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Abstract 

Graphics processing units (GPUs) have specialized 
throughput-oriented memory systems optimized for stream-
ing writes with scratchpad memories to capture locality 
explicitly. Expanding the utility of GPUs beyond graphics 
encourages designs that simplify programming (e.g., using 
caches instead of scratchpads) and better support irregular 
applications with finer-grain synchronization. Our hypothe-
sis is that, like CPUs, GPUs will benefit from caches and 
coherence, but that CPU-style “read for ownership” (RFO) 
coherence is inappropriate to maintain support for regular 
streaming workloads. 

This paper proposes QuickRelease (QR), which improves on 
conventional GPU memory systems in two ways. First, QR 
uses a FIFO to enforce the partial order of writes so that 
synchronization operations can complete without frequent 
cache flushes. Thus, non-synchronizing threads in QR can 
re-use cached data even when other threads are performing 
synchronization. Second, QR partitions the resources re-
quired by reads and writes to reduce the penalty of writes 
on read performance. 

Simulation results across a wide variety of general-purpose 
GPU workloads show that QR achieves a 7% average per-
formance improvement compared to a conventional GPU 
memory system. Furthermore, for emerging workloads with 
finer-grain synchronization, QR achieves up to 42% per-
formance improvement compared to a conventional GPU 
memory system without the scalability challenges of RFO 
coherence. To this end, QR provides a throughput-oriented 
solution to provide fine-grain synchronization on GPUs. 

1. Introduction 
Graphics processing units (GPUs) provide tremendous 
throughput with outstanding performance-to-power ratios 
on graphics and graphics-like workloads by specializing the 
GPU architecture for the characteristics of these workloads. 
In particular, GPU memory systems are optimized to stream 
through large data structures with coarse-grain and relative-

ly infrequent synchronization. Because synchronization is 
rare, current systems implement memory fences with slow 
and inefficient mechanisms. However, in an effort to expand 
the reach of their products, vendors are pushing to make 
GPUs more general-purpose and accessible to programmers 
who are not experts in the graphics domain. A key compo-
nent of that push is to simplify graphics memory with sup-
port for flat addressing, fine-grain synchronization, and co-
herence between CPU and GPU threads [1]. 

However, designers must be careful when altering graphics 
architectures to support new features. While more generality 
can help expand the reach of GPUs, that generality cannot 
be at the expense of throughput. Notably, this means that 
borrowing solutions from CPU designs, such as “read for 
ownership” (RFO) coherence, that optimize for latency and 
cache re-use likely will not lead to viable solutions [2]. Sim-
ilarly, brute-force solutions, such as making all shared data 
non-cacheable, also are not likely to be viable because they 
severely limit throughput and efficiency. 

Meanwhile, write-through (WT) GPU memory systems can 
provide higher throughput for streaming workloads, but 
those memory systems will not perform as well for general-
purpose GPU (GPGPU) workloads that exhibit temporal 
locality [3]. An alternative design is to use a write-back or 
write-combining cache that keeps dirty blocks in cache for a 
longer period of time (e.g., until evicted by an LRU re-
placement policy). Write-combining caches are a hybrid 
between WT and write-back caches in which multiple writes 
can be combined before reaching memory. While these 
caches may accelerate workloads with temporal locality 
within a single wavefront (warp, 64 threads), they require 
significant overhead to manage synchronization among 
wavefronts simultaneously executing on the same compute 
unit (CU) and incur a penalty for performing synchroniza-
tion. In particular, write-combining caches require finding 
and evicting all dirty data written by a given wavefront, 
presumably by performing a heavy-weight iteration over all 
cache blocks. This overhead discourages fine-grain syn-
chronization that we predict will be necessary for broader 
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success of GPGPU compute. To this end, no current GPUs 
use write-combining caches for globally shared data (how-
ever, GPUs do use write-combining caches for graphic spe-
cific operations such as image, texture, and private writes). 

In this paper, we propose a GPU cache architecture called 
QuickRelease (QR) that is designed for throughput-oriented, 
fine-grain synchronization without degrading GPU 
memory-streaming performance. In QR, we “wrap” conven-
tional GPU write-combining caches with a write-tracking 
component called the synchronization FIFO (S-FIFO). The 
S-FIFO is a simple hardware FIFO that tracks writes that 
have not completed ahead of an ordered set of releases. 
With the S-FIFO, QR caches can maintain the correct partial 
order between writes and synchronization operations while 
avoiding unnecessary inter-wavefront interference cause by 
cache flushes. 

When a store is written into a cache, the address also is 
enqueued onto the S-FIFO. When the address reaches the 
head of the S-FIFO, the cache is forced to evict the cache 
block if that address is still present in the write cache. With 
this organization, the system can implement a release syn-
chronization operation by simply enqueueing a release 
marker onto the S-FIFO. When the marker reaches the head 
of the queue, the system can be sure that all prior stores 
have reached the next level of memory. Because the S-FIFO 
and cache are decoupled, the memory system can utilize 
aggressive write-combining caches that work well for 
graphics workloads. 

Figure 1 shows an example of QR. In the example, we show 
two threads from different CUs (a.k.a. NVIDIA streaming 
multi-processors) communicating a value in a simple GPU 
system that contains one level of write-combining cache. 

