
...

RANGE TRANSLATIONS FOR FAST
VIRTUAL MEMORY

...

MODERN WORKLOADS SUFFER HIGH EXECUTION-TIME OVERHEAD DUE TO PAGE-BASED

VIRTUAL MEMORY. THE AUTHORS INTRODUCE RANGE TRANSLATIONS THAT MAP

ARBITRARY-SIZED VIRTUAL MEMORY RANGES TO CONTIGUOUS PHYSICAL MEMORY PAGES

WHILE RETAINING THE FLEXIBILITY OF PAGING. A RANGE TRANSLATION REDUCES ADDRESS

TRANSLATION TO A RANGE LOOKUP THAT DELIVERS NEAR-ZERO VIRTUAL MEMORY

OVERHEAD.

......Virtual memory is a crucial
abstraction in modern computer systems. It
delivers benefits such as security due to proc-
ess isolation and improved programmer pro-
ductivity due to simple linear addressing.
Each process has a large a private virtual
address space managed at granularity of
fixed-size pages, which are typically 4 Kbytes
in size. The operating system and hardware
use a page table with a virtual-to-physical
page map to simplify software and hardware
memory management.

With virtual memory, the processor must
translate every load and store generated by a
process from a virtual to a physical address.
Because address translation is on processors’
critical path, a translation look-aside buffer
(TLB) accelerates translation by caching the
most recently used page table entries (PTEs).
Paging delivers high performance when TLB
hits service most of the address translations.
However, a TLB miss triggers a costly hard-
ware page table walk, which may require
multiple memory accesses (up to four mem-
ory accesses in x86-64) to fetch the PTE.

Unfortunately, modern workloads experi-
ence execution time overheads of up to 50

percent because of paging.1 Two opposing
technology trends are at the root of this
problem:

� Physical memory is growing expo-
nentially cheaper and bigger (see Fig-
ure 1), which allows workloads to
store ever-increasing large datasets in
memory.

� TLB sizes have grown slowly because
TLBs are on the processor’s critical
path to access memory (see Table 1).

This problem is commonly called limited
TLB reach—the fraction of physical memory
that TLBs can map reduces with each hard-
ware generation. For instance, the TLB in
Intel’s recent Skylake processors covers only 9
percent of a 256-Gbyte memory. We expect
this mismatch between TLB reach and mem-
ory size to become worse with newer memory
technologies, which promise petabytes to
zetabytes of physical memory, and to increase
the paging overheads because of the time
required by page walks.

As the sidebar, “Efforts to Address Lim-
ited Translation Look-Aside Buffer Reach,”
explains, previous approaches to address this

Jayneel Gandhi

University of

Wisconsin–Madison

Vasileios Karakostas

Furkan Ayar

Adri�an Cristal

Barcelona Supercomputing Center

Mark D. Hill

University of

Wisconsin–Madison

Kathryn S. McKinley

Microsoft

Mario Nemirovsky

ICREA

Michael M. Swift

University of

Wisconsin–Madison

Osman S. €Unsal

Barcelona Supercomputing Center

...

118 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

problem include hierarchical TLBs (adding
larger but slower L2 TLBs), multipage map-
pings (mapping several pages with a single
TLB entry), huge pages (mapping much
larger aligned memory with a single TLB
entry), and direct segments (providing a sin-
gle arbitrarily large segment along with stand-
ard paging). None of these approaches
delivers a complete solution that solves the
TLB reach problem while retaining flexible
memory use.

Our goal, originally set forth in our paper
for the 42nd International Symposium on
Computer Architecture,2 is a transparent and
robust virtual memory implementation that
has no alignment restrictions and near-zero

overhead across workloads while retaining
the flexibility of paging.

