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ABSTRACT
With the end of Dennard scaling, architects have increasingly turned
to special-purpose hardware accelerators to improve the performance
and energy efficiency for some applications. Unfortunately, accel-
erators don’t always live up to their expectations and may under-
perform in some situations. Understanding the factors which effect
the performance of an accelerator is crucial for both architects and
programmers early in the design stage. Detailed models can be
highly accurate, but often require low-level details which are not
available until late in the design cycle. In contrast, simple analytical
models can provide useful insights by abstracting away low-level
system details.

In this paper, we propose LogCA—a high-level performance
model for hardware accelerators. LogCA helps both programmers
and architects identify performance bounds and design bottlenecks
early in the design cycle, and provide insight into which optimiza-
tions may alleviate these bottlenecks. We validate our model across
a variety of kernels, ranging from sub-linear to super-linear com-
plexities on both on-chip and off-chip accelerators. We also describe
the utility of LogCA using two retrospective case studies. First, we
discuss the evolution of interface design in SUN/Oracle’s encryption
accelerators. Second, we discuss the evolution of memory interface
design in three different GPU architectures. In both cases, we show
that the adopted design optimizations for these machines are similar
to LogCA’s suggested optimizations. We argue that architects and
programmers can use insights from these retrospective studies for
improving future designs.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies; • Com-
puter systems organization → Heterogeneous (hybrid) systems;
• Hardware → Hardware accelerators;
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(a) Execution time on UltraSPARC T2.
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(b) Variation in speedup for different crypto accelerators.

Figure 1: Executing Advanced Encryption Standard (AES)
[30].
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1 INTRODUCTION
The failure of Dennard scaling [12, 49] over the last decade has
inspired architects to introduce specialized functional units such as
accelerators [6, 36]. These accelerators have shown considerable
performance and energy improvement over general-purpose cores
for some applications [14, 16, 23, 25, 26, 50, 51, 55]. Commercial
processors already incorporate a variety of accelerators, ranging
from encryption to compression, from video streaming to pattern
matching, and from database query engines to graphics processing
[13, 37, 45].

Unfortunately, accelerators do not always live up to their name or
potential. Offloading a kernel to an accelerator incurs latency and
overhead that depends on the amount of offloaded data, location of
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accelerator, and its interface with the system. In some cases, these
factors may outweigh the potential benefits, resulting in lower than
expected or—in the worst case—no performance gains. Figure 1
illustrates such an outcome for the crypto accelerator in UltraSPARC
T2 running the Advanced Encryption Standard (AES) kernel [30].

Figure 1 provides two key observations. First, accelerators can
under-perform as compared to general-purpose core, e.g., the ac-
celerated version in UltraSPARC T2 outperforms the unaccelerated
one only after crossing a threshold block size, i.e., the break-even
point (Figure 1-a). Second, different accelerators—while executing
the same kernel—have different break-even points, e.g., SPARC T4
breaks even for smaller offloaded data while UltraSPARC T2 and
GPU break even for large offloaded data (Figure 1-b).

Understanding the factors which dictate the performance of an
accelerator are crucial for both architects and programmers. Pro-
grammers need to be able to predict when offloading a kernel will be
performance efficient. Similarly, architects need to understand how
the accelerator’s interface—and the resulting latency and overheads
to offload a kernel—will affect the achievable accelerator perfor-
mance. Considering the AES encryption example, programmers and
architects would greatly benefit from understanding: What bottle-
necks cause UltraSPARC T2 and GPU to under-perform for small
data sizes? Which optimizations on UltraSPARC T2 and GPU result
in similar performance to SPARC T4? Which optimizations are pro-
grammer dependent and which are architect dependent? What are
the trade-offs in selecting one optimization over the other?

To answer these questions, programmer and architects can employ
either complex or simple modeling techniques. Complex modeling
techniques and full-system simulation [8, 42] can provide highly
accurate performance estimates. Unfortunately, they often require
low-level system details which are not available till late in the design
cycle. In contrast, analytical models—simpler ones in particular—
abstract away these low-level system details and provide key insights
early in the design cycle that are useful for experts and non-experts
alike [2, 5, 19, 27, 48, 54].

For an insightful model for hardware accelerators, this paper
presents LogCA. LogCA derives its name from five key parameters
(Table 1). These parameters characterize the communication latency
(L) and overheads (o) of the accelerator interface, the granularity/size
(g) of the offloaded data, the complexity (C) of the computation, and
the accelerator’s performance improvement (A) as compared to a
general-purpose core.

LogCA is inspired by LogP [9], the well-known parallel compu-
tation model. LogP sought to find the right balance between overly
simple models (e.g., PRAM) and the detailed reality of modern par-
allel systems. LogCA seeks to strike the same balance for hardware
accelerators, providing sufficient simplicity such that programmers
and architects can easily reason with it. Just as LogP was not the
first model of parallel computation, LogCA is not the first model for
hardware accelerators [28]. With LogCA, our goal is to develop a
simple model that supports the important implications (§2) of our
analysis and use as few parameters as possible while providing suf-
ficient accuracy. In Einstein’s words, we want our model to be as
simple as possible and no simpler.

LogCA helps programmers and architects reason about an accel-
erator by abstracting the underlying architecture. It provides insights

about the accelerator’s interface by exposing the design bounds and
bottlenecks, and suggests optimizations to alleviate these bottlenecks.
The visually identifiable optimization regions help both experts and
non-experts to quantify the trade-offs in favoring one optimization
over the other. While the general trend may not be surprising, we
argue that LogCA is accurate enough to answer important what-if
questions very early in the design cycle.

We validate our model across on-chip and off-chip accelerators
for a diverse set of kernels, ranging from sub-linear to super-linear
complexities. We also demonstrate the utility of our model using
two retrospective case studies (§5). In the first case study, we con-
sider the evolution of interface in the cryptographic accelerator on
Sun/Oracle’s SPARC T-series processors. For the second case, we
consider the memory interface design in three different GPU ar-
chitectures: a discrete, an integrated and a heterogeneous system
architecture (HSA) [38] supported GPU. In both case studies, we
show that the adopted design optimizations for these machines are
similar to LogCA’s suggested optimizations. We argue that architects
and programmers can use insights from these retrospective studies
for improving future designs.

