

EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE-STACKED DRAM CACHES

MICRO 2011 @ Porte Alegre, Brazil

Gabriel H. Loh [1] and Mark D. Hill [2][1]

December 2011

[1] AMD Research [2] University of Wisconsin-Madison

Hill's work largely performed while on sabbatical at [1].

EXECUTIVE SUMMARY

- Good use of stacked DRAM is cache, but:
 - Tags in stacked DRAM believed too slow
 - On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)
- Solution put tags in stacked DRAM, but:
 - Faster Hits: Schedule together tag & data stacked DRAM accesses
 - Faster Miss: On-chip MissMap bypasses stacked DRAM on misses
- Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)
 - 29-67% faster than naïve tag+data in stacked DRAM
 - Within 88-97% of stacked DRAM cache w/ impractical on-chip tags

OUTLINE

Motivation

- Fast Hits via Compound Access Scheduling
- Fast Misses via MissMap
- Experimental Results
- Related Work and Summary

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

CHIP STACKING IS HERE

HOW TO USE STACKED MEMORY?

- Complete Main Memory
 - Few GB too small for all but some embedded systems
- OS-Managed NUMA Memory
 - Page-size fragmentation an issue
 - Requires OS-HW cooperation (across companies)
- Cache w/ Conventional Block (Line) Size (e.g., 64B)
 - But on-chip tags for 1 GB cache is impractical 96 MB! (TAKE 1)
- Sector/subblock Cache
 - Tag w/ 2KB block (sector) + state bits w/ each 64B subblock
 - Tags+state fits on-chip, but fragmentation issues (see paper)

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

TAG+DATA IN DRAM (CONVENTIONAL BLOCKS – TAKE 2)

- Use 2K-Stacked-DRAM pages but replace 32 64B blocks with
 - 29 tags (48b) + 29 blocks

- But previously dismissed as too slow

AMD

IMPRACTICAL IDEAL & OUR RESULT FORECAST

OUTLINE

Motivation

Fast Hits via Compound Access Scheduling

- Fast Misses via MissMap
- Experimental Results
- Related Work and Summary

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

FASTER HITS (CONVENTIONAL BLOCKS – TAKE 3)

COMPOUND ACCESS SCHEDULING

- Reserve the bank for data access; guarantee row buffer hit
 - Approximately trading an SRAM lookup for a row-buffer hit:

- On a miss, unnecessarily holds bank open for the tag-check latency
 - Prevents tag lookup on another row in same bank
 - Effective penalty is minimal since t_{RAS} must elapse before closing this row, so bank will be unavailable anyway

OUTLINE

Motivation

Fast Hits via Compound Access Scheduling

Fast Misses via MissMap

- Experimental Results
- Related Work and Summary

FASTER MISSES (CONVENTIONAL BLOCKS – TAKE 4)

- Want to avoid delay & power of stacked DRAM access on miss
- Impractical on-chip tags answer
 - Q1 "Present:" Is block in stacked DRAM cache?
 - Q2 "Where:" Where in stacked DRAM cache (set/way)?
- New on-chip MissMap
 - Approximate impractical tags for practical cost
 - Answer Q1 "Present"
 - But NOT Q2 "Where"

MISSMAP

On-chip structures to answer Q1: Is block in stacked DRAM cache?

- MissMap Requirements
 - Add block in miss; remove block on victimization
 - − No false negatives: If says, "not present" → must be not present
 - False positives allowed: If says, "present" → may (rarely) miss
- Sounds like a Bloom Filter?
- But our implementation is precise no false negatives or positives
 - Extreme subblocking with over-provisioning

MISSMAP IMPLEMENTATION

MISSMAP IMPLEMENTATION

- Key 2: Over-provisioning
- Key 3: Answer Q1 "Present" NOT Q2 "Where"
 - 36b tag + 64b vector = 100b
 - NOT 36b tag + 5*64b vector = 356b (3.6x)

Example: 2MB MissMap 4KB pages Each entry is ~12.5 bytes (36b tag, 64b vector) 167,000 entries total Best case, tracks ~640MB

OUTLINE

Motivation

- Fast Hits via Compound Access Scheduling
- Fast Misses via MissMap
- Experimental Results
- Related Work and Summary

METHODOLOGY (SEE PAPER FOR DETAILS)

