EFFICIENTLY ENABLING
CONVENTIONAL BLOCK
SIZES FOR VERY LARGE DIE-
STACKED DRAM CACHES

MICRO 2011 @ Porte Alegre, Brazil

Gabriel H. Loh [1] and Mark D. Hill [2][1]
December 2011

[1] AMD Research
[2] University of Wisconsin-Madison

Hill's work largely performed

while on sabbatical at [1].

AMDZ1

EXECUTIVE SUMMARY

= Good use of stacked DRAM is cache, but:
— Tags in stacked DRAM believed too slow
— On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)

= Solution put tags in stacked DRAM, but:
— Faster Hits: Schedule together tag & data stacked DRAM accesses

— Faster Miss: On-chip MissMap bypasses stacked DRAM on misses

= Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)
— 29-67% faster than naive tag+data in stacked DRAM
— Within 88-97% of stacked DRAM cache w/ impractical on-chip tags

AMDZ1

1 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

= Motivation

= Fast Hits via Compound Access Scheduling

= Fast Misses via MissMap

= Experimental Results

= Related Work and Summary

2 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

CHIP STACKING IS HERE

silicon interposer

“Vertical” “Horizontal”

256 MB

Samsung @ ISSCC’11: “A 1.2V 12.8Gb/s 2Gb Mobile Wide-I/O DRAM
with 4x128 1/Os Using TSV-Based Stacking”

3 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZT

Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

HOW TO USE STACKED MEMORY?

= Complete Main Memory

— Few GB too small for all but some embedded systems

= OS-Managed NUMA Memory
— Page-size fragmentation an issue

— Requires OS-HW cooperation (across companies)

= Cache w/ Conventional Block (Line) Size (e.g., 64B)
— But on-chip tags for 1 GB cache is impractical 96 MB! (TAKE 1)

= Sector/subblock Cache
— Tag w/ 2KB block (sector) + state bits w/ each 64B subblock

— Tags+state fits on-chip, but fragmentation issues (see paper)

4 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZT

Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

TAG+DATA IN DRAM (CONVENTIONAL BLOCKS — TAKE 2)

= Use 2K-Stacked-DRAM pages but replace 32 64B blocks with
— 29 tags (48b) + 29 blocks

g 32 x 64-byte cachS:Jines:2048 bytes
%mNIIﬁIII!IIIIIIIIIIIIIIIIIIIIIIIIIIII\!
) ;
5 o o
W_/ ~ ~ j
ISense Amps| Tags 29 ways of data

| Row Buffer |

— But previously dismissed as too slow
Tag Updated

DRAM Tag Lookup DRAM Latency DRAM Latency ¢
A SLLSSSLLLLSLLLSSSL LSS S |

v

Request latency _Data Returned

Total bank occupancy

5 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZT

Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

IMPRACTICAL IDEAL & OUR RESULT FORECAST

Ideal SRAM Tags

CAS + MissMap

* EESETER

14 Comp. Acc. Sched.

=
N

Tags in DRAM

Speed-up Relative to No L4

=
o

o
00

128MB 256MB 512mMB 1024MB

Compound Access Scheduling + MissMap = Methods Later; Avg of

Approximate impractical on-chip SRAM tags ~ Web-Index, SPECjbb05,
TPC-C, & SPECweb05

AMDZ1

6 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Fast Hits via Compound Access Scheduling

7 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZT

Motivation « Fast Hits via Compound Access Scheduling « Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

FASTER HITS (CONVENTIONAL BLOCKS - TAKE 3)

Data Returned not to scale
DRAM Latency .
— CPU-side SRAM tags
SRAM Tag Lookup
Tags in DRAM
Data Returned Tag Updated
DRAM Tag Lookup DRAM Latency DRAM Latency

S S SIS | |

: trep /_\ teas ;
ACT > RD >(Data Xfer @

Row Buffer
- ata Returned Compound
DRAM Tag Lookup Hit Latenc
- " Y Tag Updated Access

