Appears in the proceedings of the
o Annual International Symposium on High-Performance Computer Architecture (HPCA-9)
Anaheim, CA, February 8-12, 2003

Variability in Architectural Simulations of Multi-threaded Workloads

Alaa R. Alameldeen and David A. Wood
Computer Sciences Department, University of Wisconsin-Madison
{alaa, david}@cs.wisc.edu

Abstract obtained from multiple runs of the same workload. Time
))) variability occurs when a workload exhibits different
Multi-threaded commercial workloads implement performance characteristics during different phases of a
many important internet services. Consequently, thesgingle run. Space variability occurs when small timing
workloads are increasingly used to evaluate the perfor-variations cause different runs starting from the same
mance of uniprocessor and multiprocessor systeninitial conditions to follow widely different execution
designs. This paper identifies performance variability aspaths from the space of all possible paths.
a potentially major challenge for architectural simula- If unaddressed, both types of variability can lead to
tion studies using these workloads. Variability refers t0,correct conclusions being drawn from simulation
the differences between multiple estimates of & workeyperiments. Time variability can cause errors when the
load’s performance. Time variability occurs when a measyred program phase does not represent the work-
workload exhibits d|.fferent charactenstlcs.du.n_ng differ- |oad's average behavior. Space variability can cause
ent phases of a single run. Space variability occurSerrors when minor timing differences between two con-

when small variations in timing cause runs starting from fjg,rations result in widely divergent execution paths.
the same initial condition to follow widely different exe- We show that time and space variability are real

Cu“‘i%ﬁ:gﬁt' is a well-known phenomenon in real svs- phenomena that occur in real systems running multi-
y p YS™ threaded workloads (Section 2). Variability is a well-

tems, but is nearly universally ignored in simulation . "shenomenon in measurement studies, and stan-
experiments. In a central result of this paper, we show

that variability in multi-threaded commercial workloads dard statistical techniques call for taking the mean of
y : : multiple observations. Another common (and roughly
can lead to incorrect architectural conclusions (e.g.,

L) equivalent) alternative is to measure long enough to
31% of the time in one experiment). We propose a me inimize the impact of variability. For example, the

odology, based on multiple simulations and standardrp- -~ \/5 o'henchmark requires a minimum measure-
statistical techniques, to compensate for variability. Ourrnent Iengfh of two hours [36]

methodology greatly reduces the probability of reaching Conversely, variability has been rarely considered

incorrect conclusions, while enabling simulations to . . X . . | ,
finish within reasonable time limits in architectural simulation studies. This stems, in part,

from the observation that most simulators—including

1. Introduction ours—are deterministic: they produce the same timing

Multi-threaded, throughput-oriented applications— result every time for the same workload and system con-
such as databases and web servers—represent a dorfiguration. However, we find that small changes in
nant class of internet service workloads. Current ancfystem timing expose the inherent workload variability,
future computer architectures (e.g., multi-threaded proleading to large fluctuations in simulated runtime.
cessors [4] and chip multiprocessors [3, 4]) are increas- In a central result of this paper, we show that ignor-
ingly designed with these applications in mind. ing workload variability may result in incorrect conclu-
Standardized multi-threaded benchmarks [34, 35] areions being drawn from simple simulation experiments.
commonly used to evaluate uniprocessor and multiproin one experiment (Section 4.1), we examined the effect
cessor systems, using both measurement of currertf increasing the cache associativity from 2-way to 4-
systems and simulation of future ones. Execution-driverway on a 16-processor system running our OLTP work-
evaluation of these workloads requires full-system sim4oad. As expected, this has a small but positive impact
ulation, since they spend a significant portion of theiron performance when averaged over twenty runs
time in the operating system [1, 2, 26]. (Section 3.3 describes our technique for injecting

This paper identifies performance variability as arandom perturbations to create a space of possible runs).
potentially major challenge for architectural simulation However, if we had randomly picked one run from each
studies using multi-threaded workloads. Variability configuration, we would have had a 31% chance of
refers to the differences between performance estimatedrawing the wrong conclusion (i.e., that the lower-asso-

— — . b the Natonal Sl — ciativity cache performed better).
IS WOrK IS Supporte n part Yy the National cience Foundation . .
with grants EIA-0205286, EIA-9971256 and CDA-9623632, a Wis- Ve further show (Section 4) that time and space

consin Romnes Fellowship (Wood) and donations from IBM, Intel and variability pervade full-system simulation. We show that
Sun Microsystems. space variability occurs, in varying degrees, across five

commercial workloads and two scientific benchmarks. © Same Threads
Space variability also decreases for longer simulations. x Different Threads
These results demonstrate that variability has
serious implications for architectural simulation studies
using multi-threaded workloads. Worse, the standard
measurement solution—running long enough—is notg
easily applied to simulation because of the orders-of%
magnitude slowdown. Modeling a 16-processor systerriﬂél
with out-of-order processors on a uniprocessor host, our

0O OO0 O CO OO XM O X@X X

simulation slowdown is approximately 24,000x com- 27]0®® 0000 © @ OMOMO>OOKX B XX

pared to the simulated system. This means that simulat- | SR S |

ing the official two-hour TPC-C benchmark would 900000 1000000 1100000 1200000

require more than five years, and a one-minute run cycles

would require more than 16 days! _ _ Figure 1. Differences in OS-scheduled threads between
To address this problem, we propose a simulation two short simulation runs

methodology (Section 5) that combines multiple simula- lel lti-threaded Kload wh Il timi

tions with standard statistical techniques. This methogPar& €' or mut real & Wgrﬁ oad where sma 'm'ﬂg
ology greatly reduces the probability of drawing wrong varlr?tlons_ cl:a_n re_?fut n 'f erent exerﬁ:utlon paths,
conclusions. It also permits reasonable simulation time®€MNapPs yie ding different performance characteristics.

using coarse-grain parallelism, provided that multiple.nterfm?ltl.'sfsle Q’agaégonrlzn?ﬁ,e quegllﬂiligcrgzsdlﬁcto
simulation hosts are available. ! upt iming, bu lon wi ! :

This paper makes two important contributions. Variations arise in simulation due to small changes in

First, we define, analyze and discuss the variability pheisgiztﬁén)paTrﬁir:itr?]r;|(_§'Cgé|’ec?,;?izts)il|zite ’ 2Zﬁog|eatr|:1/gy r?i:‘ig]c:lss
nomenon in multi-threaded workload simulation. Y)- y 9

Second, we propose a statistical methodology that ca];lor a number of reasons, including:

be used to obtain more accurate simulation resultsl) the operating system may make different schedul-
while maintaining short simulation runtimes. Our objec- g‘gf deC'S'OI?OS (eg.,a schedulmg quantum r;nay_end
tive is to draw the attention of architects to the variabil- elore an event. In one run, ut not anot er),.

ity phenomenon when designing simulation experiments?) 10cks may be acquired in different orders, resulting

to evaluate systems running multi-threaded workloads. " Significant contention in one run, but not another,
3) a transaction may complete during the measure-