When a thread performs a write, it writes the value into the 
write-combining cache and enqueues the address at the tail 
of the S-FIFO (time �). The cache block then is kept in the 
L1 until it is selected for eviction by the cache replacement 
policy or its corresponding entry in the FIFO is dequeued. 
The controller will dequeue an S-FIFO entry when the S-
FIFO fills up or a synchronization event triggers an S-FIFO 
flush. In the example, the release semantic of a store/release 
operation causes the S-FIFO to flush. The system enqueues 
a special release marker into the S-FIFO (�), starts generat-
ing cache evictions for addresses ahead of the marker (�), 
and waits for that marker to reach the head of the queue 
(�). Then the system can perform the store part of the 
store/release (�), which, once it reaches memory, signals 
completion of the release to other threads (�). Finally, an-
other thread can perform a load/acquire to complete the syn-
chronization (�) and then load the updated value of X (�). 

An important feature of the QR design is that it can be ex-
tended easily to systems with multiple levels of write-
combining cache by giving each level its own S-FIFO. In 
that case, a write is guaranteed to be ordered whenever it 
has been dequeued from the S-FIFO at the last level of 
write-combining memory. We discuss the details of such a 
multi-level system in Section 3. 

Write-combining caches in general, including QR caches, 
typically incur a significant overhead for tracking the specif-
ic bytes that are dirty in a cache line. This tracking is re-
quired to merge simultaneous writes from different writers 
to different bytes of the same cache line. Most implementa-
tions use a dirty-byte bitmask for every cache line (12.5% 
overhead for 64-byte cache lines) and write out only the 
dirty portions of a block on evictions. 

Figure 1. Example of QuickRelease in a simple one-level graphics memory system. 
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To reduce the overhead of byte-level write tracking, QR 
separates the read and write data paths and splits a cache 
into read-only and (smaller) write-only sub-caches. This 
separation is not required, but allows an implementation to 
reduce the overhead of writes by providing dirty bitmasks 
only on the write-only cache. The separation also encour-
ages data path optimizations like independent and lazy man-
agement of write bandwidth while minimizing implementa-
tion complexity. We show that because GPU threads, unlike 
CPU threads, rarely perform read-after-write operations, the 
potential penalty of the separation is low [4]. In fact, this 
separation leads to less cache pollution with write-only data. 

Experimental comparisons to a traditional GPGPU through-
put-oriented WT memory system and to an RFO memory 
system demonstrate that QR achieves the best qualities of 
each design. Compared to the traditional GPGPU memory 
system, bandwidth to the memory controller was reduced by 
an average of 52% and the same applications ran 7% faster 
on average. Further, we show that future applications with 
frequent synchronization can run integer factors faster than 
a traditional GPGPU memory system. In addition, QR does 
not harm the performance of current streaming applications 
while reducing the memory traffic by 3% compared to a WT 
memory system. Compared to the RFO memory system, QR 
performs 20% faster. In fact, the RFO memory system gen-
erally performs worse than a system with the L1 cache disa-
bled. 

In summary, this paper makes the following contributions: 

§ We augment an aggressive, high-throughput, write-
combining cache design with precise write tracking to 
make synchronization faster and cheaper without the 
need for L1 miss status handling registers (MSHRs). 

§ We implement write tracking efficiently using S-FIFOs 
that do not require expensive CAMs or cache walks, 
which prevent inter-wavefront synchronization interfer-
ence due to cache walks. 

§ Because writes require an additional byte mask in a 
write-combining cache, we optionally separate the read 
and write data paths to decrease state storage. 

In this paper, Section 2 describes current GPGPU memory 
systems and prior work in the area of GPGPU synchroniza-
tion. Section 3 describes QR by describing its design choic-
es and how it performs memory operations and synchroniza-
tion. Section 4 describes the simulation environment for our 
experiments and the workloads we used. Section 5 evaluates 
the merits of QR compared to both a traditional GPU 
memory system and a theoretical MOESI coherence proto-
col implemented on a GPGPU. 

2. Background and Related Work 
This section introduces the GPU system terminology used 
throughout the paper and describes how current GPU 
memory systems support global synchronization. Then we 
introduce release consistency (RC), the basis for the 
memory model assumed in the next sub-section and the 
model being adopted by the Heterogeneous System Archi-
tecture (HSA) specification, which will govern designs from 
AMD, ARM, Samsung, and Qualcomm, among others. We 
also describe the memory systems of two accelerated pro-
cessing units (APUs—devices containing a CPU, GPU, and 
potentially other accelerators) that obey the HSA memory 
model for comparison to QR: a baseline WT memory sys-
tem representing today’s GPUs, and an RFO cache-coherent 
memory system, as typically used by CPUs, extended to a 
GPU. Finally, in Section 2.5, we discuss how QR compares 
to prior art. 

 
Figure 2: Baseline accelerated processing unit system. QR-specific parts are all S-FIFOs, wL1s, wL2, and wL3 (all smaller 

than rL1, rL2 and L3). 
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2.1. GPU Terminology 
The paper uses AMD and OpenCL™ terminology [5] to 
describe GPU hardware and GPGPU software components. 
The NVIDIA terminology [6] is in parentheses. 