Many applications present an unexploited
opportunity to reduce address translation
overhead: they naturally exhibit an abun-
dance of contiguity in their virtual address
space. Figure 2 plots the number of pages
and contiguous virtual page ranges required
to map all of an application’s address space
for seven representative workloads. All of the
workloads require less than 112 ranges to
map their entire virtual address space. If the
OS can map a range contiguously, a single
entry is sufficient to translate from a virtual
to a physical range. Hence, a modest number
of ranges have the potential to efficiently per-
form address translation for the majority of
virtual memory addresses—orders of magni-
tude less than with regular or even huge
PTEs. This article proposes a hardware/

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

M
em

or
y

si
ze

 (
lo

g
)

Year

M
B

G
B

TB

1
10
100
1
10
100
1
10

Figure 1. Physical memory sizes purchased

with $10,000 for the past 35 years show

exponential growth. The cost is inflation-

adjusted to the 2011 US dollar. Data is

collected from jcmit.com.

Table 1. Translation look-aside buffer (TLB) sizes in Intel

processors for past 15 years are growing slowly.

Year Processor L1 TLB size L2 TLB size

1999 Pentium III 72 0

2004 Pentium 4 64 0

2008 Nehalem 96 512

2012 Ivy Bridge 100 512

2014 Haswell 100 1,024

2015 Skylake 100 1,552

0

20

40

60

80

100

1 10 100 1,000 10,000 100,000
Number of entries (log scale)

astar
mcf
cactusADM
canneal
graph500
memcached
tigr

To
ta

l a
p

p
lic

at
io

n
ad

d
re

ss
 s

p
ac

e
(%

)

Figure 2. Cumulative distribution function of the application’s memory (percentage) that N

translation entries map with pages (solid) and with optimal ranges (dashed), for seven

representative applications. Ranges map all applications’ memory with one to four orders of

magnitude fewer entries than pages.
...

MAY/JUNE 2016 119

software co-design called Redundant Mem-
ory Mappings (RMM) that realizes the
potential of ranges to improve virtual mem-
ory performance.

Design Overview
We introduce the key concept of range trans-
lation that exploits the virtual memory conti-
guity in modern workloads to perform
address translation much more efficiently
than paging. Inspired by direct segments, a
range translation is a mapping from contigu-
ous virtual pages to contiguous physical pages
of arbitrary size with uniform protection bits.
A range translation uses BASE and LIMIT
virtual addresses. To translate a virtual
address to a physical address, the hardware

adds the virtual address to the physical OFF-
SETof the corresponding range. Range trans-
lations are base-page aligned and have no
other size or size-alignment restrictions.

We implement range translations in the
RMM architecture. RMM employs hardware/
software co-design to map the entire virtual
address space with standard paging and redun-
dantly map ranges with range translations.
Because range translations are backed by page
mappings in RMM, the operating system can
flexibly choose between using range transla-
tions or not, which retains the benefits of pag-
ing for fine-grained memory management
when necessary. Figure 3 shows how a few
range translations map parts of the process’s
address space in addition to pages in RMM.
This design addresses the limitations and

..

Efforts to Address Limited Translation Look-Aside Buffer Reach
Researchers have proposed and used several prior approaches to

reduce paging overheads. Table A shows the benefits and drawbacks

of each proposal and compares it to our proposal of Redundant Mem-

ory Mappings (RMM).

Hierarchical TLBs
Hierarchical TLBs increase TLB reach by increasing TLB size. Each TLB

entry still maps one page (see Figure A1), but a larger and slower L2

TLB caches page table entries to reduce expensive page walks. The

combined (L1 þ L2) TLB reach is increased, but it has not kept pace

with the growth of physical memory.

Multipage Mappings
Multipage mappings exploit contiguity in groups of virtual and physi-

cal pages by mapping a small number of pages (typically 8 to 16) with

a single TLB entry (see Figure A2). These approaches leverage the

default OS memory allocator that creates either small blocks of con-

tiguous physical pages to contiguous virtual pages (sub-blocked TLBs1

and CoLT2) or a small set of contiguous virtual pages to a cluster of

physical pages (Clustered TLB3). These approaches increase TLB reach

by a small fixed multiple. Because multipage mappings impose size-

alignment restrictions, they require effort by the OS to exploit, and

they do not increase TLB reach enough to meet the needs of applica-

tions that use modern gigabyte-to-terabyte physical memories.

