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EXECUTIVE SUMMARY

= Good use of stacked DRAM is cache, but:
— Tags in stacked DRAM believed too slow
— On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)

= Solution put tags in stacked DRAM, but:
— Faster Hits: Schedule together tag & data stacked DRAM accesses

— Faster Miss: On-chip MissMap bypasses stacked DRAM on misses

= Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)
— 29-67% faster than naive tag+data in stacked DRAM
— Within 88-97% of stacked DRAM cache w/ impractical on-chip tags
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OUTLINE

= Motivation

= Fast Hits via Compound Access Scheduling

= Fast Misses via MissMap

= Experimental Results

= Related Work and Summary
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Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

CHIP STACKING IS HERE

silicon interposer

“Vertical” “Horizontal”

256 MB

Samsung @ ISSCC’11: “A 1.2V 12.8Gb/s 2Gb Mobile Wide-I/O DRAM
with 4x128 1/Os Using TSV-Based Stacking”
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Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

HOW TO USE STACKED MEMORY?

= Complete Main Memory

— Few GB too small for all but some embedded systems

= OS-Managed NUMA Memory
— Page-size fragmentation an issue

— Requires OS-HW cooperation (across companies)

= Cache w/ Conventional Block (Line) Size (e.g., 64B)
— But on-chip tags for 1 GB cache is impractical 96 MB! (TAKE 1)

= Sector/subblock Cache
— Tag w/ 2KB block (sector) + state bits w/ each 64B subblock

— Tags+state fits on-chip, but fragmentation issues (see paper)
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Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

TAG+DATA IN DRAM (CONVENTIONAL BLOCKS — TAKE 2)

= Use 2K-Stacked-DRAM pages but replace 32 64B blocks with
— 29 tags (48b) + 29 blocks

g 32 x 64-byte cachS:Jines:2048 bytes
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Motivation ¢ Fast Hits via Compound Access Scheduling * Fast Misses via MissMap * Experimental Results ¢ Related Work and Summary

IMPRACTICAL IDEAL & OUR RESULT FORECAST

Ideal SRAM Tags

CAS + MissMap
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Compound Access Scheduling + MissMap =  Methods Later; Avg of

Approximate impractical on-chip SRAM tags ~ Web-Index, SPECjbb05,
TPC-C, & SPECweb05
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OUTLINE

Fast Hits via Compound Access Scheduling
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Motivation « Fast Hits via Compound Access Scheduling « Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

FASTER HITS (CONVENTIONAL BLOCKS - TAKE 3)

Data Returned not to scale
DRAM Latency .
— CPU-side SRAM tags
SRAM Tag Lookup
Tags in DRAM
Data Returned Tag Updated
DRAM Tag Lookup DRAM Latency DRAM Latency
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Motivation « Fast Hits via Compound Access Scheduling « Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

COMPOUND ACCESS SCHEDULING

= Reserve the bank for data access; guarantee row buffer hit

— Approximately trading an SRAM lookup for a row-buffer hit:

tags data
SRAM ACT
tags data
ACT RD RD

= On a miss, unnecessarily holds bank open for the tag-check latency
— Prevents tag lookup on another row in same bank

— Effective penalty is minimal since t;, 5 must elapse before closing this
row, so bank will be unavailable anyway
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OUTLINE

Fast Misses via MissMap
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Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

FASTER MISSES (CONVENTIONAL BLOCKS — TAKE 4)

= Want to avoid delay & power of stacked DRAM access on miss

= |[mpractical on-chip tags answer
— Q1 “Present:” Is block in stacked DRAM cache?
— Q2 “Where:” Where in stacked DRAM cache (set/way)?

= New on-chip MissMap
— Approximate impractical tags for practical cost
— Answer Q1 “Present”
— But NOT Q2 “Where”

11 | Efficiently Enabling Conventional Block Sizes for Very Large Die-stacked DRAM Caches | Dec 7, 2011 | Public

AMDZ1




Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

MISSMAP

= On-chip structures to answer Q1: Is block in stacked DRAM cache?

Lookup address Hifii R Lookup tag in JRell R Hit: get data from
In MissMap DRAM cache DRAM cache
miss (miss) _ .
g Miss: go to main
memory

= MissMap Requirements

— Add block in miss; remove block on victimization
— No false negatives: If says, “not present” =» must be not present
— False positives allowed: If says, “present” =» may (rarely) miss

= Sounds like a Bloom Filter?

= But our implementation is precise — no false negatives or positives

— Extreme subblocking with over-provisioning
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Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

MISSMAP IMPLEMENTATION

MissMap entry

Tag+16 bits tracks
1KB of memory (e.g.)

tag Dbit vector

Installing a line in the DRAM $

DRAM $

=

1KB memory /

segment

= Key 1. Extreme Subblocking

mX[7]

MissMap
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Evicting a line from the DRAM $
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Motivation * Fast Hits via Compound Access Scheduling * Fast Misses via MissMap ¢ Experimental Results « Related Work and Summary

MISSMAP IMPLEMENTATION

Subblocked cache 1KB |
——1 MissMap Tags Data
T = f . ° 8 oed 0 @ gV A
ags m ® m m ®
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Tags only for n efficiency

cached (large) R K

Few bits

blocks Not cached likely set
due to
fragmentation Example:
2MB MissMap
4KB pages

= Key 2: Over-provisionin .
y P J Each entry is ~12.5 bytes
= Key 3: Answer Q1 “Present” NOT Q2 “Where” (36b tag, 64b vector)
3 167,000 entries total
36b tag + 64b vector = 100b Best case, tracks ~640MB
» NOT 36b tag + 5*64b vector = 356b (3.6x)
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OUTLINE

