
FreshCache: Statically and Dynamically Exploiting Dataless Ways 

Abstract - Last level caches (LLCs) account for a substantial frac-
tion of the area and power budget in many modern processors. Two 
recent trends — dwindling die yield that falls off sharply with larger 
chips and increasing static power — make a strong case for a fresh 
look at LLC design. Inclusive caches are particularly interesting 
because many commercially successful processors use inclusion to 
ease coherence at a cost of some data being stale or redundant. 
Prior works have demonstrated that LLC designs could be improved 
through static (at design time) or dynamic (at runtime) use of 
“dataless ways”. The static dataless ways removes the data—but not 
tags—from some cache ways to save energy and area without com-
plicating inclusive-LLC coherence.  A dynamic version (dynamic 
dataless ways) could dynamically turn off data, but not tags, effec-
tively adapting the classic selective cache ways idea to save energy 
in LLC but not area. Our data show that (a) all our benchmarks 
benefit from dataless ways, but (b) the best number of dataless ways 
varies by workload. Thus, a pure static dataless design leaves ener-
gy-saving opportunity on the table, while a pure dynamic dataless 
design misses area-saving opportunity. 
To surpass both pure static and dynamic approaches, we develop 
the FreshCache LLC design that both statically and dynamically 
exploits dataless ways, including a predictor to adapt the number of 
dynamic dataless ways as well as detailed cache management poli-
cies. Results show that FreshCache saves more energy than static 
dataless ways alone (e.g., 72% vs. 9% of LLC) and more area by 
dynamic dataless ways only (e.g., 8% vs. 0% of LLC).  

I. Introduction 
The on-chip cache hierarchy plays a crucial role in processor 

performance, as evidenced by designs that dedicate more than 
50% of the die area to last-level caches (LLCs) [20,28,38,39]. 
Historically, designers found the area and power demands of 
LLCs acceptable, but two recent trends — increasing static 
power [2,7,8,18] and diminishing die yields [1,15,22,35] — 
encourages reconsideration of  LLC designs.  

Inclusive LLCs [36] present an opportunity for improve-
ment because they replicate the cache blocks contained in up-
per-level caches (closer to the processor). This design is wide-
ly used in commercial CMPs (e.g., Intel’s Nehalem, Sandy 
Bridge, and Ivy Bridge designs) because it simplifies coher-
ence and reduces on-chip traffic [10,36,37]. However, replicat-
ing data makes inclusive caches more area- and energy hun-
gry than they need to be. The fact that they are used in spite of 
this waste and viable alternatives — exclusion [14], non-
inclusion [23], and tag replication [4] — shows the high value 
placed on the coherence benefits of inclusion. Thus, an LLC 
design that reduces area and power overhead without sacrific-
ing inclusion is immediately useful. 

Design time: To address this waste in inclusive caches, re-
searchers have proposed NCID [41], which uses cache ways 
built with tag and metadata but no data. These ways, which we 
call static dataless ways (SDWs), can save area and static en-
ergy while keeping the coherence benefits of an inclusive 
cache. However, our analysis (Section III) shows that the op-
portunity to use dataless ways varies widely across workloads. 
Since the number of static dataless ways is decided before chip 
fabrication time, it needs to be conservative to ensure that the 
worst-case performance degradation across all workloads re-
mains within an acceptable range. Thus, a fixed number of 
static dataless ways is unable to harness the full potential of 
dataless ways.  

Runtime: This shortcoming can be addressed by creating 
dataless ways at runtime. The data portion of cache ways can 
be turned off dynamically to save energy. We call such data-
less ways dynamic dataless ways (DDWs). This is inspired by 
Albonesi’s Selective Cache Ways [3], which was among first 
systems to demonstrate that dynamically resizing caches can 
save energy. The concept of dynamic resizing of cache is easi-
ly extended to LLC and, in fact, a few modern processors al-
low system software to control the LLC size [12]. Unfortu-
nately, resizing the LLC dynamically gives up the area savings 
of static dataless ways.  

New Hybrid: In this work we present the FreshCache LLC 
design, which seeks to achieve best of both worlds – static 
dataless ways, provisioned at design time to save area and en-
ergy with negligible performance impact, augmented with 
dynamic dataless ways enabled at run time for further energy 
savings when opportunity exists. Furthermore, FreshCache 
minimally changes inclusive cache coherence protocols and 
provides hardware management of dynamic resizing without 
software changes or profiling.           