2. The Variability Phenomenon ment interval in one run, but not another (see
: ; - o Section 3.1).
In this section, we define variability and explore . . .
what causes it in time and space. We demonstrate that , " i9ure 1 illustrates a snapshot of different OS
this phenomenon occurs in both real and simulate¢€duling decisions in two simulation runs of our
systems and motivate why researchers must address. LTP workload. Each data point represents a schedul-

when performing archi ral performan ies.ing event. Both runs start from the same i_nitiaI condi-
€n perio g architectural performance studies tions. Run 1 (bottom) simulates a system with 2-way set

2.1. What Is Variability? associative caches, while Run 2 simulates a system with

Variability refers to the differences in performance 4-way set associative caches. The OS in both runs
estimates obtained from multiple runs of a workload. InScheduled the same threads until about 1,060,000 cycles
other words, it refers to the sensitivity of a workload's (approximately 1 ms of target execution time). After
performance to the particular execution path it takesthat point, the behavior in the two runs differs dramati-
Time variability describes the phenomenon where zcally. The OS scheduled different threads or the same
workload exhibits different performance characteristicsthreads in different orders, leading to two completely
over time. Space variability describes the phenomenoflifferent execution paths.

where two runs exhibit different performance character- 5 pges Variability Matter In Real Systems?
istics, despite starting from the same initial conditions. Time and space variability of multi-threaded work-

Time variability is a well-known phenomenon. loads are well-known phenomena in real systems. Mea-

Earlier work has frequently described this phenomenolrgurement experiments generally average multiple

as phase behavior, because many workloads exhibit dig;, <o\ ations or run long enough to minimize variability.
tinct execution phases with widely different perfor- We performed experiments to determine what “long

mance characteristics [20, 30, 31]. We prefer the more ” '
general name “time variability” because the throughput_enough means for our workloads. These experiments

oriented commercial workloads we study have a more '€ conducted on a Sun E5000 multiprocessor
homogeneous behavi'oralthough the exact mix of machine with twelve 167 MHz UltraSparcll processors,

transactions may vary over time. 1. Many commercial workloads also exhibit distinct phases, e.g., gar-
Space variability is also well-known in the mea- bage collection in an application server's JVM or flushing the log in a

. A . DBMS. However, we focus on the more homogenous parts of these
surement community. Space variability can arise in anyworkloads.

»
|
o]
|

2 z [
= =] =
E E 44 . E 4
g B g
- [=
P B 2- B 2-
8 8 8
o [&] [&]
9 G o)
0 ——1——— 0 ——7——— 0 ———
0 200 400 600 0 200 400 600 0 200 400 600
Time(sec) Time(sec) Time(sec)
(a) 1 second b) 10 seconds ¢) 60 seconds
Figure 2. OLTP time variability in a real system for different observation intervals (one run)
6 6
2 z A
< S e
E E 4 € 4
4 4 @ e e - -
: ; :
= [=
P B 2 g 24
8 $ ¢
5 5 §
@)
0 T T T T T 1 0 T T T T 1 0 T T T T T 1
0 200 400 600 0 200 400 600 0 200 400 600
Time(sec) Time(sec) Time(sec)
(a) 1 second b) 10 seconds ¢) 60 seconds

Figure 3. OLTP space variability in a real system for different observation intervals (five runs)

each with a 512 KB unified L2 cache. UltraSparc pro-same Sun E5000 system. Each of the five runs was
cessors have hardware performance counters that can btarted from a newly-built database and conducted with
used to measure architectural events on a per-processoo other user processes running to minimize variability
basis. We measured the number of cycles per transactiaiue to external factors. This figure illustrates that OLTP
for our OLTP benchmark (described in Section 3.1)exhibits significant space variability even between inter-
emulating 96 users for ten minutes. vals including over 3,000 transactions (10 seconds). As

Figure 2 demonstrates time variability for one yvith time variability, the magnitud_e of space _variability
OLTP run. We measured the number of cycles per trans'S 9réatly reduced for 60-second intervals (Figure 3c).
action averaged over intervals of one, ten and sixty sec2 3. Does Variability Matter for Simulation?

onds. Figures 2a and 2b clearly show that the pogearchers often use simulation to evaluate the
benc_hrr_lark eXh'b'tS widely different performanpe Char'performance of a design enhancement relative to a base
acteristics over time (nearly a factor of three dlfferencedesign. In this case, they care less about absolute perfor-
"mance than about the relative performance of a work-
Bad on two (or more) different system configurations.
Hence space variability is arl%uably more important for

the observation interval reaches 60 seconds (Figure 2c
almost a straight line). Some variability is expected,
because the OLTP workload consists of five different

. ; .= “simulation than time variabili
transaction types. However, the magnitude of variability We conducted a simole experiment to illustrate that
is surprising, since this system completes over 350 P P

transactions per second on average. space _/arlab|I|ty can affe_ct S|mqlat|on results enough to
] cause incorrect conclusions. Figure 4 shows the effect
_Figure 3 demonstrates the phenomenon of spacgn cycles per transaction of changing the DRAM
variability for OLTP. This figure shows the mean and A p— hort workload .
H _ H . common argument Is that wnile a short workioad run may no
error bars (representing +/- one S_tandarq deviation fro ccurately represent the whole workload, at least it represents part of a
the mean) of cycles per transaction for five runs on thaeal workioad.

a wholesale supplier, with many concurrent users per-

50 — forming read and write transactions against the data-
@ base. We used an IBM benchmark kit to build the
S 484 database and model users who execute transactions
g without keying or think time. Our experiments use a
% 46 4000-warehouse database, with districts, items per
s warehouse, and customers per district scaled down to
o444 limit overall dataset size. The initial size of the database
& is approximately 800 MB, spread across five raw disks
8 424 with an additional dedicated database log disk. Simula-
% tion experiments emulate 8 users (implying 8 database
4.0 — T T—T— T T threads) per processor, and the database is warmed up
80 81 8 83 84 85 8 87 8 89 90 by running for 10,000 transactions before taking the
DRAM Access latency (ns) measurements (unless otherwise specified).
Figure 4. Performance of 500-transaction OLTP runs Transaction Quantization Errors. Most commercial
with different DRAM latencies multi-threaded workloads are throughput-oriented.

latency from 80 to 90 ns, with all other system parame-These workloads are evaluated using metrics such as
transactions per second, calculated by dividing the total

ters fixed. All runs start from the same simulation ;
checkpoint (Section 3.2) and complete 500 OLTP transpumber of completed transactions by the measurement

actions. The obvious expected result is that cycles pelpterval. To facilitate comparison with traditional bench-

transaction should increase slightly with the increase ir{narks, we adopt a methodology that measures the (sim-

DRAM latency. Clearly, however, the small differences ulated) time to finish a fixed number of transactions [1].
: ! ' ;Ne use the number of cycles per transaction as our per-

in memory system timing can have an impact at a highe ,

level (e.g., OS scheduling decisions). For example, thd2'mance metric throughout the paper, even for work-
84-ns configuration was 7% faster than the 81-ns config-OaOIS with different types of transactions.
uration. In these two simulations, the OS made com- Using either method, cold-start and end-effects may
pletely different scheduling decisions after the firstbias the results if too few transactions are measured. The
560,000 cycles (approximately) were completed. Whilefirst transaction to complete within the interval will have
no one is likely to conclude that slower memory is started before the interval began. Similarly, when the

better, it is clear that space variability could lead to theN" (last) transaction completes, the N N+2", etc.
wrong conclusion in other cases. transactions have already started. Simulation runs

should be long enough to mitigate these effects.
3. Workloads and Simulation Framework

