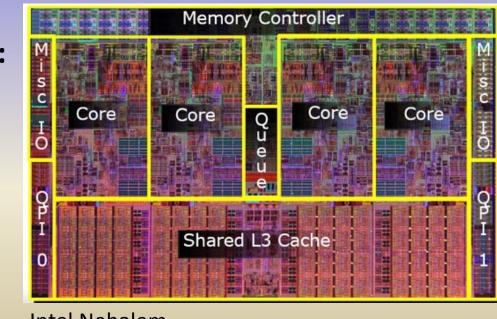


Decoupled Compressed Cache:

Exploiting Spatial Locality for Energy-Optimized Compressed Caching

Somayeh Sardashti and Professor David A. Wood


University of Wisconsin-Madison

Optimizing Memory Hierarchy for Energy

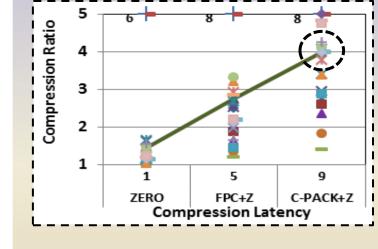
Maximize LLC effective capacity to reduce system energy!

Access to main memory vs. LLC: **6X Longer Latency 60X Higher Energy Cost**

Why not double the LLC? 15%-30% of on-chip area **2X LLC Area**

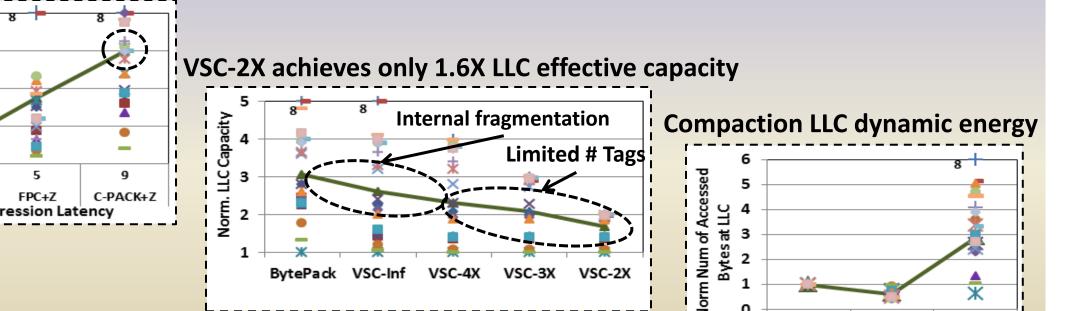
Intel Nehalem

Exploiting Spatial Locality


Potentials and Limits of Compressed Caches

Compressed Caching: Compressing and compacting cache blocks

Potentials:


- + Higher effective cache size
- + Low area overhead
- + Higher system performance
- + Lower system energy

Potentially 3.9X larger LLC

Limits of previous work:

- Limited number of tags
- Internal fragmentation
- **Energy-expensive compactions**

									Baseline	FixedC	VSC-
								Ĺ			
 apache 	jbb		 oltp 	×	zeus	*	ammp	•	applu	+	equake
- mgrid	– wupwi	se	 black 		canneal		freqmine	ж	m2	•	m3
+ m4	- m5		- m6	•	m7		m8		- GEOMEAN		

Decoupled Compressed Cache (DCC)

DCC	

Decoupled **Super-Blocks**

Non-contiguous Sub-Blocks

(Co-)DCC

- DCC exploits spatial locality to improve compression effectiveness:
 - Uses decoupled super-blocking to track more blocks with low area overhead. ullet
 - Compresses and allocates a block into non-contiguous data sub-blocks.
- **Co-DCC (Co-compacted DCC):**
 - Co-compacting blocks of a super-block to reduce internal fragmentation.

DCC Implementation

We integrate (Co-)DCC with AMD Bulldozer LLC. \checkmark

- No need for an alignment network
- ✓ We implement the tag match and the sub-selection logic in Verilog.

Syster

malized

Nor

Co-DCC

DCC

0.70

0.60

0.50

0.40

FixedC

VSC-2X

aseline

equake mgrid

wupwise

black

m1 m2

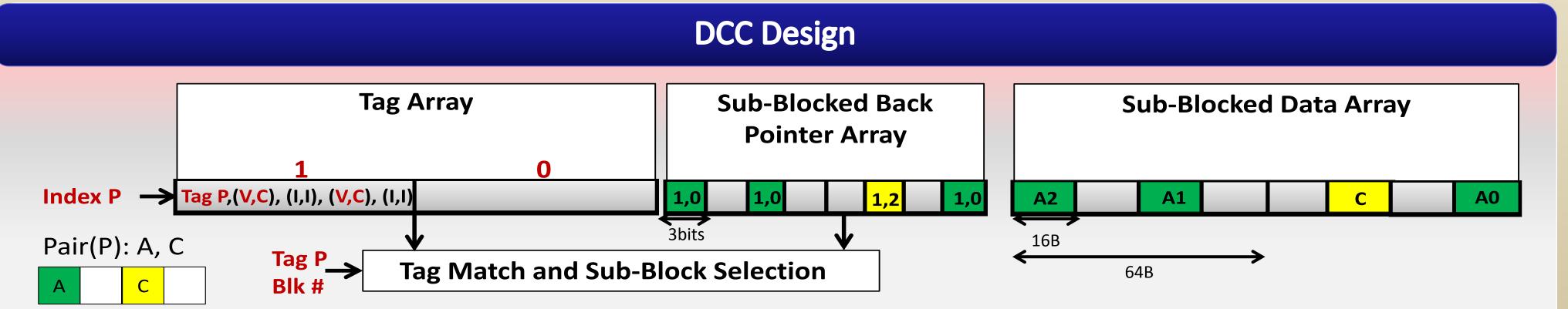
m3

m4

m5

m6 m7

m8


GEOMEAN

Co-DCC

DCC

canneal freqmine

No need for an alignment network

Normalized LLC

1.5

1

1

1.5

2

2.5

Norm Runtii

VSC-2X

Co-DCC

0.70

0.60

0.50

0.40

FixedC

VSC-2X

Baseline

2X

Evaluation							
Experimental Methodology	Results						
 We model a multicore system with GEMS. We use workloads from Commercial workloads, SPEC-OMP, PARSEC, and SPEC CPU2006. We use Cacti to measure (Co-)DCC power and area. 	 (Co-)DCC: Performs better than a conventional LLC of twice the capacity. Boosts system performance by 14% on average (up to 38%). Saves system energy by 12% on average (up to 39%). 						
Cores Eight 000 cores, 3.2 GHz	Baseline						

Cores	Eight OOO cores, 3.2 GHz
L1I\$/L1D\$	Private, 32-KB, 8-way
L2\$	Private, 256-KB, 8-way
L3\$	Shared, 8-MB, 16-way, 8 banks
Main Memory	4GB, 16 Banks, 800 MHz bus frequency DDR3