
Accelerator-level Parallelism:
Mobile SoCs as Harbinger of the Future

Mark D. Hill, Wisconsin & Vijay Janapa Reddi, Harvard
ISPASS FastPath, March 2019

1

Outline
I.  From ILP to Accelerator-level Parallelism
II.  Mobile SoCs as Harbinger
III.  Gables ALP SoC Model

Thanks for Google Mobile Silicon Group internship
Ideas are the authors’ & not necessarily Google’s

2

Accelerator-level Parallelism: Mobile SoCs as Harbinger of the Future
Mark D. Hill [1] and Vijay Janapa Reddi [2]
[1] University of Wisconsin-Madison
[2] Harvard University

Abstract:
This talk will first discuss how computer systems are transitioning from homogeneous parallelism to
heterogeneity: ILP, TLP, and new Accelerator-level Parallelism (ALP). It will then discuss systems on a chip
(SoCs) for mobile computing, and why they may be a harbinger of computer systems’s ALP future. It will
conclude presenting the Gables model largely developed at Google’s Mobile Silicon Group for HPCA 2019’s
Industrial Session. Gables seeks to make SoC selection and design more scientific via extending Roofline
and bottleneck analysis to provide the first answers, not the final answers. Mark D. Hill will present the work.

Biography:
Mark D. Hill (http://www.cs.wisc.edu/~markhill) is John P. Morgridge Professor and Gene M. Amdahl
Professor of Computer Sciences at the University of Wisconsin-Madison, where he also has a courtesy
appointment in Electrical and Computer Engineering. His research interests include parallel-computer
system design, memory system design, and computer simulation. He is a fellow of IEEE and the ACM. He
serves as Chair of the Computer Community Consortium (2018-19) and served as Wisconsin Computer
Sciences Department Chair 2014-2017. Hill has a PhD in computer science from the University of
California, Berkeley.

I. From ILP to Accelerator-level Parallelism
•  ALP = Parallelism among workload components

concurrently executing on multiple accelerators (IPs)

II. Mobile SoCs as Harbinger
•  Mobile SoCs already have ALP
•  Some Pitfalls already emerging

III. Gables ALP SoC Model [HPCA’19 Industrial Session]
•  Some “first answers” to multi-IP questions

Outline w/ Key Points

3

A Computer Architecture History

4

P

$

M

bus

i/f

dev

1 CPU

ILP
Instrn-Level
Parallelism

A Computer Architecture History

5

P

$

M

bus

i/f

dev

1 CPU Multiprocessor

ILP + TLP
Thread-Level
Parallelism

Instrn-Level
Parallelism

A Computer Architecture History

6

P

$

M

bus

i/f

dev

1 CPU Multicore

ILP + TLP
Instrn-Level
Parallelism

Thread-Level
Parallelism

A Computer Architecture History

7

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

dev-M

+  Discrete GPU

ILP + TLP + DLP
Data-Level
Parallelism

Instrn-Level
Parallelism

Thread-Level
Parallelism

A Computer Architecture History

8

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

+  Integrated GPU

ILP + TLP + DLP
Data-Level
Parallelism

Instrn-Level
Parallelism

Thread-Level
Parallelism

A Computer Architecture History

9

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

+  Integrated GPU
System on a Chip

(SoC)
ILP + TLP + DLP

Data-Level
Parallelism

Instrn-Level
Parallelism

Thread-Level
Parallelism

+ ALP
Accelerator-Level

Parallelism

Accelerator-level Parallelism:
•  Parallelism among workload components concurrently

executing on multiple accelerators (IPs)

Mobile SoC HW

10

CPU, GPU, xPU (i.e., Accelerators)

11

The CPU and GPU occupy less than 50%
of the die area. What’s the rest?

Apple A8

CPU, GPU, xPU (i.e., Accelerators)

12

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

The rapid rise of hardware

accelerators in smartphone chips.