_ _ _ _ 3.2. Simulation Infrastructure
In this section, we briefly describe the workloads hi . . imulati
and the simulation infrastructure we use for evaluation. | NS Section describes our target system simulation
We then motivate and discuss the method we use t5nodel, and details of our simulation infrastructure.
introduce variability in simulation runs. 3.2.1. Target System Model

3.1. Workloads We model a 16-node system similar to the Sun
) N) E10000 [6]. Each node contains a processor core, split

- We examine the variability phenomenon using a| 1 instruction and data caches (each is 128 KB 4-way
diverse set of commercial and scientific benchmarks. Inset associative, using 64-byte blocks), a unified L2
this paper, we primarily report results for the OLTP cache (4 MB, 4-way set associative, 64-byte blocks), a
benchmark to facilitate comparisons across experitache controller, and an integrated memory controller
ments. Other commercial benchmarks we study arefor 5 portion of the 2 GB shared main memory. System
Apache (static web content serving), SPECjbb (a Javgaches are kept coherent using an MOSI invalidation-
server benchmark, SPECjbb2000 ([34]), Slashcodgased snooping cache coherence protocol. We assume a
(dynamic web content serving, used by slashdot.org)yyo-level hierarchy of crossbar switches for the inter-
and ECPerf (a 3-tier Java workload). Alameldeen et alconnection network to connect the nodes, with a delay
[1] and Karlsson et al. [15] describe these workloads ingf 50 ns for each network traversal (which includes wire
more detail. We also study Barn_es—Hut with 16K bodlespropagaﬂon, synchronization, and routing). We assume
and Ocean with a 514x514 grid from the SPLASH-2g80 s for the DRAM access time. When a protocol
benchmark suite [38] as examples of scientific app"ca‘request arrives at a processor or at memory, it takes
tions. 25 ns or 80 ns, respectively, to provide data to the inter-
OLTP: DB2 with a TPC-C-like workload. Our OLTP connect. These assumed latencies result in a 180 ns
workload is based on the TPC-C v. 3.0 benchmark [35]latency to obtain a block from memory and a 125 ns
using the IBM DB2 v. 7.2 EEE database managementatency for a cache-to-cache transfer. We assume a
system. The TPC-C benchmark models the activities ofl GHz system clock (i.e., a 1 ns system cycle).

3.2.2. Full-System Simulation To do this, we artificially introduce small perturba-

We use Simics [22, 37], a full-system multiproces- tions in memory system timing. On each L2-cache miss,
sor simulator. Simics is a system-level architectural simwe added a uniformly distributed pseudo-random
ulator developed by Virtutech AB that is capable of integer between 0 and 4 ns. This increases the average
running unmodified commercial operating systems and-2 miss latency by 2 ns. For multiple simulations, each
applications. We configured Simics to model a SPARCIUn uses a unique random seed, leading to a different
V9 target system running unmodified Solaris 8. Simicssequence of miss latencies. Note that the average miss
is only a functional simulator by default, but it can be latency remains the same for each run. However, the
extended with detailed processor and memory systerimall perturbations lead to different execution paths and
timing models, described in the next two subsections. different runtime results.

Simics has a checkpointing facility that enables us [N & sensitivity experiment on OLTP, we showed
to capture the full state of the system (including registerthat the magnitude of the random perturbation did not
state, memory, disks and outstanding interrupts). We usBave a significant effect on variability. When the uni-
this checkpointing facility to start simulation runs from formly-distributed discrete increment was chosen
the same initial conditions. We also record multiple between 0 and 1 ns (instead of 0-4 ns), the coefficient of
checkpoints over a workload’s execution to allow evalu-variation of the runtimes (defined as the 100 times the
ation of time variability. ratio of the standard deviation to the mean [12]) was not
significantly affected.

This artificial method of introducing timing pertur-
ons is used throughout the next section to produce a
space of runs for our simulation experiments. We use
the mean of these runs as our performance metric.

3.2.3. Memory System Model
We extend Simics with a memory system simulatory, i
that accurately models the timing of memory requests
The simulator—described in more detail by Martin et al.
[23, 24] and Alameldeen et al. [1]—supports a broad
range of coherence protocols, specified using a table4, Variability in Simulation Results
driven specification methodology. It accurately models Thjs section examines in detail the impact of vari-
state transitions (including transient states) of the coherapyjlity on simulation results. We first define a metric that
ence protocols in cache and memory controllers. Oufngicates the likelihood of drawing the wrong conclu-
simulations capture timing-dependent race conditionssion if variability is ignored. We then examine the sensi-
and lock contention events that cannot be captured usingyity of space variability to different benchmarks and
a trace-driven methodology. simulation run lengths. We also confirm that time vari-
3.2.4. Processor Models ability is significant in workload simulation.
We present results using two different processory 1 Wrong Conclusion Ratio
models. For most results, we use a fast but simple block-
ing processor model that would complete one billion

instructions per second at 1 GHz (i.e. an IPC of 1) if thed" incorrect conclusion when using single simulation

L1 caches were perfect. We extended this simple timing?.épeurggﬁfr;stg% Crﬁsnlgpv%ree ddelgﬁ;egtnsgv\sltrengtﬁgng?eu\r;rt(l)onns.
model with the memory hierarchy simulator, to accu- q 4 ' 9

: onclusion ratio (WCR), as the percentage of compari-
rately model the L1 and L2 caches and the remainder of . X ! ; -
the memory system. son experiment pairs that reach an incorrect conclusion.

For more detailed—but 6—8 times slower—simula- For example, when conducting an experiment to

i TEsim [25] t del out-of-ord compare the performance of systems A and B, weNise
ions, we use TFsim [25] to model out-of-order proces-, "o \yorkioad W for each system. The correct con-
sor cores and L1 caches. TFsim models a four-wid

W98 ysion is the relationship between the averages oRthe

Section 2 demonstrated the possibility of drawing

branch predictor [11], a 64-entry cascaded indirectg]c theN

branch predictor [9], a 64-entry return address stack pre-
dictor [14], and a 64-entry reorder buffer (unless other-
wise specified).

pairs of runs that lead to the opposite conclu-
ion (in this case, that B outperforms A).

