
Gables: A Roofline Model for Mobile SoCs

Mark D. Hill∗

Computer Sciences Department

University of Wisconsin—Madison

markhill@cs.wisc.edu

Vijay Janapa Reddi∗

School Of Engineering And Applied Sciences

Harvard University

vj@eecs.harvard.edu

Abstract—Over a billion mobile consumer system-on-chip
(SoC) chipsets ship each year. Of these, the mobile consumer
market undoubtedly involving smartphones has a significant
market share. Most modern smartphones comprise of advanced
SoC architectures that are made up of multiple cores, GPS, and
many different programmable and fixed-function accelerators
connected via a complex hierarchy of interconnects with the goal
of running a dozen or more critical software usecases under strict
power, thermal and energy constraints. The steadily growing
complexity of a modern SoC challenges hardware computer
architects on how best to do early stage ideation. Late SoC
design typically relies on detailed full-system simulation once
the hardware is specified and accelerator software is written
or ported. However, early-stage SoC design must often select
accelerators before a single line of software is written. To help
frame SoC thinking and guide early stage mobile SoC design,
in this paper we contribute the Gables model that refines
and retargets the Roofline model—designed originally for the
performance and bandwidth limits of a multicore chip—to model
each accelerator on a SoC, to apportion work concurrently
among different accelerators (justified by our usecase analysis),
and calculate a SoC performance upper bound. We evaluate the
Gables model with an existing SoC and develop several extensions
that allow Gables to inform early stage mobile SoC design.

Index Terms—Accelerator architectures, Mobile computing,
Processor architecture, System-on-Chip

I. INTRODUCTION

Processor architecture continues to evolve from single-core

microprocessors to multicore chips to complex systems on a

chip (SoCs). The last transition is driven by both a technology

push and an application pull. The push is the end of Dennard

Scaling and slowing of Moore Law that encourages using

accelerators that are more energy-efficient than CPU cores

at some computations. The pull is application trends toward

computations that are both “special purpose” and ubiquitous

from video processing to deep neural network processing.

Nowhere is the trend toward heterogeneous SoCs more

evident than in consumer electronics, such as SoCs for smart-

phones. On the one hand, there are over two billion Android

devices in the world [1] and over a quarter million SoC chips

ship every 30 minutes [2]. In 1934, Thomas J. Watson Sr.’s

1934 predicted the need for five computers for the world;

today the need is closer to five per person. On the other hand,

these SoCs are diverse and have grown into powerful computer

∗This work was conceived and largely done while the authors were
embedded in a Google consumer product group as research “interns.”

systems with multiple cores, GPUs, and many accelerators—

often called intellectual property (IP) blocks, driven by the

need for performance. These cores and IPs interact via rich

interconnection networks, caches, coherence, 64-bit address

spaces, virtual memory, and virtualization. Therefore, con-

sumer SoCs deserve the architecture community’s attention.

Consumer SoCs have long thrived on tight integration and

extreme heterogeneity, driven by the need for high perfor-

mance in severely constrained battery and thermal power

envelopes, and all-day battery life. A typical mobile SoC in-

cludes a camera image signal processor (ISP) for high-frame-

rate, low-latency camera, a digital signal processor (DSP) for

on-device AI/VR/AR, a high-speed modem for LTE and WiFi

connectivity with diverse set protocols, and video encoders

and decoders for video playback and video capture, etc. These

specialized processing engines deliver an order of magnitude

improvement in performance and power efficiency compared

to the general-purpose application processor (AP). As a result,

in most mobile SoCs, the AP occupies only between 15 to 30

percent of the total chip area [3], [4]. The rest of the area

is dedicated to these specialized processing engines, and as

a result mobile devices deliver desktop PC-like experiences

under a tight 3 Watt thermal design point constraint [5].

While IP diversity and heterogeneity in a SoC provide a

healthy dose of alternatives for the system integrator (i.e., a

company integrating the SoC into a phone), it also presents

them with several unique challenges. On the one hand, SoC

designers struggle to determine what architectural design fea-

tures are most likely to be useful in a future SoC—this must be

done three years ahead of time. On the other hand, end-users

(i.e., application designers) need to evaluate several different

trade-offs between the different SoCs to determine which SoC

best suits their performance, power and cost targets.

Addressing either of the challenges is not easy. There is no

industry standard way to characterize, evaluate and compare

mobile SoCs. Today’s most widely used SoC performance

evaluation tools are based on post silicon benchmarking, using

tools such as Geekbench [6] and AnTuTu [7], which fall

short of what is desired. These benchmarks focus on the CPU

and memory subsystem and mostly ignore the rest of the

SoC components. Therefore, they fall short in characterizing

the rich heterogeneous capabilities of a SoC. Furthermore,

existing benchmarking tools are geared toward post-silicon

measurement and testing, not pre-silicon exploration.

Designing, creating and selecting computer systems requires

317

2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCA.2019.00047

principled methods, and consumer mobile SoCs are no differ-

ent. The primary mode in computer architecture has been the

use of cycle-level simulation, and we expect this to continue

in the later stages of SoC design. However, the early stages

of SoC design have questions like, “Which IPs should my

SoC include and roughly how big?” Also, SoC customers

face a challenge of down-selecting among alternative already-

designed SoCs with different IPs of different sizes.

It is not practical to use cycle-level simulation for the early-

stage questions due to the substantial cost of “porting” SoC

workloads among alternatives. Today, a consumer SoC must

enable 10-20 important “usecases”—like making a phone call

or watching a movie—to all run acceptably well. The average

is immaterial. Moving current usecases among alternative

designs is expensive and time-consuming as targeting different

IPs is closer to re-writing aspects of code than to “porting.”

Moreover, one must plan for future usecases 2-3 years in

advance of when the SoC is deployed in a product and when

the software may not be completely be written. With cycle-

level simulation not available for early decisions, one can turn

to intuition, a few SoC parameters, or—as we advocate—using

a SoC and workload usecase parameters to drive a model.

To facilitate early stage SoC design or selection, we re-

purpose the Roofline performance model [8]. Roofline applies

bottleneck analysis [9] to a processor chip, originally a multi-

core chip. It models the chip hardware with peak computation

performance (Ppeak) and peak off-chip memory bandwidth

(Bpeak), and models software with operational intensity (I)

that is the average number of operations (e.g., floating-point)

per off-chip byte transferred to/from memory. Operational

intensity reminds us that data reuse is critical to managing

bandwidth use.1 Figure 1 gives a plot of log maximum attain-

able performance (y-axis) that is upper-bounded by bandwidth

(angled line) or peak performance (horizontal line) depending

on software’s log operational intensity (x-axis). Roofline plots

can add ceilings that are the lesser bounds due to restrictions.

The Roofline model has not been applied to consumer SoCs.

Part of the challenge is defining overall peak performance for

a SoC with many different accelerators, rather than a single

homogeneous multicore chip. For this reason, we instead apply

Roofline to individual SoC accelerators where we see it as

most appropriate. We then contribute the Gables SoC model,

which is a generalization of Roofline’s bottleneck analysis. In

its base form, Gables targets a SoC for N IP blocks (e.g.,

CPU complex and accelerators) that can operate in parallel

with each other and memory transfers. Gables models SoC

hardware with a roofline for each IP and an equation of

their shared memory bandwidth demand. Gables models a

workload usecase with work fraction (like Amdahl’s Law) and

operational intensity at each IP and can then calculate the

usecase’s maximal attainable performance on the SoC. We

evaluate Gables using a micro-benchmark on modern SoCs.

