
1

QuickRelease:
A	
 Throughput-­‐oriented	
 Approach	
 to	
 Release	
 Consistency	
 on	
 GPUs

Blake A. Hechtman†§, Shuai Che†, Derek R. Hower†, Yingying Tian†Ϯ, Bradford M. Beckmann†,
Mark D. Hill‡†, Steven K. Reinhardt†, David A. Wood‡†

†Advanced Micro Devices,

Inc.
§Duke University

Electrical and Computer
Engineering

‡University of Wisconsin-
Madison

Computer Sciences

Ϯ Texas A&M University
Computer Science and

Engineering

 blake.hechtman@duke.edu {derek.hower, shuai.che,
brad.beckmann,

steve.reinhardt}@amd.com

{markhill, david}@cs.wisc.edu yingyingtian@tamu.edu

Abstract

Graphics processing units (GPUs) have specialized
throughput-oriented memory systems optimized for stream-
ing writes with scratchpad memories to capture locality
explicitly. Expanding the utility of GPUs beyond graphics
encourages designs that simplify programming (e.g., using
caches instead of scratchpads) and better support irregular
applications with finer-grain synchronization. Our hypothe-
sis is that, like CPUs, GPUs will benefit from caches and
coherence, but that CPU-style “read for ownership” (RFO)
coherence is inappropriate to maintain support for regular
streaming workloads.

This paper proposes QuickRelease (QR), which improves on
conventional GPU memory systems in two ways. First, QR
uses a FIFO to enforce the partial order of writes so that
synchronization operations can complete without frequent
cache flushes. Thus, non-synchronizing threads in QR can
re-use cached data even when other threads are performing
synchronization. Second, QR partitions the resources re-
quired by reads and writes to reduce the penalty of writes
on read performance.

Simulation results across a wide variety of general-purpose
GPU workloads show that QR achieves a 7% average per-
formance improvement compared to a conventional GPU
memory system. Furthermore, for emerging workloads with
finer-grain synchronization, QR achieves up to 42% per-
formance improvement compared to a conventional GPU
memory system without the scalability challenges of RFO
coherence. To this end, QR provides a throughput-oriented
solution to provide fine-grain synchronization on GPUs.

1. Introduction
Graphics processing units (GPUs) provide tremendous
throughput with outstanding performance-to-power ratios
on graphics and graphics-like workloads by specializing the
GPU architecture for the characteristics of these workloads.
In particular, GPU memory systems are optimized to stream
through large data structures with coarse-grain and relative-

ly infrequent synchronization. Because synchronization is
rare, current systems implement memory fences with slow
and inefficient mechanisms. However, in an effort to expand
the reach of their products, vendors are pushing to make
GPUs more general-purpose and accessible to programmers
who are not experts in the graphics domain. A key compo-
nent of that push is to simplify graphics memory with sup-
port for flat addressing, fine-grain synchronization, and co-
herence between CPU and GPU threads [1].

However, designers must be careful when altering graphics
architectures to support new features. While more generality
can help expand the reach of GPUs, that generality cannot
be at the expense of throughput. Notably, this means that
borrowing solutions from CPU designs, such as “read for
ownership” (RFO) coherence, that optimize for latency and
cache re-use likely will not lead to viable solutions [2]. Sim-
ilarly, brute-force solutions, such as making all shared data
non-cacheable, also are not likely to be viable because they
severely limit throughput and efficiency.

Meanwhile, write-through (WT) GPU memory systems can
provide higher throughput for streaming workloads, but
those memory systems will not perform as well for general-
purpose GPU (GPGPU) workloads that exhibit temporal
locality [3]. An alternative design is to use a write-back or
write-combining cache that keeps dirty blocks in cache for a
longer period of time (e.g., until evicted by an LRU re-
placement policy). Write-combining caches are a hybrid
between WT and write-back caches in which multiple writes
can be combined before reaching memory. While these
caches may accelerate workloads with temporal locality
within a single wavefront (warp, 64 threads), they require
significant overhead to manage synchronization among
wavefronts simultaneously executing on the same compute
unit (CU) and incur a penalty for performing synchroniza-
tion. In particular, write-combining caches require finding
and evicting all dirty data written by a given wavefront,
presumably by performing a heavy-weight iteration over all
cache blocks. This overhead discourages fine-grain syn-
chronization that we predict will be necessary for broader

2

success of GPGPU compute. To this end, no current GPUs
use write-combining caches for globally shared data (how-
ever, GPUs do use write-combining caches for graphic spe-
cific operations such as image, texture, and private writes).

In this paper, we propose a GPU cache architecture called
QuickRelease (QR) that is designed for throughput-oriented,
fine-grain synchronization without degrading GPU
memory-streaming performance. In QR, we “wrap” conven-
tional GPU write-combining caches with a write-tracking
component called the synchronization FIFO (S-FIFO). The
S-FIFO is a simple hardware FIFO that tracks writes that
have not completed ahead of an ordered set of releases.
With the S-FIFO, QR caches can maintain the correct partial
order between writes and synchronization operations while
avoiding unnecessary inter-wavefront interference cause by
cache flushes.

When a store is written into a cache, the address also is
enqueued onto the S-FIFO. When the address reaches the
head of the S-FIFO, the cache is forced to evict the cache
block if that address is still present in the write cache. With
this organization, the system can implement a release syn-
chronization operation by simply enqueueing a release
marker onto the S-FIFO. When the marker reaches the head
of the queue, the system can be sure that all prior stores
have reached the next level of memory. Because the S-FIFO
and cache are decoupled, the memory system can utilize
aggressive write-combining caches that work well for
graphics workloads.

Figure 1 shows an example of QR. In the example, we show
two threads from different CUs (a.k.a. NVIDIA streaming
multi-processors) communicating a value in a simple GPU
system that contains one level of write-combining cache.