§ Work-item (thread): a single lane of GPU execution. 

§ Wavefront (warp): 64 work-items executing a single 
instruction in lock-step over four cycles on a 16-wide 
SIMD unit with the ability to mask execution based on 
divergent control flow. This now is known as a sub-
group in OpenCL 2.0. 

§ Compute unit (streaming multi-processor): a cluster of 
four SIMD units that share a L1 cache and multiplexes 
execution among 40 total wavefronts. 

§ Work-group (thread block): a group of work-items that 
must be scheduled to a single CU. 

§ NDRange (grid): a set of work-groups. 

§ Kernel: a launched task including all work-items in an 
NDRange. 

§ Barrier: an instruction that ensures all work-items in a 
work-group have executed it and that all prior memory 
operations are visible globally before it completes. 

§ LdAcq: Load acquire, a synchronizing load instruction 
that acts as downward memory fence such that later op-
erations (in program order) cannot become visible be-
fore this operation. 

§ StRel: Store release, a synchronizing store instruction 
that acts like an upward memory fence such that all pri-
or memory operations (in program order) are visible be-
fore this store. 

2.2. Current GPU Global Synchronization 
Global synchronization support in today’s GPUs is relative-
ly simple compared to CPUs to minimize microarchitecture 
complexity and because synchronization primitives current-
ly are invoked infrequently. Figure 2 illustrates a GPU 
memory system loosely based on current architectures, such 
as NVIDIA’s Kepler [7] or AMD’s Southern Islands [8], 
[9]. Each CU has a WT L1 cache and all CUs share a single 
L2 cache. Current GPU memory models only require stores 
to be visible globally after memory fence operations (barri-
er, kernel begin, and kernel end) [5]. In the Kepler parts, the 
L1 cache is disabled for all globally visible writes. There-
fore, to implement a memory fence, that architecture only 
needs to wait for all outstanding writes (e.g., in a write buff-
er) to complete. The Southern Islands parts use the L1 cache 
for globally visible writes; therefore, the AMD parts imple-
ment a memory fence by invalidating all data in the L1 
cache and flushing all written data to the shared L2 (via a 
cache walk) [8]. 

2.3. Release Consistency on GPUs 
RC [10] has been adopted at least partially by ARM [11], 
Alpha [12], and Itanium [13] architectures and seems like a 
reasonable candidate for GPUs because it is adequately 
weak for many hardware designs, but strong enough to rea-
son easily about data races. In addition, future AMD and 
ARM GPUs and APUs will be compliant with the HSA 
memory model, which is defined to be RC [1]. The rest of 
this paper will assume that the memory system implementa-
tion must obey RC [14]. 

The HSA memory model [15] adds explicit LdAcq and 
StRel instructions. They will be sequentially consistent. In 
addition, they will enforce a downward and upward fence, 
respectively. Unlike a CPU consistency model, enforcing 
the HSA memory model is not strictly the job of the hard-
ware; it is possible to use a finalizer (an intermediate as-
sembly language compiler) to help enforce consistency with 
low-level instructions. In this paper, we consider hardware 
solutions to enforcing RC. 

2.4. Supporting Release Consistency 
In this section, two possible baseline APU implementations 
of RC are described. The first is a slight modification to the 
system described in Section 2.2. The second is a naïve im-
plementation of a traditional CPU RFO cache-coherence 
protocol applied to an APU. Both support RC as specified. 

2.4.1. Realistic Write-through GPU Memory System 
The current GPU memory system described in Section 2.2 
can adhere to the RC model between the CPU and GPU 
requests by writing through to memory via the APU directo-
ry. This means that a release operation (kernel end, barrier, 
or StRel) will need to wait for all prior writes to be visible 
globally before executing more memory operations. In addi-
tion, an acquiring memory fence (kernel begin or LdAcq) 
will invalidate all clean and potentially stale L1 cache data. 

2.4.2. “Read for Ownership” GPU Memory System 
Current multi-core CPU processors implement shared 
memory with write-back cache coherence [16]. As the RFO 
name implies, these systems will perform a read to gain 
ownership of a cache block before performing a write. In 
doing so, RFO protocols maintain the invariant that at any 
point in time only a single writer or multiple readers exist 
for a given cache block. 

To understand the benefit an RFO protocol can provide 
GPUs, we added a directory to our baseline GPU cache hi-
erarchy. It is illustrated in Figure 2, where the wL2 and wL3 
are replaced by a fully mapped directory with full sharer 
state [17]. The directory’s contents are inclusive of the L1s 
and L2, and the directory maintains coherence by allowing a 
single writer or multiple readers to cache a block at any 
time. Because there is finite state storage, the directory can 
recall data from the L1 or L2 to free directory space. The 
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protocol here closely resembles the coherence protocol in 
recent AMD CPU architectures [18]. 

2.5. Related Work 
Recent work by Singh et al. in cache coherence on GPUs 
has shown that a naïve CPU-like RFO protocol will incur 
significant overheads [2]. This work does not include inte-
gration with CPUs. 

