
EFFICIENTLY ENABLING

CONVENTIONAL BLOCK

SIZES FOR VERY LARGE DIE-

STACKED DRAM CACHES

MICRO 2011 @ Porte Alegre, Brazil

Gabriel H. Loh [1] and Mark D. Hill [2][1]

December 2011

[1] AMD Research

[2] University of Wisconsin-Madison

Hill’s work largely performed

while on sabbatical at [1].

1 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

EXECUTIVE SUMMARY

Good use of stacked DRAM is cache, but:

– Tags in stacked DRAM believed too slow

– On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)

 Solution put tags in stacked DRAM, but:

– Faster Hits: Schedule together tag & data stacked DRAM accesses

– Faster Miss: On-chip MissMap bypasses stacked DRAM on misses

 Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)

– 29-67% faster than naïve tag+data in stacked DRAM

– Within 88-97% of stacked DRAM cache w/ impractical on-chip tags

2 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Motivation

 Fast Hits via Compound Access Scheduling

 Fast Misses via MissMap

 Experimental Results

 Related Work and Summary

3 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

CHIP STACKING IS HERE

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

cores

DRAM

layers

silicon interposer

cores

DRAM

layers

“Vertical” “Horizontal”

Samsung @ ISSCC’11: “A 1.2V 12.8Gb/s 2Gb Mobile Wide-I/O DRAM

 with 4x128 I/Os Using TSV-Based Stacking”

256 MB

4 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

HOW TO USE STACKED MEMORY?

 Complete Main Memory

– Few GB too small for all but some embedded systems

OS-Managed NUMA Memory

– Page-size fragmentation an issue

– Requires OS-HW cooperation (across companies)

 Cache w/ Conventional Block (Line) Size (e.g., 64B)

– But on-chip tags for 1 GB cache is impractical 96 MB! (TAKE 1)

 Sector/subblock Cache

– Tag w/ 2KB block (sector) + state bits w/ each 64B subblock

– Tags+state fits on-chip, but fragmentation issues (see paper)

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

5 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

TAG+DATA IN DRAM (CONVENTIONAL BLOCKS – TAKE 2)

 Use 2K-Stacked-DRAM pages but replace 32 64B blocks with

– 29 tags (48b) + 29 blocks

– But previously dismissed as too slow

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

DRAM Latency

Data Returned

DRAM Tag Lookup DRAM Latency

Tag Updated

Request latency

Total bank occupancy

R
o
w

 D
e
c
o
d
e
r

Sense Amps
Row Buffer

32 x 64-byte cachelines = 2048 bytes

29 ways of data Tags

6 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

IMPRACTICAL IDEAL & OUR RESULT FORECAST

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

Ideal SRAM Tags

CAS + MissMap

Comp. Acc. Sched.

Tags in DRAM

Compound Access Scheduling + MissMap

Approximate impractical on-chip SRAM tags

Methods Later; Avg of

Web-Index, SPECjbb05,

TPC-C, & SPECweb05

7 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Motivation

 Fast Hits via Compound Access Scheduling

 Fast Misses via MissMap

 Experimental Results

 Related Work and Summary

8 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

FASTER HITS (CONVENTIONAL BLOCKS – TAKE 3)

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

DRAM Latency

Data Returned

SRAM Tag Lookup

DRAM Latency DRAM Tag Lookup DRAM Latency

Tag Updated

Row Buffer

Hit Latency
Data Returned

DRAM Tag Lookup

ACT RD Data Xfer

Tag

Check

RD Data Xfer

WR Data Xfer

Tag Updated

not to scale

CPU-side SRAM tags

Tags in DRAM

ACT RD PRE

tRCD

Data Xfer

tCAS

tRAS

Data Returned

Compound

Access

Scheduling

9 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

COMPOUND ACCESS SCHEDULING

 Reserve the bank for data access; guarantee row buffer hit

– Approximately trading an SRAM lookup for a row-buffer hit:

