
Learning gem5

Jason Lowe-Power

http://learning.gem5.org/

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 1

http://learning.gem5.org/


What is gem5?

Michigan m5 + Wisconsin GEMS = gem5

“The gem5 simulator is a modular platform for computer-
system architecture research, encompassing system-level 

architecture as well as processor microarchitecture.”

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel 
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, 
Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2 
(August 2011), 1-7. DOI=http://dx.doi.org/10.1145/2024716.2024718

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 2



This tutorial

This is going to interactive

Work along with me for best results

Ask questions!!

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 3



Schedule

Learning Part I 8:30 – 10:00

Break 10:00 – 10:30

Learning Part II 10:30 – 12:00

Lunch 12:00 – 1:30

Code Sprint I 1:30 – 3:00

Break 3:00 – 3:30

Code Sprint II 3:30 – 5:00

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 4

Code Sprint II:
• Continue sprints!

Learning Part I:
• Building gem5
• Config scripts
• gem5 output
• Simple SimObject

Code Sprint I:
• New gem5 contributions

[Andreas Sandberg]
• Begin sprints!

Learning Part II:
• Event-driven simulation
• SimObject parameters
• Memory system objects
• Other gem5 features



Building gem5
http://learning.gem5.org/book/part1/building.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 5



Switch!
> git clone https://gem5.googlesource.com/public/gem5

> cd gem5

> git checkout hpca

> scons build/X86/gem5.opt –j5

Let’s get started!

and now we wait (about 8 minutes)

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 6



> scons build/X86/gem5.opt –j5

scons: the build system 
that gem5 uses (like 
make). See 
http://scons.org/

build/X86/gem5.opt: “parameter” 
passed to scons. gem5’s Sconscript
interprets this. Also, the patch to 
the gem5 executable.

X86: Specifies the 
default build options. 
See build_opts/*

opt: version of executable 
to compile (one of debug, 
opt, perf, fast)

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 7

http://scons.org/


gem5 architecture

gem5 consists of “SimObjects”

Most C++ objects in gem5 inherit 
from class SimObject

Represent physical system 
components

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 8



gem5 architecture

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

All SimObjects can enqueue
events to the event queue

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 9

We’ll cover more 
after the break



gem5 configuration scripts
http://learning.gem5.org/book/part1/simple_config.html

http://learning.gem5.org/book/part1/cache_config.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 10



gem5 user interface

gem5 completely controlled by 
Python scripts

Scripts define system to model

All (C++) SimObjects exposed to 
Python

So…  let’s make one!

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 11



Simple config script

Single CPU connected to a 
memory bus

Switch!

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 12



Simple config script
http://learning.gem5.org/book/_downloads/simple.py

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 13

http://learning.gem5.org/book/_downloads/simple.py


Running gem5

> build/X86/gem5.opt

configs/myscripts/simple.py

build/X86/gem5.opt: 
the gem5 binary to run

configs/…/simple.py: 
the configuration 
script (config script)

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 14



Port interface

| system.cpu.icache_port = system.membus.slave
| system.cpu.dcache_port = system.membus.slave
| ...
| system.mem_ctrl.port = system.membus.master

Ports connect MemObjects

Master Slave
Requests

Responses

To register a connection between 
master and slave, use ‘=’ in Python

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 15



Syscall Emulation (SE) mode

| process = LiveProcess()
| process.cmd = [‘tests/.../hello’]
| system.cpu.workload = process
| ...
| root = Root(full_system = False)

SE mode emulates the operating 
system (Linux) syscalls. No OS runs.

process: an emulated process 
with emulated page tables, 
file descriptors, etc.

Full system mode runs a full OS as if gem5 is 
a “bare metal” system. Like full virtualization.

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 16



Extending SimObjects in Python config

Object-oriented config files

Adding command-line parameters

Going further: Adding caches
http://learning.gem5.org/book/part1/cache_config.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 17

Switch!

http://learning.gem5.org/book/part1/cache_config.html


It’s just Python!

| class L1Cache(Cache):
|     ...
|
| class L1ICache(L1Cache):
|     def connectCPU(self, cpu):
|         self.cpu_side = cpu.icache_port
| ...

