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EXECUTIVE SUMMARY 

Good use of stacked DRAM is cache, but: 

– Tags in stacked DRAM believed too slow 

– On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache) 

 

 Solution put tags in stacked DRAM, but: 

– Faster Hits: Schedule together tag & data stacked DRAM accesses 

– Faster Miss: On-chip MissMap bypasses stacked DRAM on misses 

 

 Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap) 

– 29-67% faster than naïve tag+data in stacked DRAM 

– Within 88-97% of stacked DRAM cache w/ impractical on-chip tags 
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OUTLINE 
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 Fast Misses via MissMap 
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 Related Work and Summary 
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CHIP STACKING IS HERE 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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HOW TO USE STACKED MEMORY? 

 Complete Main Memory 

– Few GB too small for all but some embedded systems 

 

OS-Managed NUMA Memory 

– Page-size fragmentation an issue 

– Requires OS-HW cooperation (across companies) 

 

 Cache w/ Conventional Block (Line) Size (e.g., 64B) 

– But on-chip tags for 1 GB cache is impractical 96 MB! (TAKE 1) 

 

 Sector/subblock Cache 

– Tag w/ 2KB block (sector) + state bits w/ each 64B subblock 

– Tags+state fits on-chip, but fragmentation issues (see paper) 
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TAG+DATA IN DRAM (CONVENTIONAL BLOCKS – TAKE 2) 

 Use 2K-Stacked-DRAM pages but replace 32 64B blocks with  

– 29 tags (48b) + 29 blocks 

 

 

 

 

 

– But previously dismissed as too slow 
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IMPRACTICAL IDEAL & OUR RESULT FORECAST  

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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FASTER HITS (CONVENTIONAL BLOCKS – TAKE 3) 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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COMPOUND ACCESS SCHEDULING 

 Reserve the bank for data access; guarantee row buffer hit 

– Approximately trading an SRAM lookup for a row-buffer hit: 

 

 

 

 

 

On a miss, unnecessarily holds bank open for the tag-check latency 

– Prevents tag lookup on another row in same bank 

– Effective penalty is minimal since tRAS must elapse before closing this 

row, so bank will be unavailable anyway 
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FASTER MISSES (CONVENTIONAL BLOCKS – TAKE 4) 

Want to avoid delay & power of stacked DRAM access on miss  

 

 Impractical on-chip tags answer 

– Q1 “Present:” Is block in stacked DRAM cache? 

– Q2 “Where:” Where in stacked DRAM cache (set/way)? 

 

 New on-chip MissMap 

– Approximate impractical tags for practical cost 

– Answer Q1 “Present” 

– But NOT Q2 “Where” 
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MISSMAP 

On-chip structures to answer Q1: Is block in stacked DRAM cache? 

 

 

 

 

MissMap Requirements 

– Add block in miss; remove block on victimization 

– No false negatives: If says, “not present”  must be not present 

– False positives allowed: If says, “present”  may (rarely) miss 

 Sounds like a Bloom Filter? 

 

 But our implementation is precise – no false negatives or positives 

– Extreme subblocking with over-provisioning 
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MISSMAP IMPLEMENTATION 

 Key 1: Extreme Subblocking 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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MISSMAP IMPLEMENTATION 

 Key 2: Over-provisioning 

 Key 3: Answer Q1 “Present” NOT Q2 “Where” 

 36b tag + 64b vector = 100b 

 NOT 36b tag + 5*64b vector = 356b (3.6x) 
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METHODOLOGY (SEE PAPER FOR DETAILS) 

Workloads (footprint) 

– Web-Index (2.98 GB)  //  SPECjbb05 (1.20 GB) 

– TPC-C (1.03 GB)  //  SPECweb05 (1.02 GB) 

 

 Base Target System 

– 8 3.2 GHz cores with 1 IPC peak w/ 2-cycle 2-way 32KB I$ + D$ 

– 10-cyc 8-way 2MB L2 for 2 cores + 24-cyc 16-way 8MB shared L3 

– Off-chip DRAM: DDR3-1600, 2 channels 

 Enhanced Target System 

– 12-way 6MB shared L3 + 2MB MissMap  

– Stacked DRAM: 4 channels, 2x freq (~½ latency), 2x bus width 

 

 gem5 simulation infrastructure (= Wisconsin GEMS + Michigan M5) 
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KEY RESULT: COMPOUND SCHEDULING + MISSMAP WORK 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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2ND KEY RESULT: OFF-CHIP CONTENTION REDUCED 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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OTHER RESULTS IN PAPER 

 

 Impact on all off-chip DRAM traffic (activate, read, write, precharge) 

 Dynamic active memory footprint of the DRAM cache 

 Additional traffic due to MissMap evictions 

 Cacheline vs. MissMap lifetimes 

 Sensitivity to how L3 is divided between data and the MissMap 

 Sensitivity to MissMap segment size 

 Performance against sub-blocked caches 

Motivation • Fast Hits via Compound Access Scheduling • Fast Misses via MissMap • Experimental Results • Related Work and Summary  
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RELATED WORK 

 Stacked DRAM as main memory 

– Mostly assumes all of main memory can be stacked 
[Kgil+ ASPLOS’06, Liu+ IEEE D&T’05, Loh ISCA’08, Woo+ HPCA’10] 

 As a large cache 

– Mostly assumes tag-in-DRAM latency too costly 
[Dong+ SC’10, Ghosh+ MICRO’07, Jiang+ HPCA’10, 

Loh MICRO’09, Zhao+ ICCD’07] 

Other stacked approaches (NVRAM, hybrid technologies, etc.) 

– [Madan+ HPCA’09, Zhang/Li PACT’09] 

MissMap related 

– Subblocking [Liptay IBMSysJ’68, Hill/Smith ISCA’84, 

Seznec ISCA’94, Rothman/Smith ICS’99] 

– “Density Vector” for prefetch suppression [Lin+ ICCD’01] 

– Coherence optimization [Moshovos+ HPCA’01, Cantin+ ISCA’05] 
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BACKUP SLIDES 
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UNIQUE PAGES IN L4 VS. MISSMAP REACH 

Ex. 70% of the time a 

256MB cache held 

~90,000 or fewer unique 

pages 
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IMPACT ON OFF-CHIP DRAM ACTIVITY 
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MISSMAP EVICTION TRAFFIC 

Many MissMap evictions correspond to clean pages (e.g., no writeback 

traffic from the L4) 

 

 By the time a MissMap entry is evicted, most of its cachelines have are 

long past dead/evicted. 
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SENSITIVITY TO MISSMAP VS. DATA ALLOCATION OF L3 

 2MB MissMap + 6MB Data provides good performance 

 3MB MissMap + 5MB Data slightly better, but can hurt server workloads 

that are more sensitive to L3 capacity. 
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SENSITIVITY TO MISSMAP SEGMENT SIZE 

 4KB segment size works the best 

Our simulations make use of physical addresses, so consecutive virtual 

pages can be mapped to arbitrary physical pages 



30 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches  |  Dec 7, 2011  |  Public 

COMPARISON TO SUB-BLOCKED CACHE 

 Beyond 128MB, overhead is greater than MissMap 

 At largest sizes (512MB, 1GB), sub-blocked cache delivers similar 

performance to our approach, but at substantially higher cost 



31 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches  |  Dec 7, 2011  |  Public 

BENCHMARK FOOTPRINTS 

 TPC-C: ~80% of accesses served by hottest 128MB worth of pages 

 SPECWeb05: ~80% accesses served by 256MB 

 SPECjbb05: ~80% accesses served by 512MB 

Web-Index: huge active footprint 