On a miss, unnecessarily holds bank open for the tag-check latency

– Prevents tag lookup on another row in same bank

– Effective penalty is minimal since tRAS must elapse before closing this

row, so bank will be unavailable anyway

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

SRAM ACT RD

ACT RD RD

tags

tags data

data

10 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Motivation

 Fast Hits via Compound Access Scheduling

 Fast Misses via MissMap

 Experimental Results

 Related Work and Summary

11 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

FASTER MISSES (CONVENTIONAL BLOCKS – TAKE 4)

Want to avoid delay & power of stacked DRAM access on miss

 Impractical on-chip tags answer

– Q1 “Present:” Is block in stacked DRAM cache?

– Q2 “Where:” Where in stacked DRAM cache (set/way)?

 New on-chip MissMap

– Approximate impractical tags for practical cost

– Answer Q1 “Present”

– But NOT Q2 “Where”

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

12 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

MISSMAP

On-chip structures to answer Q1: Is block in stacked DRAM cache?

MissMap Requirements

– Add block in miss; remove block on victimization

– No false negatives: If says, “not present” must be not present

– False positives allowed: If says, “present” may (rarely) miss

 Sounds like a Bloom Filter?

 But our implementation is precise – no false negatives or positives

– Extreme subblocking with over-provisioning

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

Lookup address

in MissMap

Lookup tag in

DRAM cache

Miss: go to main

memory

Hit: get data from

DRAM cache
hit

miss (miss)

hit

13 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

MISSMAP IMPLEMENTATION

 Key 1: Extreme Subblocking

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

tag bit vector

1KB memory

segment

64B

Tag+16 bits tracks

1KB of memory (e.g.)

MissMap entry

MissMap
15 7 6 5 4 3 2 1 0.

X

Y

DRAM $

X[7]

Installing a line in the DRAM $

X[7]

Y[3]

Evicting a line from the DRAM $

Y[3]

14 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

MISSMAP IMPLEMENTATION

 Key 2: Over-provisioning

 Key 3: Answer Q1 “Present” NOT Q2 “Where”

 36b tag + 64b vector = 100b

 NOT 36b tag + 5*64b vector = 356b (3.6x)

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

Tags

Data

Not cached

due to

fragmentation

MissMap Data Tags
1KB

Subblocked cache

Tags only for

cached (large)

blocks

Poor

cache

efficiency

Example:

2MB MissMap

4KB pages

Each entry is ~12.5 bytes

 (36b tag, 64b vector)

167,000 entries total

Best case, tracks ~640MB

Few bits

likely set

15 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Motivation

 Fast Hits via Compound Access Scheduling

 Fast Misses via MissMap

 Experimental Results

 Related Work and Summary

16 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

METHODOLOGY (SEE PAPER FOR DETAILS)

Workloads (footprint)

– Web-Index (2.98 GB) // SPECjbb05 (1.20 GB)

– TPC-C (1.03 GB) // SPECweb05 (1.02 GB)

 Base Target System

– 8 3.2 GHz cores with 1 IPC peak w/ 2-cycle 2-way 32KB I$ + D$

– 10-cyc 8-way 2MB L2 for 2 cores + 24-cyc 16-way 8MB shared L3

– Off-chip DRAM: DDR3-1600, 2 channels

 Enhanced Target System

– 12-way 6MB shared L3 + 2MB MissMap

– Stacked DRAM: 4 channels, 2x freq (~½ latency), 2x bus width

 gem5 simulation infrastructure (= Wisconsin GEMS + Michigan M5)

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

17 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

KEY RESULT: COMPOUND SCHEDULING + MISSMAP WORK

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

Ideal SRAM Tags

CAS + MissMap

Comp. Acc. Sched.