Use good object-oriented 
design!

Debugging config files is 
easy. Just add some print 
statements!

Use Python builtins to 
provide support for 
command line parameters.

See text for details

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 18



Understanding gem5 output
http://learning.gem5.org/book/part1/gem5_stats.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 19



Understanding gem5 output

> ls m5out

config.ini   config.json stats.txt

config.ini: Dumps all of the 
parameters of all SimObjects.
This shows exactly what you 
simulated. config.json: Same as 

config.ini, but in json
format.

stats.txt: Detailed statistic 
output. Each SimObject
defines and updates statistics. 
They are printed here at the 
end of simulation.

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 20



Switch!

stats.txt

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 21

---------- Begin Simulation Statistics ----------
sim_seconds 0.000346      # Number of seconds simulated
sim_ticks 345518000     # Number of ticks simulated
final_tick 345518000     # Number of ticks from beginning ...
sim_freq 1000000000000 # Frequency of simulated ticks
...
sim_insts 5712          # Number of instructions simulated
sim_ops 10314         # Number of ops (including micro ...
...
system.mem_ctrl.bytes_read::cpu.inst 58264  # Number of bytes ...
system.mem_ctrl.bytes_read::cpu.data 7167   # Number of bytes ...
...
system.cpu.committedOps 10314  # Number of ops (...
system.cpu.num_int_alu_accesses 10205  # Number of integer ...

sim_seconds: name of stat. This 
shows simulated guest time

Every SimObject can have its 
own stats. Names are what you 
used in the Python config file



A simple SimObject
http://learning.gem5.org/book/part2/helloobject.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 22



gem5’s coding guidelines

Follow the style guide (http://www.gem5.org/Coding_Style)

Install the style guide when scons asks

Don’t ignore style errors

Use good development practices

Historically mercurial queues

Now: git branches?

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 23

http://www.gem5.org/Coding_Style


Adding a new SimObject

Step 1: Create a Python class

Step 2: Implement the C++

Step 3: Register the SimObject and C++ file

Step 4: (Re-)build gem5

Step 5: Create a config script

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 24

Switch!



Step 1: Create a Python class

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 25

| from m5.params import *
| from m5.SimObject import SimObject
|
| class HelloObject(SimObject):
|     type = ‘HelloObject’
|     cxx_header = ‘learning_gem5/hello_object.hh’

Import the objects we need

m5.params: Things like 
MemorySize, Int, etc.

type: The C++ class name cxx_header: The filename for the 
C++ header file

HelloObject.py



Step 2: Implement the C++ 

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 26

| #include "params/HelloObject.hh"

| #include "sim/sim_object.hh"

| class HelloObject : public SimObject

| {

|   public:

|     HelloObject(HelloObjectParams *p);

| };

hello_object.hh params/*.hh generated 
automatically. Comes from 
Python SimObject definition

Constructor has one parameter, 
the generated params object.



Step 2: Implement the C++ 

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 27

HelloObject::HelloObject(HelloObjectParams *params)

: SimObject(params)

{

std::cout << "Hello World! From a SimObject!" << std::endl;

}

HelloObject*

HelloObjectParams::create()

{

return new HelloObject(this);

}

hello_object.cc

HelloObjectParams: when 
you specify a Param in the 
Hello.py file, it will be a 
member of this object.

You must define this function 
(you’ll get a linker error 
otherewise). This is how Python 
config creates the C++ object.



Step 3: Register the SimObject and C++ file

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 28

| Import(*)

| SimObject(‘Hello.py’)

| Source(‘hello_object.cc’)

SConscript Import: SConscript is just 
Python… but weird.

SimObject(): Says that this 
Python file contains a SimObject. 
Note: you can put pretty much 
any Python in here

Source(): Tell scons to compile 
this file (e.g., with g++).