@mﬂf Data Xfer | K RD) (Data Xfer)1 1 SChedU||ng

-@ {wr) (pata xfer
Check

AMDZ1

8 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

Motivation « Fast Hits via Compound Access Scheduling « Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

COMPOUND ACCESS SCHEDULING

= Reserve the bank for data access; guarantee row buffer hit

— Approximately trading an SRAM lookup for a row-buffer hit:

tags data
SRAM ACT
tags data
ACT RD RD

= On a miss, unnecessarily holds bank open for the tag-check latency
— Prevents tag lookup on another row in same bank

— Effective penalty is minimal since t;, 5 must elapse before closing this
row, so bank will be unavailable anyway

AMDZT

9 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Fast Misses via MissMap

10 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

FASTER MISSES (CONVENTIONAL BLOCKS — TAKE 4)

= Want to avoid delay & power of stacked DRAM access on miss

= |[mpractical on-chip tags answer
— Q1 “Present:” Is block in stacked DRAM cache?
— Q2 “Where:” Where in stacked DRAM cache (set/way)?

= New on-chip MissMap
— Approximate impractical tags for practical cost
— Answer Q1 “Present”
— But NOT Q2 “Where”

11 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

MISSMAP

= On-chip structures to answer Q1: Is block in stacked DRAM cache?

Lookup address Hifii R Lookup tag in JRell R Hit: get data from
In MissMap DRAM cache DRAM cache
miss (miss) _ .
g Miss: go to main
memory

= MissMap Requirements

— Add block in miss; remove block on victimization
— No false negatives: If says, “not present” =» must be not present
— False positives allowed: If says, “present” =» may (rarely) miss

= Sounds like a Bloom Filter?

= But our implementation is precise — no false negatives or positives

— Extreme subblocking with over-provisioning

12 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

MISSMAP IMPLEMENTATION

MissMap entry

Tag+16 bits tracks
1KB of memory (e.g.)

tag Dbit vector

Installing a line in the DRAM $

DRAM $

=

1KB memory /

segment

= Key 1. Extreme Subblocking

mX[7]

MissMap

e

Evicting a line from the DRAM $

]
]
[
i\]
\EIY[3]

13 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

ctiriiss -
A LT
—— 1|
AMDZ1

Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

MISSMAP IMPLEMENTATION

Subblocked cache 1KB |
——1 MissMap Tags Data
T = f . ° 8 oed 0 @ gV A
ags m ® m m ®
m]o m had f .‘2'0‘.5 o ‘O.'o A lﬂ
£1° A © o E-'\'o nem %A Jeo
a4 o ° o A

/\ s |\ Poor 2 o IR

e Ngdl N gl 0d o m

O'ﬂ ﬂ'gu‘oe : CaChe
Tags only for n efficiency

cached (large) R K

Few bits

blocks Not cached likely set
due to
fragmentation Example:
2MB MissMap
4KB pages

= Key 2: Over-provisionin .
y P J Each entry is ~12.5 bytes
= Key 3: Answer Q1 “Present” NOT Q2 “Where” (36b tag, 64b vector)
3 167,000 entries total
36b tag + 64b vector = 100b Best case, tracks ~640MB
» NOT 36b tag + 5*64b vector = 356b (3.6x)

AMDZ1

14 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Experimental Results

15 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

Motivation ¢ Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap ¢ Experimental Results ¢ Related Work and Summary

METHODOLOGY (SEE PAPER FOR DETAILS)

= Workloads (footprint)
— Web-Index (2.98 GB) // SPECjbb05 (1.20 GB)
— TPC-C (1.03 GB) // SPECweb05 (1.02 GB)

= Base Target System
— 8 3.2 GHz cores with 1 IPC peak w/ 2-cycle 2-way 32KB I$ + D$
— 10-cyc 8-way 2MB L2 for 2 cores + 24-cyc 16-way 8MB shared L3
— Off-chip DRAM: DDR3-1600, 2 channels

= Enhanced Target System
— 12-way 6MB shared L3 + 2MB MissMap
— Stacked DRAM: 4 channels, 2x freq (~¥2 latency), 2x bus width

= gem>5 simulation infrastructure (= Wisconsin GEMS + Michigan M5)
AMDZ1

16 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

Motivation ¢ Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap ¢ Experimental Results ¢ Related Work and Summary

KEY RESULT: COMPOUND SCHEDULING + MISSMAP WORK

Ideal SRAM Tags

g
o

N
i

Comp. Acc. Sched.