Tags in DRAM

Compound Access Scheduling + MissMap

Approximate impractical on-chip SRAM tags

18 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

2ND KEY RESULT: OFF-CHIP CONTENTION REDUCED

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

 For requests that miss, main memory is more responsive

Fewer

requests

lower

queuing

delay

Fewer requests

More row-buffer

hits

lower DRAM

latency

B
a

s
e

1
2

8
M

B

2

5
6

M
B

5

1
2

M
B

1
0

2
4

M
B

19 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OTHER RESULTS IN PAPER

 Impact on all off-chip DRAM traffic (activate, read, write, precharge)

 Dynamic active memory footprint of the DRAM cache

 Additional traffic due to MissMap evictions

 Cacheline vs. MissMap lifetimes

 Sensitivity to how L3 is divided between data and the MissMap

 Sensitivity to MissMap segment size

 Performance against sub-blocked caches

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

20 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

OUTLINE

Motivation

 Fast Hits via Compound Access Scheduling

 Fast Misses via MissMap

 Experimental Results

 Related Work and Summary

21 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

RELATED WORK

 Stacked DRAM as main memory

– Mostly assumes all of main memory can be stacked
[Kgil+ ASPLOS’06, Liu+ IEEE D&T’05, Loh ISCA’08, Woo+ HPCA’10]

 As a large cache

– Mostly assumes tag-in-DRAM latency too costly
[Dong+ SC’10, Ghosh+ MICRO’07, Jiang+ HPCA’10,

Loh MICRO’09, Zhao+ ICCD’07]

Other stacked approaches (NVRAM, hybrid technologies, etc.)

– [Madan+ HPCA’09, Zhang/Li PACT’09]

MissMap related

– Subblocking [Liptay IBMSysJ’68, Hill/Smith ISCA’84,

Seznec ISCA’94, Rothman/Smith ICS’99]

– “Density Vector” for prefetch suppression [Lin+ ICCD’01]

– Coherence optimization [Moshovos+ HPCA’01, Cantin+ ISCA’05]

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

22 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

EXECUTIVE SUMMARY

Good use of stacked DRAM is cache, but:

– Tags in stacked DRAM believed too slow

– On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)

 Solution put tags in stacked DRAM, but:

– Faster Hits: Schedule together tag & data stacked DRAM accesses

– Faster Miss: On-chip MissMap bypasses stacked DRAM on misses

 Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)

– 29-67% faster than naïve tag+data in stacked DRAM

– Within 88-97% of stacked DRAM cache w/ impractical on-chip tags

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

23 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions.

Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2011 Advanced Micro Devices, Inc. All rights reserved.

24 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

BACKUP SLIDES

25 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

UNIQUE PAGES IN L4 VS. MISSMAP REACH

Ex. 70% of the time a

256MB cache held

~90,000 or fewer unique

pages

26 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

IMPACT ON OFF-CHIP DRAM ACTIVITY

27 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

MISSMAP EVICTION TRAFFIC

Many MissMap evictions correspond to clean pages (e.g., no writeback

traffic from the L4)

 By the time a MissMap entry is evicted, most of its cachelines have are

long past dead/evicted.

28 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

SENSITIVITY TO MISSMAP VS. DATA ALLOCATION OF L3

 2MB MissMap + 6MB Data provides good performance

 3MB MissMap + 5MB Data slightly better, but can hurt server workloads

that are more sensitive to L3 capacity.

29 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

SENSITIVITY TO MISSMAP SEGMENT SIZE

 4KB segment size works the best

Our simulations make use of physical addresses, so consecutive virtual

pages can be mapped to arbitrary physical pages

30 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

COMPARISON TO SUB-BLOCKED CACHE

 Beyond 128MB, overhead is greater than MissMap

 At largest sizes (512MB, 1GB), sub-blocked cache delivers similar

performance to our approach, but at substantially higher cost

31 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

BENCHMARK FOOTPRINTS

 TPC-C: ~80% of accesses served by hottest 128MB worth of pages

 SPECWeb05: ~80% accesses served by 256MB

 SPECjbb05: ~80% accesses served by 512MB

Web-Index: huge active footprint