When a thread performs a write, it writes the value into the
write-combining cache and enqueues the address at the tail
of the S-FIFO (time �). The cache block then is kept in the
L1 until it is selected for eviction by the cache replacement
policy or its corresponding entry in the FIFO is dequeued.
The controller will dequeue an S-FIFO entry when the S-
FIFO fills up or a synchronization event triggers an S-FIFO
flush. In the example, the release semantic of a store/release
operation causes the S-FIFO to flush. The system enqueues
a special release marker into the S-FIFO (�), starts generat-
ing cache evictions for addresses ahead of the marker (�),
and waits for that marker to reach the head of the queue
(�). Then the system can perform the store part of the
store/release (�), which, once it reaches memory, signals
completion of the release to other threads (�). Finally, an-
other thread can perform a load/acquire to complete the syn-
chronization (�) and then load the updated value of X (�).

An important feature of the QR design is that it can be ex-
tended easily to systems with multiple levels of write-
combining cache by giving each level its own S-FIFO. In
that case, a write is guaranteed to be ordered whenever it
has been dequeued from the S-FIFO at the last level of
write-combining memory. We discuss the details of such a
multi-level system in Section 3.

Write-combining caches in general, including QR caches,
typically incur a significant overhead for tracking the specif-
ic bytes that are dirty in a cache line. This tracking is re-
quired to merge simultaneous writes from different writers
to different bytes of the same cache line. Most implementa-
tions use a dirty-byte bitmask for every cache line (12.5%
overhead for 64-byte cache lines) and write out only the
dirty portions of a block on evictions.

Figure 1. Example of QuickRelease in a simple one-level graphics memory system.

3

To reduce the overhead of byte-level write tracking, QR
separates the read and write data paths and splits a cache
into read-only and (smaller) write-only sub-caches. This
separation is not required, but allows an implementation to
reduce the overhead of writes by providing dirty bitmasks
only on the write-only cache. The separation also encour-
ages data path optimizations like independent and lazy man-
agement of write bandwidth while minimizing implementa-
tion complexity. We show that because GPU threads, unlike
CPU threads, rarely perform read-after-write operations, the
potential penalty of the separation is low [4]. In fact, this
separation leads to less cache pollution with write-only data.

Experimental comparisons to a traditional GPGPU through-
put-oriented WT memory system and to an RFO memory
system demonstrate that QR achieves the best qualities of
each design. Compared to the traditional GPGPU memory
system, bandwidth to the memory controller was reduced by
an average of 52% and the same applications ran 7% faster
on average. Further, we show that future applications with
frequent synchronization can run integer factors faster than
a traditional GPGPU memory system. In addition, QR does
not harm the performance of current streaming applications
while reducing the memory traffic by 3% compared to a WT
memory system. Compared to the RFO memory system, QR
performs 20% faster. In fact, the RFO memory system gen-
erally performs worse than a system with the L1 cache disa-
bled.

In summary, this paper makes the following contributions:

§ We augment an aggressive, high-throughput, write-
combining cache design with precise write tracking to
make synchronization faster and cheaper without the
need for L1 miss status handling registers (MSHRs).

§ We implement write tracking efficiently using S-FIFOs
that do not require expensive CAMs or cache walks,
which prevent inter-wavefront synchronization interfer-
ence due to cache walks.

§ Because writes require an additional byte mask in a
write-combining cache, we optionally separate the read
and write data paths to decrease state storage.

In this paper, Section 2 describes current GPGPU memory
systems and prior work in the area of GPGPU synchroniza-
tion. Section 3 describes QR by describing its design choic-
es and how it performs memory operations and synchroniza-
tion. Section 4 describes the simulation environment for our
experiments and the workloads we used. Section 5 evaluates
the merits of QR compared to both a traditional GPU
memory system and a theoretical MOESI coherence proto-
col implemented on a GPGPU.

2. Background and Related Work
This section introduces the GPU system terminology used
throughout the paper and describes how current GPU
memory systems support global synchronization. Then we
introduce release consistency (RC), the basis for the
memory model assumed in the next sub-section and the
model being adopted by the Heterogeneous System Archi-
tecture (HSA) specification, which will govern designs from
AMD, ARM, Samsung, and Qualcomm, among others. We
also describe the memory systems of two accelerated pro-
cessing units (APUs—devices containing a CPU, GPU, and
potentially other accelerators) that obey the HSA memory
model for comparison to QR: a baseline WT memory sys-
tem representing today’s GPUs, and an RFO cache-coherent
memory system, as typically used by CPUs, extended to a
GPU. Finally, in Section 2.5, we discuss how QR compares
to prior art.

Figure 2: Baseline accelerated processing unit system. QR-specific parts are all S-FIFOs, wL1s, wL2, and wL3 (all smaller

than rL1, rL2 and L3).

4

2.1. GPU Terminology
The paper uses AMD and OpenCL™ terminology [5] to
describe GPU hardware and GPGPU software components.
The NVIDIA terminology [6] is in parentheses.

§ Work-item (thread): a single lane of GPU execution.

§ Wavefront (warp): 64 work-items executing a single
instruction in lock-step over four cycles on a 16-wide
SIMD unit with the ability to mask execution based on
divergent control flow. This now is known as a sub-
group in OpenCL 2.0.

§ Compute unit (streaming multi-processor): a cluster of
four SIMD units that share a L1 cache and multiplexes
execution among 40 total wavefronts.

§ Work-group (thread block): a group of work-items that
must be scheduled to a single CU.

§ NDRange (grid): a set of work-groups.

§ Kernel: a launched task including all work-items in an
NDRange.

§ Barrier: an instruction that ensures all work-items in a
work-group have executed it and that all prior memory
operations are visible globally before it completes.