Huge Pages
Huge pages map a larger aligned fixed-size region of memory with a

single TLB entry (see Figure A3). For instance, the x86-64 architecture

has 2-Mbyte and 1-Gbyte pages.4,5 Huge pages increase the TLB

reach substantially, but their effectiveness is reduced by the size

alignment restriction: the OS can allocate them only when the avail-

able physical memory is both size-aligned and contiguous. Moreover,

many current processors provide limited TLB entries for huge pages,

which further reduces their benefits on modern workloads.

Direct Segments
Direct segments is a hardware/software approach that maps a single

unlimited range of contiguous virtual memory to contiguous physical

Table A. Comparison of Redundant Memory Mappings (RMM) with previous approaches for reducing virtual

memory overhead. RMM achieves the best of many worlds.

Requirements Hierarchical TLBs Multipage mappings Huge pages Direct segments RMM

Flexible alignment � � � � �

Arbitrary reach � � � � �

Multiple entries � � � � �

Transparent to applications � � � � �

Applicable to all workloads � � � � �

..

TOP PICKS

..

120 IEEE MICRO

combines the advantages of previous
approaches (see Table A in the sidebar).

The RMM system efficiently caches range
translations in a hardware range TLB to
increase TLB reach, manages range transla-
tions using a per-process software range table
just like the page table, and increases physical
contiguity to increase the range size, which
results in a modest number of range transla-
tions per process using eager paging. Table 2
summarizes these new components and their
relationship to paging.

Compared to prior approaches, RMM
delivers multiple arbitrarily large regions of
memory with range translations, improves
performance transparently without pro-
grammer intervention, and enhances robust-
ness because the OS manages memory with
both ranges and pages. On a range of work-
loads, RMM reduces the cost of virtual mem-
ory to less than 1 percent on average.

Range TLB
The range TLB is a hardware cache that
holds multiple range translations. Each entry
can perform address translation for an unlim-
ited range of contiguous virtual pages that are

memory with a single hardware entry, while the rest of the virtual

address space uses standard paging.6 Direct segment entry consists

of BASE, LIMIT, and OFFSET registers that eliminate page walks

within the segment (see Figure A4). The OS maps a virtual address to

a direct segment or page, but never both.

Although direct segments provide the foundation for our work,

they are not general or transparent. They map only a single segment

and require developers to explicitly allocate the direct segment during

startup. Although some “big memory” applications can preallocate a

single large range, many cannot. Many applications instead tend to

allocate several large ranges (see Figure 2 in the main article). These

limitations caused the industry to push back against direct segments.

References
1. M. Talluri and M.D. Hill, “Surpassing the TLB Performance of

Superpages with Less Operating System Support,” Proc. 6th

Int’l Conf. Architectural Support for Programming Languages

and Operating Systems, 1994, pp. 171–182.

2. B. Pham et al., “CoLT: Coalesced Large Reach TLBs,” Proc.

45th Ann. IEEE/ACM Int’l Symp. Microarchitecture, 2012,

pp. 258–269.

3. B. Pham et al., “Increasing TLB Reach by Exploiting Cluster-

ing in Page Translations,” Proc. IEEE 20th Int’l Symp. High

Performance Computer Architecture, 2014, pp. 558–567.

4. J. Corbet, “Transparent Huge Pages in 2.6.38,” 2011; www.

lwn.net/Articles/423584.

5. M. Gorman, “Huge Pages Part 1 (Introduction),” 2010; http://

lwn.net/Articles/374424.

6. Basu et al., “Efficient Virtual Memory for Big Memory Serv-

ers,” Proc. 40th Ann. Int’l Symp. Computer Architecture,

2013, pp. 237–248.

Virtual
memory

Physical
memory

(1) (2) (3) (4)

Base Limit

Offset

Figure A. Memory mapped by one entry with various proposals: (1) hierarchical translation look-aside buffers, (2) multipage

mappings, (3) huge pages, and (4) direct segments. Each proposal tries to increase the reach of the TLB.

Virtual
memory

Physical
memory

Base 1 Limit 1 Base 2 Limit 2

Range
translation 1

Range
translation 2

Offset 1 Offset 2

Figure 3. RMM design. The application’s memory space is represented

redundantly by both pages and range translations.

...