We contribute extensions of the base Gables model that are

1Without reuse, double-precision multiply-accumulate can have operational

intensity as low as 0.063 =
1
16

=
2 operations

4∗8 bytes
.

Figure 1: Roofline model [8]. Reprinted with permission.

valuable in their own right and illustrate that many other

extensions are possible. We develop extensions for a memory-

side memory/scratchpad/cache and interconnect topologies and

usecases where work is serialized among IPs. In addition, we

provide an open-source Gables mobile app and an interactive

visualization tool to facilitate deeper understanding [10].

In summary, we make the following contributions:

• We describe a real-world problem facing the industry,

specifically in designing SoCs for future systems.

• We present the Gables performance model for complex

SoC design and early stage design space exploration.

• We show how the insights derived from Gables apply to

commercially available mobile SoCs.

318

(a) Total number of SoC chipsets found “in the wild.” (b) Increasing level of on-die heterogeneity for a modern SoC.

Figure 2: (a) We mined the data for the mobile chipsets from GSM arena [11], which encompasses over 9165 phone models

and 109 different device brands. (b) The data for the number of IP blocks is based on the findings by Shao et al. [4].

II. MOBILE SOC BACKGROUND

Most modern SoCs, such as those found in smartphones,

are costly and complex systems that contain multiple IPs.

Each year, new SoCs, with growing complexity, are released

into the consumer market to keep pace with ambitious user

demands and expectations. As a result, SoCs have thrived

over the past decade. Figure 2a shows the number of new

SoCs that have been introduced into the market each year

since 2007. Over the course of nearly ten years, SoC vendors

have sought to identify critical differentiating factors that set

their architecture apart from their competition. This has led

to the healthy diversification of chipsets in the SoC consumer

market with some recently evident consolidation that caused

a decline following 2015.2 At the same time, it has also led

to growing chip complexity. Figure 2b shows the estimated

number of IPs in a state of the art SoC over the past several

generations. The number of IPs has steadily climbed to over

30 IPs. To better understand the Gables performance model

that we present later, we next give background into mobile

SoC hardware architecture and application software usecases.

A. SoC Architecture

Figure 3 shows an example block diagram of a typical

modern SoC. Unsurprisingly, it consists of a CPU (AP) and

GPU cluster complex. Most modern smartphones rely on

asymmetric processing with big out-of-order cores handling

user facing and computationally demanding tasks, while the

little in-order cores handle background processing tasks, such

as checking email and triggering notifications. Many of the

2Based upon further analysis of the data in Figure 2a we postulate that
the drop in the number of SoCs following 2015 is due to many companies
dropping out of the competitive, low-margin mobile consumer market. For
instance, Texas Instruments (TI) stopped producing the OMAP processor line
and Intel departed from the consumer smartphone market. Our analysis also
causes us to postulate that vendors consolidated their chipset offerings to
manage the complexity of supporting diverse offerings. For instance, in 2014,
there were 49 Qualcomm chipsets, whereas, in 2017, there were only 27.

SoCs contain only big and small CPUs, but, as of late,

MediaTek introduced a new “middle” tier [12], creating three

levels of the heterogeneity within the CPU complex alone.

In addition to the CPU and GPU, there are a plethora of

other processing engines in a mobile SoC. In fact, the mobile

CPU complex only takes about 25 to 30% of the total die

area [4], [3], and the rest of it is dedicated to these specialized

processing engines. Figure 3 includes a few to illustrate the

point. Briefly, many of these IPs are responsible for doing the

heavy lifting under computationally intensive scenarios.

The key to the success of the IPs is that they provide

significant horsepower at relatively low power consumption

compared to a CPU. For instance, the Pixel Visual Core (IPU)

from Google [13] in a Pixel 3 smartphone is designed to

accelerate High-Dynamic-Range (HDR) processing in camera

applications. HDR is a computationally intensive task for

extending the range of luminosity rather than what is possible

using standard image processing techniques. The IPU is an

8-core processor (by itself) that can perform three trillion

operations per second per core, allowing it to do HDR+

processing 5X faster than the main application processor at

one-tenth of the power. Similarly, the Qualcomm Hexagon

Digital Signal Processor (DSP) is a power-house for machine

learning intelligence and computer vision (8X faster than

the CPU, and 4X more quickly than the GPU) at nearly

8X and 25X more energy efficient than the CPU and GPU

respectively [14].

Many, if not all of these hardware IPs, are clustered into a

hierarchical network fabric(s). In Figure 3, we show multiple

network fabrics, each with its speeds and feeds. Depending

on the IPs bandwidth and latency requirements, the IPs are

clustered together within different fabric hierarchy levels.

B. Usecases

Applications in the SoC world are commonly referred to as

“usecases.” These application usecases are best represented as

319

CPU CPU

CPU CPU

CPU

CPU

CPU

CPU

L2

High Bandwidth Fabric

Memory
Controller

LPDDR LPDDR LPDDR

Multimedia Fabric

System Fabric

LPDDR

Sensors

Flash

LTE
Modem

GPS/WiFi/BT

mDSP DSP

Shader … Shader

Shader

Shader

GPU

…

Shader

Shader cDSP

HW Audio/Video
Encoders and Decoders

ISP

JPEG G2D
Scaler

Peripheral Fabric

USB

USB

Figure 3: An example diagram of a mobile SoC, showing

different compute engines that are clustered together across

different interconnect fabrics. Picture is not drawn to scale.

application-level data flows from sensors to the processing en-

gines. Figure 4 shows an example usecase for stream internet

content over WiFi. The general usecase flow for this scenario

is as such: IP packets streaming over WiFi are processed into a

user/application-level buffer into insecure memory. The audio

and video streams are separated, decrypted by the crypto block

(or the CPU), and stored in secure memory. Both the video

decoder and audio streams buffer some number of seconds

of playback to account for network delays. The audio DSP

(such as the Hexagon DSP from Qualcomm) initiates a Direct

Memory Access (DMA) transfer into its SRAM, and the

video decoder reads the video stream and starts generating

frame buffers in memory that will be consumed by a display

controller. The audio stream is encoded until it hits the Audio

DSP. The CPU is only shown when it streams data. It may

have control flow aspects which are not shown in this figure.

In a mobile SoC, it is typical that the usecase dataflows

exercise multiple IPs concurrently. Table I shows five different

usecases and the set of different IPs that are commonly applied

inside the SoC. In the interest of space, we only show five

usecases. All five usecases correspond to the camera applica-

tion. The camera application is one of the most heavily used

apps in a smartphone, and it has strict real-time performance

guarantees to maintain. Otherwise, the user’s experience can

suffer. Hence, we discuss it in detail here. Across all of

the camera usecases in Table I, at least half of all IPs are

concurrently active. Hence, the performance of a usecase can

be primarily determined by all of the concurrent activity that

is going on inside the chip. This contrasts with Amdahl’s Law

where work at different IPs is serialized.