- Workloads (footprint)
 - Web-Index (2.98 GB) // SPECjbb05 (1.20 GB)
 - TPC-C (1.03 GB) // SPECweb05 (1.02 GB)
- Base Target System
 - 8 3.2 GHz cores with 1 IPC peak w/ 2-cycle 2-way 32KB I\$ + D\$
 - 10-cyc 8-way 2MB L2 for 2 cores + 24-cyc 16-way 8MB shared L3
 - Off-chip DRAM: DDR3-1600, 2 channels
- Enhanced Target System
 - 12-way 6MB shared L3 + 2MB MissMap
 - Stacked DRAM: 4 channels, 2x freq (~1/2 latency), 2x bus width

gem5 simulation infrastructure (= Wisconsin GEMS + Michigan M5)

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

KEY RESULT: COMPOUND SCHEDULING + MISSMAP WORK

Compound Access Scheduling + MissMap → Approximate impractical on-chip SRAM tags

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary

2ND KEY RESULT: OFF-CHIP CONTENTION REDUCED

• For requests that miss, main memory is more responsive

OTHER RESULTS IN PAPER

- Impact on all off-chip DRAM traffic (activate, read, write, precharge)
- Dynamic active memory footprint of the DRAM cache
- Additional traffic due to MissMap evictions
- Cacheline vs. MissMap lifetimes
- Sensitivity to how L3 is divided between data and the MissMap
- Sensitivity to MissMap segment size
- Performance against sub-blocked caches

OUTLINE

Motivation

- Fast Hits via Compound Access Scheduling
- Fast Misses via MissMap
- Experimental Results
- Related Work and Summary

RELATED WORK

- Stacked DRAM as main memory
 - Mostly assumes all of main memory can be stacked [Kgil+ ASPLOS'06, Liu+ IEEE D&T'05, Loh ISCA'08, Woo+ HPCA'10]
- As a large cache
 - Mostly assumes tag-in-DRAM latency too costly [Dong+ SC'10, Ghosh+ MICRO'07, Jiang+ HPCA'10, Loh MICRO'09, Zhao+ ICCD'07]
- Other stacked approaches (NVRAM, hybrid technologies, etc.)
 - [Madan+ HPCA'09, Zhang/Li PACT'09]
- MissMap related
 - Subblocking [Liptay IBMSysJ'68, Hill/Smith ISCA'84, Seznec ISCA'94, Rothman/Smith ICS'99]
 - "Density Vector" for prefetch suppression [Lin+ ICCD'01]
 - Coherence optimization [Moshovos+ HPCA'01, Cantin+ ISCA'05]

EXECUTIVE SUMMARY

- Good use of stacked DRAM is cache, but:
 - Tags in stacked DRAM believed too slow
 - On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)
- Solution put tags in stacked DRAM, but:
 - Faster Hits: Schedule together tag & data stacked DRAM accesses
 - Faster Miss: On-chip MissMap bypasses stacked DRAM on misses
- Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)
 - 29-67% faster than naïve tag+data in stacked DRAM
 - Within 88-97% of stacked DRAM cache w/ impractical on-chip tags

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2011 Advanced Micro Devices, Inc. All rights reserved.

BACKUP SLIDES

UNIQUE PAGES IN L4 VS. MISSMAP REACH

IMPACT ON OFF-CHIP DRAM ACTIVITY

MISSMAP EVICTION TRAFFIC

Workload	% Clean MissMap	Dirty Lines per Dirty Segment	
Name	Evictions	128MB	1GB
Web-Index	99.7%	0.02	26.8
SPECjbb05	55.7%	1.06	29.3
TPĆ-C	74.7%	3.80	4.93
SPECweb05	72.2%	1.61	16.2

 Many MissMap evictions correspond to clean pages (e.g., no writeback traffic from the L4)

 By the time a MissMap entry is evicted, most of its cachelines have are long past dead/evicted.

SENSITIVITY TO MISSMAP VS. DATA ALLOCATION OF L3

- 2MB MissMap + 6MB Data provides good performance
- 3MB MissMap + 5MB Data slightly better, but can hurt server workloads that are more sensitive to L3 capacity.

SENSITIVITY TO MISSMAP SEGMENT SIZE

- 4KB segment size works the best
- Our simulations make use of physical addresses, so consecutive virtual pages can be mapped to arbitrary physical pages

COMPARISON TO SUB-BLOCKED CACHE

Beyond 128MB, overhead is greater than MissMap

 At largest sizes (512MB, 1GB), sub-blocked cache delivers similar performance to our approach, but at substantially higher cost

BENCHMARK FOOTPRINTS

- TPC-C: ~80% of accesses served by hottest 128MB worth of pages
- SPECWeb05: ~80% accesses served by 256MB
- SPECjbb05: ~80% accesses served by 512MB
- Web-Index: huge active footprint