At chip design time, FreshCache fixes a given number of 
cache ways as static dataless ways (e.g., 2 out of 16 ways). 
Such SDWs save both area and energy of the LLC.  The num-
ber of SDWs is chosen conservatively to keep the worst-case 
performance loss acceptable across all workloads. 

At run time, FreshCache hardware monitors the workload’s 
performance sensitivity to dataless ways and increases or de-
creases the number of DDWs depending upon the opportunity 
and the constraint. The number of DDWs at a given time is 
decided based on a software-provided maximum performance 
degradation (MPD) and the controller’s predicted performance 
loss from different numbers of DDWs. At the runtime, Fresh-
Cache’s dataless-way-aware LLC controller actively guides 
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cache blocks with stale data towards dataless ways at runtime 
(SDWs or DDWs) to minimize performance degradation due 
to presence of dataless ways. The use of dataless ways instead 
of turning off whole cache way allows FreshCache to keep 
benefits of inclusion without reducing the effective capacity of 
private caches. Importantly, FreshCache achieves this with 
only minimal changes to the coherence protocol. 

In summary, the FreshCache design uses SDWs to save both 
area and power without possibility of substantially degrading 
performance of any workloads and uses DDWs at runtime to 
opportunistically save more power if the workload characteris-
tics permit.  

Our evaluation is divided into two parts. First, we present an 
analysis on why dataless ways can be beneficial. To this end 
we find that in an inclusive LLC on average 24% of valid 
cache blocks can contain stale data (data that cannot be used), 
which can be exploited through use of dataless ways. Second, 
in experiments with PARSEC [5] workloads and three com-
mercial workloads, we show that FreshCache can use SDWs 
to save 8% of LLC area and with added DDWs up to 72% 
(average 40%) of LLC and DRAM access energy without sig-
nificantly affecting performance (1.7% on average, 2.8% in 
the worst case).  We demonstrate that compared to a pure stat-
ic approach, FreshCache saves more energy for some work-
loads  (e.g., 72% vs. 9% energy savings) without hurting the 
performance of any workload. Compared to a pure dynamic 
approach FreshCache could save significant LLC area (e.g., 
8% of LLC area savings vs. no area savings).     

II. Base system architecture 
We describe our design in the context of a base architec-

ture primarily modeled after the Intel Nehalem® architecture 
[36]. The base architecture, described Table 1, contains three 
levels of on-chip caches. The L1 and the L2 caches are private 
to a core, while the last level L3 cache is logically shared 
among all the cores on the die. The private L2 is exclusive 
with respect to the L1, and the L3 is inclusive with respect to 
the private caches. The 1:4 ratio of aggregate L2 to L3 size 
was chosen to follow Intel Nehalem (Xeon) E5507/5506 core 
[16] and recent industrial research [17].  

We model a “MESI” coherence protocol for on-chip co-
herence [15]. An on-chip directory located at the L3 is respon-
sible for maintaining coherence. The tags for LLC blocks in-
clude state and sharing information required for coherence. 

This in-cache-directory is similar to many commercially 
popular x86-64 processors with inclusive LLCs. Table 1 shows 
that we scaled down the on-chip cache hierarchy size by a fac-
tor of two from most commercial architectures. This makes 
off-chip accesses more frequent that is likely to result in un-
derestimating energy savings and overestimating performance 
costs for our proposed technique.   

III. Stale data in LLCs 
This section analyzes how much opportunity there is to uti-

lize dataless ways. FreshCache takes advantage of valid cache 
blocks with stale data in inclusive LLCs to reduce power. For 
static dataless ways, a designer must determine the prevalence 

of stale data across all workloads to avoid major performance 
impact of using dataless ways. For dynamic dataless ways, the 
variability in stale data and cache usage must be known. The 
wide variation in sensitivity to cache size across workloads is 
well studied and understood [32,40], and hence we focus on 
understanding the presence of stale data. We analyze the rea-
sons behind the stale data in the LLC and quantify its pres-
ence. We then demonstrate variation in amount of stale data 
across workloads. 