™~
(N

Tags in DRAM

N
(=

=
(5]

=
=]
|

e
oo

Speed-up Relative to No L4
I I I
NR o

e
o

fau] fau] fau] o fau] fau] fau] o fau] fau] fau] fau]
= = = = = = = = = = = =
00 in] ~ <t 00 in] ~ <t 00 in] ~ <t
o (T3] — od o (T3] — od o (T3] — o
- ™~ wy o -l ™~ wy o -l ™~ wy o
— — —

Web-ndex SPECjbb05 TPC-C

Compound Access Scheduling + MissMap -
Approximate impractical on-chip SRAM tags

128MB

17 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

256MB
512MB

SPECweb05

1024MB

AMDZ1

Motivation * Fast Hits via Compound Access Schedulin

2N KEY RESULT: OFF-CHIP CONTENTION REDUCED

= For requests that miss, main memory is more responsive

LN
o
o

OQueuing
W Array

w
o
o

Average Memory Latency
=
o o

o
1

Web-Indexing

SPECjbb05 TPC-C SPECweb05

Fewer requests - 100%
More row-buffer

hits -

lower DRAM
latency

requests -2
lower
gueuing
delay

g * Fast Misses via MissMap * Experimental Results * Related Work and Summary

sssdss \Web-Index
={J= SPECjbb05
——TPC-C

X SPECweb05
==gmm Average

o)
o
X

o
o
S

o~
o
X

)
o
S

Off-Chip DRAM Row
Buffer Hit Rate

=+ \Web-Index
={1= SPECjbb05
——TPC-C

X SPECweb05
—.—Averag_]e

Base

18 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

1286MB 256MB 512MB 1024MB

AMDZ1

Motivation ¢ Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap ¢ Experimental Results ¢ Related Work and Summary

OTHER RESULTS IN PAPER

= Impact on all off-chip DRAM traffic (activate, read, write, precharge)
= Dynamic active memory footprint of the DRAM cache

= Additional traffic due to MissMap evictions

= Cacheline vs. MissMap lifetimes

= Sensitivity to how L3 is divided between data and the MissMap

= Sensitivity to MissMap segment size

= Performance against sub-blocked caches

19 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZT

OUTLINE

= Related Work and Summary

20 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZT

Motivation * Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap * Experimental Results « Related Work and Summary

RELATED WORK

= Stacked DRAM as main memory

— Mostly assumes all of main memory can be stacked
[Kgil+ ASPLOS06, Liu+ IEEE D&T°05, Loh ISCA’08, Woo+ HPCA’10]

= As a large cache

— Mostly assumes tag-in-DRAM latency too costly
[Dong+ SC’10, Ghosh+ MICRO’07, Jiang+ HPCA’10,
Loh MICRO’09, Zhao+ ICCD’07]

= Other stacked approaches (NVRAM, hybrid technologies, etc.)
— [Madan+ HPCA’09, Zhang/Li PACT 09]
= MissMap related

— Subblocking [Liptay IBMSysJ’68, Hill/Smith ISCA’84,
Seznec ISCA’94, Rothman/Smith ICS’99]

— “Density Vector” for prefetch suppression [Lin+ ICCD’01]

— Coherence optimization [Moshovos+ HPCA’01, Cantin+ ISCA’05]
AMDZ

21 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

Motivation * Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap * Experimental Results « Related Work and Summary

EXECUTIVE SUMMARY

= Good use of stacked DRAM is cache, but:

— Tags in stacked DRAM believed too slow

— On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)

= Solution put tags in stacked DRAM, but:

— Faster Hits: Schedule together tag & data stacked DRAM accesses

— Faster Miss: On-chip MissMap bypasses stacked DRAM on misses

= Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)
— 29-67% faster than naive tag+data in stacked DRAM
— Within 88-97% of stacked DRAM cache w/ impractical on-chip tags

AMDZT

22 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions.
Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2011 Advanced Micro Devices, Inc. All rights reserved.