§ LdAcq: Load acquire, a synchronizing load instruction
that acts as downward memory fence such that later op-
erations (in program order) cannot become visible be-
fore this operation.

§ StRel: Store release, a synchronizing store instruction
that acts like an upward memory fence such that all pri-
or memory operations (in program order) are visible be-
fore this store.

2.2. Current GPU Global Synchronization
Global synchronization support in today’s GPUs is relative-
ly simple compared to CPUs to minimize microarchitecture
complexity and because synchronization primitives current-
ly are invoked infrequently. Figure 2 illustrates a GPU
memory system loosely based on current architectures, such
as NVIDIA’s Kepler [7] or AMD’s Southern Islands [8],
[9]. Each CU has a WT L1 cache and all CUs share a single
L2 cache. Current GPU memory models only require stores
to be visible globally after memory fence operations (barri-
er, kernel begin, and kernel end) [5]. In the Kepler parts, the
L1 cache is disabled for all globally visible writes. There-
fore, to implement a memory fence, that architecture only
needs to wait for all outstanding writes (e.g., in a write buff-
er) to complete. The Southern Islands parts use the L1 cache
for globally visible writes; therefore, the AMD parts imple-
ment a memory fence by invalidating all data in the L1
cache and flushing all written data to the shared L2 (via a
cache walk) [8].

2.3. Release Consistency on GPUs
RC [10] has been adopted at least partially by ARM [11],
Alpha [12], and Itanium [13] architectures and seems like a
reasonable candidate for GPUs because it is adequately
weak for many hardware designs, but strong enough to rea-
son easily about data races. In addition, future AMD and
ARM GPUs and APUs will be compliant with the HSA
memory model, which is defined to be RC [1]. The rest of
this paper will assume that the memory system implementa-
tion must obey RC [14].

The HSA memory model [15] adds explicit LdAcq and
StRel instructions. They will be sequentially consistent. In
addition, they will enforce a downward and upward fence,
respectively. Unlike a CPU consistency model, enforcing
the HSA memory model is not strictly the job of the hard-
ware; it is possible to use a finalizer (an intermediate as-
sembly language compiler) to help enforce consistency with
low-level instructions. In this paper, we consider hardware
solutions to enforcing RC.

2.4. Supporting Release Consistency
In this section, two possible baseline APU implementations
of RC are described. The first is a slight modification to the
system described in Section 2.2. The second is a naïve im-
plementation of a traditional CPU RFO cache-coherence
protocol applied to an APU. Both support RC as specified.

2.4.1. Realistic Write-through GPU Memory System
The current GPU memory system described in Section 2.2
can adhere to the RC model between the CPU and GPU
requests by writing through to memory via the APU directo-
ry. This means that a release operation (kernel end, barrier,
or StRel) will need to wait for all prior writes to be visible
globally before executing more memory operations. In addi-
tion, an acquiring memory fence (kernel begin or LdAcq)
will invalidate all clean and potentially stale L1 cache data.

2.4.2. “Read for Ownership” GPU Memory System
Current multi-core CPU processors implement shared
memory with write-back cache coherence [16]. As the RFO
name implies, these systems will perform a read to gain
ownership of a cache block before performing a write. In
doing so, RFO protocols maintain the invariant that at any
point in time only a single writer or multiple readers exist
for a given cache block.

To understand the benefit an RFO protocol can provide
GPUs, we added a directory to our baseline GPU cache hi-
erarchy. It is illustrated in Figure 2, where the wL2 and wL3
are replaced by a fully mapped directory with full sharer
state [17]. The directory’s contents are inclusive of the L1s
and L2, and the directory maintains coherence by allowing a
single writer or multiple readers to cache a block at any
time. Because there is finite state storage, the directory can
recall data from the L1 or L2 to free directory space. The

5

protocol here closely resembles the coherence protocol in
recent AMD CPU architectures [18].

2.5. Related Work
Recent work by Singh et al. in cache coherence on GPUs
has shown that a naïve CPU-like RFO protocol will incur
significant overheads [2]. This work does not include inte-
gration with CPUs.

Recent work by Hechtman and Sorin also explored memory
consistency implementations on GPU-like architectures and
showed that strong consistency is viable for massively
threaded architectures that implement RFO cache coherence
[4]. QR relies on a similar insight: read-after-write depend-
encies through memory are rare on GPU workloads.

Similar to the evaluated WT protocol for a GPU, the VIPS-
m protocol for a CPU lazily writes through shared data by
the time synchronization events are complete [19]. Howev-
er, VIPS-m relies on tracking individual lazy writes using
MSHRs, while the WT design does not require MSHRs and
instead relies on in-order memory responses to maintain the
proper synchronization order.

Conceptually, QR caches act like store queues (also called
load/store queues, store buffers, or write buffers) that are
found in CPUs that implement weak consistency models
[20]. They have a logical FIFO organization that easily en-
forces ordering constraints at memory fences, thus leading
to fast fine-grain synchronization. Also like a store queue,
QR caches allow bypassing from the FIFO organization for
high performance. This FIFO organization is only a logical
wrapping, though. Under the hood, QR separates the read
and write data paths and uses high-throughput, unordered
write-combining caches.

Store-wait-free systems also implement a logical FIFO in
parallel with the L1 cache to enforce atomic sequence order
[21]. Similarly, implementations of transactional coherence
and consistency (TCC) [22] use an address FIFO in parallel
with the L1. However, TCC’s address FIFO is used for
transaction conflict detection while QR’s address FIFO is
used to ensure proper synchronization order.

3. QuickRelease Operation
In this section, we describe in detail how a QR cache hierar-
chy operates in a state-of-the-art SoC architecture that re-
sembles an AMD APU. Figure 2 shows a diagram of the
system, which features a GPU component with two levels of
write-combining cache and a memory-side L3 cache shared
by the CPU and GPU. For QR, we split the GPU caches into
separate read and write caches to reduce implementation
cost (more detail below). At each level, the write cache is
approximately a quarter to an eighth the size of the read
cache. Additionally, we add an S-FIFO structure in parallel
with each write cache.