Recent work by Hechtman and Sorin also explored memory 
consistency implementations on GPU-like architectures and 
showed that strong consistency is viable for massively 
threaded architectures that implement RFO cache coherence 
[4]. QR relies on a similar insight: read-after-write depend-
encies through memory are rare on GPU workloads. 

Similar to the evaluated WT protocol for a GPU, the VIPS-
m protocol for a CPU lazily writes through shared data by 
the time synchronization events are complete [19]. Howev-
er, VIPS-m relies on tracking individual lazy writes using 
MSHRs, while the WT design does not require MSHRs and 
instead relies on in-order memory responses to maintain the 
proper synchronization order. 

Conceptually, QR caches act like store queues (also called 
load/store queues, store buffers, or write buffers) that are 
found in CPUs that implement weak consistency models 
[20]. They have a logical FIFO organization that easily en-
forces ordering constraints at memory fences, thus leading 
to fast fine-grain synchronization. Also like a store queue, 
QR caches allow bypassing from the FIFO organization for 
high performance. This FIFO organization is only a logical 
wrapping, though. Under the hood, QR separates the read 
and write data paths and uses high-throughput, unordered 
write-combining caches. 

Store-wait-free systems also implement a logical FIFO in 
parallel with the L1 cache to enforce atomic sequence order 
[21]. Similarly, implementations of transactional coherence 
and consistency (TCC) [22] use an address FIFO in parallel 
with the L1.  However, TCC’s address FIFO is used for 
transaction conflict detection while QR’s address FIFO is 
used to ensure proper synchronization order. 

3. QuickRelease Operation 
In this section, we describe in detail how a QR cache hierar-
chy operates in a state-of-the-art SoC architecture that re-
sembles an AMD APU. Figure 2 shows a diagram of the 
system, which features a GPU component with two levels of 
write-combining cache and a memory-side L3 cache shared 
by the CPU and GPU. For QR, we split the GPU caches into 
separate read and write caches to reduce implementation 
cost (more detail below). At each level, the write cache is 
approximately a quarter to an eighth the size of the read 
cache. Additionally, we add an S-FIFO structure in parallel 
with each write cache. 

A goal of QR is to maintain performance for graphics work-
loads. At a high level, a QR design behaves like a conven-
tional throughput-optimized write-combining cache: writes 
complete immediately without having to read the block first, 
and blocks stay in the cache until selected for eviction by a 
replacement policy. Because blocks are written without ac-
quiring either permission or data, both write-combining and 
QR caches maintain a bitmask to track which bytes in a 
block are dirty, and use that mask to prevent loads from 
reading bytes that have not been read or written. 

The QR design improves on conventional write-combining 
caches in two ways that increase synchronization perfor-
mance and reduce implementation cost. First, QR caches 
use the S-FIFO to track which blocks in a cache might con-
tain dirty data. A QR cache uses this structure to eliminate 
the need to perform a cache walk at synchronization events, 
as is done in conventional write-combining designs. Second, 
the QR design partitions the resources devoted to reads and 
writes by using read-only and write-only caches. Because 
writes are more expensive than reads (e.g., they require a 
bitmask), this reduces the overall cost of a QR design. We 
discuss the benefits of this separation in more detail in Sec-
tion 3.2, and for now focus on the operation and benefits of 
the S-FIFO structures. 

When a conventional write-combining design encounters a 
release, it initiates a cache walk to find and flush all dirty 
blocks in the cache. This relatively long-latency operation 
consumes cache ports and discourages the use of fine-grain 
synchronization. This operation is heavy-weight because 
many threads share the same L1 cache, and one thread syn-
chronizing can prevent other threads from re-using data. QR 
overcomes this problem by using the S-FIFO. At any time, 
the S-FIFO contains a superset of addresses that may be 
dirty in the cache. The S-FIFO contains at least the address-
es present in the write cache, but may contain more address-
es that already have been evicted from the write cache. It is 
easy to iterate the S-FIFO on a release to find and flush the 
necessary write-cache data blocks. Conceptually the S-FIFO 
can be split into multiple FIFOs for each wavefront, thread, 
or work-group, but we found such a split provides minimal 
performance benefit and breaks the transitivity property on 
which some programs may rely [23]. Furthermore, a strict 
FIFO is not required to maintain a partial order of writes 
with respect to release operations, but we chose it because it 
is easy to implement. 

In the following sub-sections, we describe in detail how QR 
performs different memory operations. First, we document 
the lifetime of a write operation, describing how the writes 
propagate through the write-only memory hierarchy and 
interact with S-FIFOs. Second, we document the lifetime of 
a basic read operation, particularly how this operation can 
be satisfied entirely by the separate read-optimized data 
path. Third, we describe how the system uses S-FIFOs to 
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synchronize between release and acquire events. Fourth, we 
discuss how reads and writes interact when the same address 
is found in both the read and write paths, and show how QR 
ensures correct single-threaded read-after-write semantics. 