Experimental Results
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Motivation ¢ Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap ¢ Experimental Results ¢ Related Work and Summary

METHODOLOGY (SEE PAPER FOR DETAILS)

= Workloads (footprint)
— Web-Index (2.98 GB) // SPECjbb05 (1.20 GB)
— TPC-C (1.03 GB) // SPECweb05 (1.02 GB)

= Base Target System
— 8 3.2 GHz cores with 1 IPC peak w/ 2-cycle 2-way 32KB I$ + D$
— 10-cyc 8-way 2MB L2 for 2 cores + 24-cyc 16-way 8MB shared L3
— Off-chip DRAM: DDR3-1600, 2 channels

= Enhanced Target System
— 12-way 6MB shared L3 + 2MB MissMap
— Stacked DRAM: 4 channels, 2x freq (~¥2 latency), 2x bus width

= gem>5 simulation infrastructure (= Wisconsin GEMS + Michigan M5)
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Motivation ¢ Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap ¢ Experimental Results ¢ Related Work and Summary

KEY RESULT: COMPOUND SCHEDULING + MISSMAP WORK

Ideal SRAM Tags
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Motivation * Fast Hits via Compound Access Schedulin

2N KEY RESULT: OFF-CHIP CONTENTION REDUCED

= For requests that miss, main memory is more responsive
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g * Fast Misses via MissMap * Experimental Results * Related Work and Summary
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Motivation ¢ Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap ¢ Experimental Results ¢ Related Work and Summary

OTHER RESULTS IN PAPER

= Impact on all off-chip DRAM traffic (activate, read, write, precharge)
= Dynamic active memory footprint of the DRAM cache

= Additional traffic due to MissMap evictions

= Cacheline vs. MissMap lifetimes

= Sensitivity to how L3 is divided between data and the MissMap

= Sensitivity to MissMap segment size

= Performance against sub-blocked caches
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OUTLINE

= Related Work and Summary
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Motivation * Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap * Experimental Results « Related Work and Summary

RELATED WORK

= Stacked DRAM as main memory

— Mostly assumes all of main memory can be stacked
[Kgil+ ASPLOS06, Liu+ IEEE D&T°05, Loh ISCA’08, Woo+ HPCA’10]

= As a large cache

— Mostly assumes tag-in-DRAM latency too costly
[Dong+ SC’10, Ghosh+ MICRO’07, Jiang+ HPCA’10,
Loh MICRO’09, Zhao+ ICCD’07]

= Other stacked approaches (NVRAM, hybrid technologies, etc.)
— [Madan+ HPCA’09, Zhang/Li PACT 09]
= MissMap related

— Subblocking [Liptay IBMSysJ’68, Hill/Smith ISCA’84,
Seznec ISCA’94, Rothman/Smith ICS’99]

— “Density Vector” for prefetch suppression [Lin+ ICCD’01]

— Coherence optimization [Moshovos+ HPCA’01, Cantin+ ISCA’05]
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Motivation * Fast Hits via Compound Access Scheduling ¢ Fast Misses via MissMap * Experimental Results « Related Work and Summary

EXECUTIVE SUMMARY

= Good use of stacked DRAM is cache, but:

— Tags in stacked DRAM believed too slow

— On-chip tags too large (e.g., 96 MB for 1 GB stacked DRAM cache)

= Solution put tags in stacked DRAM, but:

— Faster Hits: Schedule together tag & data stacked DRAM accesses

— Faster Miss: On-chip MissMap bypasses stacked DRAM on misses

= Result (e.g., 1 GB stacked DRAM cache w/ 2 MB on-chip MissMap)
— 29-67% faster than naive tag+data in stacked DRAM
— Within 88-97% of stacked DRAM cache w/ impractical on-chip tags
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BACKUP SLIDES




UNIQUE PAGES IN L4 VS. MISSMAP REACH
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IMPACT ON OFF-CHIP DRAM ACTIVITY
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MISSMAP EVICTION TRAFFIC

Workload % Clean MissMap | Dirty Lines per Dirty Segment
Name Evictions 128MB 1GB
Web-Index 99.7% 0.02 26.8
SPECjbb05 55.7% 1.06 29.3
TPC-C 74.7% 3.80 4.93
SPECweb05 72.2% 1.61 16.2

= Many MissMap evictions correspond to clean pages (e.g., ho writeback

traffic from the L4)

o 200

E 5 150 OSegment Residency

S mCache Live Time |

=

= 100

@ 50

o
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= By the time a MissMap entry is evicted, most of its cachelines have are
long past dead/evicted.
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SENSITIVITY TO MISSMAP VS. DATA ALLOCATION OF L3
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= 2MB MissMap + 6MB Data provides good performance

= 3MB MissMap + 5MB Data slightly better, but can hurt server workloads

that are more sensitive to L3 capacity.
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SENSITIVITY TO MISSMAP SEGMENT SIZE
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= 4KB segment size works the best

= Our simulations make use of physical addresses, so consecutive virtual

pages can be mapped to arbitrary physical pages
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COMPARISON TO SUB-BLOCKED CACHE
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= Beyond 128MB, overhead is greater than MissMap

= At largest sizes (512MB, 1GB), sub-blocked cache delivers similar
performance to our approach, but at substantially higher cost
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= TPC-C: ~80% of accesses served by hottest 128MB w

= SPECWeb05: ~80% accesses served by 256MB
= SPECjbb05: ~80% accesses served by 512MB

= Web-Index: huge active footprint
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