WCR can be used to estimate theong conclusion
probability if a researcher ignores variability in multi-
threaded workloads and uses single simulations. We
3.3. Introducing Variability next present WCR results for two experiments involving

As described in Section 2.1, workloads exhibit cache and microarchitectural design decisions.

space variability on real systems due to small timing4.1.1. Experiment 1: Cache Design

variations. Our simulator, however, is deterministic: it In this experiment, we simulated twenty 200-trans-

produces the same execution path for each workloadéction runs of our OLTP workload using the simple pro-

system configuration every time (starting from the samecessor model. We varied the L2 cache associativities,
checkpoint). To evaluate space variability, we mustwhile holding the cache hit and miss latencies constant.
inject small timing variations to create a space of possi\We considered direct-mapped, 2-way and 4-way set
ble executions starting from the same initial conditions.associative caches, with cache sizes fixed at 4 MB. The

5.2
3 z 4.0
E 2 ° £ i
G 48 emax g i ® ® max
& o avg 8 35 O avg
E 46 & min E & min
.
k| 44 8 307 .
[&] 4 — * O
9 G
. .
4.2 T T T 2.5 T T T
1 2 4 16 32 64
L2 Set Size ROB Size
Figure 5. OLTP performance for different L2 cache Figure 6. OLTP performance for different reorder
associativities buffer sizes

expected conclusion from this experiment is thatand misleading conclusions. The minimum of the direct-
runtime decreases when the associativity increases. mapped system outperforms the maximum of the 4-way

Figure 5 shows the average (with error bars repreSystem by 5%, whereas the minimum of the 4-way
senting +/- one standard deviation), maximum, andSystem outperforms the maximum of the direct-mapped
minimum number of cycles per transaction for the threeSystem by 23%. However, there is a small chance (1 in
L2 cache configurations. The average performance foff00 for our 20-run experiment) that the execution paths
these configurations confirms our expected conclusionfollowed by single simulations may lead to one or the
However, the range of results for the three configura-Other of these conclusions.

tions overlap. Clearly, if we performed only one simula- 4.1.2. Experiment 2: Microarchitectural Design

tion run for each configuration, there is a risk that we In this experiment, we simulated twenty 50-transac-
might (ferroneously conclude thqt a direct-mapped CaCh'talon runs for our OLTI’D workload using TFsim [25] to
outper orm§ a 4-wa¥ Se,t associative one. compare the performance of microarchitectural configu-
To estimate this risk, Table 1 shows the WCR (ations that differ only in the reorder buffer size. These
values for this experiment, obtained by enumeration o onfigurations have reorder buffers of 16, 32 and 64
all possible pairs. The results show, for example, thantries, respectively. The expected conclusion from this

31% of the pairwise comparisons would lead to thegyperiment is that runtime decreases when the ROB size
wrong conclusion that a 2-way set-associative cachg,creases.

configuration outperforms a 4-way configuration. Figure 6 shows the average (with error bars), maxi-
An interesting observation is that single simulationsym “and minimum number of cycles per transaction
can result in misleading conclusions either way. Forfor the three microarchitectural conﬁgurations. The
example, while the average of the 4-way system OUtperaverages confirm the expected concludiddut again,
forms the average of the direct-mapped system by 6%e result ranges overlap, leaving the possibility of an
the two opposite extremes lead to completely differentncorrect conclusion. Table 2 presents the WCR values

for single comparison experiments. It shows, for exam-

Table 1. Summary of Experiment 1 ple, that 26% of the possible experiment pairs lead to the
Configurations Compared WCR (%). wrong conclusion that a 32-entry ROB configuration
(Superior Configuration). outperforms a 64-entry configuration.

Direct Mapped vs. (2-way SA) 24% 4.1.3. Summary
Direct Mapped vs. (4-way SA) 10% These two simple experiments clearly illustrate that
2-way SA vs. (4-way SA) 31% ignoring variability can lead to erroneous conclusions in

a significant percentage of single-simulation experi-
ments. Note that a high WCR usually implies that two

Table 2. Summary of Experiment 2 . g i !
configurations are close in performance, and that it may

ConfigL_Jrationsf_Compared WCR (%). not be possible to conclude that one outperforms the
(Superior Configuration). other. In Section 5, we discuss using standard statistical
16-entry vs. (32-entry) ROB 18% techniques, i.e., confidence intervals and hypothesis
16-entry vs. (64-entry) ROB 7 5% testing, to determine when it is safe to draw conclusions.
32-entry vs. (64-entry) ROB 26% 3. TFsim models a 4-wide out-of-order superscalar processor, result-

ing in a lower number of cycles per transaction than Experiment 1.

Table 3. Summary of space variability for different benchmarks

Benchmark. Barnes. Ocean. ECPerf. Slashcode. OLTP. Apache. SPECjbli.
#transactions 1 1 5 30 1000 5000 60,00('

Coefficient of Variation 0.16% 0.31% 1.40% 3.60% 0.98% 0.88% 0.26p0

Range of Variability 0.59% 1.13% 5.30% 14.45% 3.85% 3.94% 1.10§6

4.2. Simulated Space Variability

To understand the scope of space variability in 1.10
multi-threaded workloads, we examine various bench-
marks and simulation run lengths. In this section, twentye
simulation runs were used for each data point, using thes
simple processor model. We use the mean of the simug

1.05

[) ® max
lated runtimes as the performance metric, and the coeffig 100 @ $ % § o 8 0 avg
cient of variation to estimate the magnitude of space% . o . e min

variability. We define another metric, thhange of vari- &£
ability, as the difference between the maximum and theS 0.95 .
minimum runtimes, taken as a percentage of the mean.
The higher the range of variability, the more likely one
is to make an incorrect conclusion.

I I I

3 < < ¢

4.2.1. Space Variability and Different Benchmarks Qg}z‘ ooé\(ooQé\Qé\&b o\/’\ vf§@0\0
>

We compare the space variability across our seven Q;'é’(\
benchmarks on a 16-processor system. The number of
transactions executed for each benchmark vary from 1
(for Barnes-Hut and Ocean, where the whole benchmark Figure 7. Variabililty of different benchmarks
i'I?h\éifr\gﬁgaizo?lnfogr?tgsva\}gtriggélfcti%’?gﬁnﬁrthse Pjﬁﬁggoo to 1000, the coefficient of variation and the range of
tion runtime for each benchmark run to less than tenvamjlblllty decreasg, |nd!cat.|_ng less variability. How-
hours (except ECPerf). ever, the decrease in variability comes at the expense of

) longer simulation times.
Figure 7 presents the mean, error bars, and

extremes for the seven benchmarks. Table 3 shows th4.3. Simulated Time Variability
number of simulated transactions, the coefficient of vari-
ation, and the range of variability for each benchmark.
Table 3 (last row) shows that variability ranges from less
than 1% for Barnes-Hut to more than 14% for Slash-
code. The range of variability exceeds 3% for four out

0.90 T T T T

Benchmark

Section 2.2 confirmed the well-known result that
multi-threaded workloads running on real systems
exhibit different characteristics over time. To demon-
strate this phenomenon in simulation experiments, we

. , conducted ten 40,000-transaction OLTP runs (about one
of the five commercial benchmarks, even for these rela

; . . month of simulation time for each run, using the simple
tively long runs with the simple processor model. In

S, . rocessor model). Partial results were produced every
addition, these results show that OLTP (which we us€,q i nqactions. Figure 8 presents the average and stan-
throughout the paper) is not an extreme case in terms g

space variabilit ard deviation (error bars) for the number of cycles per
P Y- transaction, where each data point represents 200 trans-

4.2.2. Space Variability and Run Lengths actions. This figure shows that OLTP exhibits different
Experiments on real Systems show that space VariChar_aCteriStiCS over time, with CyCleS per transaction

ability of multi-threaded workloads decreases with anvVarying by up to 27%.

increase in the observation interval. Table 4 confirms Figure 9 shows the average (with error bars) for 20

this result for our simulation experiments. As the runs starting from ten different starting points in the

number of simulated OLTP transactions increases fronworkload lifetime of OLTP and SPECjbb. Figure 9a