The performance of a usecase is strongly dependent upon

three fundamental aspects. The first of these is the computa-

tional performance of the individual IPs, which is affected by

the isolated capability of the execution engine, as well as the

IP-internal memory hierarchy and interconnect that supports

Figure 4: Streaming Internet content over WiFi usecase.

that engine. Any part of the concurrent application data flow

can become a bottleneck if the overall IP’s performance is

not fast enough to maintain a steady stream in the overall

processing rate.

The second is IP-external data movement. Camera appli-

cations, in particular, can consume a significant amount of

memory bandwidth at high frame rates (HFR). Let us consider

the example of a “4K” Video Recording at 240 frames per

second (FPS). A 4K image is 3840x2160 pixels per frame.

Assuming a YUV420 color encoding system, which uses 6

bytes per 4 pixels, the frame size approximately amounts to

12 MB. Processing such a large image at high frame rates,

with data moving between the different IPs, such as the Image

Signal Processor (ISP) for wavelet noise reduction (WNR) and

temporal noise reduction (TNR), while keeping track of as

many as five reference frames, through the DRAM, can cause

the memory bandwidth of a mobile SoC (around 30 GB/s) to

become the bottleneck.

The third major usecase bottleneck is the coordination

overhead between the IPs, which by and large today are routed

through the CPU. Since the IPs are exposed as individual de-

vices, at least in Android, the CPU gets an explicit interruption

whenever the IP finishes processing. And the CPU must handle

the task of signaling the consumer of that data to start.

Understanding which of the aforementioned reasons can

cause the system to suffer from a bottleneck is a challenging

task for any SoC integrator. Hence, it is useful to have early

stage tools for guiding the overall architecture of the SoC.

III. GABLES: A MULTI-IP ROOFLINE MODEL

The key challenge with holistically characterizing and un-

derstanding mobile SoC performance with many accelerators

is that it is difficult to gather insight into the performance of

the SoC as a whole. Unlike in CPU and GPU systems, where

the characteristics of the system and an application running

on that system can be studied by isolating the specific IP, the

performance of a mobile SoC and its usecase is the result of

concurrent activity across multiple IPs. Therefore, the goal of

our approach is to design a model that can provide intuition

and insight for SoCs, much like Roofline does for multicore

chips and Amdahl’s Law does for parallel systems in general.

In this section, we present the Gables SoC performance

model where hardware has a Roofline for each IP, and a

320

Usecases AP Display G2DS GPU ISP JPEG IPU VDEC VENC DSP

HDR+ � � � � � �

Videocapture � � � � �

Videocapture (HFR) � � � � �

Videoplayback UI � � � � �

Google Lens � � � � �

Table I: The table shows a variety of applications usecases that are typically exercised on a mobile smartphone SoC. For each

usecase, the table indicates which of the IPs are exercised concurrently. Not all IPs are shown, but it suffices to show that in all

of the usecases multiple different IPs are exercised concurrently. Moreover, different usecases use different IPs simultaneously.

workload usecase apportions work among the different IPs.

The model can be used to determine the critical limitation

for performance in a mobile SoC and can be visualized via

multiple rooflines on a single plot. Although we specifically

focus on mobile systems, which are at the forefront of ex-

tremely heterogeneous computing, the model is generalizable

for application to any SoC design.

A. SoC Model and High-level Assumptions

Gables targets the SoC shown in Figure 5, typical of

a modern SoC, that has N IP blocks, IP[i], i=0, N-1, an

interface to external DRAM memory, and high-bandwidth on-

chip interconnect. For easy reference, Table II provides all the

Gables parameters that this section will introduce.

The baseline for the Gables model makes several hardware

assumptions. First, each IP[i] has a roofline defined by its

peak performance and bandwidth in and out of the IP. Second,

all IPs on the SoC operate concurrently (as rationalized

in Section II-B) and share bandwidth to off-chip memory.

Third, the on-chip interconnect has sufficient bandwidth to

be modeled by just the bandwidths that connect to it from

the IPs and off-chip memory. Fourth, all substantial inter-IP

communication occurs via DRAM memory where multiple-

megabyte buffering/rate-matching is possible.

Figure 5: N-IP SoC with Gables.

The base model also makes software usecase assumptions.

First, a usecase is divided into concurrent non-negative work

at each IP[i], following the usecase observations of Section

II-B. Second, a usecase’s operational intensity at each IP may

be different, either because various aspects of the work are

assigned to different IPs and/or the IPs have different internal

caches or scratchpads, e.g., for latency reduction versus latency

tolerance. Third, we assume that the software concurrently

exercises multiple IPs, also as per the rationale we presented

earlier in Section II-B and summarized in Table I.

B. Two-IP Model: A Primer

We first introduce Gables with a two-IP SoC as it is

notionally more straightforward and all concepts extend to an

N-IP SoC. An example two-IP SoC might have IP[0] as the

CPU (Application Processor) complex and IP[1] as a GPU.

Let the SoC’s peak off-chip memory bandwidth be Bpeak.

The Gables model assumes that both IPs have a roofline

defined by hardware and an operating point picked by the

usecase. IP[0] hardware has peak computation performance

Ppeak and bandwidth in and out of B0. IP[1] hardware has

peak computation performance A · Ppeak, where A is its

acceleration, and bandwidth in and out of B1. A given usecase

will assign (1-f) work to IP[0] with operational intensity I0
and f work to IP[1] with operational intensity I1, where 0 ≤

f ≤ 1. At a broad level, this follows Amdahl’s Law except

that the work occurs in parallel rather than sequentially.

Runtime. Gables assumes that the time for the SoC to com-

plete a usecase can be limited by the time at IP[0], IP[1], or the

DRAM memory interface. First, IP[0]’s computation time is

its work divided by its peak performance: C0 = (1−f)/Ppeak.

The data capacity (bytes) IP[0] needs to do this work is that

work divided by its operational intensity: D0 = (1 − f)/I0.

The minimum time to transfer IP[0]’s needed data is this data

capacity divided by IP[0]’s bandwidth to the interconnect:

D0/B0. Finally, IP[0]’s minimum time to execute the usecase

is the maximum of its data transfer and computation times:

TIP [0] = max(
D0

B0
, C0) (1)

Second, IP[1]’s equations follow a similar pattern with the

slightly different inputs of peak performance A · Ppeak, IP

321

Parameter Description

HW Inputs

Ppeak Peak performance of CPUs (ops/sec)

Bpeak Peak off-chip bandwidth (bytes/sec)

Ai Peak acceleration of IP[i] (unitless)

Bi Peak bandwidth to/from IP[i] (bytes/sec)

SW Inputs

fi Fraction of usecase work at IP[i] (ops)

Ii Operational intensity of usecase at IP[i] (ops/byte)

Tmp Values

Ci Compute time at IP[i] (sec)

Di Data transferred for IP[i] (bytes)

TIP [i] Time at IP[i] (sec)

Tmemory Time on chip memory interface (sec)

Output

Pattainable Upper bound on SoC Performance (ops/sec)

Table II: Glossary of Gables model parameters.

bandwidth B1, work f , and operational intensity I1 to yield

C1 = f/(A · Ppeak), D1 = f/I1 and:

TIP [1] = max(
D1

B1
, C1) (2)

Third, the minimum time to transfer data on/off chip is the

total data to be transferred divided by memory bandwidth:

Tmemory =
D0 +D1

Bpeak

(3)

Fourth, a SoC’s maximal attainable performance is inversely

proportional to the maximum of times at each component:

Pattainable =
1

max(TIP [0], TIP [1], Tmemory)
(4)

Performance/Roofline. Alternately, via algebra and re-

expanding terms, the following performance equations provide

the dual of the above time equations when 0 < f < 1:

1

TIP [0]
=

min(B0 · I0, Ppeak)

(1− f)
(5)

1

TIP [1]
=

min(B1 · I1, A · Ppeak)

f
(6)

1

Tmemory

= Bpeak · Iavg (7)

where Iavg = 1/((1 − f)/I0) + (f/I1)), the harmonic mean

of I0 and I1 weighted by fraction of work at each IP.