This paper makes the following contributions:

• We propose a high-level visual performance model provid-
ing insights about the interface of hardware accelerators
(§2).

• We formalize performance metrics for predicting the “right”
amount of offloaded data (§2.2).

• Our model identifies the performance bounds and bottle-
necks associated with an accelerator design (§3).

• We provide an answer to what-if questions for both pro-
grammers and architects at an early design stage (§3).

• We define various optimization regions and the potential
gains associated with these regions (§3.2).

• We demonstrate the utility of our model on five different
cryptographic accelerators and three different GPU archi-
tectures (§5).

2 THE LogCA MODEL
LogCA assumes an abstract system with three components (Figure 2
(a)): Host is a general-purpose processor; Accelerator is a hardware
device designed for the efficient implementation of an algorithm;
and Interface connects the host and accelerator abstracting away
system details including the memory hierarchy.

Our model uses the interface abstraction to provide intuition for
the overhead and latency of dispatching work to an accelerator. This
abstraction enables modeling of different paradigms for attaching
accelerators—directly connected, system bus or PCIe. This also
gives the flexibility to use our model for both on-chip and off-chip
accelerators. This abstraction can also be trivially mapped to shared
memory systems or other memory hierarchies in heterogeneous
architectures. The model further abstracts the underlying architecture
using the five parameters defined in Table 1.

Figure 2 (b) illustrates the overhead and latency model for an
un-pipelined accelerator where computation ‘i’ is returned before re-
questing computation ‘i+1’. Figure 2 (b) also shows the breakdown
of time for an algorithm on the host and accelerator. We assume that
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Table 1: Description of the LogCA parameters.

Parameter Symbol Description Units

Latency L Cycles to move data from the host to the accelerator across the interface, including the cycles data
spends in the caches or memory

Cycles

Overhead o Cycles the host spends in setting up the algorithm Cycles

Granularity g Size of the offloaded data Bytes

Computational Index C Cycles the host spends per byte of data Cycles/Byte

Acceleration A The peak speedup of an accelerator N/A

Host Accelerator

Interface

time

Co(g)

o1(g) L1(g)
C1(g) =

Co(g)
A

Gain

T0(g)

T1(g)

(a) (b)

Figure 2: Top level description of the LogCA model (a) Shows
the various components (b) Time-line for the computation per-
formed on the host system (above) and on an accelerator (be-
low)

the algorithm’s execution time is a function of granularity, i.e., the
size of the offloaded data. With this assumption, the unaccelerated
time T0 (time with zero accelerators) to process data of granularity
g, will be T0 (g) =C0 (g), where C0 (g) is the computation time on the
host.

When the data is offloaded to an accelerator, the new execution
time T1 (time with one accelerator) is T1 (g) =O1 (g)+L1 (g)+C1 (g),
where O1 (g) is the host overhead time in offloading ‘g’ bytes of
data to the accelerator, L1 (g) is the interface latency and C1 (g) is the
computation time in the accelerator to process data of granularity g.

To make our model more concrete, we make several assumptions.
We assume that an accelerator with acceleration ‘A’ can decrease,
in the absence of overheads, the algorithm’s computation time on
the host by a factor of ‘A’, i.e., the accelerator and host use algo-
rithms with the same complexity. Thus, the computation time on the
accelerator will be C1 (g) =

C0 (g)
A . This reduction in the computation

time results in performance gains, and we quantify these gains with
speedup, the ratio of the un-accelerated and accelerated time:

Speedup(g) =
T0 (g)
T1 (g)

=
C0 (g)

O1 (g)+L1 (g)+C1 (g)
(1)

We assume that the computation time is a function of the com-
putational index ‘C’ and granularity, i.e., C0 (g) =C ∗ f (g), where
f (g) signifies the complexity of the algorithm. We also assume that
f (g) is power function of ’g’, i.e., O (gβ ). This assumption results
in a simple closed-form model and bounds the performance for a
majority of the prevalent algorithms in the high-performance comput-
ing community [4], ranging from sub-linear (β < 1) to super-linear
(β > 1) complexities. However, this assumption may not work well
for logarithmic complexity algorithms, i.e., O (log(g)),O (g log(g)).
This is because, asymptotically, there is no function which grows

slower than a logarithmic function. Despite this limitation, we ob-
serve that—in the granularity range of our interest—LogCA can also
bound the performance for logarithmic functions (§5).

For many algorithms and accelerators, the overhead is indepen-
dent of the granularity, i.e., O1 (g) = o. Latency, on the other hand,
will often be granularity dependent, i.e., L1 (g) = L∗g. Latency may
be granularity independent if the accelerator can begin operating
when the first byte (or block) arrives at the accelerator, i.e., L1 (g) = L.
Thus, LogCA can also model pipelined interfaces using granularity
independent latency assumption.

We define computational intensity1 as the ratio of computational
index to latency, i.e., C

L and it signifies the amount of work done on
a host per byte of offloaded data. Similarly, we define accelerator’s
computational intensity as the ratio of computational intensity to
acceleration, i.e., C/A

L and it signifies the amount of work done on
an accelerator per byte of offloaded data.

For simplicity, we begin with the assumption of granularity in-
dependent latency. We revisit granularity dependent latencies later
(§ 2.3). With these assumptions,

Speedup(g) =
C ∗ f (g)

o+L+ C∗ f (g)
A

=
C ∗gβ

o+L+ C∗gβ

A

(2)

The above equation shows that the speedup is dependent on LogCA
parameters and these parameters can be changed by architects and
programmers through algorithmic and design choices. An architect
can reduce the latency by integrating an accelerator more closely
with the host. For example, placing it on the processor die rather
than on an I/O bus. An architect can also reduce the overheads by
designing a simpler interface, i.e., limited OS intervention and ad-
dress translations, lower initialization time and reduced data copying
between buffers (memories), etc. A programmer can increase the
computational index by increasing the amount of work per byte
offloaded to an accelerator. For example, kernel fusion [47, 52]—
where multiple computational kernels are fused into one—tends to
increase the computational index. Finally, an architect can typically
increase the acceleration by investing more chip resources or power
to an accelerator.