Table 4. OLTP space variability for different run lengths

#Simulated Transactions. 200. 400. 600. 800. 1000.
Coefficient of Variation 3.27% 2.87% 2.16% 1.53% 0.98%
Range of Variability 12.72% 10.40% 7.65% 5.47% 3.86%
Average Runtime (1 simulation) in hrs. 1.79 3.62 5.48 7.36 9.26
Total Runtime (20 simulations) in hrs. 35.82 72.35 109.64 147.13 185.11

f
Il rlv h iy |||’“'r:”'Wnl| Illlvl !||
%WWWMWWWW

iy e
LT il] L Lk
) g s Pt A
T e O ey AU 0
||wﬂwmwmwM%ww Mmmmﬂui
i1

{l
il
I

Cycles Per Trans. (millions)
N

—T— — ——
0 10000 20000 30000

#transactions
Figure 8. Time variability for different phases of long OLTP runs

shows results for 200-transaction OLTP runs, andfew of those methods to account for variability while

Figure 9b shows results for 5,000-transaction SPECjblkeeping simulation time within reasonable bounds.

runs. The OLTP results show that performance depend . -

critically on which checkpoint is used to start the simu- 5.1. Accogntlng for Space Vana.lb”'ty.

lation. The difference between the average cycles pep Averaging the results of multiple trials forms the
asis of classical experiment designs. The intuition

transaction of runs starting from the 30K and 40K . . ! o -
checkpoints is more than 16%. For SPECjbb, whichPehind this approach is that the coefficient of variation

showed almost no space variability (standard deviatiork®Ur eistimate of stg)acefvariabi_lity) decreases when tfhe
of runs starting from the same checkpoint is negligible),SaMP'€ S|;etf_?um ero ru(;]s) '“Cgeases- To a;lccount or
the difference between runs starting from the 100K ancfPace variability, we need to obtain enough runs to

400K checkpoints is more than 36%. This shows thatNcrease confidence in our conclusions, i.e., to decrease

time variability can be an issue even for benchmarkdn® Probability of drawing wrong conclusions.
with almost no space variability. We apply two standard statistical techniques—con-

L L fidence intervals and hypothesis testing—to estimate the
For workloads that exhibit this behavior, time-sam- robability of drawing wrong conclusions when com-
pling approaches are necessary to decrease the pro_batglaring two configurations. Two types of errors exist in
ity of reaching incorrect conclusions, while enabling g, conclusions: errors concerning the direction of the
architectural studies to be completed within reaso”ab"?elationship (i.e., which configuration performs better);
simulation time limits [17,21]. Section 5 discusses UsiNg;nq errors relat;ad to the magnitude of the differenc’e
short runs from multiple checkpoints to estimate the o speedup of one configuration over the other). The
average workload performance on a given conﬂguraﬂonwmng conclusion probabilitestimates the probability
. . . of drawing wrong conclusions about the direction of the
5. Statistical Simulation Methodology relationship, which is our focus in this paper. Confi-
Classical statistics provides a wealth of techniquesdence intervals place a conservative upper bound on the
for coping with variability. In this section, we apply a wrong conclusion probability, but it can also help estab-

559 ° 1504 §
? @
5 ® % 140
= T [° >
= °
S 50 o 2
@ 1e ° % e max ® ma
§ 1 ;F % e O % ° ;F 0 avg g 130 o avg
. = .
r] . % . & min ¢ min
45 * & 120 ®
8 1e . ¢ 8
) © O a &
S i & f =
. . 110 8 @
WO —T1T T T T T T T 1 1 T T T T T T T 1
10 20 30 40 50 60 70 80 90 100 100 200 300 400 500 600 700 800 900 1000
#Warmup Transactions (thousands) #Warmup Transactions (thousands)
(a) OLTP (b) SPECjbb

Figure 9. OLTP and SPECjbb performance from multiple starting points

lish approximate bounds on the magnitude of the differ-2 (Section 4.1.2). As expected, the confidence intervals
ence (not discussed here). Hypothesis testing, on thget tighter as the sample size increases. Confidence
other hand, provides a tighter, more accurate estimate oftervals for 20 runs do not overlap, which implies that
the wrong conclusion probability, but does not help—inthe probability of reaching a wrong conclusion is less
the simple form described in this section—in establish-than 5% (compared to the 26% WCR for single experi-
ing the magnitude of the difference. ments). For the smaller sample sizes, the results are not
5.1.1. Confidence Intervals statistically significant (at the 95% confidence level),
because the confidence intervals overlap. Note that if we

A confidence intervg(Cl) is defined as the range of . " o .
values that is expected to include a population parameterteduce the confidence probability to 90%, a sample size

: S of 15 becomes statistically significant, but there remains
(e.g., mean) [12]. Theconfidence probabilityis the o o -
probability that the true population parameter will fall (at most) a 10% chance of reaching a wrong conclusion.

inside the confidence interval. For example, if the mearEstimating the Sample SizeWhen we design a simu-
cycles per transaction for OLTP lies in the interval lation experiment, we need to estimate the number of
between 4 and 5.5 million with confidence probability runs needed to obtain statistically significant results.
99%, we are 99% certain that the true mean lies withinAssuming an infinite population, the sample size can be
that interval. The confidence interval for the mean of aestimated according to population parameters and the
normally distributed infinite population is given by [7]: desired level of precision (or maximum allowed error)
y_Ls_ <mean< s of the results. For example, if we want to limit the rela-
Jn~ Jn tive error of the estimated population meanrtécom-

wherey is the sample mears is the sample standard par'ed to the. true mean), the sample size required is
deviation,n is the sample size, artds the value of the €Stimated using:
normal deviate corresponding to the desired confidence n= DEEF
probability (obtained from the student’s t-distribution _ CryH
with (n-1) degrees of freedom if the sample size is lesswhereY andSare the true population mean and standard
than 50, and from the normal distribution otherwise).deviation, and is the normal deviate corresponding to
Values fort can be obtained from standard statisticalthe desired confidence probability [7]. Since the true
tables. We can reach a tighter confidence interval byalues ofY andSare not known beforehand, an approxi-
increasing the sample size, or decreasing the confi- mation for their values can be used from prior knowl-
dence probability, thus decreasing edge about the same population. The confidence
Confidence intervals can be used to estimate afprobability is chosen according to be the desired bound
upper bound on the wrong conclusion probability whenOn the wrong conclusion probability. -~ _
comparing two alternatives. If the confidence intervals ~ AS an example, if we require the relative error in the
of the two alternatives do not overlap, the probability of "umber of cycles per transaction to be less than A% (
reaching a wrong conclusion will be at mog-p), 0-04) with a confidence probability of 95%[(2), and
wherep is the confidence probabilfyFigure 10 shows Using an estimate oB/y'=9% (0.09) (which is the

the 95% confidence intervals for the data in Experimen@PProximate coefficient of variation we observed for 50-
transaction OLTP runs), the number of runs required for

our OLTP benchmark is (2*0.09/0.0740]20. In compar-

ison simulation experiments,should be selected to be

34+ less than half the expected performance improvement
between the configurations being compared, in order to
avoid overlap in confidence intervals.

° 32 5.1.2. Hypothesis Testing

3.0 O 64 Hypothesis testing is another statistical technique

that we can use to evaluate conclusions of simulation

experiments. Hypothesis testing has a variety of forms

3.2+

Cycles Per Trans. (millions)

287 that depend on the parameter under investigation and its
distribution. In this section, we describe testing a
2.6 , I I I hypothesis about the relationship between two means of
5 10 15 20 a normally-distributed population [12]. We next illus-
Sample Size (number of runs) trate the use of hypothesis testing in simulation experi-
Figure 10. 95% confidence intervals using different ments to determine a tighter upper bound on the wrong
sample sizes for 32 and 64-entry ROBs conclusion probability.