Out of Core
Accelerators

Potential for Specialized Accelerators

13

[Brodersen and Meng, 2002]

v

v

16
Encryption
17
Hearing Aid
18
FIR for disk read
19
MPEG Encoder
20
802.11 Baseband

X-level Parallelism and Software

Instruction-Level Parallelism: ILP transparent to SW; SW flourishes

Thread-Level Parallelism: TLP SW was a crisis; mixed success even today

Data-Level Parallelism: DLP SW specialized w/ point successes
•  Vectorization (pioneering), CPU SIMD (intrinsics), GPU SIMT (Cuda)

NEW Accelerator-level Parallelism: point success for Mobile SoCs
•  Lacking SW/HW “science”

Hypothesis: More ubiquitous ALP will happen
•  Driven by scaling perf., constrained power, & slow tech change (like SoCs)

Hypothesis: More ubiquitous ALP desperately needs more SW/HW “science”

14

15

A Parallelism Lattice

GPU

SIMT DLP

SIMT TLP

xPU

?LP

?LP

Accelerator-level Parallelism, a super parallelism

Bit-level Parallelism

CPU

SS ILP SIMD DLP

SMT+MP TLP

Acronyms
Accelerator-level Parallelism

Bit-level Parallelism
Central Processing Unit

Data-level Parallelism
Instruction-level Parallelism

Simultaneous Multithreading
Multiprocessor

Single Instruction Multiple Data
Single Instruction Multiple Threads

Superscalar
Thread-level Parallelism

I. From ILP to Accelerator-level Parallelism
•  ALP = Parallelism among workload components

concurrently executing on multiple accelerators (IPs)

II. Mobile SoCs as Harbinger
•  Mobile SoC already have ALP
•  Some Pitfalls already emerging

III. Gables ALP SoC Model [HPCA’19 Industrial Session]
Some “first answers” to multi-IP questions

Outline w/ Key Points

16

Example Usecase
(recording 4K video)

17

Janapa Reddi, et al.,
IEEE Micro, Jan/Feb 2019

Accelerator-level Parallelism (ALP)
& repeated off-chip bandwidth use!

Must run each usecase sufficiently fast -- no need faster
Must run all usecases – average irrelevant (esp. real-time)
A usecase uses IPs concurrently: more ALP than serial
For each usecase, how much IP[i] acceleration needed?

Mobile SoCs Run Usecases

18

AP Display G2DS GPU ISP JPEG IPU VDEC VENC DSP

HDR+ X X X X X X

Videocapture X X X X X

VideocaptureHDR X X X X X

VideoplaybackUI X X X X X

Google Lens X X X X X

Envision usecases
(2-3 years ahead)
Select IPs
Size IPs
Design Uncore

Some Pitfalls emerging for SoCs & Beyond

Mobile SoCs Hard To Design

19

Envision usecases
(years ahead)
Port to many SoCs??

Port to few finalists?

Early downselect?

IP diversity hinders use [Facebook, HPCA’19]

Mobile SoCs Hard To Select

20

21

21

AP Display GPU ISP JPEG IPU VDEC VENC DSP

HDR+ X X X X X X

Videocapture X X X X X

VideocaptureHDR X X X X X

VideoplaybackUI X X X X

Google Lens X X X X

Pitfall 1: Succumbing to Conway’s Law

TEAM TEAM

TEAM

TEAM

Conway’s Law [1967]: Software (& HW) ends up
"shaped like" the organizational structure it's designed in

22

22

AP Display GPU ISP JPEG IPU VDEC VENC DSP

HDR+ X X X X X X

Videocapture X X X X X

VideocaptureHDR X X X X X

VideoplaybackUI X X X X

Google Lens X X X X

Pitfall 1: Succumbing to Conway’s Law

Recommend:
Develop org. mechanisms to combat Conway’s Law
E.g., usecase teams for SoC

23

Many locally opt. IPs ⇒ Globally opt. SoC??

Pitfall 2: Optimize IPs in Isolation

23

E.g., Where put SRAM for xPU?

Recommend:
SoC: Usecase-centric design across many IPs (see Gables)
Future: Consider appropriate end-to-end workflows

(2)

SHARED

xPU yPU

(1)
xPU

zPU & beyond

24

Design IPs examining their peak acceleration
Consider new IP xPU. If 100% of usecase:

Pitfall 3: Not Applying Amdahl’s Law

24

1X @ 100%

5X @ 100%

25X @ 100%

If 25% of usecase:
1X @ 25%

5X @ 25%
25X @ 25%

Concurrent yPU è 5X enough
Concurrent zPUè xPU not needed

SoC: End-to-end work fraction at
each IP; fast enough? (See Gables)

Future: Work fraction again;
workload goals?

time à

25

Zero in “inner-loop” performance @ IP, ignoring:
Pitfall 4: Hyper focus on IP HW Peak Perf.