2.1 Effect of Granularity
A key aspect of LogCA is that it captures the effect of granularity on
the accelerator’s speedup. Figure 3 shows this behavior, i.e., speedup
increases with granularity and is bounded by the acceleration ‘A’. At

1not to be confused with operational intensity [54], which signifies operations performed
per byte of DRAM traffic.



ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. S. B. Altaf et al.

g1 gA
2

1

A
2

A

Granularity (Bytes)

S
p

ee
d

u
p

(g
)

Figure 3: A graphical description of the performance metrics

one extreme, for large granularities, equation (2) becomes,

lim
g→∞

Speedup(g) = A (3)

While for small granularities, equation (2) reduces to:

lim
g→0

Speedup(g) ≃ C
o+L+ C

A
<

C
o+L

(4)

Equation (4) is simply Amdahl’s Law [2] for accelerators, demon-
strating the dominating effect of overheads at small granularities.

2.2 Performance Metrics
To help programmers decide when and how much computation to
offload, we define two performance metrics. These metrics are in-
spired by the vector machine metrics Nv and N1/2[18], where Nv
is the vector length to make vector mode faster than scalar mode
and N1/2 is the vector length to achieve half of the peak perfor-
mance. Since vector length is an important parameter in determining
performance gains for vector machines, these metrics characterize
the behavior and efficiency of vector machines with reference to
scalar machines. Our metrics tend to serve the same purpose in the
accelerator domain.

g1 : The granularity to achieve a speedup of 1 (Figure 3). It is
the break-even point where the accelerator’s performance becomes
equal to the host. Thus, it is the minimum granularity at which an
accelerator starts providing benefits. Solving equation (2) for g1
gives:

g1 =

[(
A

A−1

)
∗
(

o+L
C

)] 1
β

(5)

IMPLICATION 1. g1 is essentially independent of acceleration
for large values of ‘A’.

For reducing g1 , the above implication guides an architect to
invest resources in improving the interface.

IMPLICATION 2. Doubling computational index reduces g1 by

2−
1
β .

The above implication demonstrates the effect of algorithmic
complexity on g1 and shows that varying computational index has a
profound effect on g1 for sub-linear algorithms. For example, for a
sub-linear algorithm with β = 0.5, doubling the computational index
decreases g1 by a factor of four. However, for linear (β = 1) and
quadratic (β = 2) algorithms, g1 decreases by factors of two and

√
2,

respectively.

g A
2
: The granularity to achieve a speedup of half of the acceler-

ation. This metric provides information about a system’s behavior
after the break-even point and shows how quickly the speedup can
ramp towards acceleration. Solving equation (2) for g A

2
gives:

g A
2
=

[
A∗
(

o+L
C

)] 1
β

(6)

Using equation (5) and (6), g1 and g A
2
are related as:

g A
2
= (A−1)

1
β ∗g1 (7)

IMPLICATION 3. Doubling acceleration ‘A’, increases the gran-

ularity to attain A
2 by 2

1
β .

The above implication demonstrates the effect of acceleration
on g A

2
and shows that this effect is more pronounced for sub-linear

algorithms. For example, for a sub-linear algorithm with β = 0.5,
doubling acceleration increases g A

2
by a factor of four. However, for

linear and quadratic algorithms, g A
2
increases by factors of two and

√
2, respectively.
For architects, equation (7) also exposes an interesting design

trade-off between acceleration and performance metrics. Typically,
an architect may prefer higher acceleration and lower g1 , g A

2
. How-

ever, equation (7) shows that increasing acceleration also increases
g A

2
. This presents a dilemma for an architect to favor either higher

acceleration or reduced granularity, especially for sub-linear algo-
rithms. LogCA helps by exposing these trade-offs at an early design
stage.

In our model, we also use g1 to determine the complexity of the
system’s interface. A lower g1 (on the left side of plot in Figure 3)
is desirable, as it implies a system with lower overheads and thus a
simpler interface. Likewise, g1 increases with the complexity of the
interface or when an accelerator moves further away from the host.

2.3 Granularity dependent latency
The previous section assumed latency is granularity independent but
we have observed granularity dependent latencies in GPUs. In this
section, we discuss the effect of granularity on speedup and derive
performance metrics assuming granularity dependent-latency.

Assuming granularity dependent latency, equation (1) reduces to:

Speedup(g) =
C ∗gβ

o+L∗g+ C∗gβ

A

(8)

For large granularities, equation (8) reduces to:

lim
g→∞

Speedup(g) =

(
A

A
C∗gβ

∗ (L∗g)+1

)
<

C
L
∗gβ−1 (9)

Unlike equation (3), speedup in the above equation approaches
C
L ∗gβ−1 at large granularities. Thus, for linear algorithms with gran-
ularity dependent latency, instead of acceleration, speedup is limited
by C

L . However, for super-linear algorithms this limit increases by a
factor of gβ−1, whereas for sub-linear algorithms this limit decreases
by a factor of gβ−1.
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IMPLICATION 4. With granularity dependent latency, the speedup
for sub-linear algorithms asymptotically decreases with the increase
in granularity.

The above implication suggests that for sub-linear algorithms, on
systems with granularity dependent latency, speedup may decrease
for some large granularities. This happens because for large granu-
larities, the communication latency (a linear function of granularity)
may be higher than the computation time (a sub-linear function of
granularity) on the accelerator, resulting in a net de-acceleration.
This implication is surprising as earlier we observed that—for sys-
tems with granularity independent latency—speedup for all algo-
rithms increase with granularity and approaches acceleration for
very large granularities.