Step 4: (Re-)build gem5

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 29



Step 5: Create a config script

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 30

| ...

| system.hello = HelloObject()

| ...

Instantiate the new object that 
you created in the config file 
(e.g., simple.py)

> build/X86/gem5.opt configs/learning_gem5/hello.py

...

Hello world! From a SimObject!

...



Simple SimObject code

http://learning.gem5.org/book/_downloads/HelloObject.py

http://learning.gem5.org/book/_downloads/hello_object.hh

http://learning.gem5.org/book/_downloads/hello_object.cc

http://learning.gem5.org/book/_downloads/SConscript

http://learning.gem5.org/book/_downloads/run_hello.py

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 31

http://learning.gem5.org/book/_downloads/HelloObject.py
http://learning.gem5.org/book/_downloads/hello_object.hh
http://learning.gem5.org/book/_downloads/hello_object.cc
http://learning.gem5.org/book/_downloads/SConscript
http://learning.gem5.org/book/_downloads/run_hello.py


Debug support in gem5
http://learning.gem5.org/book/part2/debugging.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 32



Adding debug flags

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 33

Switch!
DebugFlag(‘Hello’)

DPRINTF(Hello, “Created the hello object”);

Declare the flag: add the 
debug flag to the SConscript
file in the current directory

DPRINTF: macro for debug 
statements in gem5

Hello: the debug flag 
declared in the SConscript.
Found in “debug/hello.hh”

Debug string: Any C 
format string

SConscript

hello_object.cc



Debugging gem5

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 34

> build/X86/gem5.opt --debug-flags=Hello configs/learning_gem5/hello.py

...

0: system.hello: Hello world! From a debug statement

debug-flags: Comma separated list of 
flags to enable. Other options include 
--debug-start=<tick>, 
--debug-ignore=<simobj name>,
etc. See gem5.opt --help



Event-driven programming
http://learning.gem5.org/book/part2/events.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 35



Simple event callback

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 36

Switch!| class HelloObject : public SimObject

| {

|  private:

|    ...

|    void processEvent();

|    EventWrapper<HelloObject, 

|                 &HelloObject::processEvent> event;

|  public:

|    HelloObject(HelloObjectParams *p);

|    void startup();

| };

EventWrapper: Convenience 
class for simple events with 
no parameters.

processEvent: Callback 
function to run when 
event fires.

startup: Called after all 
SimObjects instantiated. 
Schedule local events here.



Simple event callback

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 37

| void

| HelloObject::processEvent()

| {

|     timesLeft--;

|     DPRINTF(Hello, "Hello world!"

|                   " Processing the event! %d left\n", timesLeft);

|     if (timesLeft <= 0) {

|        DPRINTF(Hello, "Done firing!\n");

|     } else {

|        schedule(event, curTick() + latency);

|     }

| }

schedule: Put an event 
instance on the event queue. 
An absolute tick used for 
when the event is processed.

curTick: Returns the current 
simulator time. Useful for 
relative time computations.



Event SimObject code

http://learning.gem5.org/book/_downloads/hello_object1.hh

http://learning.gem5.org/book/_downloads/hello_object2.cc

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 38

http://learning.gem5.org/book/_downloads/hello_object1.hh
http://learning.gem5.org/book/_downloads/hello_object2.cc


SimObject parameters
http://learning.gem5.org/book/part2/parameters.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 39



Switch!

Adding parameters

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 40

| class HelloObject(SimObject):
|    type = 'HelloObject'
|    cxx_header = "learning_gem5/hello_object.hh"
|
|    time_to_wait = Param.Latency("Time before firing the event")
|    number_of_fires = Param.Int(1, "Number of times to fire the event before "
|                                   "goodbye")

Param.<TYPE>: Specifies a 
parameter of type <TYPE> for 
the SimObject

Param.<TYPE>(): First 
parameter: default value.
Second parameter:



Going further: More parameters

Included types (e.g., MemorySize, MemoryBandwidth, Latency)