E.g, Simpler HW ≠ Simpler HW+SW

Simple HW: IP HW has instruction memory
Hard SW: Compiler generates code & runtime
“overlays” dynamically into instruction memory

HW++: IP HW instruction cache w/ 4 blocks
EZ SW: Regular compiler; opt. key routines

26

Zero in “inner-loop” performance @ IP, ignoring:
Pitfall 4: Hyper focus on IP HW Peak Perf.

●  Simpler HW ≠ Simpler HW+SW
●  Driver startup/shutdown
●  Interrupt latencies
●  Time/BW to read input data & write output data
●  SW stack for inter-IP communication (e.g., Android)

(two device drivers rarely communicate directly)
SoC & Future: Must estimate SW overhead, even if
imperfectly (0 is a bad estimate); see LogCA [ISCA’17]

27

Pitfall 5: Not Managing Co-Design Mismatches

HW takes years
& must work

System SW is similar
& run multiple HW

App SW multiple-month planning
w/ frequent, incremental releases

28

Pitfall 5: Not Managing Co-Design Mismatches

Apocryphal story:
HW Designer: What will app do in 3 years?
App developer: You meant 3 months right?

SoC: Careful planning (despite Conway’s Law)
& HW flexibility as function of SW/app unpredictability
(e.g., DNNs more unpredictable than MPEG decoding)
Future: Same or TBD

II. Mobile SoCs as Harbinger
•  Mobile SoC already have ALP
•  Some Pitfalls already emerging

III. Gables ALP SoC Model [HPCA’19 Industrial Session]
•  Some “first answers” to multi-IP questions

Outline w/ Key Points

29

Pitfall 1: Succumbing to Conway’s Law
Pitfall 2: Optimize IPs in Isolation
Pitfall 3: Not Applying Amdahl’s Law
Pitfall 4: Hyper focus on IP HW Peak Perf.
Pitfall 5: Not Managing Co-Design Mismatches

Mobile SoCs have many IPs running in parallel (ALP)
•  CPUs, GPUs, DSPs, & 10+ other “IPs” (accelerators)
•  Which IPs have potential? How big? How many?
•  Need initial answers for IP HW/SW to create/simulate

Gables [HPCA’19 Industrial Session]
•  Models give initial answers: Amdahl’s Law & Roofline
•  Gables: Roofline per IP & apportion concurrent work
•  E.g., balance each IP’s acceleration & communication

Modeling Accelerator-level Parallelism

30

Computer Architecture & Models

31

P

$

M
bus

i/f
dev

CPU &
Iron Law

Multiprocessor &
Amdahl’s Law

Multicore &
Roofline

Insight

Accuracy
Effort

Models vs Simulation
●  More insight
●  Less effort
●  But less accuracy

Models give first answer, not final answer
Gables extends Roofline è first answer for SoC ALP
C.f., https://www.sigarch.org/three-other-models-of-computer-system-performance-part-1/
and https://www.sigarch.org/three-other-models-of-computer-system-performance-part-2/

Mobile System on Chip (SoC)

Gables uses Roofline per IP to provide first answer!

& Gables

32

What’s a Roofline?

Williams et al., Roofline, CACM 4/2009

33

Source: https://commons.wikimedia.org/wiki/
File:Example_of_a_naive_Roofline_model.svg

Ppeak

Bpeak* I

(I)

(Patt)

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

Patt =
MIN(Bpeak* I, Ppeak)

Gables for N IP SoC
A0 = 1

A0*Ppeak

B0

CPUs
IP[0]

← Share off-chip Bpeak →

A1*Ppeak

B1

IP[1]

AN-1*Ppeak

BN-1

IP[N-1]

34

Usecase at each IP[i]
•  Non-negative work fi (fi’s sum to 1) w/ IPs in parallel
•  Operational intensity Ii operations/byte

Example Balanced Design Start w/ Gables

35

DRAM

IP[0]
CPUs

Bpeak = 10

TWO-IP SoC

IP[1]
GPU

Ppeak = 40

A1*Ppeak = 5*40 = 200

B0 = 6

B1 = 15

Workload (Usecase):

f0 = 1 & f1 = 0
I0 = 8 = good caching
I1 = 0.1 = latency tolerant

Performance?

36

Perf limited by IP[0] at I0 = 8
I[1] not used so no roofline
Where do rooflines come from?