- - . . In Experiment 2 (Section 4.1.2), our conclusion
4. Comparison conclusions are correct only if both means were inside . . .
their respective Clspf probability), or if one mean was inside its CI Was that the 64-entry ROB configuration is better than
and the other was outside but in the opposite direction to the firsthe 32-entry configuration, i.e., the mean runtime for a
mean’s Cl(p(1-p)) Thus, the probability of reaching a wrong conclu- 32-entry ROB is greater than the mean runtime for a 64-

sion is bounded byi-(p~+p(1-p)) = 1-p. We ignore the case where . . .
both means are outside their Cls due to its small probability. entry ROB. Since this conclusion was based on the

sample meansf runs, we want to test the hypothesis Table 5. Number of runs needed for

that there is actually no significant difference between different significance levels

the twotrue mean% The test hypothesis in this case is: Significance Level (Wrong #RUNS
Ho: H3p —Hes = O (Orps, = Hea) Conclusion probability). Needed.

whereps, andpg, are the true mean runtimes of the 32- 10%. 6.

entry and 64-entry ROB, respectively. If we reject the 5

test hypothesis, this means we accept the alternative 5%. 9.

hypothesis thafiz, is greater thampg,. The significance 2.5%. 11.

level of the testd) is determined by the error probabil- 1%. 13.

ity we can tolerate. In this setting, we want to avoid a

type | error. defined as the probability of rejecting the 0.5%. 16.

test hypothesis when it is correct. This is equivalent to . .
the probability that our conclusion (i.e., accepting the@Chieve a certain upper bound on the wrong conclusion
alternative hypothesis) is wrong. probability. Nine runs are necessary to limit the proba-

If we assume that the runtimes for the two configu-b'l'ty of drawing wrong conclusions to 0.05, and sixteen

rations are independent, normally distributed randondY"S limit this probability to 0.005 (compared to the
variables with unknown variances, and we collect anconservatlve 0.05 limit obtained from confidence inter-

equal ngm_ber of runsnf from bot.h configurations, the vals for twenty runs).
test statistic to test the hypothesig)is given by [12]: 5.2 Accounting for Time Variability

t = Y27 Vea In order to account for time variability, the sample
5322+s 42 should include runs from multiple starting points dis-
-—nG— tributed throughout the program runtime. However,

where y., ,y., are the sample mean runtimes for thedetermining thg starting points for our sample in the
32-entr;2and6%4-entry configurationss,? and sg.2 are workload’s runtime is a challenge, since many work-
their sample variances. If the test statistic lies in thel0@ds exhibit substantial time variability (Figures 8 and
upper tail of the t-distribution withan-2 degrees of 2): While some methods have been developed to deter-
freedom at a certain significance lewel we reject the MN€ representative samples in smgle-threade(_j applica-
test hypothesis (i.e., accept the alternative hypothesis) é'P”IS. [ﬁZ], (tjhr—ijse metlhod_s are not dlrectlyl appllcabllgz- to
this level (Figure 11). In that case, the probability of Multi-threaded —applications. Fortunately, sampling

drawing a wrong simulation conclusion—obtained from the€ory provides a broad array of techniques for selecting
sample means—is less than samples [7]. We focus on systematic sampling, where

starting points are taken at fixed time intervals, and then
of reaching a wrong conclusion for a certain simulationaIOpIy techniques of Section 5.1 to estimate the wrong

experiment. We calculate the test statistic and compargOnCIUSIOn probability for gpertaln sample size. L

it against critical values of the t-distribution at various _ [N workloads that exhibit only one type of variabil-
significance levels. The wrong conclusion probability 'tY (€-9-, SPECjbb exhibits only time variability), using
will be bounded by the smallest significance level attN€ téchniques in Section 5.1 is straightforward. How-
which the test hypothesis is rejected. ever, if we need to account for both space and time vari-

Estimating the Sample Size.We can estimate the ability, we have to determine which type is the greater

number of runs necessary to achieve a certain signifi.—Source of error. The analysis of variance (ANOVA) [12]

cance level by evaluating the test statistic for different'> 2 technique that can be used to estimate yvhether aver-
numbers of runs, and selecting the minimum numbe9€s of runs from different groups are (statistically) the

required to reject the test hypothesis. Table 5 presenfame' If averages are the same, variability between dif-

the necessary number of runs for the ROB experiment tdc/€Nt groups can be attributed to the same effects
causing variability within each group. Otherwise, there
Area = 1-significance le

Critical t-value is a significant variability between averages of different
(from t-distribution table groups (i.e., time variability) that cannot be attributed to
the within-group variability (i.e., space variability). In
other words, ANOVA tells us whether it is sufficient to
. use runs from a single starting point, or whether the

Using this method, we can estimate the probability

probability

—

0 > sample should contain runs from many starting points.
Test statistic values to accepttes| ~ Rejection We performed an ANOVA study on the groups of
hypothesis (Acceptance Region Region data points of OLTP and SPECjbb summarized in

Figure 11. Acceptance and rejection regions for the t-test ~ Figure 9. We CO”_Sid?fed different numbers of groups,
group sizes and significance levels (0.1, 0.05 and 0.01).
5. Thetrue mearhere is the average runtime of all possible runs of a Qur results, for both workloads, show that between-
particular configuration. Since the number of runs is practically infi- iahilityg e cinnif :

nite, the average runtime for a sample of ruseniple means used as group Va_m"?lb”'ty IS SIQr?'flc_a_mt and cannot be attributed
an estimate of the true mean. to the within-group variability. For both of these work-

10

loads, time variability is significant, and simulations loads. We demonstrate that these phenomena exist in
should be performed from different starting points. Theboth real machine and simulation experiments, and
number of different starting points should be selected inprovide evidence that operating system scheduling deci-
a similar manner to what was outlined in Section 5.1. sions are one significant source. We further show that
Our methodology can be improved in several direc-the standard practice of ignoring variability in simula-
tions. Given a fixed simulation budget (time allowed for tion can lead to incorrect conclusions in a significant
all simulations), a tradeoff must be made between thepercentage of microarchitectural and system design
length of each simulation and the number of simulationsexperiments.
required to maximize the confidence probability (and We describe a simple methodology to compensate
minimize cold-start bias [17]). If the simulated system for variability, that combines pseudo-random perturba-
configuration has an impact on variability, ANOVA can tions, multiple simulations and standard statistical tech-
be performed for different workload/system configura-niques. This methodology is intended to help architects
tion combinations. Sampling techniques other than sysdetermine when it is safe to draw conclusions from sim-
tematic sampling can be used to select representativelation experiments.
time samples. These issues are left for future work. Acknowledgments