First, we describe below an example of how stale blocks can 
occur, and then present analyses of how often stale blocks can 
be found. When a private cache requests a cache block with 
exclusive permission (i.e., a GETX request) from the LLC, the 
LLC controller invalidates the sharers and gives the cache 
block with exclusive permission to the private cache. Hereafter 
the data portion of the LLC block serves no purpose because 
the private cache with exclusive permission is free to modify 
the block without notification. Thus data in the block is stale. 
The LLC forwards subsequent write or read requests from 
another core to its exclusive owner. The block’s data in the 
LLC cannot be used to satisfy a request, because it may have 
been modified in the private cache. However, the tag and other 
meta-data continue to be useful as it help identify the owner of 
the block.   

Frequency of stale blocks. The number of stale blocks is 
proportional to the overlap between private caches and the 
LLC; more overlap introduces more stale blocks. To evaluate 
the magnitude of stale blocks and to find whether they can be 
exploited, we measure the fraction of valid cache blocks in an 
LLC holding stale data for varying ratios of aggregate private 
L2 to shared L3 cache size. For a variety of workloads, we 

Core 8, in-order, 2 Ghz 
L1 cache Private, 16kB 4-way, Split I/D, writeback 

L2 cache Private, 128 kB, 8-way,  
exclusive with L1, writeback 

L3 cache Shared, 4 MB, 16-way,  
inclusive to private caches, writeback 

Coherence MESI Directory protocol,  
directory co-located with L3 cache blocks 

Memory 2 GB , ~ 350 cycle round trip 
Table 1. Base system configuration 

 
Figure 1. Portion of valid blocks with stale data. 
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sampled the LLC every 100000 cycles (0.5 micro-sec) and 
report the average number of stale blocks across the samples.  
We record the number of stale blocks as a fraction of valid 
blocks and do not include unused blocks.  

Figure 1 shows result of this experiment with varying L2:L3 
ratios for several PARSEC [5] and three commercial work-
loads. On average nearly 24% of the cache blocks in the LLC 
contain stale data with a L2:L3 ratio of 1:4.  As expected, the 
fraction of stale data increases with higher values of L2:L3 
ratios because there is more overlap between the LLC and 
private caches. In a few cases, the fraction of stale blocks is 
greater than the L2:L3 ratio. This occurs because of the small 
data footprint of one of the workloads (swaptions) does not fill 
up the entire LLC, so there are few valid blocks and stale 
blocks make up a large portion of them.  

Observation 1: A significant fraction of blocks in the LLC 
hold stale data at any given time, which adds to power and 
area costs but without any performance benefit.  

Stale block distribution. While the fraction of stale cache 
blocks is informative, the ability to exploit stale blocks de-
pends upon the distribution of stale blocks across the sets in 
LLC. Ideally, a processor would configure SDWs for the min-
imum number of stale blocks across all workloads, and DDWs 
up to the maximum.  

Figure 2 shows the likelihood that a set will contain at least n 
stale blocks at any time during execution. For example, for 
facesim, on average more than 75% of the sets in the LLC con-
tain four or more stale cache blocks. Across most of the work-
loads, a majority of the LLC sets contains at least 3 stale cache 
blocks, indicating a high potential to exploit the stale data 
phenomenon.  

More importantly, we observe that the distribution of num-
ber of stale blocks per set of the LLC varies across workloads. 
For example, facesim has at least 4 blocks with stale data in 
75% of the sets in the LLC, while for graph500 only 15% of 
the sets have 4 or more cache blocks with stale data. Thus, to 
fully exploit the stale data in LLC the number of dataless ways 
need to vary dynamically according to the workload character-
istics.  

Observation 2: The distribution of stale data across cache 
sets varies across workloads and a design with static dataless 
ways alone is unlikely to fully exploit stale data in LLC. 

IV. FreshCache: Leveraging Stale Data in the LLC 
The FreshCache design uses a hybrid of static dataless ways 

(SDWs) and dynamic dataless ways (DDWs) to design area 
and energy efficient LLC. SDWs help save both area and en-
ergy, while DDWs help save more energy when opportunity 
exists.  

SDWs constitute a fixed number of contiguous ways in each 
set (e.g., two out of sixteen). The data in these ways are omit-
ted from the cache layout. The number of SDWs in a Fresh-
Cache design must be chosen conservatively to ensure worst-
case performance across all workload remains acceptable.  

On the other hand, DDWs are created at run time by turning 
off power to the data cells of a cache way. DDWs can save 
power, but not area, and provide dynamic control over the 
power savings and performance impact. Applications that can 
tolerate a larger number of dataless ways can use DDWs “for 
free” without incurring performance penalties, while other 
applications can maintain high performance with fewer 
DDWs. For example, Figure 2 shows that for graph500 only 
40% of cache sets have more than one stale cache block. How-
ever, a small number of dataless ways limits the savings on 
programs with more stale data, such as facesim. Thus, Fresh-
Cache leverages DDWs where the number of DDWs can be 
controlled automatically by the hardware according to work-
load characteristics to save more power when the opportunity 
exists.  