MAY/JUNE 2016 121

mapped to contiguous physical pages with
uniform protection bits. Each range TLB
entry consists of a virtual range and transla-
tion. The virtual range stores the BASEi and
LIMITi of the virtual address range. The
translation stores the OFFSETi that holds
the start of the range in physical memory
minus BASEi, and the protection bits.

We design a fully associative range TLB.
The right side of Figure 4 illustrates the range
TLB and its logic with N (for example, 32)
entries. The range TLB is accessed in parallel
with the last-level page TLB (for example,
the L2 TLB, shown in Figure 4). The hard-
ware compares the virtual page number that
misses in the L1 TLB, testing BASEi � vir-
tual page number < LIMITi for all ranges in
parallel in the range TLB. On a hit, the range
TLB returns the OFFSETi and protection
bits for the corresponding range translation
and calculates the corresponding PTE for the
L1 TLB. It adds the requested virtual page
number to the hit OFFSETi value to pro-
duce the physical page number and copies
the protection bits from the range transla-
tion. On a miss, the hardware fetches the cor-
responding range translation—if it exists—
from the range table. Our original paper con-
tains more details and optimizations on the
hardware and OS design.2

Range Table
The range table is an architecturally visible
per-process data structure that stores the
process’s range translations in memory and is
redundant to the page table. The operating
system manages range table entries.

A range table implementation should facili-
tate fast lookup of a virtual address to a range
translation and should be inherently compact

and cache friendly. To this end, we propose a
B-Tree data structure with ðBASEi; LIMITiÞ
as keys and OFFSETi and protection bits as
values to store range translations in the range
table. Figure 5 shows how the range transla-
tions are stored in the range table and also
shows each node’s design. Each node accom-
modates four range translations and points to
five children, allowing up to 124 range transla-
tions in three levels. Each range table node fits
in two cache lines. All pointers use physical
addresses and facilitate hardware walking. With
this design, a single 4-Kbyte page can hold a
range table with 128 range translations.

A hardware walker loads range transla-
tions from the range table on a range TLB
miss. Analogous to the page table pointer
register (CR3 in x86-64), RMM requires a
CR-RT register to point to the physical
address of the range table root for walking.

On a miss to the range TLB and page
TLB, RMM first fetches the missing transla-
tion from the page table and installs it in the
higher-level TLB so that the processor can
continue executing the pending operation.
To identify whether a miss in the range TLB
can be resolved to a range, RMM adds a
range bit to the PTE, which indicates
whether a page is part of a range table entry.
The page table walker fetches the PTE, and if
the range bit is set, accesses the range table in
the background and updates the range TLB
with the missing entry. This approach avoids
increasing page-walk latency and does not
access the range table for pages that are not
redundantly mapped.

Eager Paging
Effective range translation requires both vir-
tual contiguity, which occurs naturally, and

Table 2. RMM overview with page and range translation.

Design components Page translation (x86-64) 1 Range translation

Architecture TLB Range TLB

Page table Range table

CR3 register CR-RT register

Page table walker Range table walker

OS Page table management Range table management

Demand paging Eager paging

..

TOP PICKS

..

122 IEEE MICRO

physical contiguity, which may not. To
enhance physical contiguity, RMM modifies
the OS memory-allocation mechanism with
eager paging.

The default allocation policy—demand
paging—allocates physical pages at access
time and may degrade contiguity, because it
allocates single pages even when large regions
of physical memory are available. For exam-
ple, if the application accesses contiguous
pages out-of-order, the OS may not allocate

these pages in contiguous physical pages,
even though there are contiguous free pages.

Eager paging generates large range transla-
tions by allocating consecutive physical pages
to consecutive virtual pages eagerly at alloca-
tion time, rather than lazily on demand.
When the application allocates memory, the
OS establishes one or more range translations
for the entire request and updates the corre-
sponding range and PTEs. Figure 6 shows
the simplified pseudocode for eager paging

RTEC

RTEA RTEB RTEE RTEH RTEI

RTED RTEF RTEGCR-RT

Range translation or
Range table entry

Base Limit
1247 1247

Offset + Protection
064

Figure 5. The range table stores the range translations for a process in memory. The OS

manages the range table entries based on the applications’ memory management

operations.