6. Related Work We thank Milo Martin and Dan Sorin who were the

This work builds on Alameldeen et al. [1], a paper first to advocate multiple simulations to deal with vari-
that identified commercial workload variability and ability. This work builds on the Multifacet simulation

solution directions. Some studies have evaluated comnfrastructure, whose creators include Milo Martin and
mercial workloads performance on real systems using?@n Sorin (memory system simulator), Carl Mauer

hardware counters [2, 16] or hardware emulation toold TFSim), Ross Dickson, Pacia Harper, Kevin Moore,
[28]. Prior simulation studies have evaluated multipro-2nd Min Xu. We also thank Virtutech AB, the Wiscon-

cessor system performance using execution-driven simsin €ondor group, the Wisconsin computer systems lab
ulation of scientific applications [10, 38] and staff, David DeWitt, and Anastassia Ailamaki for their

commercial workloads [27], or full system simulation of N€lP and support. Thanks to Brad Beckmann, Mark Hill,

commercial workloads [2]. Other studies have evaluated/ikko Lipasti, Milo Martin, Carl Mauer, Min Xu and
the fidelity of simulation results for uniprocessors [8] OUr anonymous reviewers for their suggestions.

and multiprocessors [13] compared to the actual hard-

ware being modeled. Krishnan and Torrellas examined References

experimental errors in multiprocessor simulations due t3_|

: . . 1] AlaaR. Alameldeen, Carl J. Mauer, Min Xu, PaciaJ.
simple processor models [18]. Cain et al. [5] discusseqiarper, Milo M.K. Martin, Daniel J. Sorin, Mark D. Hill, and

issues related to simulation precision and accuracy. Iavid A. Wood. Evaluating Non-deterministic Multi-threaded
our infrastructure, we use TFsim to increase the simulaCommercial Workloads. IRroceedings of the Fifth Workshop

tion precision, and commercial workloads to increaseon Computer Architecture Evaluation Using Commercial
accu?acy Workloads pp. 30—38, February 2002.

L . . . [2] Luiz A. Barroso, Kourosh Gharachorloo, and Edouard
Our work distinguishes itself from other studies by gugnjon. Memory System Characterization of Commercial

focussing on the variability phenomenon in simulation Workloads. InProceedings of the 25th Annual International

and providing a methodology to address it. Very few Symposium on Computer Architectysg. 3—14, June 1998.

previous studies report results from multiple simulation[3] Luiz Andre Barroso, Kourosh Gharachorloo, Robert
McNamara, Andreas Nowatzyk, Shaz Qadeer, Barton Sano,

runs to apcount for space Va“a.b'“ty [23, 24, 33]. Scott Smith, Robert Stets, and Ben Verghese. Piranha: A
Changes in program phase behavior were explored fo§calable Architecture Based on Single-Chip Multiprocessing.
SPEC benchmarks [20, 30]. Simulation errors intro-In Proceedings of the 27th Annual International Symposium
duced by selecting particular program phases wer@n Computer Architecturgp. 282-293, June 2000.

investigated by Sherwood et al. [31]. Statistical simula-[4] _J- M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and

. . .R. Kunkel. A Multithreaded PowerPC Processor for
tion based on program traces was used by Oskin et & ommercial Servers.IBM Journal of Research and

[29]. Some architectural studies used sampling techpeyelopment44(6):885-898, November 2000.
niques to estimate values of architectural parametergs] Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz,
(e.g. [17, 21]), but not in the context of multi-threaded and Mikko H. Lipasti. Precise and Accurate Processor

commercial workloads. Kuck et al. [19] defined a stabil- g@’&ﬁig{‘- A?crﬁ{ggﬁigmgéva?ﬂaﬁgﬁ F&fgﬁ‘ngwoéfnﬁ%’erggl
ity metric for the performance of different computa- Workioads pp. 13-22, February 2002.

tional kernels running simultaneously on a multi- (5] Alan ~ Charlesworth. Starfire: Extending the SMP
processor, but did not discuss instability due to a singleEnvelopeEEE Micro, 18(1):39-49, Jan/Feb 1998.

multi-threaded workload. [71 William G. CochranSampling Techniquegohn Wiley &
Sons, third edition, 1977.
7. Conclusions [8] Rajagopalan Desikan, Doug Burger, and Stephen W.

; : ~wiiKeckler. Measuring Experimental Error in Microprocessor
In this paper, we show that time and space Va”ab'l.Simulation. InProceedings of the 28th Annual International

ity are important phenomena that must be addressed i8ymposium on Computer Architecturgp. 266-277, July
architectural simulation studies of multi-threaded work-2001.

11

[9] Karel Driesen and Urs Holzle. Accurate Indirect Branch [24] Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and
Prediction. InProceedings of the 25th Annual International David A. Wood. Bandwidth Adaptive Snooping. In
Symposium on Computer Architectupep. 167-178, June Proceedings of the Eighth IEEE Symposium on High-
1998. Performance Computer Architecturgp. 251-262, January
[10] S. Dwarkadas, J. R. Jump, and J. B. Sinclair. Execution-2002.

Driven Simulation of Multiprocessors: Address and Timing [25] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full
Analysis. ACM Transactions on Modeling and Computer System Timing-First Simulation. IRroceedings of the 2002

Simulation 4(4):314-338, 1994. ACM Sigmetrics Conference on Measurement and Modeling of
[11] Avinoam Nomik Eden and Trevor Mudge. The YAGS Computger Systempp. 108—116, June 2002. g

Branch Prediction Scheme. Rroceedings of the 25th Annual . h)
International Symposium on Computegr Architectupp. 69— [26] Ann Marie Grizzaffi Maynard, Coletter M. Donnelly, and
77, June 1998, Bret R. Olszewski. Contrasting Characteristics and Cache

[12] Harry Frank and Steven G. AlthoeStatistics: Concepts Férformance of Technical and Multi-User Commercial

ot ; ; ; : e Workloads. In Proceedings of the Sixth International
and Applications Cambridge University Press, first edition, Conference on Architectural Support for Programming

[13] Jeff Gibson, Robert Kunz, David Ofelt, Mark Horowitz, -@nguages and Operating Systenpp. 145-156, October

John Hennessy, and Mark Heinrich. Flash vs. (Simulated)1994' o o))

Flash: Closing the Simulation Loop. IRroceedings of the [27] Ashwini Nanda, Yiming Hu, Moriyoshi Ohara,
Ninth International Conference on Architectural Support for Caroline D. Benveniste, Mark E. Giampapa, and Maged
Programming Languages and Operating SysteNmvember ~ Michael. The Design of COMPASS: An Execution Driven
2000. Simulator for Commercial Applications Running on Shared
[14] Stephan Jourdan, Tse-Hao Hsing, Jared Stark, an#lemory Multiprocessors. InProceedings of the 12th
Yale N. Patt. The Effects of Mispredicted-Path Execution onInternational Parallel Processing Symposiudarch 1998.
Branch Prediction Structures. IrProceedings of the [28] Ashwini Nanda, Kwok-Ken Mak, Krishnan Sugavanam,
International Conference on Parallel Architectures and Ramendra K. Sahoo, Vijayaraghavan Soundararajan, and
Compilation Techniquepp. 58-67, October 1996. T.Basil Smith. MemorlES: A Programmable, Real-Time
[15] Martin Karlsson, Kevin E. Moore, Erik Hagersten, and Hardware Emulation Tool for Multiprocessor Server Design.
David A. Wood. Memory Characterization of the ECperf In Proceedings of the Ninth International Conference on
Benchmark. In Second Annual Workshop on Memory Architectural Support for Programming Languages and
Performance Issues (WMPI), in conjunction with ISCA-29 Operating Systemslovember 2000.