FreshCache needs to accomplish two major tasks. First, it 
needs a dataless-way-aware LLC controller to select which 
blocks use dataless ways (SDWs or DDWs) and which use 
conventional (with data) ways. Second, it needs a hardware 
monitoring mechanism to select the optimal number of DDWs 
for a given workload at runtime.  Next, we describe how 
FreshCache accomplishes the first task with a modified LLC 
controller, called the FreshCache controller and then delve 
into details of our online hardware monitoring and manage-
ment mechanism for DDWs (called the DDW controller).  

A. FreshCache Controller: Managing Stale Data 
Fundamental to a FreshCache design is how to exploit stale 

data in LLC and manage dataless ways, be it SDW or DDW. 
There are two primary goals of this design -- 1) keep dataless 
ways occupied with cache blocks with stale data to hide any 
potential performance degradation 2) uphold inclusive proper-
ties of the LLC without substantially perturbing the coherence 
protocol.   

Dataless ways in the LLC can only store blocks that would 
otherwise hold stale data, while conventional ways hold the 
blocks with valid data (metadata+data). If a stale cache block 
cannot be found, then the dataless ways must remain empty, 
which effectively reduces the cache capacity. FreshCache uses 
a modified cache controller (the FreshCache Controller) that 
actively guides stale blocks to dataless ways to ensure that 
they have minimal performance impact. 

 
Figure 2. Distribution of stale blocks across sets. 



  
  

 
  

When the coherence state of a block changes, the Fresh-
Cache controller interprets the new state to infer whether the 
data in the block is stale. If a valid cache block holds stale data 
then the controller makes it a candidate for allocating in (or 
moving to) one of the dataless ways in the set. 

 The FreshCache controller must consider dataless ways dur-
ing at least two occasions: first, when a cache block is allocat-
ed in the LLC, and second, when a private cache writes back a 
block to the LLC. In addition, the controller’s replacement 
policy selects a victim from a subset of ways (dataless or con-
ventional) when necessary.  

Allocation of a cache block in the LLC: The LLC allocates 
a cache block with stale data in response to a write (GETX) 
request from private cache or a read request when a data cache 
block does not have other requester (sharer). 

Here, the FreshCache controller first looks for a free dataless 
way, and if that is not available it tries a conventional way 
before invoking the replacement policy to make a free block. 
Conversely, when allocating a cache block with valid data, the 
controller first seeks a free conventional way and then looks 
for a conventional way with stale data that can be moved to a 
free dataless way. If there are no free ways, it invokes the re-
placement policy. In this way the controller minimizes evic-
tions by keeping dataless ways occupied with stale cache 
blocks. 

Writeback to a cache block in LLC: The LLC can receive 
a writeback from a private cache in three cases: (1) when a 
block held with exclusive permission is victimized from the 
private cache, (2) when the exclusive permission is relin-
quished by a private cache in response to a read request by 
another core, and (3) when the LLC back-invalidates a block 
in a private cache to ensure inclusion. In the third case, the 
LLC does not store the written-back data and thus no new 
mechanism is needed. However, in the first two cases if the 
block in the LLC resides in a dataless way then the writeback 
cannot proceed since there is no space for the data. In this 
case, the controller moves the block to a conventional way and 
replaces an occupied conventional way if needed. A writeback 
to a block in a conventional way proceeds normally.  

Figure 3 depicts a LLC with dataless ways and the Fresh-
Cache controller that uses intra-set block movement to keep 
the dataless ways occupied with blocks with stale data. 

LLC Replacement policy:  Unlike conventional caches, the 
FreshCache may need to pick a victim from one of two classes 
of cache ways. During allocation of a cache block with valid 
data or when handling writeback to a block in a dataless way, 

it may be necessary to choose a victim only from conventional 
ways. To simplify the design, the locations of the dataless 
ways in each set are kept contiguous. Thus, existing victim 
selection mechanisms can be trivially extended to choose a 
victim from just the conventional ways. For example, a binary 
tree-based pseudo-LRU [9] replacement mechanism, common-
ly used in highly associative LLCs, can select a victim from 
within conventional ways by constraining the tree traversal to 
a sub-tree structure of the conventional ways in a given set.  