For very small granularities, equation (8) reduces to:

lim
g→ 0

Speedup(g) ≃ A∗ C
A∗ (o+L)+C

(10)

Similar to equation (4), the above equation exposes the increasing
effects of overheads at small granularities. Solving equation (8) for
g1 using Newton’s method [53]:

g1 =
C ∗ (β −1) ∗ (A−1)+A∗o

C ∗β ∗ (A−1)−A∗L
(11)

For a positive value of g1, equation (11) must satisfy C
L > 1

β
.

Thus, for achieving any speedup for linear algorithms, C
L should

be at least 1. However, for super-linear algorithms a speedup of 1
can achieved at values of C

L smaller than 1, whereas for sub-linear
algorithms algorithms, C

L must be greater than 1.

IMPLICATION 5. With granularity dependent latency, computa-
tional intensity for sub-linear algorithms should be greater than 1
to achieve any gains.

Thus, for sub-linear algorithms, computational index has to be
greater than latency to justify offloading the work. However, for
higher-complexity algorithms, computational index can be quite
small and still be potentially useful to offload.

Similarly, solving equation (8), using Newton’s method, for g A
2

gives:

g A
2
=

C ∗ (β −1)+A∗o
C ∗β −A∗L

(12)

For a positive value of g A
2
, equation (12) must satisfy C/A

L > 1
β

.

Thus, for achieving a speedup of A/2, C
L should be at least ‘A’ for

linear algorithms. However, for super-linear algorithms a speedup
of A

2 can achieved at values of C
L smaller than ‘A’, whereas for

sub-linear algorithms, C
L must be greater than ‘A’.

IMPLICATION 6. With granularity dependent latency, accelera-
tor’s computational intensity for sub-linear algorithms should be
greater than 1 to achieve speedup of half of the acceleration.

The above implication suggests that for achieving half of the
acceleration with sub-linear algorithms, the computation time on the
accelerator must be greater than latency. However for super-linear
algorithms, that speedup can be achieved even if the computation
time on accelerator is lower than latency. Programmers can use
the above implications to determine—early in the design cycle—
whether to put time and effort in porting a code to an accelerator.
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(a) Performance bounds for compute-bound kernels

(b) Performance bounds for latency-bound kernels

Figure 4: LogCA helps in visually identifying (a) compute and
(b) latency bound kernels.

For example, consider a system with a minimum desirable speedup
of one half of the acceleration but has a computational intensity of
less than the acceleration. With the above implication, architects
and programmers can infer early in the design stage that the desired
speedup can not be achieved for sub-linear and linear algorithms.
However, the desired speedup can be achieved with super-linear
algorithms.

We are also interested in quantifying the limits on achievable
speedup due to overheads and latencies. To do this, we assume a
hypothetical accelerator with infinite acceleration, and calculate the
granularity (gA) to achieve the peak speedup of ‘A’. With this as-
sumption, the desired speedup of ‘A’ is only limited by the overheads
and latencies. Solving equation (8) for gA gives:

gA =
C ∗ (β −1)+A∗o

C ∗β −A∗L
(13)

Surprisingly, we find that the above equation is similar to equa-
tion (12), i.e., gA equals g A

2
. This observation shows that with a

hypothetical accelerator, the peak speedup can now be achieved at
the same granularity as g A

2
. This observation also demonstrates that

if g A
2
is not achievable on a system, i.e., C/A

L < 1
β

as per equation
(12), then despite increasing the acceleration, gA will not be achiev-
able, and the speedup will still be bounded by the computational
intensity.

IMPLICATION 7. If a speedup of A
2 is not achievable on an ac-

celerator with acceleration ‘A’, despite increasing acceleration to
Ã (where Ã > A), the speedup is bounded by the computational
intensity.

The above implication helps architects in allocating more re-
sources for an efficient interface instead of increasing acceleration.
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Figure 5: The effect on speedup of 10x improvement in each LogCA parameter. The base case is the speedup of AES [30] on Ultra-
SPARC T2.

3 APPLICATIONS OF LogCA
In this section, we describe the utility of LogCA for visually iden-
tifying the performance bounds, design bottlenecks and possible
optimizations to alleviate these bottlenecks.

3.1 Performance Bounds
Earlier, we have observed that the speedup is bounded by either
acceleration (equation 3) or the product of computational intensity
and gβ−1 (equation 9). Using these observations, we classify kernels
either as compute-bound or latency-bound. For compute-bound ker-
nels, the achievable speedup is bounded by acceleration, whereas for
the latency-bound kernels, the speedup is bounded by computational
intensity. Based on this classification, a compute-bound kernel can
either be running on a system with granularity independent latency
or has super-linear complexity while running on a system with gran-
ularity dependent latency. Figure 4-a illustrates these bounds for
compute-bound kernels. On the other hand, a latency-bound kernel
is running on a system with granularity dependent latency and has
either linear or sub-linear complexity. Figure 4-b illustrates these
bounds for latency-bound kernels.

Programmers and architects can visually identify these bounds
and use this information to invest their time and resources in the right
direction. For example, for compute-bound kernels—depending
on the operating granularity—it may be beneficial to invest more
resources in either increasing acceleration or reducing overheads.
However, for latency-bound kernels, optimizing acceleration and
overheads is not that critical, but decreasing latency and increasing
computational index maybe more beneficial.

3.2 Sensitivity Analysis
To identify the design bottlenecks, we perform a sensitivity analysis
of the LogCA parameters. We consider a parameter a design bottle-
neck if a 10x improvement in it provides at lest 20% improvement in
speedup. A ‘bottlenecked’ parameter also provides an optimization
opportunity. To visually identify these bottlenecks, we introduce
optimization regions. As an example, we identify design bottlenecks
in UltraSPARC T2’s crypto accelerator by varying its individual
parameters 2 in Figure 5 (a)-(d).

2We elaborate our methodology for measuring LogCA parameters later (§ 4).