3.1. Detailed Operation 

3.1.1. Normal Write Operation 
To complete a normal store operation, a CU inserts the write 
into the wL1, enqueues the address at the tail of the L1 
S-FIFO, and, if the block is found in the rL1, sets a written 
bit in the tag to mark that updated data is in the wL1. The 
updated data will stay in the wL1 until the block is selected 
for eviction by the wL1 replacement policy or the address 
reaches the head of the S-FIFO. In either case, when evict-
ed, the controller also will invalidate the block in the rL1, if 
it is present. This invalidation step is necessary to ensure 
correct synchronization and read-after-write operations 
(more details in Section 3.1.3). Writes never receive an ack. 

The operation of a wL2 is similar, though with the addition 
of an L1 invalidation step. When a wL2 evicts a block, it 
invalidates the local rL2 and broadcasts an invalidation 
message to all the rL1s. Broadcasting to eight or 16 CUs is 
not a huge burden and can be alleviated with coarse-grain 
sharer tracking because writing to temporally shared data is 
unlikely without synchronization. This ensures that when 
using the S-FIFOs to implement synchronization, the system 
does not inadvertently allow a core to perform a stale read. 
For similar reasons, when a line is evicted from the wL3, the 
controller sends invalidations to the CPU cluster, the group 
of CPUs connected to the directory, before the line is writ-
ten to the L3 cache or main memory. 

Completing an atomic operation also inserts a write marker 
into the S-FIFO, but instead of lazily writing through to 
memory, the atomic is forwarded immediately to the point 
of system coherence, which is the directory. 

CPUs perform stores as normal with coherent write-back 
caches. The APU directory will invalidate the rL2, which in 

turn will invalidate the rL1 caches to ensure consistency 
with respect to CPU writes at each CU. Because read caches 
never contain dirty data, they never need to respond with 
data to invalidation messages even if there is a write out-
standing in the wL1/wL2/wL3. This means that CPU invali-
dations can be applied lazily. 

3.1.2. Normal Read Operation 
To perform a load at any level of the QR hierarchy, the 
read-cache tags simply are checked to see if the address is 
present. If the load hits valid data and the written bit is clear, 
the load will complete without touching the write-cache 
tags. On a read-tag miss or when the written bit is set, the 
write cache is checked to see if the load can be satisfied 
fully by dirty bytes present in the write cache. If so, the load 
is completed with the data from the write cache; otherwise, 
if the read request at least partially misses in the write 
cache, the dirty bytes are written through from the write-
only cache and the read request is sent to the next level of 
the hierarchy. 

While the write caches and their associated synchronization 
FIFOs ensure that data values are written to memory before 
release operations are completed, stale data values in the 
read caches also must be invalidated to achieve RC. QR 
invalidates these stale data copies by broadcasting invalida-
tion messages to all rL1s when there is an eviction from the 
wL2. Though this may be a large amount of traffic, invali-
dations are much less frequent than individual stores be-
cause of significant coalescing in the wL1 and wL2. By 
avoiding cache flushes, valid data can persist in the rL1 
across release operations, and the consequential reduction of 
data traffic between the rL2 and rL1 may compensate entire-
ly for the invalidation bandwidth. 

Furthermore, these invalidations are not critical to perfor-
mance, unlike a traditional cache-coherence protocol in 
which stores depend on the acks to complete. In QR, the 
invalidations only delay synchronization completion. This 
delay is bounded based on the number of entries in the syn-

Figure 3: L1 read-after-write re-use (L1 read hits in M for RFO memory system). 

0	
  

0.002	
  

0.004	
  

0.006	
  

0.008	
  

0.01	
  

0.012	
  
Fr
ac
%o

n	
  
of
	
  lo
ad

s	
  h
i/

ng
	
  o
n	
  
w
rr
ite

n	
  
da

ta
	
  



7 
 
 

chronization FIFO when a synchronization operation ar-
rives. Meanwhile, write evictions and read requests do not 
stall waiting for invalidations because the system does not 
support strong consistency. As a result, QR incurs minimal 
performance overhead compared to a WT memory system 
when synchronization is rare. 

QR’s impact on CPU coherence is minimal and the CPUs 
perform loads as normal. For instance, a CPU read never 
will be forwarded to the GPU memory hierarchy because 
main memory already contains all globally visible data writ-
ten by the GPU.  A CPU write requires only invalidation 
messages to be issued to the GPU caches. 

3.1.3. Synchronization 
While loads and stores can proceed in write-combining 
caches without coherence actions, outstanding writes must 
complete to main memory and stale read-only data must be 
invalidated at synchronization events. QR caches implement 
these operations efficiently with the help of the S-FIFOs. 

To start a release operation (e.g., a StRel or kernel end), a 
wavefront enqueues a special release marker onto the L1 
S-FIFO. When inserted, the marker will cause the cache 
controller to begin dequeuing the S-FIFO (and performing 
the associated cache evictions) until the release marker 
reaches the head of the queue. The StRel does not require 
that the writes be flushed immediately; the StRel requires 
only that all stores in the S-FIFO hierarchy be ordered be-
fore the store of the StRel. The marker then will propagate 
through the cache hierarchy just like a normal write. 

When the marker finally reaches the head of the wL3, the 
system can be sure that all prior writes from the wavefront 
have reached an ordering point (i.e., main memory). An 
acknowledgement is sent to the wavefront to signal that the 
release is complete. 

