
By improving LLC utilization and reduc-

ing accesses to the main memory (that is, the
lower LLC miss rate), DCC and Co-DCC
significantly improve system performance
and energy.

� Result 4: DCC and Co-DCC improve
LLC efficiency and boost system per-
formance by 10 percent (up to 29
percent) and 14 percent (up to 38
percent) on average, respectively.

� Result 5: DCC and Co-DCC save on
average 8 percent (up to 24 percent)
and 12 percent (up to 39 percent) of
system energy, respectively, because
of shorter runtime and fewer accesses
to the main memory.

Access data
array

t cycles d cycles

SR0

A0.0
Access

tag array
Tag

match

m cycles 1

Access
BPA

SR1

A0.1

1

SR2

A0.2

1

SR3

A0.3

1(a)

Access data
array

t cycles d cycles

SR0Access
tag array

Tag
match

m cycles 1

SR1
B1.0

1

SR2

B1.1

1

SR3

9 cycles

(b)

Sub-block
selection

1

Decompression

Figure 4. Timing of a conventional cache (a) and DCC (b). A 64-byte block is returned in a burst

of four cycles on the same data bus. With DCC, only the matching sub-blocks are read and

fed directly into the decompression logic.

...

MAY/JUNE 2014 97

� Result 6: DCC and Co-DCC achieve
2.5� and 3.5� higher performance
improvements, respectively, and 2.2�
and 3.3� higher system energy im-
provements compared with FixedC
and VSC-2X.

� Result 7: DCC and Co-DCC also im-
prove LLC dynamic energy by about
50 percent on average by accessing
fewer bytes. However, VSC-2X hurts
LLC dynamic energy for the majority
of our workloads because of its need
for energy-expensive recompactions.

Figure 5b shows that DCC outperforms
baseline, FixedC, VSC-2X, and 2� baseline
by effectively more than doubling the cache
capacity. DCC and Co-DCC also improve
system energy owing to shorter runtime and
fewer accesses to the main memory. Figure
5c shows the total system energy of different
techniques. DCC and Co-DCC signifi-
cantly reduce the main memory dynamic
energy by reducing the number of cache
misses, which contributes to greater system
energy improvements as well. Unlike VSC-
2X, which hurts LLC dynamic energy
because of recompaction, DCC and Co-
DCC eliminate the need for recompaction

and can even save LLC dynamic energy by
accessing fewer bytes when reading or writ-
ing compressed data.

D CC demonstrates the potential for
compression to increase the effective

capacity of last-level caches, improving both
performance and energy efficiency. Alterna-
tively, DCC can reduce the chip area
required for a given cache capacity, thereby
reducing implementation cost. Future work
should explore algorithms that better com-
press instructions and floating point data, as
well as extending compression to all levels of
the cache and memory hierarchy.

Acknowledgments
This work is supported in part by the

National Science Foundation (CNS-
0916725, CCF-1017650, CNS-1117280,
and CCF-1218323) and a University of Wis-
consin Vilas award. The views expressed
herein are not necessarily those of the NSF.
Professor Wood has a significant financial
interest in AMD. We thank Hamid Reza
Ghasemi, Dan Gibson, members of the Mul-
tifacet research group, and the anonymous
reviewers for their comments on the article.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
or

m
 s

ys
te

m
 e

ne
rg

y

1.00

Fix
ed

C

VSC-2
X

2X
 B

as
eli

ne
DCC

Co-
DCC

Fix
ed

C

VSC-2
X

2X
 B

as
eli

ne
DCC

Co-
DCC

Fix
ed

C

VSC-2
X

2X
 B

as
eli

ne
DCC

Co-
DCC

1.50

2.00

2.50

3.00

3.50

4.00

N
or

m
 L

LC
 e

ffe
ct

iv
e

ca
p

ac
ity

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
or

m
 r

un
tim

e

(a) (b) (c)

apache

mgrid

m3

jbb

wupwise

m4

oltp

black

m5

zeus

canneal

m6

ammp

freqmine

m7

applu

m1

m8

equake

m2

GEOMEAN

Figure 5. Normalized LLC effective capacity (a); normalized runtime (b); normalized total system energy (c). DCC and Co-DCC

improve LLC utilization, resulting in higher performance and energy improvements than previous work and 2x baseline.