Ppeak = 40
Bpeak = 10

A1 = 5
B0 = 6

B1 = 15

f1 = 0
I0 = 8

I1 = 0.1

36

Roofline: MIN(Bpeak * I, Ppeak)
 MIN(Bpeak * I, 1 * Ppeak) / 1

1 / TIP[i] = MIN(Bi * Ii, Ai * Ppeak) / fi fi ≠ 0

1 / Tmemory = Bpeak * Iavg Iavg = 1 / Σi=1,N-1(fi / Ii)

Perf = MIN(1/TIP[0] , …1/TIP[N-1], 1/Tmemory)

Gables Math: Roofline / Work Fraction

37

38

Do better?
Assign IP[1] work: f1 = 0 à 0.75

Ppeak = 40
Bpeak = 10

A1 = 5
B0 = 6

B1 = 15

f1 = 0
I0 = 8

I1 = 0.1

38

39

IP[1] present but Perf drops to 1! Why?
I1 = 0.1 à memory bottleneck
Enhance Bpeak = 10 à 30
(at a cost)

Ppeak = 40
Bpeak = 10

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8

I1 = 0.1

39

40

Perf only 2 with IP[1] bottleneck

IP[1] SRAM/reuse I1 = 0.1 à 8
Reduce overkill Bpeak = 30 à 20

Ppeak = 40
Bpeak = 30

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8

I1 = 0.1

40

41

Perf = 160 < A*Ppeak = 200
Can you do better?
It’s possible!

Ppeak = 40
Bpeak = 20

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8
I1 = 8

41

For each usecase repeat until sufficiently fast
•  Pick bottleneck IP[i] improve compute/communication

Pick non-bottleneck IP[i] reduce cost
Pick IP[i] configs that satisfy all usecases; done if cost ok

A Gables Workflow for a 1st SoC Answer

42

AP Display G2DS GPU ISP JPEG IPU VDEC VENC DSP

HDR+ X X X X X X

Videocapture X X X X X

VideocaptureHDR X X X X X

VideoplaybackUI X X X X X

Google Lens X X X X X

1. Include Accelerator IP[i]?
2. IP[i] over-provisioned?
3. IP[i] over-communicates?

Mobile System on Chip (SoC)

Or give work to enhanced CPUs
Make IP[i] acceleration less
IP[i] less compute; more SRAM

& Gables

43

Pixel 2 (Snapdragon 835) w/ Aux. Thermal Mangmt

44

 CPUs GPU DSP (SCALAR)
Ppeak = 7.5 GF AGPU = 47 ADSP-SCALAR = 0.40

µBenchmark w/ Qualcomm SnapdragonTM 835

45

•  All elements load from array & vary FP SP op intensity
•  Finds empirical lower bound on rooflines

•  Preliminary evidence that multiple rooflines useful

Case Study: Allocating SRAM

Where SRAM?

●  Private w/i each IP
●  Shared resource

SHARED

IP0

IP1

IP2

46

What determines Ii?

Hardware

More Ai toward BW-bound (recall fi too!)

More Bi toward compute-bound

More Mi toward compute-bound if reuse

Whither Ii as function of Mi?

SW Usecase (most important)

●  Dense v. sparse matrices
●  E.g. vision v. audio ML

Ai*Ppeak

Bi

IP[i]

Mi

Compute
-bound Ii

BW -
bound Ii

Ii

 Patt

47

Does more IP[i] SRAM help Op. Intensity (Ii)?

Non-linear function that increases when new footprint/working-set fits

Should consider these plots when sizing IP[i] SRAM

Later evaluation can use simulation performance on y-axis

Ii

IP[i] SRAM

Not
much

fits

Small
W/S
 fits

Med.
W/S
fits Large

W/S
fits

W/S = working set

48

Extensions: memory-side buffer, interconnect, serial work

Interactive tool for 2-IP & 3-IP SoCs

Gables Android Source at GitHub

http://research.cs.wisc.edu/multifacet/gables/

Gables Paper & Home Page

49

Mobile SoCs have “extreme heterogeneity”
•  CPUs, GPUs, DSPs, & 10+ other “IPs” (accelerators)
•  Which IPs have potential? How big? How many?
•  Need initial answers before authoring IP HW/SW

Gables Mobile SoC Model [HPCA’19 Industrial Session]
•  Models give initial answers: Amdahl’s Law & Roofline
•  Gables: Roofline per IP & apportion concurrent work
•  E.g., how much IP[i] acceleration needed?

Gables Executive Summary

50

All models are wrong, but some are useful.