AMDZT

23 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

BACKUP SLIDES

UNIQUE PAGES IN L4 VS. MISSMAP REACH

% 300 = 1024MB
B [Max reach of MissMap == 512MB
& 250 (184k pages = 640MB) J/ 256MB
§ ~ = =-128MB
= 200 - f — __,”’ /
3 - /
: .] ® & SIS 2 ¢ A ¢ @ I . L] - SIS & 4 SN 4 F A F & I 4 ¢ I 4 TS & & A e & L] ® & - - T
=150 4+ S - -
§ |-———m———" / - / -
£ 100 e — = p—
") - e ffemcmmcmmmmm—=e / _
% 50 | ====="""" W& @ w=ewmmmmmmmm 0 0 Heeeemeoccssenes
o
g D T 1
& R SRR IR R
=) SREEFBER 888882885 9883888885 288$B8r~88§
Web-Index SPECjbb05 TPC-C SPECweb05
Ex. 70% of the time a
256MB cache held
~90,000 or fewer unique
pages
AMDZ1

25 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

IMPACT ON OFF-CHIP DRAM ACTIVITY

S

o
=}
=

@
=
ES

I.|J1 00% sesdes \Web-Index w’IOD% .
o = 0= SPECjbb05 T
= 80% —a—TPC-C & 80%
o X~ SPECweb05 ©
'::’ =g /\verage =
2 60% T 60% -
k= 4
44
& 40% g 40%
= 5
& 20% 220%
a £
2 Q
G 0% : ; ; ; : E 0% :
& g & ® ® ® P
F % © QO B P S
N N 4 NV
100%
2 80% .
x2
s [1]
< X 60% ;
m —
T)
DQ_ 5 40% L 2 . ++«@++ Web-Index
= % o ={~ SPECjbb05
Qm —a—TPC-C
5 20% %— SPECweb05
—.—Average
0% |

Base 128MB 256MB 512MB 1024MB

100% -

Off-Chip DRAM Relative Write
S
x

Web-Indexing SPEC]bb05

26 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

20%
T T 1 DWG
o ® #
&¥ & Q
400
> O Queuing -
c W Array
% 300
§ |
o
E 200
]
=
o
& 100 -
z
0

TPC-C

SPECweb05

AMDZ1

MISSMAP EVICTION TRAFFIC

Workload % Clean MissMap | Dirty Lines per Dirty Segment
Name Evictions 128MB 1GB
Web-Index 99.7% 0.02 26.8
SPECjbb05 55.7% 1.06 29.3
TPC-C 74.7% 3.80 4.93
SPECweb05 72.2% 1.61 16.2

= Many MissMap evictions correspond to clean pages (e.g., ho writeback

traffic from the L4)

o 200

E 5 150 OSegment Residency

S mCache Live Time |

=

= 100

@ 50

o

E 0 : I : — : —
Web-Index SPEC|bb05 TPC-C SPECweb05

= By the time a MissMap entry is evicted, most of its cachelines have are
long past dead/evicted.

27 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

SENSITIVITY TO MISSMAP VS. DATA ALLOCATION OF L3

1.10 o 128MB
—o0—256MB
28 105 voolrs 512MB
EE -e-=1024MB L,
-
L] 1.00 o
22 e
%,
€& 095 .
M o~ &
53 L
.gg 0.90 &
&5
G-SS T T T T T T T T
o O @ @ o O o o O oo o O o o O o o o o o o O M o o o o o
=2 222222 =2 =2=2=2222 =2 222222 =2 222222
™ o= W W P~ ™ e s W W P~ =l O = W W P~ el s W W P
Web-Index SPECibb05 TPCC SPECweb05

= 2MB MissMap + 6MB Data provides good performance

= 3MB MissMap + 5MB Data slightly better, but can hurt server workloads

that are more sensitive to L3 capacity.