Figure 5 (a) shows the variation (or the lack of) in speedup with
the decrease in latency. The resulting gains are negligible and inde-
pendent of the granularity, as it is a closely coupled accelerator.

Figure 5 (b) shows the resulting speedup after reducing overheads.
Since the overheads are one-time initialization cost and independent
of granularity, the per byte setup cost is high at small granularities.
Decreasing these overheads, considerably reduces the per byte setup
cost and results in significant gains at these smaller granularities.
Conversely, for larger granularities, the per byte setup cost is already
amortized, so reducing overheads does not provide much gains.
Thus, overhead is a bottleneck at small granularities and provide an
opportunity for optimization.

Figure 5 (c) shows the effect of increasing the computational
index. The results are similar to optimizing overheads in Figure 5 (b),
i.e., significant gains for small granularities, and a gradual decrease
in the gains with increasing granularity. With the constant overheads,
increasing computational index increases the computation time of the
kernel and decreases the per byte setup cost. For smaller granularities,
the reduced per byte setup cost results in significant gains.

Figure 5 (d) shows the variation in speedup with increasing peak
acceleration. The gains are negligible at small granularities and
become significant for large granularities. As mentioned earlier,
the per byte setup cost is high at small granularities and it reduces
for large granularities. Since increasing peak acceleration does not
reduce the per byte setup cost, optimizing peak acceleration provides
gains only at large granularities.

We group these individual sensitivity plots in Figure 6 to build
the optimization regions. As mentioned earlier, each region indicates
the potential of 20% gains with 10x variation of one or more LogCA
parameters. For the ease of understanding, we color these regions
and label them with their respective LogCA parameters. For exam-
ple, the blue colored region labelled ‘oC’ (16B to 2KB) indicates
an optimization region where optimizing overheads and computa-
tional index is beneficial. Similarly, the red colored region labelled
‘A’ (32KB to 32MB) represents an optimization region where opti-
mizing peak acceleration is only beneficial. The granularity range
occupied by a parameter also identifies the scope of optimization
for an architect and a programmer. For example, for UltraSPARC
T2 overheads occupy most of the lower granularity, suggesting op-
portunity for improving the interface. Similarly, the absence of the
latency parameter suggests little benefits for optimizing latency.

We also add horizontal arrows to the optimization regions in
Figure 6 to demarcate the start and end of granularity range for each
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Table 2: Description of the Cryptographic accelerators

Crypto Accelerator PCI Crypto UltraSPARC T2 SPARC T3 SPARC T4 Sandy Bridge
Processor AMD A8-3850 S2 S2 S3 Intel Core i7-2600
Frequency 2.9 GHz 1.16 GHz 1.65 GHz 3 GHz 3.4 GHz
OpenSSL version 0.98o 0.98o 0.98o 1.02, 1.0.1k 0.98o
Kernel Ubuntu 3.13.0-55 Oracle Solaris 11 Oracle Solaris 11 Oracle Solaris 11.2 Linux2.6.32-504
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Figure 6: Optimization regions for UltraSPARC T2. The pres-
ence of a parameter in an optimization region indicates that
it can at least provides 20% gains. The horizontal arrow in-
dicates the cut-off granularity at which a parameter provides
20% gains.

parameter. For example, optimizing acceleration starts providing
benefits from 2KB while optimizing overheads or computational
index is beneficial up till 32KB. These arrows also indicate the
cut-off granularity for each parameter. These cut-off granularities
provide insights to architects and programmers about the design
bottlenecks. For example, high cut-off granularity of 32KB suggests
high overheads and thus a potential for optimization.

4 EXPERIMENTAL METHODOLOGY
This section describes the experimental setup and benchmarks for
validating LogCA on real machines. We also discuss our methodol-
ogy for measuring LogCA parameters and performance metrics.

Our experimental setup comprises of on-chip and off-chip crypto
accelerators (Table 2) and three different GPUs (Table 3). The on-
chip crypto accelerators include cryptographic units on Sun/Oracle
UltraSPARC T2 [40], SPARC T3 [35], SPARC T4 [41] and AES-NI
(AES New Instruction) [15] on Sandy Bridge, whereas the off-chip
accelerator is a Hifn 7955 chip connected through the PCIe bus [43].
The GPUs include a discrete NVIDIA GPU, an integrated AMD
GPU (APU), and HSA supported integrated GPU.

For the on-chip crypto accelerators, each core in UltraSPARC T2
and SPARC T3 has a physically addressed crypto unit which requires
privileged DMA calls. However, the crypto unit on SPARC T4 is
integrated within the pipeline and does not require privileged DMA
calls. SPARC T4 also provides non-privileged crypto instructions to
access the crypto unit. Similar to SPARC T4, sandy bridge provides
non-privileged crypto instruction—AESNI.

Considering the GPUs, the discrete GPU is connected through
the PCIe bus, whereas for the APU, the GPU is co-located with the
host processor on the same die. For the APU, the system memory
is partitioned between host and GPU memory. This eliminates the
PCIe bottleneck of data copying but it still requires copying data
between memories. Unlike discrete GPU and APU, HSA supported
GPU provides a unified and coherent view of the system memory.
With the host and GPU share the same virtual address space, explicit
copying of data between memories is not required.

Our workloads consist of encryption, hashing and GPU kernels.
For encryption and hashing, we have used advanced encryption
standard (AES) [30] and standard hashing algorithm (SHA) [31],
respectively from OpenSSL [34]—an open source cryptography li-
brary. For GPU kernels, we use matrix multiplication, radix sort,
FFT and binary search from AMD OpenCL SDK [1]. Table 4, we list
the complexities of each kernel, both in terms of number of elements
n and granularity g. We expect these complexities to remain same in
both cases, but we observe that they differ for matrix multiplication.
For example, for a square matrix of size n, matrix multiplication has
complexity of O (n3), whereas the complexity in terms of granularity
is O (g1.7). This happens because for matrix multiplication—unlike
others—computations are performed on matrices and not vectors.
So, offloading a square matrix of size n corresponds to offloading n2

elements, which results in the apparent discrepancy in the complexi-
ties. We also observe that for the granularity range of 16B to 32MB,
β = 0.11 provides a close approximation for log(g).