A goal of QR is to maintain performance for graphics work-
loads. At a high level, a QR design behaves like a conven-
tional throughput-optimized write-combining cache: writes
complete immediately without having to read the block first,
and blocks stay in the cache until selected for eviction by a
replacement policy. Because blocks are written without ac-
quiring either permission or data, both write-combining and
QR caches maintain a bitmask to track which bytes in a
block are dirty, and use that mask to prevent loads from
reading bytes that have not been read or written.

The QR design improves on conventional write-combining
caches in two ways that increase synchronization perfor-
mance and reduce implementation cost. First, QR caches
use the S-FIFO to track which blocks in a cache might con-
tain dirty data. A QR cache uses this structure to eliminate
the need to perform a cache walk at synchronization events,
as is done in conventional write-combining designs. Second,
the QR design partitions the resources devoted to reads and
writes by using read-only and write-only caches. Because
writes are more expensive than reads (e.g., they require a
bitmask), this reduces the overall cost of a QR design. We
discuss the benefits of this separation in more detail in Sec-
tion 3.2, and for now focus on the operation and benefits of
the S-FIFO structures.

When a conventional write-combining design encounters a
release, it initiates a cache walk to find and flush all dirty
blocks in the cache. This relatively long-latency operation
consumes cache ports and discourages the use of fine-grain
synchronization. This operation is heavy-weight because
many threads share the same L1 cache, and one thread syn-
chronizing can prevent other threads from re-using data. QR
overcomes this problem by using the S-FIFO. At any time,
the S-FIFO contains a superset of addresses that may be
dirty in the cache. The S-FIFO contains at least the address-
es present in the write cache, but may contain more address-
es that already have been evicted from the write cache. It is
easy to iterate the S-FIFO on a release to find and flush the
necessary write-cache data blocks. Conceptually the S-FIFO
can be split into multiple FIFOs for each wavefront, thread,
or work-group, but we found such a split provides minimal
performance benefit and breaks the transitivity property on
which some programs may rely [23]. Furthermore, a strict
FIFO is not required to maintain a partial order of writes
with respect to release operations, but we chose it because it
is easy to implement.

In the following sub-sections, we describe in detail how QR
performs different memory operations. First, we document
the lifetime of a write operation, describing how the writes
propagate through the write-only memory hierarchy and
interact with S-FIFOs. Second, we document the lifetime of
a basic read operation, particularly how this operation can
be satisfied entirely by the separate read-optimized data
path. Third, we describe how the system uses S-FIFOs to

6

synchronize between release and acquire events. Fourth, we
discuss how reads and writes interact when the same address
is found in both the read and write paths, and show how QR
ensures correct single-threaded read-after-write semantics.

3.1. Detailed Operation

3.1.1. Normal Write Operation
To complete a normal store operation, a CU inserts the write
into the wL1, enqueues the address at the tail of the L1
S-FIFO, and, if the block is found in the rL1, sets a written
bit in the tag to mark that updated data is in the wL1. The
updated data will stay in the wL1 until the block is selected
for eviction by the wL1 replacement policy or the address
reaches the head of the S-FIFO. In either case, when evict-
ed, the controller also will invalidate the block in the rL1, if
it is present. This invalidation step is necessary to ensure
correct synchronization and read-after-write operations
(more details in Section 3.1.3). Writes never receive an ack.

The operation of a wL2 is similar, though with the addition
of an L1 invalidation step. When a wL2 evicts a block, it
invalidates the local rL2 and broadcasts an invalidation
message to all the rL1s. Broadcasting to eight or 16 CUs is
not a huge burden and can be alleviated with coarse-grain
sharer tracking because writing to temporally shared data is
unlikely without synchronization. This ensures that when
using the S-FIFOs to implement synchronization, the system
does not inadvertently allow a core to perform a stale read.
For similar reasons, when a line is evicted from the wL3, the
controller sends invalidations to the CPU cluster, the group
of CPUs connected to the directory, before the line is writ-
ten to the L3 cache or main memory.

Completing an atomic operation also inserts a write marker
into the S-FIFO, but instead of lazily writing through to
memory, the atomic is forwarded immediately to the point
of system coherence, which is the directory.

CPUs perform stores as normal with coherent write-back
caches. The APU directory will invalidate the rL2, which in

turn will invalidate the rL1 caches to ensure consistency
with respect to CPU writes at each CU. Because read caches
never contain dirty data, they never need to respond with
data to invalidation messages even if there is a write out-
standing in the wL1/wL2/wL3. This means that CPU invali-
dations can be applied lazily.

3.1.2. Normal Read Operation
To perform a load at any level of the QR hierarchy, the
read-cache tags simply are checked to see if the address is
present. If the load hits valid data and the written bit is clear,
the load will complete without touching the write-cache
tags. On a read-tag miss or when the written bit is set, the
write cache is checked to see if the load can be satisfied
fully by dirty bytes present in the write cache. If so, the load
is completed with the data from the write cache; otherwise,
if the read request at least partially misses in the write
cache, the dirty bytes are written through from the write-
only cache and the read request is sent to the next level of
the hierarchy.

While the write caches and their associated synchronization
FIFOs ensure that data values are written to memory before
release operations are completed, stale data values in the
read caches also must be invalidated to achieve RC. QR
invalidates these stale data copies by broadcasting invalida-
tion messages to all rL1s when there is an eviction from the
wL2. Though this may be a large amount of traffic, invali-
dations are much less frequent than individual stores be-
cause of significant coalescing in the wL1 and wL2. By
avoiding cache flushes, valid data can persist in the rL1
across release operations, and the consequential reduction of
data traffic between the rL2 and rL1 may compensate entire-
ly for the invalidation bandwidth.