When the release operation has an associated store operation 
(i.e., a StRel), the store can proceed as a normal store in the 
write path after the release completes. However, for perfor-
mance, the store associated with the StRel should complete 

as soon as possible in case another thread is waiting for that 
synchronization to complete. Therefore, a store from a StRel 
will also trigger S-FIFO flushes, but it will not send an 
acknowledgement message back to the requesting wave-
front. 

Because QR broadcasts invalidations on dirty evictions, 
ensuring all stale data is invalidated before a release opera-
tion completes, acquire operations can be implemented as 
simple, light-weight loads; the acquire itself is a no-op. If a 
LdAcq receives the value from a previous StRel, the system 
can be sure that any value written by the releasing thread 
will have been written back to main memory and any corre-
sponding value in a read-only cache has been invalidated. 

3.2. Read/Write Partitioning Trade-offs 
In the QR design, we chose to partition the cache resources 
for reads and writes. While this choice reduces implementa-
tion complexity, it adds some overhead to read-after-write 
sequences. For example, in QR a load that hits in the write 
cache requires two tag look-ups and a data look-up: first 
check the read-cache tags, then check the write-cache tags, 
then read from the write-cache data array. We can justify 
this overhead by observing that GPGPU applications rarely 
demonstrate read-after-write locality. 

Figure 3 shows the percentage of read requests that hit an 
L1 cache block that has been written previously (i.e., is in a 
modified state under RFO). For several evaluated applica-
tions, written L1 cache blocks are never re-accessed. This 
occurs due to a common GPU application design pattern in 
which a kernel streams through data, reading one data set 
and writing another. Subsequently, another kernel will be 
launched to read the written data, but by this time all that 
data will have been evicted from the cache. 

The partitioned design has several implementation benefits. 
First, it reduces the state overhead needed to support writes 
in a write-combining cache because the dirty bitmasks are 
required only in the write caches. Second, it is easier to 
build two separate caches than a single multi-ported 
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Figure 4: L1 cache read re-use (read hits per read access in RFO memory system). 
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read/write cache with equivalent throughput. Third, the read 
cache can be integrated closely with the register file to im-
prove L1 read hit latency. Meanwhile the write cache can be 
moved closer to the L2 bus interface and optimized exclu-
sively as a bandwidth buffer. 

Table 1:  Memory System Parameters 

 
4. Simulation Methodology and Workloads 
4.1. The APU Simulator 
Our simulation methodology extends the gem5 simulator 
[24] with a microarchitectural timing model of a GPU that 
directly executes the HSA Intermediate Language (HSAIL) 
[1]. To run OpenCL applications, we first generate an x86 
binary that links an OpenCL library compatible with gem5’s 
syscall emulation environment. Meanwhile, the OpenCL 
kernels are compiled directly into HSAIL using a proprie-
tary industrial compiler. 

Because the simulation of our OpenCL environment is 
HSA-compliant, the CPU and GPU share virtual memory 
and all memory accesses from both the CPU and GPU are 
assumed to be coherent. As a result, data copies between the 
CPU and GPU are unnecessary. 

In this work, we simulate an APU-like system [25] in which 
the CPU and the GPU share a single directory and DRAM 
controller.  The GPU consists of CUs. Each CU has a pri-
vate L1 data cache and all the CUs share an L2 cache. The 
L2 further is connected to a stateless (a.k.a. null) directory 
[26] with a memory-side 4-MB L3 cache, which is writeable 
only in the RFO system. The configurations of WT, RFO, 
and QR are listed in Table 1. 

As previously noted, the storage overhead of QR compared 
to WT is similar to dirty bits for all WT caches. Figure 2 
summarizes this design with a block diagram. Overall, QR 
uses 80 kB of additional storage that is not present in the 
WT baseline. To ensure that the comparison with WT is 
fair, we tested whether doubling the L1 capacity could bene-
fit the WT design. Further, the RFO design requires nearly 
double the storage of the baseline WT memory system. We 
found that the extra capacity provided little benefit because 
of the lack of temporal locality in the evaluated benchmarks.  
The benefit is reduced further because WT’s caches must be 
flushed on kernel launches. 

4.2. Benchmarks 
We evaluate QR against a conventional GPU design that 
uses WT caches and an idealized GPU memory system that 
uses RFO coherence. We run our evaluation on a set of 
benchmarks with diverse compute and sharing characteris-
tics. The benchmarks represent the current state-of-the-art 
for GPU benchmarks. The applications and compute kernels 
come from the AMD APP SDK [27], OpenDwarfs [28], 
Rodinia [3], and two microbenchmarks that were designed 
to have increased data re-use and synchronization. Our mi-
crobenchmarks attempt to approximate the behavior of fu-
ture workloads, which we expect will have more frequent 
synchronization and data re-use. Here is a brief description 
of the microbenchmarks: 

§ APSP: Performs a single-source shortest path until 
converging on an all-pairs shortest path. This applica-
tion uses LdAcq and StRel to view updates as soon as 
they are available, to speed convergence, and uses mul-
tiple kernel launches to perform frequent communica-
tion with the host. 