Pattainable = min(
1

TIP [0]
,

1

TIP [1]
,

1

Tmemory

) (8)

Note that (a) Equations 5 and 6 are just IP rooflines scaled

by dividing by fraction of work, (b) Equation 7 is memory’s

slanted-only roofline, and (c) Equation 8 picks the smallest

roofline. The disadvantage of these performance equations is

that one must remove the IP[1] term if f = 0 and IP[0] term

if f = 1 to avoid divide-by-zero exceptions while handling

all of 0 ≤ f ≤ 1. Their key advantage is that they enable the

multi-roofline visualizations, which we develop next.

C. Visualizing Gables via Scaled Rooflines

Here we develop multi-roofline plots for Gables that:

• use axes following Roofline (x-axis log operational in-

tensity I and y-axis log performance attainable Patt),

• display three scaled rooflines from Equations 5-7 by

varying their operational intensities over the x-axis,

• add “drop lines” where operation intensities I0, I1, and

Iavg select performance on each roofline, and

• reveal performance attainable as the lowest selected point

among the rooflines, following Equation 8.

Figure 6 illustrates an example sequence of two-IP Gables

where our example posits that IP[0] is a CPU complex with

caches that support data reuse, while IP[1] is a GPU designed

for latency tolerance, not bandwidth reduction. We begin with

hardware inputs Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s,

A1 = 5, B0 = 6 and B1 = 15. For the software usecase,

we assume I0 = 8 operations/byte on IP[0], I1 = 0.1
for IP[1], and f = 0. As Figure 6a illustrates I[0] limits

performance to 40 Gops/s, memory at 80 Gops/s, while IP[1]

is not shown since it is assigned no work (f = 0). Overall

peformance is 40 Gop/s, equal to IP[0]’s lesser performance,

and is disappointing because unused IP[1] can do 200 Gops/s.

As illustrated in Figure 6b, we seek more performance with

the obvious change of assigning work to IP[1] by setting

f = 0.75. However, performance drops to 1.3 Gops/s (rounded

to 1). Why? The answer is that the memory bandwidth we

apportioned is inadequate due to the low data reuse at IP[1]

(I1 = 0.1) that makes IP[1] and memory rooflines provide

their bounds to the far left as operational intensities near 0.1.

If memory bandwidth is problem, perhaps it makes sense to

increase Bpeak from 10 to 30 GB/s with the result illustrated

in Figure 6c. This increases performance from 1.3 to 2 Gops/s,

but this is still disappointing. Moreover, it moves the memory

roofline well above the other two bounds, incurring additional

expense without benefit (for this usecase).

Figure 6d shows our final SoC with two changes. First,

we increase I1 from 0.1 to 8 (like IP[0]) by adding memory

(registers/scratchpads/caches) to IP[1] and ensuring that the

usecase reuses data from it (easier said than done). Second,

we reduce Bpeak from 30 down to a sufficient 20 Gops/s.

This results in overall performance of 160 Gops/s with all

three rooflines equal at I = 8, a perfectly balanced design.

322

(a) With initial parameters, performance matches CPU’s 40 Gops/s
at assumed operational intensity I0 = 8, as the GPU is not used.

(b) Changing f from 0 to 0.75 to use the GPU drops performance to
1.3 Gop/s (rounded to 1) as the GPUs poor data reuse (operational
intensity I1 = 0.1 at far left) makes memory bandwidth inadequate.

(c) Increasing memory bandwidth Bpeak from 10 to 30 GB/s
increases performance to only 2 Gops/s.

(d) Increasing GPU data reuse I1 from 0.1 to 8 and decreasing Bpeak

to a sufficient 20 GB/s achieves 160 Gops/s performance with all three
rooflines equal at I = 8, achieving a balanced design.

Figure 6: Two-IP SoC model. IP[0] is the CPU. IP[1] is assumed to be the GPU. The parameters for the figures progress from

(a) to (d). So, for instance, to interpret the results in (c) one must understand the parameters as they were setup in (a) and (b).

This example shows some (teaching) value for the two-IP

Gables. The GPU can be substituted with any other accelerator

with respect to the CPU, and the same set of conclusions

would hold. But the full power of Gables awaits handling

more-complex N-IP SoCs, which we develop next.

D. Multi-IP Model

Here we generalize the Two-IP model to a SoC with N

different IP[i], i = 0, N-1 of Figure 5. The SoC continues

to have Ppeak computation performance at IP[0] and off-

chip memory bandwidth Bpeak. Each IP[i] has performance

Ai · Ppeak and bandwidth Bi, were A0 must be 1. A usecase

assigns each IP[i] concurrent work fi at operational intensity

Ii where the fi’s are non-negative and sum to 1. At each

IP[i], computation time Ci = fi/(Ai ·Ppeak), data transferred

Di = fi/Ii, and minimum time:

TIP [i] = max(
Di

Bi

, Ci) (9)

The minimum time at the memory interface is the total data

transferred divided by memory bandwidth:

Tmemory =

∑N−1
i=0 Di

Bpeak

(10)

And the usecase’s maximal attainable performance on the

N-IP Soc is:

Pattainable =
1

max(TIP [0], ..., TIP [N−1], Tmemory)

(11)

323

The dual performance/roofline equations follow with IP[i]

terms omitted whenever fi = 0 (to avoid dividing by zero)

and using weighted harmonic mean Iavg = 1/(
∑N−1

i=0 fi/Ii).

1

TIP [i]
=

min(Bi · Ii, Ai · Ppeak)

fi
(12)

1

Tmemory

= Bpeak · Iavg (13)

Pattainable = min(...,
1

TIP [i]
, ...,

1

Tmemory

) (14)

The above equations complete the base Gables model, but

extensions and variations are possible (Section V).

Fortunately, the two-IP Gables plots also generalize to

visualize N IPs with a scaled roofline for each IP used

plus a memory roofline. See the Gables home page [10] for

interactive visualizations for both two-IP and three-IP SoCs,

as well as a pointer to the Gables open-source Android app.

IV. EXPERIMENTAL EVALUATION

To explore whether the Gables SoC roofline model provides

insight, we use it to empirically examine existing consumer

smartphone SoCs that are commercially available off-the-

shelf. The exact roofline of a black-box chip or IP is hard

to ascertain correctly. An optimistic estimate of a roofline

uses manufacturer’s specifications (if available). These might

multiply the speed and number of functional units to get a

number that cannot be exceeded but may not be attainable.

Alternatively, a pessimistic estimate of a roofline uses varying

micro-benchmarks to seek the best achievable performance.