[V47 V46 ……… V12] [V11 …….. V0]

L1 D-TLB
Lookup

Hit?Y

[P47 P46 ……… P12] [P11 …….. P0]

N

Y

Range TLB

Y
NN

Page+range
table walk

Base 0
≤ >

≤ >

Entry 0

Entry 1

≤ >

Entry N–1

Encoder
Range TLB miss

PB

PB

PB

TLB entry
generation

(address+OFFSET), PB

Range TLB hit

L2 D-TLB
lookup

Hit?
Hit?

Limit 0

Base 1

Base N–1 Limit N–1

Offset N–1

Offset 1

Offset 0

Limit 1

Figure 4. Range TLB caches range translations and is accessed in parallel with the last-level page TLB. The left side shows a

range TLB introduced in parallel to the L2 TLB, and the right side shows the structure and lookup operation in a range TLB.

...

MAY/JUNE 2016 123

based on Linux’s buddy page allocator. The
OS always updates the page table and the
range table consistently. Eager paging
increases latency during allocation and could
induce fragmentation, because the OS must
instantiate all pages in memory, even though
the application never uses the allocated physi-
cal pages. However, the OS can reclaim
unused pages at the end of a range or an
entire range if memory pressure increases.

Methodology
We implemented our OS modifications in
the Linux kernel v3.15.5 and defined RMM
hardware with respect to a recent Intel x86-
64 Sandy Bridge dual-socket Xeon E5-2430
core (L1 TLB entries: 64 for a 4-Kbyte page,
32 for a 2-Mbyte page, 4 for a 1-Gbyte page;
L2 TLB entries: 512 for a 4-Kbyte page). We
chose a 32-entry fully associative range TLB
accessed in parallel with the L2 page TLB

because we estimated that it could meet the
L2’s timing constraints. We selected work-
loads with poor TLB performance from
SPEC 2006,3 BioBench,4 Parsec,5 and big-
memory workloads.1 We report overheads
using a combination of hardware perform-
ance counters from native application execu-
tions and TLB performance emulation using
a modified version of BadgerTrap6 with a lin-
ear performance model. Compared to cycle-
accurate simulation, we reduced weeks of
simulation time by orders of magnitude. Our
original paper has more details on our meth-
odology, results, and analysis.2

Evaluation
Figure 7 compares the overhead spent in page
walks for RMM to other techniques. The 4-
Kbyte and 2-Mbyte transparent huge pages
(THP, the native Linux approach of using 2-
Mbyte pages when possible)7 and 1-Gbyte8

configurations show the measured overhead
for the three available page sizes. All other con-
figurations are emulated. The DS bars show
direct segments1 results and the RMM bars
show the 32-entry range TLB results.

Our results show that RMM performs
well on all configurations for all workloads,
substantially improving over other
approaches. RMM eliminates the vast major-
ity of page walks, significantly outperforms
huge pages (THP and 1-Gbyte), and achieves
similar or better performance than direct seg-
ments, but has none of its limitations. Over-
all, RMM has negligible overhead of less
than 1 percent—it essentially eliminates vir-
tual memory overheads for many workloads.
Our original paper also analyzes energy, hard-
ware costs, and the impact of eager paging on
execution time and the memory footprint.2

In a subsequent paper, which appeared in
the 22nd International Symposium on High
Performance Computer Architecture,9 we char-
acterized and then reduced the energy of
address translation. We showed that L1 TLB
hits consume the majority of address transla-
tion energy. For instance, Sandy Bridge per-
forms 12 address comparisons on every
memory reference hit. We introduced the Lite
mechanism that reduces energy by dynamically
downsizing the L1 TLBs when huge pages or
range translations reduce pressure on them.

Compute the memory fragmentation;
if memory fragmentation ≤ threshold then

// use eager paging
while number of pages > 0 do

for (i = MAX_ORDER-1; i ≥ 0; i--) do
if freelist[i] ≥ 0 and 2i ≤ number of pages then

allocate block of 2i pages;
for all 2i pages of the allocated block do

construct and set the PTE;
end
add the block to the range table;
number of pages − = 2i;
break;

end
end

end
else

// high memory fragmentation – use demand paging
for (i = 0; i < number of pages; i++) do

allocate the PTE;
set the PTE as invalid so that the first access

will trigger a page fault and the page will get allocated;
end

end

Figure 6. RMM memory allocator pseudocode for an allocation request of a

number of pages. When memory fragmentation is low, RMM uses eager

paging to allocate pages at request time, in order to create the largest

possible range for the allocation request. Otherwise, RMM uses default

demand paging to allocate pages at access time.