Table 3: Description of the GPUs

Platform Discrete GPU Integrated APU AMD HSA
Name Tesla C2070 Radeon HD 6550 Radeon R7
Architecture Fermi Beaver Creek Kaveri
Cores 16 5 8
Compute Units 448 400 512
Clock Freq. 1.5 GHz 600 MHz 720 MHz
Peak FLOPS 1 T 480 G 856 G
Host:
Processor Intel AMD AMD

Xeon E5520 A8-3850 A10-7850K
Frequency GHz 2.27 2.9 1.7

For calculating execution times, we have used Linux utilities on
the crypto accelerators, whereas for the GPUs we have used NVIDIA
and AMD OpenCL profilers to compute the setup, kernel and data
transfer times, and we report the average of one hundred executions.
For verifying the usage of crypto accelerators, we use built-in coun-
ters in UltraSPARC T2 and T3 [46]. SPARC T4, however, no longer
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Table 4: Algorithmic complexity of various kernels with num-
ber of elements and granularity. The power of g represents β

for each kernel.

Kernel Algorithmic Complexity
Advanced Encryption Standard (AES) O (n) O (g1.01)
Secure Hashing Algorithm (SHA) O (n) O (g0.97)
Matrix Multiplication (GEMM) O (n3) O (g1.7)
Fast Fourier Transform (FFT) O (n logn) O (g1.2)
Radix Sort O (kn) O (g0.94)
Binary Search O (logn) O (g0.14)

Table 5: Calculated values of LogCA Parameters.

LogCA Parameters
Device Benchmark L o C A

(cycles) (cycles) (cycles/B)

Discrete GPU

AES 174
Radix Sort 290
GEMM 3×103 2×108 2 30
FFT 290
Binary Search 116

APU

AES 174
Radix Sort 290
GEMM 15 4×108 2 7
FFT 290
Binary Search 116

UltraSPARC T2 AES 1,500 2.9×104 90 19
SHA 10.5×103 72 12

SPARC T3 AES 1,500 2.7×104 90 12
SHA 10.5×103 72 10

SPARC T4 AES 500 435 32 12
SHA 16×103 32 10

SPARC T4 instr. AES 4 111 32 12
SHA 1,638 32 10

Sandy Bridge AES 3 10 35 6

supports these counters, so we use Linux utilities to trace the execu-
tion of the crypto instructions [3]. We use these execution times to
determine LogCA parameters. We calculate these parameters once
and can be later used for different kernels on the same system.

For computational index and β , we profile the CPU code on the
host by varying the granularity from 16B to 32MB. At each granu-
larity, we measure the execution time and use regression analysis
to determine C and β . For overheads, we use the observation that
for very small granularities the execution time for a kernel on an
accelerator is dominated by the overheads, i.e., limg→0 T1 (g) ≃ o.
For acceleration, we use different methods for the on-chip accelera-
tors and GPUs. For on-chip accelerators, we calculate acceleration
using equation (3), and the observation that the speedup curve flat-
tens out and approaches acceleration for very large granularities.
However, for the GPUs, we do not use equation (3) as it requires
computing acceleration for each kernel, as each application has a
different access pattern which affects the speedup. So, we bound
the maximum performance using the peak flops from the device
specifications. We use the ratio of peak GFLOPs on CPU and GPU,
i.e., A = Peak GFLOPGPU

Peak GFLOPCPU
. Similar to acceleration, we use two different

techniques for calculating latency. For the on-chip accelerators, we

run micro-benchmarks and use execution time on host and acceler-
ators. On the other hand, for the GPUs, we compute latency using
peak memory bandwidth of the GPU. Similar to Meswani et al. [29],
we use the following equation for measuring data copying time for
the GPUs: L = 1

BWpeak

Earlier, we develop our model using assumptions of granularity
independent and dependent latencies. In our setup, we observe that
the on-chip crypto accelerators and HSA-enabled GPU represent
accelerators with granularity independent latency while the off-chip
crypto accelerator and discrete GPU/APU represent the granular-
ity dependent accelerators. For each accelerator we calculate the
speedup and performance metrics using the respective equations
(§2).

5 EVALUATION
In this section, we show that LogCA closely captures the behavior for
both off and on-chip accelerators. We also list the calculate LogCA
parameters in Table 5. To demonstrate the utility of our model,
we also present two case studies. In these studies, we consider the
evolution of interface in SUN/Oracle’s crypto accelerators and three
different GPU architectures. In both cases, we elaborate the design
changes using the insights LogCA provides.

5.1 Linear-Complexity Kernels (β = 1)
Figure 7 shows the curve-fitting of LogCA for AES. We consider
both off-chip and on-chip accelerators, connected through different
interfaces, ranging from PCIe bus to special instructions. We observe
that the off-chip accelerators and APU, unlike on-chip accelerators,
provide reasonable speedup only at very large granularities. We also
observe that the achievable speedup is limited by computational
intensity for off-chip accelerators and acceleration for on-chip accel-
erators. This observation supports earlier implication on the limits
of speedup for granularity independent and dependent latencies in
equation (3) and (9), respectively.

Figure 7 also shows that UltraSPARC T2 provides higher speedups
than Sandy Bridge, but it breaks-even at a larger granularity. Sandy
Bridge, on the other hand, breaks-even at very small granularity
but provides limited speedup. The discrete GPU with powerful pro-
cessing cores has the highest acceleration among others. However,
its observed speedup is less than others due to high overheads and
latencies involved in communicating through the PCIe bus.