Furthermore, these invalidations are not critical to perfor-
mance, unlike a traditional cache-coherence protocol in
which stores depend on the acks to complete. In QR, the
invalidations only delay synchronization completion. This
delay is bounded based on the number of entries in the syn-

Figure 3: L1 read-after-write re-use (L1 read hits in M for RFO memory system).

0	

0.002	

0.004	

0.006	

0.008	

0.01	

0.012	

Fr
ac
%o

n	

of
	
 lo
ad

s	
 h
i/

ng
	
 o
n	

w
rr
ite

n	

da

ta
	

7

chronization FIFO when a synchronization operation ar-
rives. Meanwhile, write evictions and read requests do not
stall waiting for invalidations because the system does not
support strong consistency. As a result, QR incurs minimal
performance overhead compared to a WT memory system
when synchronization is rare.

QR’s impact on CPU coherence is minimal and the CPUs
perform loads as normal. For instance, a CPU read never
will be forwarded to the GPU memory hierarchy because
main memory already contains all globally visible data writ-
ten by the GPU. A CPU write requires only invalidation
messages to be issued to the GPU caches.

3.1.3. Synchronization
While loads and stores can proceed in write-combining
caches without coherence actions, outstanding writes must
complete to main memory and stale read-only data must be
invalidated at synchronization events. QR caches implement
these operations efficiently with the help of the S-FIFOs.

To start a release operation (e.g., a StRel or kernel end), a
wavefront enqueues a special release marker onto the L1
S-FIFO. When inserted, the marker will cause the cache
controller to begin dequeuing the S-FIFO (and performing
the associated cache evictions) until the release marker
reaches the head of the queue. The StRel does not require
that the writes be flushed immediately; the StRel requires
only that all stores in the S-FIFO hierarchy be ordered be-
fore the store of the StRel. The marker then will propagate
through the cache hierarchy just like a normal write.

When the marker finally reaches the head of the wL3, the
system can be sure that all prior writes from the wavefront
have reached an ordering point (i.e., main memory). An
acknowledgement is sent to the wavefront to signal that the
release is complete.

When the release operation has an associated store operation
(i.e., a StRel), the store can proceed as a normal store in the
write path after the release completes. However, for perfor-
mance, the store associated with the StRel should complete

as soon as possible in case another thread is waiting for that
synchronization to complete. Therefore, a store from a StRel
will also trigger S-FIFO flushes, but it will not send an
acknowledgement message back to the requesting wave-
front.

Because QR broadcasts invalidations on dirty evictions,
ensuring all stale data is invalidated before a release opera-
tion completes, acquire operations can be implemented as
simple, light-weight loads; the acquire itself is a no-op. If a
LdAcq receives the value from a previous StRel, the system
can be sure that any value written by the releasing thread
will have been written back to main memory and any corre-
sponding value in a read-only cache has been invalidated.

3.2. Read/Write Partitioning Trade-offs
In the QR design, we chose to partition the cache resources
for reads and writes. While this choice reduces implementa-
tion complexity, it adds some overhead to read-after-write
sequences. For example, in QR a load that hits in the write
cache requires two tag look-ups and a data look-up: first
check the read-cache tags, then check the write-cache tags,
then read from the write-cache data array. We can justify
this overhead by observing that GPGPU applications rarely
demonstrate read-after-write locality.

Figure 3 shows the percentage of read requests that hit an
L1 cache block that has been written previously (i.e., is in a
modified state under RFO). For several evaluated applica-
tions, written L1 cache blocks are never re-accessed. This
occurs due to a common GPU application design pattern in
which a kernel streams through data, reading one data set
and writing another. Subsequently, another kernel will be
launched to read the written data, but by this time all that
data will have been evicted from the cache.

The partitioned design has several implementation benefits.
First, it reduces the state overhead needed to support writes
in a write-combining cache because the dirty bitmasks are
required only in the write caches. Second, it is easier to
build two separate caches than a single multi-ported

0	

0.2	

0.4	

0.6	

0.8	

1	

Re

ad
	
 h
it	

in
	
 L
1	

pe

r	
 r
ea
d	

is
su
ed

	

Figure 4: L1 cache read re-use (read hits per read access in RFO memory system).

8

read/write cache with equivalent throughput. Third, the read
cache can be integrated closely with the register file to im-
prove L1 read hit latency. Meanwhile the write cache can be
moved closer to the L2 bus interface and optimized exclu-
sively as a bandwidth buffer.

Table 1: Memory System Parameters

4. Simulation Methodology and Workloads
4.1. The APU Simulator
Our simulation methodology extends the gem5 simulator
[24] with a microarchitectural timing model of a GPU that
directly executes the HSA Intermediate Language (HSAIL)
[1]. To run OpenCL applications, we first generate an x86
binary that links an OpenCL library compatible with gem5’s
syscall emulation environment. Meanwhile, the OpenCL
kernels are compiled directly into HSAIL using a proprie-
tary industrial compiler.

Because the simulation of our OpenCL environment is
HSA-compliant, the CPU and GPU share virtual memory
and all memory accesses from both the CPU and GPU are
assumed to be coherent. As a result, data copies between the
CPU and GPU are unnecessary.

In this work, we simulate an APU-like system [25] in which
the CPU and the GPU share a single directory and DRAM
controller. The GPU consists of CUs. Each CU has a pri-
vate L1 data cache and all the CUs share an L2 cache. The
L2 further is connected to a stateless (a.k.a. null) directory
[26] with a memory-side 4-MB L3 cache, which is writeable
only in the RFO system. The configurations of WT, RFO,
and QR are listed in Table 1.