These estimates yield a roofline that is attainable but may not

be the best performance possible (i.e., it may be the ceiling).

In this section, we use the latter empirical method (i.e., the

ceiling) to see whether Gables provides insight regarding a

SoC even if the ultimate peak performance is not unearthed.

A. Methods

We determine the rooflines for the three most common

general purpose compute engines found in mobile SoCs:

the CPU, GPU, and the DSP. The goal is to evaluate how

accurately the Gables model can assess real hardware behavior.

Gables’s performance predictions as parameters change should

at the very least have the correct shape and reasonable relative

error. Note, however, that Gables leaves the goal of high-

quality absolute, yet almost never attainable, accuracy to a

cycle-level simulation of executing the usecase software.

We conduct our evaluation on two commercially available

Qualcomm SoCs, the Snapdragon 835 [15], and the Snap-

dragon 821 [16]. We ran experiments on the three most

programmable engines on these mobile SoCs: the CPU, GPU,

and DSP. Our findings hold true for both systems, hence here

Algorithm 1 The pseudocode for how to vary the operational

intensity for the CPU, GPU and DSP (and other IPs).

1: procedure GABLES ROOFLINE KERNEL(trials, size) �
alpha, beta: variables for dummy work

2: alpha← 0.5;
3: for i← 0, trials do

4: for n← 0, size do

5: beta← 0.5;
6: #if FLOPS_PER_BYTE == 2

7: beta← beta ∗A[i] + alpha
8: #elif FLOPS_PER_BYTE == 4

9: beta← beta ∗A[i] + alpha
10: beta← beta ∗A[i] + alpha
11: #elif ...

12: ...

13: #endif

14: A[i]← beta;
15: end for

16: end for

17: end procedure

forth we discuss the results only for the latest of the two

chipsets (i.e., the Qualcomm Snapdragon 835).

The Snapdragon 835 includes the Qualcomm Kryo TM

CPU, an Adreno TM 540 GPU, a Hexagon TM 682 Digital

Signal Processor (DSP), in addition to several other domain-

specific accelerators, such as the modem and audio/video

encoders. The CPU has eight cores (up to 1.9 GHz). The GPU

focuses on graphics (OpenGL, DX12) with limited general-

purpose support and it boasts a maximum of 540 GFLOPS/s

at slightly over 700 MHz. The DSP processes very wide (1024

bits) integer vectors with limited single precision (SP) support

using a dedicated scalar processor with four threads, and it

can be clocked at 920 MHz for peak operation.

Algorithm 1 illustrates the micro-benchmark we run on each

IP. The basic idea is to have all of an IP processing elements

load each word in an array of a certain size and perform

some number of operations on it. We vary the array size to

see how performance changes for different memory footprints.

We modify the number of operations per word to control the

operational intensity, and repeatedly benchmark this kernel

on different IPs to determine their bandwidth (GB/s) and

computational limits (GFLOPS/s) of the system. The structure

of this computational kernel was initially conceived by the

authors of the Empirical Roofline Toolkit [17].

By default, the word size we assume in our algorithm is

32-bits, and the operation is a single-precision floating-point

multiply. Single-precision is a compromise between double-

precision historically preferred by scientific computation and

the half-precision (or less) favored by emerging algorithms

(e.g., machine learning inference). All three engines (CPU,

GPU, and DSP) support IEEE compatible single-precision,

hence they are comparable. To indeed achieve peak perfor-

mance, one should leverage the full SIMD capabilities of the

324

compute engines, which we discuss later on.

Processor overheating and throttling is a significant issue

since the code is severely floating point (FP) intensive. There-

fore, we benchmark the devices in a thermally controlled unit.

Otherwise, performance can vary significantly from one run

to another. Furthermore, many vendor-specific knobs are used

to disable performance and power monitoring governors to

ensure repeatable and sustained high performance.

We developed an open-source Gables Android mobile ap-

plication, which can be used to evaluate different mobile

chipsets efficiently. The Android app uses the Java Native

Interface (JNI) to implement the CPU, GPU, and DSP kernels

to ensure high performance and no interruptions during pro-

gram execution. We program the CPU kernel using C++ and

OpenMP [18] pragmas to facilitate multithreading necessary

to load all the cores. CUDA support is virtually nonexistent

on consumer smartphones and OpenCL is not widely adopted

by ARM and Qualcomm. Therefore, we program the Adreno

GPU using OpenGL ES 3.1 [19], re-purposing the graphics

shader pipeline for general purpose computing. We program

the Qualcomm Hexagon DSP using the Qualcomm Interface

Definition Language (IDL) toolchain [20].

B. CPU and GPU Rooflines

As we did in Section III-C, we begin our exploration with

two IPs: the CPU (IP[0]) and GPU (IP[1]). Figure 7a shows

our empirically derived roofline estimates for CPU IP[0]. The

peak performance is 7.5 GFLOPS/s, which can be seen as

low. We are not running a NEON (SIMD) instruction set

optimized microbenchmark. When we apply vectorization to

the code with compiler support we can achieve in excess of 40

GFLOP/s (not shown). The exact benchmark we use does not

affect our later analysis, as long as we stay consistent with one

benchmark. Hereonforward, we only refer to the non-NEON

peak performance. The bandwidth to DRAM is 15.1 GB/s,

which is only 50% of the peak. The stated theoretical peak

bandwidth is 30 GB/s. The bandwidth is lower, in part, because

we perform both read and write operations in Algorithm 1.

We use this as our basis for our analysis, because this is more

common in useful programs than read-only accesses.3

From this test alone, one cannot tell whether that bandwidth

is limited by the bandwidth from IP[0] (B0), the bandwidth

off-chip (Bpeak), or some other entity (e.g., interconnect). The

CPU can obtain higher bandwidth from its internal L1 and L2

caches by using smaller micro-benchmark array sizes.

Figure 7b shows our empirically derived roofline estimates

for the Adreno GPU IP[1]. In the case of the GPU, since it

is generally more of a streaming workload used mainly for

rendering graphics, rather than general purpose compute, we

apply a slight variant of the kernel. We perform a stream read

from an array and update another array, much like in the CPU

STREAM kernel, which allows the GPU to maximize its read

3As a sanity check, we also ran a read-only version of the micro-benchmark
(not shown) that achieves close to 20 GB/s and is consistent with long-standing
benchmarks STREAM [21] and lmbench [22].

 0.1

 1

 10

 0.01 0.1 1 10 100

7.5 GFLOPs/sec (Maximum)

D
R

A
M

 -
15

.1
 G

B
/s

G
F

LO
P

s
/ s

ec

FLOPs / Byte

(a) CPU.

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100

349.6 GFLOPs/sec (Maximum)

DRAM
 -

24
.4

 G
B/s

G
F

LO
P

s
/ s

ec

FLOPs / Byte

(b) GPU.

Figure 7: Two-IP Roofline for the CPU and GPU.

bandwidth and compute capability; such a scenario is more

typical of GPU applications than CPU applications.

The theoretical peak performance for the Adreno 540 TM is

567 GFLOPS. The peak performance we were able to obtain is

349.6 GFLOPS/s. This enables us to estimate its acceleration

with respect to the CPU as A1 = 349.6/7.5 = 46.6 ≈ 47X .