We have also marked g1 and g A
2
for each accelerator in Figure 7

which help programmers and architects identify the complexity of
the interface. For example, g1 for crypto instructions, i.e., SPARC
T4 and Sandy Bridge, lies on the extreme left while for the off-chip
accelerators, g1 lies on the far right. It is worth mentioning that we
have marked g a

2
for on-chip accelerators but not for the off-chip

accelerators. For off-chip accelerators, computational intensity is
less than acceleration and as we have noted in equation (12) that
g A

2
for these designs does not exist.
We also observe that g1 for the crypto-card connected through

the PCIe bus does not exist, showing that this accelerator does not
break-even even for large granularities. Figure 7 also shows that
g1 for GPU and APU is comparable. This observation shows that
despite being an integrated GPU and not connected to the PCIe bus,
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(e) SPARC T3
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(f) SPARC T4 engine
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Figure 7: Speedup curve fittings plots comparing LogCA with the observed values of AES [30].
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(a) UltraSPARC T2 engine
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(b) SPARC T3 engine
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(c) SPARC T4 engine
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Figure 8: Speedup curve fittings plots comparing LogCA with the observed values of SHA256 [31]. LogCA starts following observed
values after 64B.

APU spends considerable time in copying data from the host to
device memory.

Figure 8 shows the curve fitting for SHA on various on-chip
crypto accelerators. We observe that g1 and g A

2
do exist, as all of

these are on-chip accelerators. We also observe that the LogCA
curve mostly follows the observed value. However, it deviates from
the observed value before 64B. This happens because SHA requires
block size of 64B for hash computation. If the block size is less than
64B, it pads extra bits to make the block size 64B. Since LogCA
does not capture this effect, it does not follow the observed speedup
for granularity smaller than 64B.

Figure 9-a shows the speedup curve fitting plots for Radix sort.
We observe that LogCA does not follow observed values for smaller
granularities on GPU. Despite this inaccuracy, LogCA accurately
predicts g1 and g A

2
. We also observe that g A

2
for GPU is higher than

APU, and this observation supports equation (7) that increasing
acceleration increases g A

2
.

5.2 Super-Linear Complexity Kernels (β > 1)
Figures 9-b and 9-c show the speedup curve fitting plots for super-
complexity kernels on discrete GPU and APU. We observe that ma-
trix multiplication with higher complexity (O (g1.7)) achieves higher
speedup than sort and FFT with lower complexities of O (g) and
O (g1.2), respectively. This observation corroborates results from
equation (9) that achievable speedup of higher-complexity algo-
rithms is higher than lower-complexity algorithms. We also observe
that g A

2
does not exist for FFT. This happens because as we note in

equation (12) that for g A
2
to exist for FFT, C

L should be greater than
A

1.2 . However, Figure 9-c shows that C
L is smaller than A

1.2 for both
GPU and APU.

5.3 Sub-Linear Complexity Kernels (β < 1)
Figure 9-d shows the curve fitting for binary search which is a
sub-linear algorithm (β = 0.14). We make three observations. First,
g1 does not exist even for very large granularities and C

L < 1. This
observation supports implication (5) that for a sub-linear algorithm
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Figure 9: Speedup curve fittings plots comparing LogCA with the observed values of (a) Radix Sort (b) Matrix Multiplication (c) FFT
and (d) Binary Search.

of β = 0.14, C
L should be greater than 7 to provide any speedup.

Second, for large granularities, speedup starts decreasing with an
increase in granularity. This observation supports our earlier claim
in implication (4) that for systems with granularity dependent la-
tencies, speedup for sub-linear algorithms asymptotically decreases.
Third, LogCA deviates from the observed value at large granularities.
This deviation occurs because LogCA does not model caches. As
mentioned earlier, LogCA abstracts the caches and memories with
a single parameter of latency which does not capture the memory-
access pattern accurately. Even though LogCA does not accurately
captures binary search behavior, it still provides an upper bound on
the achievable performance.

5.4 Case Studies
Figure 10 shows the evolution of crypto accelerators in SPARC
architectures from the off-chip accelerators in pre-Niagara (Figure 10
(a)) to accelerators integrated within the pipeline in SPARC T4
(Figure 10 (e)). We observe that latency is absent in the on-chip
accelerators’ optimization regions, as these accelerators are closely
coupled with the host. We also note that the optimization region
with overheads—representing the complexity of an accelerator’s
interface—shrinks while the optimization regions with acceleration
expand from Figure 10 (a-e). For example, for the off-chip crypto
accelerator, the cut-off granularity for overheads is 256KB, whereas
it is 128B for the SPARC T4, suggesting a much simpler interface.

Figure 10 (a) shows the optimization regions for the off-chip
crypto accelerator connected through the PCIe bus. We note that
overheads and latencies occupy most of the optimization regions,
indicating high overhead OS calls and high-latency data copying
over the PCIe bus as the bottlenecks.

Figure 10 (b) shows the optimization regions for UltraSPARC
T2. The large cut-off granularity for overheads at 32KB suggests
a complex interface, indicating high overhead OS call creating a
bottleneck at small granularities. The cut-off granularity of 2KB for
acceleration suggests that optimizing acceleration is beneficial at
large granularities.

Figure 10 (d) shows optimization regions for on-chip accelerator
on SPARC T4. There are three optimization regions, with the cut-off
granularity for overhead now reduced to only 512B. This observation
suggests a considerable improvement in the interface design over
SPARC T3 and it is also evident by a smaller g1. We also note that
cut-off granularity for acceleration now decreases to 32B, showing
an increase in the opportunity for optimizing acceleration.

Figure 10 (e) shows optimization regions for crypto instructions
on SPARC T4. We observe that unlike earlier designs, it has only two
optimization regions and the speedup approaches the peak accelera-
tion at a small granularity of 128B. In contrast, UltraSPARC T2 and
SPARC T3 do not even provide any gains at this granularity. We also
observe that the cut-off granularity for overheads further reduces to
128B, suggesting some opportunity for optimization at very small
granularities. The model also shows that the acceleration occupies
the maximum range for optimization. For example, optimizing accel-
eration provides benefits for granularities greater than 16B. The low
overhead access which LogCA shows is due to the non-privileged
instruction SPARC T4 uses to access the cryptographic unit, which
is integrated within the pipeline.