Using a SimObject as a parameter

SimObject-SimObject interaction

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 41

http://learning.gem5.org/book/part2/parameters.html

http://learning.gem5.org/book/part2/parameters.html


MemObjects
http://learning.gem5.org/book/part2/memoryobject.html

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 42



MemObject

Object that is part of gem5’s memory system

both classic caches and Ruby are MemObjects

Allowed to have MasterPorts and SlavePorts

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 43



Packets

Unit of transfer between MemObjects

Packets pass between Master and Slave ports

Packets have
Request
Command
Data
Much more…

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 44



Master and slave ports

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 45

Master Slave

sendTimingReq recvTimingReq

returns: true Slave executes
request

Tim
e

sendTimingReq: send a Packet 
containing a request from a 
master to a slave

recvTimingReq: function that 
is called to handle the request 
in the slave port.

return true: The slave 
can handle the request.



Master and slave ports

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 46

Master Slave

sendTimingReq recvTimingReq

returns: true

returns: true

Slave executes
request

recvTimingResp sendTimingResp

Tim
e

sendTimingResp: The slave finishes 
processing the request, and now 
sends a response (same packet).

recvTimingResp: Handles the 
response from the slave. Returning 
true means the packet is handled.



Master and slave ports

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 47

Master Slave

sendTimingReq recvTimingReq

returns: false
Slave busyTim

e

sendTimingReq recvTimingReq

returns: true

recvReqRetry sendReqRetry

return false: Slave cannot currently 
process the Packet. Resend the 
packet later. The Master’s
responsibility to track Packet.

sendReqRetry: Tell the master it 
can retry the stalled Packet.

recvReqRetry: Can now 
retry the request by 
calling sendTimingReq.



Master and slave ports

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 48

Master Slave

returns: false

recvTimingResp sendTimingResp

return false: Master cannot 
currently process the Packet. 
Resend the packet later. The Slave’s
responsibility to track Packet.

returns: true

recvTimingResp sendTimingResp

sendRespRetry recvRespRetry

sendRespRetry: Slave can now 
retry the response.



Master and slave port interface

Master
recv Timing Resp

recv Req Retry

recv Range Change

Slave
recv Timing Req

recv Resp Retry

recv Functional

get Addr Ranges

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 49



Simple MemObject

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 50

Switch!



Overview of SimpleMemobj
2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 51



Going further: Implementing a cache

Full implementation of a uniprocessor cache (no coherence support)

Emulation concepts (using STL for associative data)

Vector ports, clocked objects, upgrading and creating packets

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 52

http://learning.gem5.org/book/part2/simplecache.html

http://learning.gem5.org/book/part2/simplecache.html


Other gem5 concepts
A random assortment

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 53



ISA support

gem5 supports many ISA

ARM: ARM Research often contributes and pretty stable

x86: Very complicated, there are a few bugs

RISC-V: Recent contribution. SE mode working. Thanks Alec!

Alpha, MIPS, SPARC, Power: No maintainers. Not very supported.

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 54



CPU Models

gem5 exposes a flexible CPU interface

AtomicSimpleCPU: No timing. Fast-forwarding & cache warming.

TimingSimpleCPU: Single-cycle (IPC=1) except for memory ops.

O3CPU: Out-of-order model. Highly configurable.

MinorCPU: In-order model (not fully tested with x86)

kvmCPU: x86 and ARM support for native execution

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 55



Full system support

Full system is like a virtual machine.

gem5 exposes a “bare metal” interface

Requires a kernel, disk image, etc.