–George Box, Statistician, 1987

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Mobile SoCs: point successes, lacking SW/HW science

Hypothesis: More ubiquitous ALP will happen
•  Due to scaling perf., constrained power, & slow tech change
•  Retarded by SW/HW “science” of ALP among

CPUs (ILP+TLP), GPUs (+DLP), & many IPs (xLP)

Hennessy & Patterson: A New Golden Age for Computer Architecture

Accelerator-level Parallelism

51

Parallelism Success è Deep Thinking
•  ILP: basic blocks too short à branch prediction
•  TLP: SW to manage (OpenMP) or hide (SQL)
•  DLP: SIMT surpasses SIMD/vectors on <$1K GPUs

Let’s do Deep Thinking for ALP
•  Enhance or coalesce IPs (in progress)
•  Create SW/HW for coordination & communication
•  SW abstraction/implementation for each IP hard
•  SW abstractions/implementations for ALP harder
•  All needed for continued computer performance scaling

III. Gables ALP SoC Model
•  Some “first answers” to multi-IP questions

Accelerator-level Parallelism: Research Call

52

Infrastructure
SimpleScalar

gem5

GPGPU-Sim

Aladdin++?

I. From ILP to Accelerator-level Parallelism
•  ALP = Parallelism among workload components

concurrently executing on multiple accelerators (IPs)

II. Mobile SoCs as Harbinger
•  Mobile SoCs already have ALP
•  Some Pitfalls already emerging

III. Gables ALP SoC Model [HPCA’19 Industrial Session]
•  Some “first answers” to multi-IP questions

Outline w/ Key Points

53

Thanks to Mobile Silicon Team @

54

Backup Slides

55

Builds on Roofline & Amdahl’s Law

Closest: SoC MultiAmdahl [Kelassy et al., CAL’12]
Gables adds BW per-IP & chip & uses concurrent work

Gables can be extended
•  CPU-GPU “Valley” [Guz et al., CAL’09]
•  LogCA interaction overheads [Altaf & Wood, ISCA’17]
•  Richer IP models, e.g., [Jog et al., ISMS’15]

Related Work

56

Base Assumptions
●  SW has perfect Accelerator-level Parallelism
●  All IP’s concurrent w/ each other & memory BW
●  BW limits of Roofline appropriate (proxy for power?)

Gables Caveats

57

But
●  Insight but not cycle-level accuracy
●  Omits interrupt latencies, etc., to manage IPs
●  IP acceleration varying w/ usecase (Roofline ceiling?)
●  <your concern here>

Gables provides a way to conceptualize many-IP SoCs
●  Roofline per IP forces early parameter estimation
●  Insight for much less work than porting usecases

Operational intensity Ii zeros in on SRAM utility & reuse

Understanding work fraction fi valuable to estimate
the acceleration Ai necessary for each usecase

SoCs harbinger of accel.-level parallelism broadly

Gables Conjectures

58

59
https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png

60

IPs should target important workloads, but …

Pitfall X: Design for (Hyped) Importance

Recommend: Provision
IP resources (compute &
SRAM) only as needed
for important usecases

Gartner

Inspired by LogP [CACM 1996]

Abstract accelerator using five parameters
●  L Latency: Cycles to move data
●  o Overhead: Setup cost
●  g Granularity: Size of the off-loaded data
●  C Computational index: Work done per data byte
●  A Acceleration: Speedup ignoring overheads

LogCA Perf. Model of HW Accelerators

61

SoC HW Inputs
●  Ppeak & Bpeak CPU perf. & off-chip BW from Roofline
●  Ai & Bi acceleration & BW for each IP[i]

SW Usecase Inputs
●  fi fraction work at each IP[i]
●  Ii operational intensity at each IP[i]

Output
●  Pattainable SoC performance upper bound

Gables Glossary

62

6A ---------------------------------------
Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A = 5, B0 = 6 and B1 = 15.
I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.00.

1 / TIP[0] = MIN(B0 * I0, Ppeak) / (1 – f) f ≠ 1
1 / TIP[1] = MIN(B1 * I1, A * Ppeak) / f f ≠ 0
1 / Tmemory = Bpeak * Iavg Iavg = 1/[(1- f)/ I0) + (f / I1)]
Perf = MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)

1 / TIP[0] = MIN(6 * 8, 40) / 1.0 = 40 f ≠ 1
1 / TIP[1] = MIN(B1 * I1, A * Ppeak) / f f ≠ 0 MOOT f = 0
1 / Tmemory = 10 * 8 = 80 Iavg = 8 since f = 0
Perf = MIN(40 , --, 80) = 40

6B ---------------------------------------
Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A = 5, B0 = 6 and B1 = 15.
I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.75.