Figure 11 shows the evolution of memory interface design in
GPU architectures. It shows the optimization regions for matrix
multiplication on a discrete NVIDIA GPU, an AMD integrated GPU
(APU) and an integrated AMD GPU with HSA support. We observe
that matrix multiplication for all three architectures is compute bound
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(a) PCIe Crypto Accelerator
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(b) UltraSPARC T2
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(d) SPARC T4 engine
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Figure 10: LogCA for performing Advanced Encryption Standard on various crypto accelerators. LogCA identifies the design bottle-
necks through LogCA parameters in an optimization region. The bottlenecks which LogCA suggests in each design is optimized in
the next design.
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(a) NVIDIA Discrete GPU
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(b) AMD Integrated GPU (APU)
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Figure 11: Various Optimization regions for matrix multiplication over a range of granularities on (a) NVIDIA discrete GPU, (b)
AMD APU and (c) HSA Supported GPU.

(§3.1). We also observe that the computational index occupies most
of the regions which signifies maximum optimization potential.

The discrete GPU has four optimization regions (Figure 11 (a)).
Among these, latency dominates most of the regions, signifying
high-latency data copying over the PCIe bus and thus maximum
optimization potential. The high cut-off granularity for overheads at

32KB indicates high overhead OS calls to access the GPU. Similarly
with highly aggressive cores, acceleration has high cut-off granular-
ity of 256KB indicating less optimization potential for acceleration.

Similar to the discrete GPU, the APU also has four optimiza-
tion regions (Figure 11 (b)). There are few notable differences as
compared to the discrete GPU: The cut-off granularity for latency
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reduces to 512KB with the elimination of data copying over the
PCIe bus, the overheads are still high suggesting high overhead OS
calls to access the APU; with less aggressive cores, the cut-off granu-
larity for acceleration reduces to 64KB, implying more optimization
potential for acceleration.

Figure 11 (c) shows three optimization regions for the HSA en-
abled integrated GPU. We observe that latency is absent in all regions
and the cut-off granularity for overhead reduces to 8KB. These re-
ductions in overheads and latencies signify a simpler interface as
compared to the discrete GPU and APU. We also observe that the
cut-off granularity for acceleration drops to 2KB, suggesting higher
potential for optimizing acceleration.

6 RELATED WORK
We compare and contrast our work with prior approaches. Lopez-
Novoa et al. [28] provide a detailed survey of various accelerator
modeling techniques. We broadly classify these techniques in two
categories and discuss the most relevant work.

Analytical Models: There is a rich body of work exploring ana-
lytical models for performance prediction of accelerators. For some
models, the motivation is to determine the future trend in heteroge-
neous architectures: Chung et al. [7], in a detailed study, predict the
future landscape of heterogeneous computing; Hempstead et al. [17]
propose an early-stage model, Navigo, that determines the fraction of
area required for accelerators to maintain the traditional performance
trend; Nilakantan et al. [32] propose to incorporate communication
cost for early-stage model of accelerator-rich architectures. For oth-
ers, the motivation is to determine the right amount of data to offload
and the potential benefits associated with an accelerator [24].

Some analytical models are architecture specific. For example,
a number of studies [20, 21, 44, 57] predict performance of GPU
architectures. Hong et al. [20] present an analytical performance
model for predicting execution time on GPUs. They later extend
their model and develop an integrated power and performance model
for the GPUs [21]. Song et al. [44] use a simple counter based
approach to predict power and performance. Meswani et al. [29]
explore such models for high performance applications. Daga et
al. [11] analyze the effectiveness of Accelerated processing units
(APU) over GPUs and describe the communication cost over the
PCIe bus as a major bottleneck in exploiting the full potential of
GPUs.

In general, our work is different from these studies because of
the complexity. These models use a large number of parameters to
accurately predict the power and/or performance, whereas we limit
the number of parameters to reduce the complexity of our model.
They also require deep understanding of the underlying architecture.
Most of these models also require access to GPU specific assembly
or PTX codes. Unlike these approaches, we use CPU code to provide
bounds on the performance.

Roofline Models: In terms of simplicity and motivation, our work
closely matches the Roofline model [54]—a visual performance
model for multi-core architectures. Roofline exposes bottlenecks for
a kernel, and suggests several optimizations which programmers can
use to fine tune the kernel on a given system.

A number of extensions of Roofline have been proposed [10,
22, 33, 56] and some of these extensions are architecture specific.

For example, targeting GPUs [22], vector processors [39], and FP-
GAs [10, 56].

Despite the similarities, roofline and its extensions cannot be used
for exposing design bottlenecks in an accelerator’s interface. The
primary goal of roofline models has been to help programmers and
compiler writer while LogCA provides more insights for architects.

7 CONCLUSION AND FUTURE WORK
With the recent trend towards heterogeneous computing, we feel
that the architecture community lacks a model to reason about the
need of accelerators. In this respect, we propose LogCA—an insight-
ful visual performance model for hardware accelerators. LogCA
provides insights, early in the design stage, to both architects and
programmers, and identifies performance bounds, exposes interface
design bottlenecks and suggest optimizations to alleviate these bot-
tlenecks. We have validated our model across a range of on-chip and
off-chip accelerators, and have shown its utility using retrospective
studies describing the evolution of accelerator’s interface in these
architectures.

The applicability of LogCA can be limited by our simplifying as-
sumptions, and for more realistic analysis, we plan to overcome these
limitations in our future work. For example, We also assume a single
accelerator system and do not explicitly model contention among
resources. Our model should handle multi-accelerator and pipelined
scenarios. For fixed function accelerators, our design space is cur-
rently limited to encryption and hashing kernels. To overcome this,
we are expanding our design space with compression and database
accelerators in Oracle M7 processor. We also plan to complement
LogCA with an energy model as energy efficiency is a prime design
metric for accelerators.
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