As previously noted, the storage overhead of QR compared
to WT is similar to dirty bits for all WT caches. Figure 2
summarizes this design with a block diagram. Overall, QR
uses 80 kB of additional storage that is not present in the
WT baseline. To ensure that the comparison with WT is
fair, we tested whether doubling the L1 capacity could bene-
fit the WT design. Further, the RFO design requires nearly
double the storage of the baseline WT memory system. We
found that the extra capacity provided little benefit because
of the lack of temporal locality in the evaluated benchmarks.
The benefit is reduced further because WT’s caches must be
flushed on kernel launches.

4.2. Benchmarks
We evaluate QR against a conventional GPU design that
uses WT caches and an idealized GPU memory system that
uses RFO coherence. We run our evaluation on a set of
benchmarks with diverse compute and sharing characteris-
tics. The benchmarks represent the current state-of-the-art
for GPU benchmarks. The applications and compute kernels
come from the AMD APP SDK [27], OpenDwarfs [28],
Rodinia [3], and two microbenchmarks that were designed
to have increased data re-use and synchronization. Our mi-
crobenchmarks attempt to approximate the behavior of fu-
ture workloads, which we expect will have more frequent
synchronization and data re-use. Here is a brief description
of the microbenchmarks:

§ APSP: Performs a single-source shortest path until
converging on an all-pairs shortest path. This applica-
tion uses LdAcq and StRel to view updates as soon as
they are available, to speed convergence, and uses mul-
tiple kernel launches to perform frequent communica-
tion with the host.

§ sort: Performs a 4-byte radix sort byte by byte. For
each byte, the first step counts the number of elements
of each byte; the second step traverses the list to find
the value at the thread ID position; and, the final step
moves the correct value to the correct location and
swaps the input and output arrays.

4.3. Re-use of the L1 Data Cache

Figure 4 shows the measured L1 read hits as a fraction of
read requests (i.e., re-use rate) in the RFO memory system.
RFO allows for a longer re-use window than either the QR
or WT memory systems because cache blocks are written
only locally and synchronization does not force dirty data to
a common coherency point. In contrast, the WT and QR
memory systems must ensure all writes are performed to
memory before synchronization completes. In addition, WT
will invalidate its L1 cache on each kernel launch.

The workloads from Section 4.2 exhibit a huge range of re-
use rates, capturing the diverse range of traffic patterns ex-
hibited by GPGPU applications. In either of the extremes of
re-use, we expect that all of the memory systems should

Baseline
Frequency 1 GHz
Wavefronts 64 wide, 4 cycle
Compute units 8, 40 wavefronts each
Memory DDR3, 4 Channels, 400 MHz
 banks tag lat. data lat. size
L1 16 1 4 16 kB
L2 16 4 16 256 kB

QR
wL1 16 1 4 4 kB
wL2 16 4 16 16 kB
wL3 16 4 16 32 kB
S-FIFO1 64 entries
S-FIFO2 128 entries
S-FIFO3 256 entries
total 80 kB

RFO
directory 256 kB
MSHRs 1,024
total 384 kB

9

perform equivalently. In applications with a high re-use rate,
L1 cache hits will dominate the run-time. In applications
with a low re-use rate, the performance will be bound by the
memory bandwidth and latency. Because L1 cache and
memory controller designs are effectively equivalent in QR,
RFO, and WT, the expected performance is also equivalent.

5. Results

5.1. Performance
Figure 5 plots the relative run-times of WT, RFO, and QR
relative to a system that disables the L1 cache for coherent
traffic, similar to NVIDIA’s Kepler architecture. The appli-
cations are ordered across the x-axis by their L1 re-use rate
(Figure 4). The final set of bars shows the geometric mean
of the normalized run-times. Overall, QR gains 7% perfor-
mance compared to WT, which gains only 5% performance
compared to not using an L1 cache. On the other hand, the
RFO memory system loses 6% performance relative to a
memory system with no L1 cache. The RFO performance
drop comes from the additional latency imposed to write
operations because they first must acquire exclusive coher-
ence permissions.

Figure 5 supports the insight that a QR memory system
would outperform a WT memory system significantly when
there is an intermediate amount of L1 re-use. In particular,
QR outperforms WT by 6-42% across six of the seven
workloads (dotted-line box in Figure 5) because there is
significant L1 re-use across kernel boundaries and LdAcqs.
In these applications, the WT memory system cannot re-use
any data due to the frequency of full cache invalidations.
The lone exception is backprop, which is dominated by pull-
ing data from the CPU caches; thus, QR and WT see similar
performance.

Across the seven highlighted workloads, APSP is particular-
ly noticeable because of the impressive performance im-

provement achieved by QR and the even more impressive
performance improvement achieved by RFO. APSP is the
only benchmark that frequently uses LdAcq and StRel in-
structions within its kernels. While the QR memory system
efficiently performs the LdAcq and StRel operations in a
write-combining memory system, the RFO memory system
performs the operations much faster at its local L1 cache.
The resulting memory access timings for the RFO memory
system lead to far less branch divergence and fewer kernel
launches compared to the other memory systems because
the algorithm launches kernels until there is convergence.

The applications bfs, matrixmul, and dct are on the border
between intermediate and high or low re-use. As a result,
the performance advantage of QR relative to WT is muted.

Similar to backprop, kmeans and histogram invoke many
kernel launches and frequently share data between the CPU
and GPU. Their performance also is dominated by pulling
data in from the CPU, resulting in QR and WT achieving
similar performance.

The one application on which QR encounters noticeable
performance degradation is lud. As shown in Figure 3, lud
exhibits the highest rate of temporal read-after-writes; thus,
the extra latency of moving data between QR’s separate
read and write caches is exposed. Furthermore, lud has a
high degree of false sharing between CUs, which lowers the
effectiveness of QR’s L1 cache compared to WT due to its
cache block granular invalidations. Overall, due to its
unique behavior, lud is the only benchmark on which simply
disabling the L1 cache achieves a noticeable performance
improvement relative to the other designs.