This 47X diminishes down to less than an order of magnitude

when aggressive SIMD optimization is enabled, which is in

line with prior conclusions [23]. The peak DRAM bandwidth

325

Figure 8: Performance improvement as different amount of

work is offloaded to the accelerator IP[1].

is higher at 24 GB/s, as one would expect. The GPU is

concurrently running 1024 workgroups with 256 threads each.

C. Gables for Two IPs

In this section we empirically examine the Snapdragon chip

running our microbenchmark on CPUs and GPUs following

the work fraction and operational intensity assumptions of

Gables to show that Gables provides some insights.

Figure 8 displays results. The y-axis gives performance

normalized to all work on the CPU IP[0] (f = 0) with

operational intensity I0 = 1. The x shows the fraction of work

f at the GPU from 0 (all work at CPU) to 1 (all at GPU) in

increments of 1/8. All runs do the same total amount of work

(number of single-precision ops) and IPs operate in parallel

when 0 < f < 1. Different lines show different operational

intensities from 1 to 1024 ops per byte.

It is hard to draw absolute conclusions from the data,

nevertheless there are general trends we can observe. First,

we find that when operational intensity is low, offloading work

from the CPU to the GPU results in a performance slowdown

(but one as bad as the terrible performance of Figure 6b). This

result indicates that one should not offload low operational

intensity work to the GPU. Second, when operational intensity

is high, offloading work from the CPU to the faster GPU

results in substantial speedup, e.g., 39.4 for I0 = I1 = 1024.

Hence, acceleration can work (no surprises there) but the

important piece to understand is that the benefits, which

we can achieve through hardware accelerators is strongly

a function of the inherent workload characteristics, which

includes not only the fraction of work that is being offloaded

but also the operational intensity of that fraction that is being

offloaded.

D. Toward N-IP SoC

As a step toward applying Gables for more than two IPs,

we also constructed the roofline for the Hexagon DSP and

proceeded with “mixing” analysis like in the previous section.

One can think of the Hexagon DSP as having two components:

(a) a low-power scalar unit designed to be (almost) always

 0.01

 0.1

 1

 10

 0.01 0.1 1 10 100

3.0 GFLOPs/sec (Maximum)

G
F

LO
P

s
/ s

ec

FLOPs / Byte

D
R

AM
 -

5.
4

G
B/

s

Figure 9: DSP roofline for the scalar threads. The y-axis scale

here is smaller than Figure 7 because we use the HVX scalar

engine, and not the high-performance (non-IEEE compliant

FP) vector engine (see details in Section IV-D).

on and (b) a high-performance integer-only vector unit (4096

bits per cycle). We chose to focus on the scalar unit as it can

execute the single-precision floating-point operations of our

micro-benchmark and allows us to compare and contrast.

Figure 9 shows the roofline of Hexagon DSP’s scalar unit.

We obtain performance of 3.0 GFLOPS/s on Algorithm 1 that

is somewhat less than the maximum 3.6 GFLOPS/s predicted

for four threads by the spec. While the acceleration relative

to the CPU is low, the scalar DSP provides value for low-

power offload, leaving acceleration the vector units. The DSP’s

bandwidth is limited to 12.5 GB/s, much less than the CPU and

GPU and likely due to using a different interconnect fabric,

as illustrated for a generic SoC by Figure 3.

We performed some “mixing” analysis by having the DSP

scalar unit do work in parallel with CPU and GPU. We do

not show results here, because the scalar DSP was too wimpy

to substantially perturb CPU-GPU behavior. We will examine

using the DSP vector unit, but this will require method changes

as the DSP operates only on integer vectors.

V. MODEL EXTENSIONS

The Gables model provides a platform from which further

extensions are possible, including the three that we discuss

in this section. We present extensions to address scratch-

pad/caches, on-chip interconnects, and serial/exclusive work.

A. Memory-Side Memory/Scratchpad/Cache

The Gables model assumes a SoC where all substantial

inter-IP communication occurs via DRAM memory where

326

Figure 10: N-IP SoC with on-chip memory extension.

multiple-megabyte buffering/rate-matching is possible. An al-

ternative is to add memory to the SoC or package that is

shared so that it can buffer inter-IP communication and other

IP data. Options include an on-chip “memory side” scratchpad

or cache, as well as a high-bandwidth memory attached to

the SoC with many through-silicon vias and organized as a

software-managed memory or cache.

Figure 10 illustrates an N-IP SoC with memory added to

reduce DRAM bandwidth use. This extension assumes that

IP[i]’s memory references now go to DRAM with probability

mi (e.g., misses) and are reused from the new memory with

complementary probability (1 − mi) where good reuse has

mi � 1. Values for mi’s depend on properties of both the

SoC (e.g., memory size) and the usecase (e.g., reuse by IP[i]’s

references). This new memory reduces IP[i]’s off-chip traffic

to D ”prime”—D′i = mi ·Di—and total off-chip demand also

uses primes:

Tmemory =

N−1∑

i=0

D′i

Bpeak

(15)

The maximal attainable performance of the N-IP Soc with

this extension is uses Section III-C’s Equation 11 with the

above Tmemory term.

B. On-Chip Interconnect

The base Gables model assumes a SoC where the on-chip

interconnect has sufficient bandwidth to be modeled by the

bandwidths that connect to it from the IPs (Bi’s) or memory

(Bpeak), but without modeling its internal topology.

This extension models the interconnect in more detail as

some topology of Q interconnection networks that we col-

loquially denote as Bus[j], j = 0, Q-1. Each bus contributes

the diagonal part of a roofline due to its bandwidth BBus[j]

that proceeds unbounded, as a bus has no computational limit.

Figure 11: N-IP SoC with detailed interconnect extension.

Following bottleneck analysis, we assume that buses operate

concurrently with each other, IPs, and the memory interface.

Figure 11 illustrates an N-IP SoC with interconnection net-

works (buses) modeled in more detail.

The data that flows over a bus depends on assumptions. Here

we continue base Gable’s assumption that inter-IP data travel

via memory (or memory-side scratchpad/cache of the previous

extension) and add the assumption that each IP[i] has one bus

path to/from memory. Let Use(i,j) be 1 if IP[i] uses Bus[j] and

0 if it doesn’t use the bus. Then the time each Bus[j] requires

is the data that uses the bus divided by the bus’s bandwidth:

TBus[j] =

N−1∑

i=0

Di · Use(i, j)

Bj

(16)

The N-IP SoC formula must add terms for each potential

bus bottleneck:

Pattainable = 1/(max(Tmemory,

TIP [0], ..., TIP [N−1]),

TBus[0], ..., TBus[Q−1])

(17)

Further extensions to richer topologies (e.g., multiple al-

ternative bus paths) and/or richer flows (e.g., directly among

IPs) are straightforward at the cost of more assumptions,

parameters, and notation. However, we often find that “less is

more” when it comes to models for providing early insights.

C. Exclusive/Serialized Work

The base Gables model assumes a usecase is divided into

concurrent work at each IP[i], consistent with the usecase

discussion of Section II-B.

It is straightforward to model exclusive or serialized work,

where only one IP is active at a time. This generalizes the

327

computational assumptions of Amdahl’s Law and matches

those of MultiAmdahl [24] (see Section VI). Neither of these

models, however, include data transfer times.