B. Managing Dynamic Dataless Ways 
For workloads with few stale blocks in the LLC and high 

LLC usage, DDWs should be kept low (or even zero) to avoid 
significant performance degradation, while they should be 
used more for workloads with many stale blocks to save ener-
gy. DDWs effectively reduce LLC capacity when it is not 
needed, which provides additional power savings similar to 
dynamic cache-sizing techniques [3]. However, turning off 
only the data (but not metadata) in the LLC leaves data in the 
private caches. In contrast, if entire ways (metadata+data) are 
disabled then inclusion requires eviction of the corresponding 
data from private caches.  

In the following we describe the implementation details per-
taining to creation of DDWs and hardware monitoring mecha-
nisms to decide the number of dataless ways.  

1) Creating Dynamic Dataless Ways 
Dynamically enabling dataless ways requires mechanisms to 

designate and disable the data portion of selects ways. First, 
data ways in the LLC must be modified to support turning 
them on/off. Second, the FreshCache controller should be able 
to designate a set of contiguous data ways in the LLC to turn 
off. The FreshCache always keeps all dataless ways contigu-
ous as it enables simpler design of cache block replacement 
mechanism as mentioned Section IV.A. Finally, the controller 
flushes out any dirty data from those ways to the memory.  
The flush operation is carried out in the background without 
blocking other requests.  

2) DDW Controller: Provisioning DDWs 
At a high level, the DDW controller monitors current cache 

performance against an user-specified policy goals, and ad-
justs the number of DDWs up or down to achieve that goal.  

Depending upon execution environment and the purpose, the 
relative importance of performance and energy savings can 
vary. Thus, FreshCache design enables a user to provide the 
relative importance of energy savings and performance by 

 
Figure 3. LLC controller with LLC having dataless ways. 
 

 
Figure 4. Hardware Control for Dynamic Dataless 

Ways (DDW).  Additions are shaded. 
 



  
  

 
  

specifying a maximum performance degradation (MPD) value. 
The FreshCache aims to minimize cache energy as long as the 
percentage performance degradation relative to the baseline 
design with conventional LLC remains within this user-
provided MPD value. A high value of MPD indicates the us-
er’s willingness to save more energy at cost of potentially 
larger performance degradation, while a low value of MPD 
indicates greater importance for performance. The DDW con-
troller will find the number of DDWs that saves the most en-
ergy as long as estimated performance degradation stays with-
in this limit. In our implementation MPD is expressed as inte-
ger percent performance degradation over the baseline with a 
conventional LLC. The software provides the desired MPD 
value to the hardware by writing to a designated register.  

As depicted in Figure 4, the DDW controller is built from 
three components: (1) a miss-rate estimator to predict cache 
behavior with different numbers of dataless ways, (2) config-
ured miss latency and energy savings values, and (3) a 
memory-level parallelism estimator to calculate the perfor-
mance cost of misses. With these components, the controller 
predicts the performance loss and energy savings from differ-
ent numbers of dataless ways and selects the greatest savings 
with performance above the MPD threshold. 

We use a slightly modified version of Qureshi et al.’s cache 
utility monitoring mechanism [32] to estimate the number of 
off-chip misses with a given number of dataless ways.  As 
depicted in Figure 4, the monitor adds an auxiliary tag array of 
the same set-associativity as the LLC but containing only one 
of every 32 sets using set-sampling [31]. This structure simu-
lates hits and misses for each way in the set in the recency 
order. Counters keep track of the hit count for each way. We 
modify Qureshi’s proposal by incrementing the hit counter for 
a way only when there is a cache hit that a dataless way could 
not have served (e.g., read miss for shared data from a private 
cache but not for exclusive data in another private cache) in-
stead of on all hits. The hit counter values provide an estima-
tion of the number of misses in an LLC when a given number 
of ways are rendered dataless.  The estimated miss numbers 
for each possible number of dataless ways are then fed to 
DDW controller. 

The controller computes the estimated performance degrada-
tion for each number of DDWs by multiplying the estimated 
number of misses with the expected LLC miss latency (pro-
vided) and dividing this total miss latency by the estimated 
memory level parallelism. The parallelism is calculated as the 
fraction of misses across different cores. 