§ sort: Performs a 4-byte radix sort byte by byte. For 
each byte, the first step counts the number of elements 
of each byte; the second step traverses the list to find 
the value at the thread ID position; and, the final step 
moves the correct value to the correct location and 
swaps the input and output arrays. 

4.3. Re-use of the L1 Data Cache 

Figure 4 shows the measured L1 read hits as a fraction of 
read requests (i.e., re-use rate) in the RFO memory system. 
RFO allows for a longer re-use window than either the QR 
or WT memory systems because cache blocks are written 
only locally and synchronization does not force dirty data to 
a common coherency point. In contrast, the WT and QR 
memory systems must ensure all writes are performed to 
memory before synchronization completes. In addition, WT 
will invalidate its L1 cache on each kernel launch. 

The workloads from Section 4.2 exhibit a huge range of re-
use rates, capturing the diverse range of traffic patterns ex-
hibited by GPGPU applications. In either of the extremes of 
re-use, we expect that all of the memory systems should 

Baseline 
Frequency 1 GHz 
Wavefronts 64 wide, 4 cycle 
Compute units 8, 40 wavefronts each 
Memory DDR3, 4 Channels, 400 MHz 
 banks tag lat. data lat. size 
L1  16 1 4 16 kB 
L2  16 4 16 256 kB 

QR 
wL1 16 1 4 4 kB 
wL2 16 4 16 16 kB 
wL3 16 4 16 32 kB 
S-FIFO1 64 entries 
S-FIFO2 128 entries 
S-FIFO3 256 entries 
total 80 kB 

RFO 
directory 256 kB 
MSHRs 1,024 
total 384 kB 
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perform equivalently. In applications with a high re-use rate, 
L1 cache hits will dominate the run-time. In applications 
with a low re-use rate, the performance will be bound by the 
memory bandwidth and latency. Because L1 cache and 
memory controller designs are effectively equivalent in QR, 
RFO, and WT, the expected performance is also equivalent. 

5.  Results 

5.1. Performance 
Figure 5 plots the relative run-times of WT, RFO, and QR 
relative to a system that disables the L1 cache for coherent 
traffic, similar to NVIDIA’s Kepler architecture. The appli-
cations are ordered across the x-axis by their L1 re-use rate 
(Figure 4). The final set of bars shows the geometric mean 
of the normalized run-times. Overall, QR gains 7% perfor-
mance compared to WT, which gains only 5% performance 
compared to not using an L1 cache. On the other hand, the 
RFO memory system loses 6% performance relative to a 
memory system with no L1 cache. The RFO performance 
drop comes from the additional latency imposed to write 
operations because they first must acquire exclusive coher-
ence permissions. 

Figure 5 supports the insight that a QR memory system 
would outperform a WT memory system significantly when 
there is an intermediate amount of L1 re-use. In particular, 
QR outperforms WT by 6-42% across six of the seven 
workloads (dotted-line box in Figure 5) because there is 
significant L1 re-use across kernel boundaries and LdAcqs. 
In these applications, the WT memory system cannot re-use 
any data due to the frequency of full cache invalidations. 
The lone exception is backprop, which is dominated by pull-
ing data from the CPU caches; thus, QR and WT see similar 
performance. 

Across the seven highlighted workloads, APSP is particular-
ly noticeable because of the impressive performance im-

provement achieved by QR and the even more impressive 
performance improvement achieved by RFO. APSP is the 
only benchmark that frequently uses LdAcq and StRel in-
structions within its kernels. While the QR memory system 
efficiently performs the LdAcq and StRel operations in a 
write-combining memory system, the RFO memory system 
performs the operations much faster at its local L1 cache. 
The resulting memory access timings for the RFO memory 
system lead to far less branch divergence and fewer kernel 
launches compared to the other memory systems because 
the algorithm launches kernels until there is convergence. 

The applications bfs, matrixmul, and dct are on the border 
between intermediate and high or low re-use. As a result, 
the performance advantage of QR relative to WT is muted. 

Similar to backprop, kmeans and histogram invoke many 
kernel launches and frequently share data between the CPU 
and GPU. Their performance also is dominated by pulling 
data in from the CPU, resulting in QR and WT achieving 
similar performance. 

The one application on which QR encounters noticeable 
performance degradation is lud. As shown in Figure 3, lud 
exhibits the highest rate of temporal read-after-writes; thus, 
the extra latency of moving data between QR’s separate 
read and write caches is exposed. Furthermore, lud has a 
high degree of false sharing between CUs, which lowers the 
effectiveness of QR’s L1 cache compared to WT due to its 
cache block granular invalidations. Overall, due to its 
unique behavior, lud is the only benchmark on which simply 
disabling the L1 cache achieves a noticeable performance 
improvement relative to the other designs. 

The rest of the applications (sort, srad, spmv, and nw) ex-
hibit either very high or very low L1 re-use, which means 
we would expect a small performance difference due to the 
on-chip memory system. The results confirm this intuition 
because all non-RFO memory systems perform similarly. 
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Figure 5: Relative run-times of WT, RFO, and QR memory systems compared to not using an L1 cache. 
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5.2. Directory Traffic 
Figure 6 shows the bandwidth between the GPU cache hier-
archy and the APU directory for WT, RFO, and QR relative 
to the system without an L1 cache. Due to aggressive write-
combining, QR generates less total write traffic than WT for 
the same or better performance. 