..

TOP PICKS

..

98 IEEE MICRO

..
References
1. S. Sardashti and D. Wood. “Decoupled

Compressed Cache: Exploiting Spatial

Locality for Energy-Optimized Compressed

Caching,” Proc. 46th Ann. IEEE/ACM Int’l

Symp. Microarchitecture, 2013, pp. 62-73.

2. A. Alameldeen and D. Wood. “Adaptive

Cache Compression for High-Performance

Processors,” Proc. 31st Ann. Int’l Symp.

Computer Architecture, 2004, pp. 212-223.

3. A. Seznec, “Decoupled Sectored Caches:

Conciliating Low Tag Implementation Cost

and Low Miss Ratio,” Proc. 21st Ann.

Int’l Symp. Computer Architecture, 1994,

pp. 384-393.

4. X. Chen et al., “C-Pack: A High-Performance

Microprocessor Cache Compression Algo-

rithm,” IEEE Trans. VLSI Systems, vol. 18,

no. 18, 2010, pp. 1196-1208.

5. D. Weiss et al., “An 8MB Level-3 Cache in

32nm SOI with Column-Select Aliasing,”

Proc. Solid-State Circuits Conf., 2011,

pp. 258-260.

6. International Technology Roadmap for

Semiconductors, 2010 Update, ITRS, 2011;

www.itrs.net.

7. M. Martin et al., “Multifacet’s General

Execution-Driven Multiprocessor Simulator

(GEMS) Toolset,” Computer Architecture

News, 2005, vol. 33, no. 4, pp. 92-99.

8. “4th Generation Intel Core i7 Processors,”

Intel Corporation; www.intel.com/products/

processor/corei7.

9. “CACTI: An Integrated Cache and Memory

Access Time, Cycle Time, Area, Leakage,

and Dynamic Power Model,” HP Labs

Research; www.hpl.hp.com/research/cacti.

10. “Calculating Memory System Power for

DDR3,” tech. note TN-41-01, Micron Tech-

nology, 2007.

11. A. Alameldeen et al., “Simulating a $2M

Commercial Server on a $2K PC,” IEEE

Computer, vol. 36, no. 2, 2003, pp. 50-57.

12. V. Aslot et al., “SPEComp: A New Bench-

mark Suite for Measuring Parallel Computer

Performance,” Proc. Int’l Workshop Open-

MP Applications and Tools: OpenMP

Shared Memory Parallel Programming,

2001, pp. 1-10.

13. C. Bienia and K. Li, “PARSEC 2.0: A New

Benchmark Suite for Chip-Multiprocessors,”

Proc. 5th Ann. Workshop Modeling, Bench-

marking and Simulation, 2009, pp. 47-55.

Somayeh Sardashti is a PhD candidate in
the Department of Computer Sciences at
the University of Wisconsin-Madison. Her
research interest is computer architecture,
specifically energy-optimized memory hier-
archies. Sardashti has an MS in computer
science from the University of Wisconsin-
Madison and an MS in computer engineer-
ing from the University of Tehran. She is a
member of IEEE and the ACM.

David A. Wood is a professor in the
Department of Computer Sciences and the
Department of Electrical and Computer
Engineering at the University of Wisconsin-
Madison. His research interests include
techniques for improving the performance
and energy efficiency of multiprocessor and
heterogeneous computing systems. Wood
has a PhD in computer science from the
University of California, Berkeley. He is a
fellow of IEEE and the ACM, and a mem-
ber of the IEEE Computer Society.

Direct questions and comments about this
article to Somayeh Sardashti, Department of
Computer Science, University of Wisconsin-
Madison, 1210 West Dayton Street, Madi-
son, WI 53706-1685; somayeh@cs.wisc.edu.

...

MAY/JUNE 2014 99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