We also assume that each IP transfers its needed data

concurrently with its own execution. For this reason, we

modify the equation for the time at IP[i] (Equation 9) to

include a new term for the time transferring its needed data

from/to offchip (Di/Bpeak) with the original two terms (data

transfer time from IP[i], and IP[i] execution time) to get:

T ′IP [i] = max(
Di

Bpeak

,
Di

Bi

, Ci) (18)

Finally, the equation for Pattainable changes two ways from

the base Gables Equation 11. First, Tmemory is omitted since

off-chip data transfer are included in T ′
IP [i]. Second, exclusive

work uses the sum of T ′
IP [i] rather than the maximum used

for concurrent work:

Pattainable =
1

T ′
IP [0] + ...+ T ′

IP [N−1]

(19)

More complex combinations of parallel and serialized work

are possible with more assumptions, parameters, and notation.

At some point, however, this complexity is too much for early

decisions. As statistician George Box said in 1987, Essentially,

all models are wrong, but some are useful.

VI. PRIOR WORK ON MODELING

Models have long been important to computer architecture.

Some of these include the following. First, Amdahl’s Law [25]

relates the impact of speeding up or parallelizing part of a

computation to its impact on whole computation’s speedup. It

reminds us that we must beware of the aspects that are not sped

up. Second, the Iron Law [26] partitions program execution

time on a processor core into instructions
program

× cycles
instruction

× time
cycle

.

It reminds us to focus on the product of all three terms

rather than a subset, e.g., clock frequency only. Third, the 3C

Model [27] partitions cache misses into compulsory, capacity,

and conflict misses. It reminds us of the source of cache misses

and led to victim caches and stream buffers [28].

Roofline, discussed earlier, and Gables, introduced in this

paper, are both special cases of bottleneck analysis [9]. Bottle-

neck analysis models the maximum throughput (or bandwidth)

of a system by recursively combining component throughputs

with two simple rules. First, the throughput of a subsystem of

components in parallel is the sum of the component through-

puts. Second, the throughput of a subsystem of components

in series is the minimum of the component throughputs.

MultiAmdahl [24] is the model most closely related to

Gables. MultiAmdahl also models an N-IP SoC, computes

each IP’s performance as a function of resources used (e.g.,

area), divides work sequentially (i.e., exclusively) among IPs,

and computes an optimal resource allocation among the dif-

ferent IPs. The most important difference between the two

models is that Gables models bandwidth bounds both leaving

each IP[i] to the on-chip interconnect (Bi’s) and leaving the

SoC for DRAM (Bpeak). This follows Roofline’s view that

data movement is a first-order consideration, as is true for

consumer SoCs that process video, audio, and other streams.

A secondary difference is that base Gables assumes concurrent

rather than sequential work (Section II-B), while the Gables

extension of Section V-C eliminates this difference.

Both MultiAmdahl and Gables can also be placed in the

tradition of adapting Amdahl’s Law to new architectures,

with other examples targeting large parallel processors [29],

multicore chips [30], and data centers [31]. Gables, however,

builds on Roofline and Amdahl’s Law together.

While Gables models each IP with a simple roofline,

future work could incorporate more-sophisticated sub-models,

regarding on-chip memory trade-offs [32], IP interaction over-

heads [33], specific IPs like GPUs [34], etc.

VII. SUMMARY AND CONJECTURES

To frame SoC thinking and aid early SoC design, this paper

contributes to the Gables model. Gables retargets the Roofline

model to model each accelerator on a SoC, apportions work

concurrently among different accelerators, and calculates a

SoC performance upper bound. We evaluate the Gables model

with an existing SoC and develop several extensions that allow

Gables to guide early stage SoC design.

We end this paper with conjectures regarding Gables that

appear true but will require future work to establish robustly.

First, SoC models, such as Gables, will be valuable for SoC

design and selection before cycle-level simulation is feasible.

As the computer architecture industry increasingly leans on

designing accelerators for delivering future performance, we

will see a strong need to develop systematic methodologies

for understanding balanced design and accelerator selection

at an early stage with relatively few parameters. Subsequent

conjectures discuss the value of Gables’s specific parameters.

Second, there is value in determining the rooflines of

individual SoC IPs, i.e., their acceleration Ai and bandwidth

B[i]. We found, for example, that this gave us insight into

Snapdragon chips with more effort than we expected but much

less effort than porting full usecases.

Third, it is critical to estimate the fraction of work fi at each

IP for important usecases. Doing this can illuminate whether

an IP is over-designed to provide more acceleration (Ai) than

is justified by the work assigned to it. Amdahl’s Law again.

Fourth, operation intensity Ii bears careful thought, as

data reuse is critical to reducing the bandwidths required.

High operational intensity requires considerations from both

hardware—–providing sufficient registers/scratchpad/cache

within an IP—and software—–algorithmic changes to use the

local memory well. Operational intensity can also illuminate

pitfalls, such as adding more IP-local memory even when

important usecases don’t/can’t use the added capacity to

increase reuse (e.g., when the next reuse opportunity requires

much larger local memory).

328

VIII. ACKNOWLEDGEMENTS

We thank Google for hosting our academic sabbatical visits

and the gChips team members for enhancing this work,

including Benjamin Dodge, Ali Iranli, Allan Knies, Xiaoyu

Ma, Albert Meixner, Ofer Shacham and Hongil Yoon. Gables’s

scaled roofline plots were conceived by Penporn Koanantakool

as a replacement for our original 3D graphical version and

the scaled plots were implemented by Nikhita Kunati. At

Wisconsin, Hill is supported by NSF CCF-1617824, NSF

CNS-1815656, and John P. Morgridge Endowed Chair.

REFERENCES

[1] V. J. Reddi, H. Yoon, and A. Knies, “Two billion devices and counting,”
IEEE Micro, vol. 38, pp. 6–21, January 2018.

[2] “ARM financial results.” https://www.arm.com/-/media/global/
company/investors/Financial\%20Result\%20Docs/Arm SB Q4
2017 Roadshow Slides Final.pdf?revision=97c97bdd-76f3-4c98-
a106-538680bb8d68&la=en. Accessed: 2018-07-30.

[3] “ARM AND QUALCOMM: Enabling the Next Mobile Computing
Revolution with Highly Integrated ARMv8-A based SoCs.” https://www.
arm.com/files/pdf/ARM Qualcomm White paper Final.pdf. Accessed:
2018-08-3.

[4] Y. S. Shao, B. Reagen, G. Y. Wei, and D. Brooks, “The Aladdin
Approach to Accelerator Design and Modeling,” IEEE Micro, vol. 35,
pp. 58–70, May 2015.

[5] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile Cpu’s Rise to Power:
Quantifying the Impact of Generational Mobile Cpu Design Trends
on Performance, Energy, and User Satisfaction,” in High Performance

Computer Architecture (HPCA), 2016 IEEE International Symposium

on, pp. 64–76, IEEE, 2016.

[6] “Primate labs geekbench.” https://www.primatelabs.com. Accessed:
2018-08-2.

[7] “Antutu benchmark.” http://www.antutu.com/en/index.htm. Accessed:
2018-08-2.

[8] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Communica-

tions of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[9] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quanti-

tative System Performance: Computer System Analysis Using Queueing

Network Models. Prentice-Hall, Inc., 1984.