1 / TIP[0] = MIN(B0 * I0, Ppeak) / (1 – f) f ≠ 1
1 / TIP[1] = MIN(B1 * I1, A * Ppeak) / f f ≠ 0
1 / Tmemory = Bpeak * Iavg Iavg = 1/[(1- f)/ I0) + (f / I1)]
Perf = MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)

1 / TIP[0] = MIN(6 * 8, 40) / 0.25 = 40/0.25 = 160
1 / TIP[1] = MIN(15 * 0.1, 5 * 40) / 0.75 = 1.5/0.75 = 2
1 / Tmemory = 10 * Iavg Iavg = 1/[(0.25/ 8) + (0.75 / 0.1)] = 0.13278
1 / Tmemory = 10 * 0.13278 = 1.3
Perf = MIN(160, 2, 1.3) = 1.3

Numbers Behind Gables’s Example
 6C ---------------------------------------
Ppeak = 40 Gops/s, Bpeak = 30 Gbytes/s, A = 5, B0 = 6 and B1 = 15.
 I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.75.

1 / TIP[0] = MIN(B0 * I0, Ppeak) / (1 – f) f ≠ 1
1 / TIP[1] = MIN(B1 * I1, A * Ppeak) / f f ≠ 0
1 / Tmemory = Bpeak * Iavg Iavg = 1/[(1- f)/ I0) + (f / I1)]
Perf = MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)

1 / TIP[0] = MIN(6 * 8, 40) / 0.25 = 40/0.25 = 160
1 / TIP[1] = MIN(15 * 0.1, 5 * 40) / 0.75 = 1.5/0.75 = 2
1 / Tmemory = 30 * Iavg Iavg = 1/[(0.25/ 8) + (0.75 / 0.1)] = 0.13278
1 / Tmemory = 30 * 0.13278 = 3.98
Perf = MIN(160, 2, 3.98) = 2.0

6D ---------------------------------------
Ppeak = 40 Gops/s, Bpeak = 20 Gbytes/s, A = 5, B0 = 6 and B1 = 15.
I0 = 8 operations/byte on IP[0], I1 =8 for IP[1], and f =0.75.
1 / TIP[0] = MIN(B0 * I0, Ppeak) / (1 – f) f ≠ 1
1 / TIP[1] = MIN(B1 * I1, A * Ppeak) / f f ≠ 0
1 / Tmemory = Bpeak * Iavg Iavg = 1/[(1- f)/ I0) + (f / I1)]
Perf = MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)

1 / TIP[0] = MIN(6 * 8, 40) / 0.25 = 40/0.25 = 160
1 / TIP[1] = MIN(15 * 8, 5 * 40) / 0.75 = 120/0.75 = 160
1 / Tmemory = 20 * 8 = 160
Perf = MIN(160, 160 , 160) = 160

63

TESTING IN PROGRESS

Ppeak = 40 Gops/s, Bpeak = 30 Gbytes/s, A0 = 1, A1 =3, A2 = 5, B0 = 6, B1 = 15 and B2 =10.
I0 = 4, I1 = 6, I2 = 8, f0=20%, f1 = 30%, and f2 = 50%.

1 / TIP[0] = MIN(B0 * I0, A0* Ppeak) / f0 f0 ≠ 0
1 / TIP[1] = MIN(B1 * I1, A1 * Ppeak) / f1 f1 ≠ 0
1 / TIP[2] = MIN(B2 * I2, A2 * Ppeak) / f2 f2 ≠ 0
 Iavg = 1/[f0/ I0) + (f1 / I1) + (f2 / I2)]
1 / Tmemory = Bpeak * Iavg
Perf = MIN(1/TIP[0] , 1/TIP[1], 1/TIP[12, 1/Tmemory)

1 / TIP[0] = MIN(6 * 4, 1* 40) / 0.20 = 24/0.20 = 120
1 / TIP[1] = MIN(15 * 6, 3 * 40) / 0.30 = 90/0.30 = 300
1 / TIP[2] = MIN(10 * 8, 5 * 40) / 0.50 = 80/0.50 = 160
 Iavg = 1/[0.20/ 4) + (0.30 / 6) + (0.50/ 8)] = 1 / 0.1625 = 6.1538
1 / Tmemory = 30 * 6.1538 = 185
Perf = MIN(120, 300, 160, 185) = 120

Numbers Behind Gables’s 3-IPExample

64