The rest of the applications (sort, srad, spmv, and nw) ex-
hibit either very high or very low L1 re-use, which means
we would expect a small performance difference due to the
on-chip memory system. The results confirm this intuition
because all non-RFO memory systems perform similarly.

0	

0.5	

1	

1.5	

2	

ru
n%

m
e	

re
la
%v

e	

to
	
 n
o	

L1
	

noL1	

WT	

RFO	

QR	

Figure 5: Relative run-times of WT, RFO, and QR memory systems compared to not using an L1 cache.

10

5.2. Directory Traffic
Figure 6 shows the bandwidth between the GPU cache hier-
archy and the APU directory for WT, RFO, and QR relative
to the system without an L1 cache. Due to aggressive write-
combining, QR generates less total write traffic than WT for
the same or better performance.

To explore the directory write traffic, Figure 7 shows the
effectiveness of the write-combining performed by a QR
memory system. The RFO memory system includes a
memory-side L3 cache, which filters many DRAM writes,
so only the no-L1-memory, WT, and QR designs are shown
in Figure 7. Most applications see significantly fewer write
requests at the DRAM in QR compared to a WT or no-L1-
memory system due to the write-combining performed at
the wL1, wL2, and wL3. As Figure 7 shows, applications
with the greatest reduction generally achieve the greatest
performance gains, indicating that good write-combining is
critical to performance. In nn and nw, WT and QR have
similar DRAM traffic. In these applications, there is no op-
portunity to perform additional write-combining in QR be-
cause all of the writes are full-cache-line operations and
each address is written only once.

5.3. L1 Invalidation Overhead

Figure 8 shows both the cost and benefit of broadcasting
precise invalidations in QR. Bars represent the normalized
number of bytes that arrive at the L1 cache in QR compared
to WT. Within each bar, segments correspond to the number
of bytes that arrived due to an invalidation probe request or
a data response, respectively.

Almost all benchmarks receive equal or fewer L1 data mes-
sages in a QR memory system compared to a WT memory
system. The only exception is backprop, in which false shar-
ing created additional cache misses for QR due to invalida-
tions after wL2 evictions.

When invalidation traffic is added, the total bytes arriving at
the L1 in a QR memory system can be up to three times the
number of bytes arriving in a WT system, though on aver-
age the number is comparable (103%). Some workloads
even experience a reduction in L1 traffic. APSP saw a sig-
nificant reduction in overall traffic because frequent LdAcqs
and the subsequent cache invalidations result in a 0% hit
rate at the WT L1. In most workloads, QR and WT have
comparable traffic at the L1. QR achieves this comparable
traffic despite extra invalidations because it is able to re-use
data across kernel boundaries, whereas WT’s full L1 cache
invalidation cause data to be refetched.

: L2 to directory bandwidth relative to no L1. 0	

0.5	

1	

1.5	

2	

2.5	

Ba

nd
dw

id
th
	
 U
se
ed

	
 re
la
%v

e	

to
	
 n
o	

L1
	

noL1	

WT	

RFO	

QR	

Figure 6: L2 to directory bandwidth relative to no L1.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

Re
la
%v

e	

W
rit
et
hr
ou

gh
s	

noL1	

WT	

QR	

Figure 7: Write-through requests seen at DRAM relative to a system with no L1.

11

Finally, other workloads see a doubling or more of L1 traf-
fic in QR. This is because they have a significant number of
independent writes without re-use between kernels to amor-
tize the cost of invalidations. In the future, we predict that
reducing the data required from off-chip likely will trump
the cost of additional on-chip invalidation messages, making
QR a reasonable design despite this increased L1 traffic.

5.4. Total Memory Bandwidth
Figure 9 shows the combined number of read and write
memory accesses for each benchmark relative to the
memory accesses performed by the memory system with no
L1. The RFO has fewer memory reads because dirty data is
cached across kernel bounds, which is not possible in the
QR or WT memory systems because data responses to CPU
probes are not supported. This is especially effective be-
cause kernels often switch the input and output pointers
such that previously written data in the last kernel is re-used
in the next kernel invocation.

5.5. Power
Combining the results from Figure 8 and Figure 9, we can
estimate the network and memory power of QR and WT.
Because GPUWattch showed that memory consumed 30%
of power on modern GPUs and network consumed 10% of
power [29], we can infer that QR should save 5% of

memory power and increase network power by 3%. As a
result, it follows that QR should save a marginal amount of
power that may be used by the additional write caches. Fur-
ther, the improved performance of QR relative to WT im-
plies less total energy consumption.

5.6. Scalability of RFO
To support the claim of increased bandwidth scalability
compared to an RFO memory system, nn and reduction are
evaluated with smaller inputs to see how well a latency-
oriented RFO memory system could perform compared to a
throughput-oriented WT or QR memory system. Figure 10
shows the performance of nn and reduction for various
problem sizes. For small input sets, all memory systems
have similar performance. As the input size increases, the
demand on the memory system increases and QR’s reduced
write overhead improves the performance relative to RFO
and WT.

6. Conclusion
This paper demonstrates that QuickRelease can expand the
applicability of GPUs by efficiently executing the fine-grain
synchronization required by many irregular parallel work-
loads while maintaining good performance on traditional,
regular general-purpose GPU workloads. The QR design

0	

0.5	

1	

1.5	

2	

2.5	

3	

By
te
s	
 r
ec
ei
ve
d	

Q
R/
by
te
s	
 r
ec
ve
d	

W
T	
 L1_Probes	

L1_Data	

Figure 8: Invalidation and data messages received at the QR L1 compared to WT data messages.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

DR
AM

	
 a
cc
es
se
s	
 r
el
a%

ve
	
 to

	

no

	
 L
1	

noL1	

WT	

RFO	

QR	

Figure 9: Total DRAM accesses by WT, RFO and QR relative to no L1.