To explore the directory write traffic, Figure 7 shows the 
effectiveness of the write-combining performed by a QR 
memory system. The RFO memory system includes a 
memory-side L3 cache, which filters many DRAM writes, 
so only the no-L1-memory, WT, and QR designs are shown 
in Figure 7. Most applications see significantly fewer write 
requests at the DRAM in QR compared to a WT or no-L1-
memory system due to the write-combining performed at 
the wL1, wL2, and wL3. As Figure 7 shows, applications 
with the greatest reduction generally achieve the greatest 
performance gains, indicating that good write-combining is 
critical to performance. In nn and nw, WT and QR have 
similar DRAM traffic. In these applications, there is no op-
portunity to perform additional write-combining in QR be-
cause all of the writes are full-cache-line operations and 
each address is written only once. 

5.3. L1 Invalidation Overhead 

Figure 8 shows both the cost and benefit of broadcasting 
precise invalidations in QR. Bars represent the normalized 
number of bytes that arrive at the L1 cache in QR compared 
to WT. Within each bar, segments correspond to the number 
of bytes that arrived due to an invalidation probe request or 
a data response, respectively. 

Almost all benchmarks receive equal or fewer L1 data mes-
sages in a QR memory system compared to a WT memory 
system. The only exception is backprop, in which false shar-
ing created additional cache misses for QR due to invalida-
tions after wL2 evictions. 

When invalidation traffic is added, the total bytes arriving at 
the L1 in a QR memory system can be up to three times the 
number of bytes arriving in a WT system, though on aver-
age the number is comparable (103%). Some workloads 
even experience a reduction in L1 traffic. APSP saw a sig-
nificant reduction in overall traffic because frequent LdAcqs 
and the subsequent cache invalidations result in a 0% hit 
rate at the WT L1. In most workloads, QR and WT have 
comparable traffic at the L1. QR achieves this comparable 
traffic despite extra invalidations because it is able to re-use 
data across kernel boundaries, whereas WT’s full L1 cache 
invalidation cause data to be refetched. 
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Figure 6: L2 to directory bandwidth relative to no L1. 
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Figure 7: Write-through requests seen at DRAM relative to a system with no L1. 
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Finally, other workloads see a doubling or more of L1 traf-
fic in QR. This is because they have a significant number of 
independent writes without re-use between kernels to amor-
tize the cost of invalidations. In the future, we predict that 
reducing the data required from off-chip likely will trump 
the cost of additional on-chip invalidation messages, making 
QR a reasonable design despite this increased L1 traffic. 

5.4. Total Memory Bandwidth 
Figure 9 shows the combined number of read and write 
memory accesses for each benchmark relative to the 
memory accesses performed by the memory system with no 
L1. The RFO has fewer memory reads because dirty data is 
cached across kernel bounds, which is not possible in the 
QR or WT memory systems because data responses to CPU 
probes are not supported. This is especially effective be-
cause kernels often switch the input and output pointers 
such that previously written data in the last kernel is re-used 
in the next kernel invocation. 

5.5. Power 
Combining the results from Figure 8 and Figure 9, we can 
estimate the network and memory power of QR and WT. 
Because GPUWattch showed that memory consumed 30% 
of power on modern GPUs and network consumed 10% of 
power [29], we can infer that QR should save 5% of 

memory power and increase network power by 3%. As a 
result, it follows that QR should save a marginal amount of 
power that may be used by the additional write caches. Fur-
ther, the improved performance of QR relative to WT im-
plies less total energy consumption. 

5.6. Scalability of RFO 
To support the claim of increased bandwidth scalability 
compared to an RFO memory system, nn and reduction are 
evaluated with smaller inputs to see how well a latency-
oriented RFO memory system could perform compared to a 
throughput-oriented WT or QR memory system. Figure 10 
shows the performance of nn and reduction for various 
problem sizes. For small input sets, all memory systems 
have similar performance. As the input size increases, the 
demand on the memory system increases and QR’s reduced 
write overhead improves the performance relative to RFO 
and WT. 

6. Conclusion 
This paper demonstrates that QuickRelease can expand the 
applicability of GPUs by efficiently executing the fine-grain 
synchronization required by many irregular parallel work-
loads while maintaining good performance on traditional, 
regular general-purpose GPU workloads. The QR design 
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improves on conventional write-combining caches in ways 
that improve synchronization performance and reduce the 
cost of supporting writes. First, QR improves performance 
by using efficient synchronization FIFOs to track outstand-
ing writes, obviating the need for high-overhead cache 
walks. Second, QR reduces the cost of write support by par-
titioning the read- and write-cache resources, exploiting the 
observation that writes are more costly than reads. 

The evaluation compares QR to a GPU memory system that 
simply disables private L1 caches for coherent data and a 
traditional throughput-oriented write-through memory sys-
tem. To illustrate the intuitive analysis of QR, it also is 
compared to an idealized RFO memory system. The results 
demonstrate that QR achieves the best qualities of each 
baseline design. 
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Figure 10: Scalability comparison for increasing problem sizes. 

 