Finally, the controller computes the energy savings using 
configured values for the static energy saved by turning off 
data ways and estimated energy cost of each off-chip accesses 
from a miss. While worse performance also increases energy 
due to running longer, the current implementation of the DDW 
controller does not incorporate this cost. From the predicted 
energy savings and predicted performance degradation, the 
controller then chooses the number of DDWs with perfor-
mance cost less than the MPD and with most energy savings.  

This analysis is carried out periodically every 50M cycles, at 
which point the controller signals the FreshCache controller to 

increase or decrease the number of DDWs as depicted in Fig-
ure 4. The additional hardware structures needed for predicting 
cache misses adds 12KB of state overhead for a LLC with 
4MB data capacity (< 0.3%). 

C. Putting all together 
In summary, FreshCache uses static dataless ways (SDWs) 

to save area and energy and uses dynamic dataless ways 
(DDWs) to opportunistically save more energy as and when 
workload characteristics permit. At runtime, the FreshCache 
controller actively guides cache blocks with stale data towards 
dataless ways (SDWs and DDWs) to hide potential perfor-
mance loss. The number of SDWs is fixed conservatively at 
design time to ensure acceptable worst case performance 
across range of workloads while allowing reasonable area and 
energy savings. At runtime, the DDW controller monitors the 
workload characteristics and chooses the number of DDWs 
against a user-specified upper limit on performance degrada-
tion to enable the highest energy savings possible.  

V. Evaluation 

   We evaluate the FreshCache design to quantify its benefits: 

• How much energy and area can be saved by FreshCache? 
• How big are the benefits of FreshCache’s hybrid approach 

in reducing LLC area and power?    

Further, we measure the performance overhead due to Fresh-
Cache. 

A. Simulation Methodology 
We use the gem5 full system simulator [6] to model an x86-

64 machine running Linux (kernel version 2.6.28.4).   
We simulated a multi-core chip with 8 cores and three levels 

of caches. The parameters for simulation are shown in Table 1. 
The L2:L3 ratio is 1:4. The absolute sizes of the simulated 
caches are scaled down by at least a factor of two compared to 
real processors for better simulation speed.  However, shrink-
ing caches likely to make our gains conservative as the per-
formance cost of dataless ways for larger caches likely to be 
lower than for our experiments.  

We extended CACTI 6.5 [27] to model the power and the ar-
ea of our proposed LLC designs with dataless ways. We 
plugged its estimates into the full-system simulation to obtain 
power consumption. For the LLC, we used low-power transis-
tors with a 32 nm process. We estimate that an LLC with the 
configuration in Table 1 draws 0.8 watt of static power while 
each off-chip access costs 16 nJ of energy. 

B. Workloads 
We use a mix of programs from Parsec [30] and three com-
mercial-like multithreaded workloads to evaluate FreshCache. 
For all the Parsec workloads we use the native (largest) input 
set. We simulated SpecJBB 2005 [42], which models the mid-
dle-tier business logic of a three-tier web service; memcached 
[26], a memory cache frequently used by web services; and 
graph500 [25], a graph traversal algorithm useful in HPC en-
vironments. 



  
  

 
  

 

C. FreshCache Savings 
   In this section we present the results of our evaluation of a 

FreshCache design that uses two SDWs, and up to 14 DDWs 
selected dynamically at runtime by the DDW controller. We 
use 2 SDWs because our experiments showed that it incurs 
negligible performance cost (0.08% average, 0.46% worst 
case), while larger values had more than 1% worst case cost. 
Thus, using 2 SDWs has low risk of negatively impacting per-
formance while still providing useful area and power savings. 

In Figure 5 we show the energy, area, and performance im-
pact of FreshCache with varying MPD values (1, 3, and 5%). 
The first cluster of bars in Figure 5 shows the energy saved in 
the LLC and DRAM access normalized to a baseline system 
with no dataless ways. The top of each stack in the stacked 
bars shows the percentage energy savings for the correspond-
ing MPD values (indicated by the legend) for the given work-
load. For example, on average, 28% of energy is saved with 
MPD=1% and above 44% with MPD=5%.  We observe that 
across all workloads substantial energy is saved by Fresh-
Cache; however, savings varies widely across workloads. For 
example, with MPD=3%, FreshCache can save nearly 69% of 
the LLC and the DRAM energy for fluidanimate, but only 8% 
of energy savings for graph500. 