..

TOP PICKS

..

124 IEEE MICRO

42
%

39
%

36
%

0.
02

%

0.
03

%

0.
06

%

0.
26

%

0.
00

%

0.
25

%

0.
40

%

1.
06

%

0.
00

%

0.
14

%

0.
00

%

1.
73

%

0%

5%

10%

15%

20%

25%

30%
4K

B

TH
P

D
S

R
M

M

4K
B

TH
P

D
S

R
M

M

4K
B

TH
P

D
S

R
M

M

4K
B

TH
P

D
S

R
M

M

4K
B

TH
P

D
S

R
M

M

4K
B

TH
P

1G
B

D
S

R
M

M

4K
B

TH
P

1G
B

D
S

R
M

M

astar mcf cactusADM canneal tigr graph500 memcached

Measured
Modeled

E
xe

cu
tio

n
tim

e
ov

er
he

ad
s

Figure 7. Execution time overheads due to page walks for seven representative workloads. The 1-Gbyte page size applies

only to big-memory workloads.

L imited TLB reach is a well-known prob-
lem. To address this problem, vendors

have increased hardware support for huge
pages and slowly increased TLB sizes. How-
ever, fixed-size pages will always fall short
because of their alignment requirements and
because they induce internal fragmentation.
As memory sizes continue to increase more
aggressively than TLB sizes, the virtual mem-
ory overheads that manifest in today’s systems
with 4-Kbyte pages will manifest similarly in
tomorrow’s systems with huge pages. Our
evaluation shows that such cases already exist.
Furthermore, range translations should pave
the way for emerging workloads, such as in-
memory computing, which leverage the
growth in physical memory to store huge
datasets for low latency and real-time data
analysis.

In conclusion, we believe RMM has the
potential to follow the same path as Madhu-
sudhan Talluri and Mark Hill’s work,10

which bootstrapped research on transparent
huge pages. It also required changes to both
hardware and operating systems but is now
common in modern processors. MICRO

Acknowledgments
Jayneel Gandhi and Vasileios Karakostas
were the lead authors of this article. This
work is supported in part by the European
Union (FEDER funds) under contract
TIN2012-34557, the European Union’s
Seventh Framework Programme (FP7/
2007- 2013) under the ParaDIME project
(GA no. 318693), the National Science

Foundation (CCF-1218323, CNS-
1302260, and CCF-1438992), Google, and
the University of Wisconsin (Kellett Award
and named professorship to Mark D. Hill).
Karakostas is also supported by an FPU
research grant from the Spanish MEC. Hill
has a significant financial interest in AMD.

References
1. A. Basu et al., “Efficient Virtual Memory for

Big Memory Servers,” Proc. 40th Ann. Int’l

Symp. Computer Architecture, 2013, pp.

237–248.

2. V. Karakostas et al., “Redundant Memory

Mappings for Fast Access to Large Memo-

ries,” Proc. 42nd Ann. Int’l Symp. Computer

Architecture, 2015, pp. 66–78.

3. J.L. Henning, “SPEC CPU2006 Benchmark

Descriptions,” Computer Architecture

News, vol. 34, no. 4, 2006, pp. 1–17.

4. K. Albayraktaroglu et al., “BioBench: A

Benchmark Suite of Bioinformatics

Applications,” Proc. IEEE Int’l Symp. Per-

formance Analysis of Systems and Soft-

ware, 2005, pp. 2–9.

5. C. Bienia et al., “The PARSEC Benchmark

Suite: Characterization and Architectural

Implications,” Proc. 17th Int’l Conf. Parallel

Architectures and Compilation Techniques,

2008, pp. 72–81.

6. J. Gandhi et al., “BadgerTrap: A Tool to

Instrument x86-64 TLB Misses,” SIGARCH

Computer Architecture News, vol. 42, no. 2,

2014, pp. 20–23.
...