2002. ; ;
. . . [29] Mark Oskin, Frederic T. Chong, and Matthew Farrens.
[I%G] K|gber|lqy Kﬁet?n' D%V'dvo" ltPatItEers%n,kYongPQl?ng He, H1'S: Combining Statistical and Symbolic Simulation to
ogert. Raphael, an altter=._baker. Ferformances jije Microprocessor Designs. Rroceedings of the 27th

Characterization of a Quad Pentium Pro SMP using OLTP : ; :
Workloads. InProceedings of the 25th Annual International églngfl_égte\mﬁgoznoacl)0§ymposmm on Computer Architecture

Symposium on Computer Architectype. 15-26, June 1998. . i .
[1y7] E E. Kessler, I?/Iark D. Hill, :liﬂg David A. Wood. A [E:;’g%;;irg?t?fl F?ﬂ)%?gcr)r?g ?2&3&2? rggcl)?'ter. U-I(-ZlmgarYarDyilggo
Comparison of Trace-Sampling Techniques for Multi- h : :

Megabyte Caches.IEEE Transactions on Computers Iechnical Report UCSD-CS99-630, August 1999.
43(6):664—675, 1994. [31] Timothy Sherwood, Erez Perelman, and Brad Calder.
[18] Venkata Krishnan and Josep Torrellas. A Direct- Basic Block Distribution Analysis to Find Periodic Behavior
Execution Framework for Fast and Accurate Simulation ofand Simulation Points in Applications. Froceedings of the
Superscalar Processors. Rroceedings of the International International Conference on Parallel Architectures and
Conference on Parallel Architectures and Compilation Compilation Techniquepp. 3—14, September 2001.

Techniquespp. 286—293, October 1998. [32] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
[19] D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C. Q. Zhu, Brad Calder. Automatically Characterizing Large Scale
A. Veidenbaum, J. Konicek, P.Yew, K.Gallivan, W.Jalby, program Behavior. IfProceedings of the Tenth International

H. Wijshoff, R. Bramley, U. M. Yang, D.Padua P.Emrath, conference on Architectural Support for Programming

R.Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, T. Murphy, and | anguages and Operating Systems. 45-57, October 2002.
J. Andrews. The Cedar System and an Initial Performanc?ss] Daniel J. Sorin. Milo M.K. Martin. Mark D. Hill. and

Study. In Proceedings of the 20th Annual International . : - 0
: ; - David A. Wood. SafetyNet: Improving the Availability of
%/gg?osmm on Computer Architecturgp. 213-223, May Shared Memory Multiprocessors with Global

[20] Thierry Lafage and Andre Seznec. Choosing Checkpoint/Recovery. IrProceedings of the 29th Annual

Representative ~ Slices of Program Execution for Iln?'firnl\e/alltlog%loszympogum on Computer Architeciyrp. 123~
Microarchitecture Simulations: A Preliminary Application to » May :) .

the Data Stream. IBrd Annual Workshop on Workload [34] Systems Performance Evaluation Cooperation. SPEC
Characterization September 2000. Benchmarks. http://www.spec.org.

[21] Subhasis Laha, Janak H. Patel, and Ravishankar K. lyef35] Transaction Processing Performance Council. TPC-C.
Accurate Low-Cost Methods for Performance Evaluation of http://www.tpc.org/tpcc/.

Cache Memory System$EEE Transactions on COmputers [3g) Transaction Processing Performance Council. TPC

37(11):1325-1336, 1988. e 2 <.
[22] Peter S. Magnusson etal. Simics: A Full System ?ggi:.hmark C, Standard Specification, Revision 5.0, February

g&“&;'am“ PlatformIEEE Computer35(2):50-58, February [37] Virtutech AB. Simics Full System Simulator.
[23] Milo M. K. Martin, Daniel J. Sorin, Anastassia Ailamaki, Dttp://www.simics.com/.

AlaaR. Alameldeen, Ross M. Dickson, CarlJ. Mauer, [38] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Kevin E. Moore, Manoj Plakal, Mark D. Hill, and David A. Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
Wood. Timestamp Snooping: An Approach for Extending Programs: Characterization and Methodological
SMPs. InProceedings of the Ninth International Conference Considerations. In Proceedings of the 22nd Annual
on Architectural Support for Programming Languages and International Symposium on Computer Architectypp. 24—
Operating Systemgp. 25-36, November 2000. 37, June 1995.

12

	Variability in Architectural Simulations of Multi-threaded Workloads
	Alaa R. Alameldeen and David A. Wood Computer Sciences Department, University of Wisconsin-Madiso...
	1 . Introduction
	2 . The Variability Phenomenon
	2.1 . What Is Variability?
	Figure 1. Differences in OS-scheduled threads between two short simulation runs

	2.2 . Does Variability Matter In Real Systems?
	Figure 2. OLTP time variability in a real system for different observation intervals (one run)
	Figure 3. OLTP space variability in a real system for different observation intervals (five runs)

	2.3 . Does Variability Matter for Simulation?
	Figure 4. Performance of 500-transaction OLTP runs with different DRAM latencies

	3 . Workloads and Simulation Framework
	3.1 . Workloads
	3.2 . Simulation Infrastructure
	3.2.1 . Target System Model
	3.2.2 . Full-System Simulation
	3.2.3 . Memory System Model
	3.2.4 . Processor Models

	3.3 . Introducing Variability

	4 . Variability in Simulation Results
	4.1 . Wrong Conclusion Ratio
	4.1.1 . Experiment 1: Cache Design
	Figure 5. OLTP performance for different L2 cache associativities
	Table 1. Summary of Experiment 1
	Configurations Compared (Superior Configuration)
	WCR (%)
	Table 2. Summary of Experiment 2

	Configurations Compared (Superior Configuration)
	WCR (%)

	4.1.2 . Experiment 2: Microarchitectural Design
	Figure 6. OLTP performance for different reorder buffer sizes

	4.1.3 . Summary

	4.2 . Simulated Space Variability
	4.2.1 . Space Variability and Different Benchmarks
	Figure 7. Variabililty of different benchmarks
	Table 3. Summary of space variability for different benchmarks
	Benchmark
	Barnes
	Ocean
	ECPerf
	Slashcode
	OLTP
	Apache
	SPECjbb

	4.2.2 . Space Variability and Run Lengths
	Table 4. OLTP space variability for different run lengths
	#Simulated Transactions
	200
	400
	600
	800
	1000

	4.3 . Simulated Time Variability
	Figure 8. Time variability for different phases of long OLTP runs
	Figure 9. OLTP and SPECjbb performance from multiple starting points

	5 . Statistical Simulation Methodology
	5.1 . Accounting for Space Variability
	5.1.1 . Confidence Intervals
	Figure 10. 95% confidence intervals using different sample sizes for 32 and 64-entry ROBs

	5.1.2 . Hypothesis Testing
	Figure 11. Acceptance and rejection regions for the t-test
	Table 5. Number of runs needed for different significance levels
	Significance Level (Wrong Conclusion probability)
	#Runs Needed
	10%
	6
	5%
	9
	2.5%
	11
	1%
	13
	0.5%
	16

	5.2 . Accounting for Time Variability

	6 . Related Work
	7 . Conclusions