   We also observe that across almost all workloads, energy 
benefits begin to diminish as the MPD increases. Higher per-
formance losses result in longer run times, which results in 
static energy use for a longer time, and more off-chip accesses, 
which use more dynamic energy. Above a threshold, energy 
saving from the DDWs is unable to offset the increase due to 
longer runtimes and off-chip misses. 

 The singleton bar in the middle shows the percentage of the 
area of a conventional LLC eliminated by FreshCache. The 
area savings are due to SDWs in the FreshCache and do not 
change with workload or MPD values. As mentioned earlier in 
the section we evaluated FreshCache with 2 SDWs. This saves 
8.2% of LLC area, which is substantial given that LLCs often 
account for more than 50% of the chip area.  

 The third cluster of stacked bars in the Figure 5 shows the 
percentage performance loss for each value of MPD relative to 
the baseline with a conventional LLC. For example we ob-
serve that for MPD=3%, on average performance dropped 
1.7%. Importantly, we observe that across all workloads the 

DDW controller is able to keep the performance degradation 
within the limit stipulated by the MPD. We also observe that 
the actual performance loss was often much below the speci-
fied MPD value. 

 This occurs for many reasons. First, above a certain thresh-
old, the static-energy savings from DDWs are unable to offset 
the energy consumption increase from more off-chip misses 
and a longer run time. Thus, even if a user accepts more per-
formance degradation, it would not save more energy. Second, 
the DDW controller never lets performance for a single period 
(50M cycles here) drop below the threshold.  This is a stricter 
condition than the average MPD for a full run of the program. 

Putting all three clusters together, we see that FreshCache 
can save significant energy and non-negligible area at the cost 
of small or negligible performance loss, well within the user 
specified limits to performance degradation. With MPD=3%, 
FreshCache reduces energy on average by 41% and area by 
8.2% for a mere 1.7% actual reduction in performance. 

Is the hybrid approch of FreshCache necessary?   
FreshCache proposes a hybrid of a static chip design time 

and a dynamic runtime technique to utilize the dataless ways 
to enable area and energy savings in LLC. Here, we compare 
FreshCache against a pure static (like NCID [41]) and a pure 
dynamic approaches (like Selective Cache Ways [3]) to 
understand whether the hybrid aproach is justified or not.  

    Figure 6 depicts the tradeoffs of purely static design, 
purely dynamic and FreshCache in terms of energy savings, 
area saving and performance impact. For static designs we 
evaluated two configurations: a conservative configuration 
with 2 SDWs (Static-2) and an agressive configuration with 8 
SDWs (Static-8). These two designs do not use DDWs. To 
undestand the potential of purely dynamic approach we 
profiled each application to select the best number of DDWs 
for each application for MPD=3% (DynamicOffline-3). 
Finally, FreshCache-3 is FreshCache design with MPD=3%. 
Similar to Figure 5, the first set of bars show energy savings 
over the conventional LLC. We observe that Static-2 yields 
the least energy savings across all the configurations studied 
(8.2%), while, as expected, Static-8 provided better energy 
savings (36%). However, this is still well below FreshCache-
3, which provides 40.7% energy savings. We note that Fresh-
Cache lies between the optimal offline settings (Dynami-
cOffline-3, with 44% saving) and the aggressive static design 
but does so without requiring software profiling. The second 

 
Figure 5. Energy/area savings and performance degradation with FreshCache.  
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Figure 6. Energy savings and performance degradation for dynamic dataless ways under hardware control. 

set of bars in Figure 6 depicts the percentage of LLC area sav-
ings. As expected, the greatest area savings (35%) comes from 
the aggressive static design (Static-8). The FreshCache and the 
conservative static design (Static-2) both provide non-
negligible (8.2%) LLC area savings. A pure dynamic approach 
saves no area. 

The final set of bars shows the performance loss of using 
these approaches compared to a conventional LLC design. 
Except for the aggressive static design (Static-8), all other de-
signs limit the worst case performance degradation to 3% 
across all workloads, and often much less. However, the ag-
gressive static design can lead to more than 10% performance 
degradation (graph500), which may be unacceptable. Further, 
3 of the workloads (facesim, memcached, specJBB) suffer at 
least 6.5% performance degradation. In contrast, FreshCache 
limits performance loss for all workloads, since it exploits 
dataless ways to save more energy only when the opportunity 
exists. 