[10] “Gables Home Page.” http://research.cs.wisc.edu/multifacet/gables/.

[11] “GSMArena.” https://www.gsmarena.com. Accessed: 2018-08-2.

[12] “MediaTek helio x30.” http://i.mediatek.com/heliox30. Accessed: 2018-
07-30.

[13] “Pixel visual core: image processing and machine learning on pixel
2.” https://www.blog.google/products/pixel/pixel-visual-core-image-
processing-and-machine-learning-pixel-2/. Accessed: 2018-08-2.

[14] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke,
C. Koob, A. Ingle, C. Tabony, and R. Maule, “Hexagon DSP: An
Architecture Optimized for Mobile Multimedia and Communications,”
IEEE Micro, no. 2, pp. 34–43, 2014.

[15] “Qualcomm snapdragon 835.” https://www.qualcomm.com/media/
documents/files/snapdragon-835-mobile-platform-product-brief.pdf.
Accessed: 2018-07-30.

[16] “Qualcomm snapdragon 821.” https://www.qualcomm.com/media/
documents/files/snapdragon-821-processor-product-brief.pdf. Accessed:
2018-07-30.

[17] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery,
N. J. Wright, M. W. Hall, and L. Oliker, “Roofline Model Toolkit: A
Practical Tool for Architectural and Program Analysis,” in International

Workshop on Performance Modeling, Benchmarking and Simulation of

High Performance Computer Systems, pp. 129–148, Springer, 2014.

[18] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for
Shared-Memory Programming,” IEEE computational science and engi-

neering, vol. 5, no. 1, pp. 46–55, 1998.

[19] D. Shreiner, B. T. K. O. A. W. Group, et al., OpenGL Programming

Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1.
Pearson Education, 2009.

[20] “Hexagon V60 HVX Programmer’s Reference Manual.”
https://developer.qualcomm.com/download/hexagon/hexagon-v60-
hvx-programmers-reference-manual.pdf. Accessed: 2018-08-2.

[21] J. D. McCalpin, “STREAM Benchmark,” Link: www. cs. virginia.

edu/stream/ref. html# what, vol. 22, 1995.

[22] L. W. McVoy, C. Staelin, et al., “Lmbench: Portable Tools for Perfor-
mance Analysis.,” in USENIX annual technical conference, pp. 279–294,
San Diego, CA, USA, 1996.

[23] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, et al., “De-
bunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU,” ACM SIGARCH computer architecture

news, vol. 38, no. 3, pp. 451–460, 2010.

[24] I. Keslassy, U. Weiser, and T. Zidenberg, “Multiamdahl: How should
i divide my heterogenous chip?,” IEEE Computer Architecture Letters,
vol. 11, pp. 65–68, 07 2012.

[25] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,

1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), (New
York, NY, USA), pp. 483–485, ACM, 1967.

[26] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach. Elsevier, 2019.

[27] M. D. Hill and A. J. Smith, “Evaluating Associativity in CPU Caches,”
IEEE Transactions on Computers, vol. 38, no. 12, pp. 1612–1630, 1989.

[28] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ACM SIGARCH Computer Architecture News, vol. 18, no. 2SI, pp. 364–
373, 1990.

[29] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Communications of the

ACM, vol. 31, no. 5, pp. 532–533, 1988.

[30] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,”
Computer, vol. 41, no. 7, 2008.

[31] C. Delimitrou and C. Kozyrakis, “Amdahl’s Law for Tail Latency,”
Communications of the ACM, vol. 61, no. 8, pp. 65–72, 2018.

[32] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C.
Weiser, “Many-Core vs. Many-Thread Machines: Stay Away From the
Valley,” IEEE Computer Architecture Letters, no. 1, pp. 25–28, 2009.

[33] M. S. B. Altaf and D. A. Wood, “LogCA: A High-Level Performance
Model for Hardware Accelerators,” in ACM SIGARCH Computer Archi-

tecture News, vol. 45, pp. 375–388, ACM, 2017.

[34] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of Gpu
Memory System for Multi-Application Execution,” in Proceedings of

the 2015 International Symposium on Memory Systems, pp. 223–234,
ACM, 2015.

329

APPENDIX

The appendix provides specific numbers used to create Figures 6a–6d. “(NEW)” indicates a changed input parameter.

Formulae

1 / TIP [0] = MIN(B0 * I0, Ppeak) / (1 – f), f �= 1

1 / TIP [1] = MIN(B1 * I1, A1 * Ppeak) / f , f �= 0

1 / Tmemory = Bpeak * Iavg where Iavg = 1/[(1 - f) / I0) + (f / I1)]

Pattainable = MIN(1/TIP [0], 1/TIP [1], 1/Tmemory)

Figure 6a

Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A1 = 5, B0 = 6 and B1 = 15.

I0 = 8 operations/byte at IP[0], I1 = 0.1 at IP[1], and f = 0.00.

1 / TIP [0] = MIN(6 * 8, 40) / 1.0 = 40, f �= 1

1 / TIP [1] = MIN(B1 * I1, A1 * Ppeak) / f , f �= 0, Moot since f = 0

1 / Tmemory = 10 * 8 = 80 where Iavg = 8 since f = 0

Pattainable = MIN(40 , –, 80) = 40 Gops/s

Figure 6b

Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A1 = 5, B0 = 6 and B1 = 15.

I0 = 8 operations/byte at IP[0], I1 = 0.1 at IP[1], and f = 0.75 (NEW).

1 / TIP [0] = MIN(6 * 8, 40) / 0.25 = 40/0.25 = 160

1 / TIP [1] = MIN(15 * 0.1, 5 * 40) / 0.75 = 1.5/0.75 = 2

1 / Tmemory = 10 * Iavg where Iavg = 1/[(0.25/ 8) + (0.75 / 0.1)] = 0.13278

1 / Tmemory = 10 * 0.13278 = 1.3

Pattainable = MIN(160, 2, 1.3) = 1.3 Gops/s

Figure 6c

Ppeak = 40 Gops/s, Bpeak = 30 Gbytes/s (NEW), A1 = 5, B0 = 6 and B1 = 15.

I0 = 8 operations/byte at IP[0], I1 = 0.1 at IP[1], and f = 0.75.

1 / TIP [0] = MIN(6 * 8, 40) / 0.25 = 40/0.25 = 160

1 / TIP [1] = MIN(15 * 0.1, 5 * 40) / 0.75 = 1.5/0.75 = 2

1 / Tmemory = 30 * Iavg where Iavg = 1/[(0.25/ 8) + (0.75 / 0.1)] = 0.13278

1 / Tmemory = 30 * 0.13278 = 3.98

Pattainable = MIN(160, 2, 3.98) = 2.0 Gops/s

Figure 6d

Ppeak = 40 Gops/s, Bpeak = 20 Gbytes/s (NEW), A1 = 5, B0 = 6 and B1 = 15.

I0 = 8 operations/byte at IP[0], I1 = 8 (NEW) at IP[1], and f = 0.75.

1 / TIP [0] = MIN(6 * 8, 40) / 0.25 = 40/0.25 = 160

1 / TIP [1] = MIN(15 * 8, 5 * 40) / 0.75 = 120/0.75 = 160

1 / Tmemory = 20 * 8 = 160

Pattainable = MIN(160 , 160, 160) = 160 Gops/s

330