12

improves on conventional write-combining caches in ways
that improve synchronization performance and reduce the
cost of supporting writes. First, QR improves performance
by using efficient synchronization FIFOs to track outstand-
ing writes, obviating the need for high-overhead cache
walks. Second, QR reduces the cost of write support by par-
titioning the read- and write-cache resources, exploiting the
observation that writes are more costly than reads.

The evaluation compares QR to a GPU memory system that
simply disables private L1 caches for coherent data and a
traditional throughput-oriented write-through memory sys-
tem. To illustrate the intuitive analysis of QR, it also is
compared to an idealized RFO memory system. The results
demonstrate that QR achieves the best qualities of each
baseline design.

References

[1] HSA Foundation, “Deeper Look Into HSAIL And It’s Runtime,” 25-

Jul-2012.
[2] I. Singh, A. Shriraram, W. W. L. Fung, M. O’Connor, and T. M.

Aamodt, “Cache Coherence for GPU Architectures,” in Proceedings
of HPCA 2013, pp. 578–590.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous compu-
ting,” IISWC 2009. IEEE International Symposium on, pp. 44–54.

[4] B. A. Hechtman and D. J. Sorin, “Exploring Memory Consistency for
Massively-Threaded Throughput-Oriented Processors,” in Proceed-
ings of ISCA, 2013.

[5] A. Munshi, “OpenCL,” Parallel Computing on the GPU and CPU,
SIGGRAPH, 2008.

[6] M. Harris, “Many-core GPU computing with NVIDIA CUDA,” in
Proceedings of SC 2008, pp. 1–1.

[7] NVIDIA, NVIDIA’s Next Generation CUDA Computer Architecture:
Kepler GK110. 2012.

[8] AMD, Southern Islands Series Instruction Set Architecture. 2012.
[9] HSA Foundation, “AFDS 2011 Phil Rogers Keynote: “The Pro-

grammer’s Guide to the APU ...,” 10-Jun-2012.
[10] S. V. Adve and K. Gharachorloo, “Shared memory consistency mod-

els: A tutorial,” computer, vol. 29, no. 12, pp. 66–76, 1996.
[11] J. Goodacre and A. N. Sloss, “Parallelism and the ARM Instruction

Set Architecture,” IEEE Computer, vol. 38, no. 7, pp. 42–50, Jul.
2005.

[12] Compaq, Alpha 21264 Microprocessor Hardware Reference Manual.
1999.

[13] A Formal Specification of Intel Itanium Processor Family Memory
Ordering. 2002.

[14] M. Raynal and A. Schiper, “From causal consistency to sequential
consistency in shared memory systems,” 1995, pp. 180–194.

[15] “Standards,” HSA Foundation.
[16] D. J. Sorin, M. D. Hill, and D. A. Wood, “A Primer on Memory

Consistency and Cache Coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, May 2011.

[17] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.
Hennessy, M. Horowitz, and M. Lam, “The Stanford DASH Multi-
processor,” IEEE Computer, vol. 25, no. 3, pp. 63–79, Mar. 1992.

[18] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.
Hughes, “Cache Hierarchy and Memory Subsystem of the AMD Op-
teron Processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, Apr. 2010.

[19] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,”
in Proceedings of PACT 2012, pp. 241–252.

[20] T. Sha, M. M. K. Martin, and A. Roth, “Scalable Store-Load For-
warding via Store Queue Index Prediction,” in Proceedings of the
38th Annual IEEE/ACM International Symposium on Microarchitec-
ture, 2005, pp. 159–170.

[21] A. A. Thomas F. Wenisch and A. Moshovos, “Mechanisms for Store-
wait-free Multiprocessors,” in Proceedings ISCA 2007.

[22] A. McDonald, J. Chung, H. Chafi, C. C. Minh, B. D. Carlstrom, L.
Hammond, C. Kozyrakis, and K. Olukotun, “Characterization of
TCC on chip-multiprocessors,” in Proceedings of PACT 2005, pp.
63–74.

[23] D. R. Hower, Hechtman, Blake A., Beckmann, Bradford M., Gaster,
Benedict R., Hill, Mark D., Reinhardt, Steven K., and Wood, David
A., “Heterogeneous-Race-Free Memory Models,” ASPLOS 2014.

[24] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp.
1–7, Aug. 2011.

[25] A. Branover, D. Foley, and M. Steinman, “AMD’s Llano Fusion
APU,” IEEE Micro, vol. 99, no. 1, 5555.

[26] P. Conway and B. Hughes, “The AMD Opteron Northbridge Archi-
tecture,” IEEE Micro, vol. 27, no. 2, pp. 10–21, Apr. 2007.

[27] AMD, Accelerated Parallel Processing (APP) SDK. 2013.
[28] W. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13

dwarfs: a work in progress,” in Proceedings of WOSP/SIPEW 2012,
pp. 291–294.

[29] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy Optimiza-
tions in GPGPUs,” in proc. of ISCA, 2013, vol. 40.

0	

100000	

200000	

300000	

400000	

500000	

16384	
 262144	

G
PU

	
 c
yc
le
s	

Problem	
 sizes	

Run-­‐%me	
 of	
 reduc%on	

noL1	

WT	

RfO	

QR	
 0	

100000	

200000	

300000	

400000	

500000	

4	
 8	
 32	

G
PU

	
 c
yc
le
s	

Problem	
 sizes	

Run-­‐%me	
 of	
 nn	

noL1	

WT	

RfO	

QR	

Figure 10: Scalability comparison for increasing problem sizes.