Summary: If a conservative static design is used then ener-
gy savings are moderate and opportunity to save more is lost 
for many workloads. If an aggressive static design is used then 
it leads to large performance degradations for some workloads. 
If a pure dynamic approach is used, then we get the energy 
savings and high performance, but lose out on the area sav-
ings. Thus, only the hybrid approach put forth by FreshCache 
enables both chip area savings and significant energy savings. 

VI.  Related Work 
Researchers have previously proposed cache designs that de-

couple tags and data in a last level cache [4,41]. In particular, 
NCID [41] make use of dataless ways to bring the snoop filter-
ing benefits of inclusive LLC designs to exclusive/non-
inclusive caches. On the other hand, FreshCache maintains an 
inclusive coherence protocol with only a slight change, and the 
remaining changes are localized to the cache controller with-
out affecting the protocol state machine. More importantly, 
NCID seeks to reduce invalidations to private caches and to 
support QoS in the LLC, while the FreshCache provides both 
power and area savings. Finally, we show how to dynamically 
vary the number of dataless ways to take advantage of work-
load characteristics, while NCID is a purely static design. 

FreshCache bears similarity to Albonesi’s Selective Cache 
Ways [3], with which software can turn off a desired numbers 

of ways in L1 cache. However, our FreshCache design targets 
the LLC and exploits the availability of stale cache blocks to 
minimize any increase in off-chip accesses. More importantly, 
unlike Selective Cache Ways, FreshCache can save substantial 
on-chip area as well. Several other proposals also looked into 
selectively turning off cache ways at runtime to save energy 
[13,42,44]. However, none of these techniques save area.   

Several researchers have suggested predicting and exploiting 
dead blocks in caches [19,21,24,34]. A cache block is dead 
from the time it is last referenced until it is evicted from the 
cache.  Our notion of a valid cache block with stale data is 
different from a dead block, as a valid cache block with stale 
data in the LLC may not be dead; it could possibly be accessed 
again after a private cache gives up its exclusive rights. Unlike 
these works, which require predicting when a cache block be-
comes dead, it is easy to know when a cache block contains 
stale data by interpreting its coherence state.  While these 
works focus on enhancing the performance of the cache, we 
focus instead on designing an area- and power-efficient LLC.  

Qureshi et al.’s V-way cache [33] proposed a decoupled, 
pointer-linked tag and data store for set-associative caches 
where number of tags is a multiple of the number of data ways 
in order to reduce the number of conflict misses in the cache. 
Chishti et al.’s CMP-NuRAPID [11] also uses decoupled, 
pointer-linked tag and data store to allow for controlled repli-
cation and capacity management in a NUCA cache to get the 
best of both shared and private organization of large caches.  
Similar to FreshCache, these works have more tag than data, 
but for different purposes than our objective of area and power 
efficiency.  

Jaleel et al. proposed a novel cache replacement policy to 
bridge the performance gap between inclusive and exclusive 
caches [17]. They observe that the performance difference 
between inclusive and non-inclusive design stems from the 
bad replacement decisions made at an inclusive LLC that back 
invalidates “hot” blocks from the private caches. They address 
this by proposing an LLC replacement policy that is aware of 
the temporal locality in private caches. Their policy can also 
be applied in FreshCache to improve performance.  

FreshCache also bears similarities to victim caches and ex-
clusive/non-inclusive caches, which like FreshCache, may not 
keep a copy of a data present in the private cache. However, as 
mentioned earlier, FreshCache keeps the simplicity of inclu-
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sive coherence protocol with no or negligible changes. Where-
as a LLC designed as victim cache or exclusive cache requires 
very different cache and coherence controller.   

   Researchers have proposed circuit techniques like Gated-
Vdd [29] to selectively turn off cache blocks by adding extra 
gated-transistors to SRAM cells. Flauntner et al. proposed 
Drowsy caches [13], where multiple supply voltages are used 
to enable SRAM cells to go into a low power mode where they 
keep the data but cannot be accessed immediately. FreshCache 
in contrast, proposes a reorganization of the cache architecture 
that enables considerable area savings via static dataless ways.  

VII. Conclusion 
   FreshCache statically and dynamically reduces power 

through dataless ways. FreshCache also makes the LLC more 
area efficient. The design comes from the observation that in 
inclusive LLCs a significant fraction of valid blocks contain 
stale data. Rather than give up the coherence benefits of inclu-
sion, we instead take advantage of stale data. At design time, 
FreshCache uses static dataless ways to save area and power, 
while at runtime uses dynamic dataless ways to further reduce 
substantial amount of power when opportunity exists.   
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