MAY/JUNE 2016 125

7. J. Corbet, “Transparent Huge Pages in

2.6.38,” 2011; www.lwn.net/Articles/423584.

8. M.Gorman,“HugePagesPart1(Introduction),”

2010;http://lwn.net/Articles/374424.

9. V. Karakostas et al., “Energy-Efficient

Address Translation,” Proc. 22nd Ann.

Symp. High Performance Computer Archi-

tecture, 2016, pp. 631–643.

10. M. Talluri and M.D. Hill, “Surpassing the

TLB Performance of Superpages with Less

Operating System Support,” Proc. 6th Int’l

Conf. Architectural Support for Program-

ming Languages and Operating Systems,

1994, pp. 171–182.

Jayneel Gandhi is a PhD student in the
Computer Sciences Department at Univer-
sity of Wisconsin–Madison. He received an
MS in computer engineering from North
Carolina State University and an MS in
computer sciences from the University of
Wisconsin–Madison. He is a student mem-
ber of the ACM. Contact him at jayneel@
cs.wisc.edu.

Vasileios Karakostas is a PhD student in
the Computer Architecture Department at
Universitat Politecnica de Catalunya and a
researcher in the Computer Architecture for
Parallel Paradigms group at Barcelona Super-
computing Center. He received an MS in
computer architecture, networks, and sys-
tems from the Universitat Politecnica de Cat-
alunya. He is a student member of ACM and
IEEE. Contact him at vasilis.karakostas@
bsc.es.

Furkan Ayar is an MS student in the Com-
puter Engineering Department at Yildiz
Technical University. He received a BS in
computer engineering from Dumlupinar
University. He performed the work for this
article while an intern at the Barcelona
Supercomputing Center. Contact him at
frkn.ayar@gmail.com.

Adri�an Cristal is a scientific researcher at
the Spanish National Research Council
(CISC-IIIA) and a comanager of the Com-
puter Architecture for Parallel Paradigms
research group at the Barcelona Supercom-
puting Center. He received a PhD in com-

puter science from the Polytechnic Univer-
sity of Catalonia. Contact him at adrian.
cristal@bsc.es.

Mark D. Hill is the John P. Morgridge Pro-
fessor, the Gene M. Amdahl Professor of
Computer Sciences, and the Computer Sci-
ences Department Chair at the University of
Wisconsin–Madison, where he also has a
courtesy appointment in the Department of
Electrical and Computer Engineering. He
received a PhD in computer science from
the University of California, Berkeley. He is
a Fellow of IEEE and ACM. Contact him at
markhill@cs.wisc.edu.

Kathryn S. McKinley is a principal
researcher at Microsoft. She received a PhD
in computer science from Rice University.
She is a Fellow of IEEE and ACM. Contact
her at mckinley@microsoft.com.

Mario Nemirovsky is a Catalan Institution
for Research and Advanced Studies (ICREA)
Senior Research Professor at the Barcelona
Supercomputing Center. He received a PhD
in electrical and computer engineering from
the University of California, Santa Barbara.
Contact him at mario.nemirovsky@bsc.es.

Michael M. Swift is an associate professor
in the Computer Sciences Department at
the University of Wisconsin–Madison. He
received a PhD in computer science from
the University of Washington. He is a mem-
ber of ACM. Contact him at swift@cs.
wisc.edu.

Osman S. €Unsal is a comanager of the Com-
puter Architecture for Parallel Paradigms
research group at the Barcelona Supercom-
puting Center. He received a PhD in electrical
and computer engineering from the Univer-
sity of Massachusetts, Amherst. He is a mem-
ber of IEEE and ACM. Contact him at
osman.unsal@bsc.es.

..

TOP PICKS

..

126 IEEE MICRO

	fig1
	table1
	fig2
	table3
	ref1a
	ref2a
	ref3a
	ref4a
	ref5a
	ref6a
	fig8
	fig3
	table2
	fig5
	fig4
	fig6
	ref1
	ref2
	ref3
	ref4
	ref5
	ref6
	fig7
	ref7
	ref8
	ref9
	ref10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