28 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

SENSITIVITY TO MISSMAP SEGMENT SIZE

1.05 [~©-128MB —D—256MB --&~512MB =-#=--1024MB |
e § 1.00 i
o
L) o I
= 0.95 _# th O
E £ /ﬁ:’ %
e 2 ; %
%g 0.90 Ij-:_-'r f‘.._l—'
HJ -
B E 0.85 3 ¥
im 1 ¢
@ 2 0.80 & * —
= @ 0.54-0.68
ﬂ-?s T -1
O o o o @ o o O oo o o | o O o oo @ o 0 o o o @ o
~ B o o ~ o2 A A o B B A X o B O X X
~ ~ ~ = 80 Wb ~ ~ o~ = 00 W N = o= 00 WD ™ — o~ o= 00 WD
L — U - [Ta] i L —
Web-Index SPECjbb05 TPC-C SPECweb05

= 4KB segment size works the best

= Our simulations make use of physical addresses, so consecutive virtual

pages can be mapped to arbitrary physical pages

29 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

COMPARISON TO SUB-BLOCKED CACHE

2.6
AT i) Subsectored L4 overhead:
—— a ImMpractca .
S MTags'rlSiSAM [iMBMissMapl ;:m:::: i—:ﬂ:
- O L4 Tags in SRAM (2MB MissMap) S12MB Lq: 9 2MB
= 7" || ==s==14 2KB Subsectored 1024MBLa: 18 4MB
220 MisshMap: 2 or 4MB
%1.3
516 f): .
& /D/-;' ;
":F-j..q- i ¢l
E 1.2 - 7 ﬁ*"ii i i v
& - £
1.0 F
0.8 i
0.6 — ; ; ; ; — ; ; ; ; ; ; ; ; .
o m] o [i1] m om [m] (]] m [11] o i8] o o m m
£35% £38% £f8:5 £368;+ 2RE
8 8 5 8 8 8 § 8 8 8§ § & &8 § § & 8 8§ 5 8
Web-Index SPECjbb05 TPC-C SPECwehb05 Geo. Mean

= Beyond 128MB, overhead is greater than MissMap

= At largest sizes (512MB, 1GB), sub-blocked cache delivers similar
performance to our approach, but at substantially higher cost

30 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1

BENCHMARK FOOTPRINTS

g my —mm————— 77— — = RO A SLE R e S ity plarigeg -
.................. - ‘-#_.,.--l - -
- - » - -
h _-" _.1“..-- ﬂﬂﬂﬂﬂ
& B80% - _—
8 - -"-” f-r""
{ IJ' ."-L "__.I""
fay 6% e 4_’,;‘;-—-"" —Web-Index |
B ===SPEC]jbb0S
£ L — TPC.C
@ 4{]% = = - - - —
= o -~ -+--= SPECWeb05
—_— L -
® 20% A
G -/
£ o ¢ 128MB 256MB 512MB 1GB
I T T T T T T T T T T T T T T e
3 THNOO0OTHNOO0O0TNOO0O0OTNOO0O0OTTMNOO0OTMNO 0000000
i NOONDOOOODMORETORT— O —OWANQUMN®DONDWmOWE O -
E O—=MOWOoOoOoONMOMOWUEREDODONMOWLPEARODODNOUWEOEAEDQONWEMR:DOCSWRSDOD
— O WMNDOT —ODOWUANODT 00N MNORTT —O0OW0NOMOOT ~— 0000~ —OD
= NO=T 0N ORRODDOO~=MOM=TWWORDO®D O~ OO WU
rrrrrrrrrrrrrr I I Y IV I T Y

= TPC-C: ~80% of accesses served by hottest 128MB w

= SPECWeb05: ~80% accesses served by 256MB
= SPECjbb05: ~80% accesses served by 512MB

= Web-Index: huge active footprint

31 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

o
=
-y
o
—_——
ke

AMDZ1