See http://learning.gem5.org/book/part3/ for simple x86 example

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 56

http://learning.gem5.org/book/part3/


Coherence modeling (Ruby)

“Classic cache” vs. Ruby
Classic: MOESI only, Ruby: any protocol
Classic: Hierarchical-snooping, Ruby: Snooping or directory or…
Classic: Flexible hierarchy, Ruby: Hierarchy baked into protocol
Classic: Good baseline CMP, Ruby: Required for coherence study

Ruby protocols in src/mem/protocols
SLICC is a DSL for coherence
Not much documentation, but many examples!
Very flexible network simulation (Garnet)

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 57



GPU and device models

AMD recently released a HSAIL GPU model (src/gpu-compute)

Many devices supported for FS simulation
Ethernet (and multi-system simulation)
VNC for graphics
IDE controllers for disks
No Mali GPU for ARM
VirtIO

Most devices are functional-only

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 58



Other features

Probes and tracing

Remote GDB

Dynamically-linked binaries in SE mode

Power modeling and PMU

And many, many, many others

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 59



Caveats

gem5 is a tool, not a panacea

Most models are not validated 
against “real” hardware

See “Architectural Simulators 
Considered Harmful” 
https://doi.org/10.1109/MM.2015.74

There are bugs!

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 60

https://doi.org/10.1109/MM.2015.74


Getting (more) help

Main gem5 wiki: http://gem5.org/

My book: 
http://learning.gem5.org
https://github.com/powerjg/learning_gem5

Mailing lists: http://gem5.org/Mailing_Lists
gem5-users: General user questions 

(you probably want this one)
gem5-dev: Mostly code reviews and high-level

dev talk

gem5 QA (like StackOverflow): http://qa.gem5.org/

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 61

http://gem5.org/
http://learning.gem5.org/
https://github.com/powerjg/learning_gem5
http://gem5.org/Mailing_Lists
http://qa.gem5.org/


Learning gem5
Coding Sprint!

Jason Lowe-Power

http://learning.gem5.org/

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 62

http://learning.gem5.org/


Backup slides
Mostly from other versions of this tutorial

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 63



Adding caches

The previous example was boring

Let’s add some caches!

Switch!

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 64



| from m5.params import *
|...
|
| class BaseCache(MemObject):
|    type = ‘BaseCache’
|    abstract = True
|    cxx_header = ‘mem/cache/base.hh’
|
|    size = Param.MemorySize(“Capacity”)
|    assoc = Param.Unsigned(“Associativity”)
|    ...
|    tags = Param.BaseTags(LRU(), “Tag ...”)
|    ...
|    cpu_side = SlavePort(“Upstream port...”)
|    mem_side = MasterPort(“Downstream...”)
| ...
| class Cache(BaseCache):
|    type = ‘Cache’
|    cxx_header = ‘mem/cache/cache.hh’
| ...

Definition of a SimObject

The C++ class for the SimObject. 
And it’s header file.

size: A parameter to the 
SimObject, of type MemorySize.
No default, so it is required in 
Python config file

tags: A parameter of type 
BaseTags (another SimObject).
There is a default, so it is not 
required in Python config file2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 65



| from m5.params import *
|...
|
| class BaseCache(MemObject):
|    type = ‘BaseCache’
|    abstract = True
|    cxx_header = ‘mem/cache/base.hh’
|
|    size = Param.MemorySize(“Capacity”)
|    assoc = Param.Unsigned(“Associativity”)
|    ...
|    tags = Param.BaseTags(LRU(), “Tag ...”)
|    ...
|    cpu_side = SlavePort(“Upstream port...”)
|    mem_side = MasterPort(“Downstream...”)
| ...
| class Cache(BaseCache):
|    type = ‘Cache’
|    cxx_header = ‘mem/cache/cache.hh’
| ...

Ports that connect the cache to 
the memory system. 
Again, masters send requests, 
slaves receive requests,.

These cannot have defaults. Must 
specify the sender/receiver in 
Python config files.

Switch!

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 66



Cache scripts

http://learning.gem5.org/book/_downloads/caches.py

http://learning.gem5.org/book/_downloads/two_level.py

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 67

http://learning.gem5.org/book/_downloads/caches.py
http://learning.gem5.org/book/_downloads/two_level.py


Next time…

How to make changes to gem5
Adding new SimObjects

What’s in gem5

Let me know (powerjg@cs.wisc.edu) anything specific to cover!

2/5/2017 © Jason Lowe-Power <jason@lowepower.com> 69

mailto:powerjg@cs.wisc.edu

