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Abstract: 
This talk will first discuss how computer systems are transitioning from homogeneous parallelism to 
heterogeneity: ILP, TLP, and new Accelerator-level Parallelism (ALP). It will then discuss systems on a chip 
(SoCs) for mobile computing, and why they may be a harbinger of computer systems’s ALP future. It will 
conclude presenting the Gables model largely developed at Google’s Mobile Silicon Group for HPCA 2019’s 
Industrial Session. Gables seeks to make SoC selection and design more scientific via extending Roofline 
and bottleneck analysis to provide the first answers, not the final answers. Mark D. Hill will present the work. 
  
Biography: 
Mark D. Hill (http://www.cs.wisc.edu/~markhill) is John P. Morgridge Professor and Gene M. Amdahl 
Professor of Computer Sciences at the University of Wisconsin-Madison, where he also has a courtesy 
appointment in Electrical and Computer Engineering. His research interests include parallel-computer 
system design, memory system design, and computer simulation. He is a fellow of IEEE and the ACM. He 
serves as Chair of the Computer Community Consortium (2018-19) and served as Wisconsin Computer 
Sciences Department Chair 2014-2017. Hill has a PhD in computer science from the University of 
California, Berkeley. 



I. From ILP to Accelerator-level Parallelism 
•  ALP = Parallelism among workload components 

concurrently executing on multiple accelerators (IPs) 
 

II. Mobile SoCs as Harbinger 
•  Mobile SoCs already have ALP 
•  Some Pitfalls already emerging 

III. Gables ALP SoC Model [HPCA’19 Industrial Session] 
•  Some “first answers” to multi-IP questions   
 
 

Outline w/ Key Points 
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A Computer Architecture History 
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A Computer Architecture History 
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A Computer Architecture History 
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A Computer Architecture History 
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Accelerator-level Parallelism: 
•  Parallelism among workload components concurrently 

executing on multiple accelerators (IPs) 

Mobile SoC HW 
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CPU, GPU, xPU (i.e., Accelerators) 
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The CPU and GPU occupy less than 50% 
of the die area. What’s the rest? 

 
 

Apple A8 



CPU, GPU, xPU (i.e., Accelerators) 
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http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis 

 
The rapid rise of hardware 

accelerators in smartphone chips. 
 
 

Out  of Core 
Accelerators 

 
 



Potential for Specialized Accelerators 
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[Brodersen and Meng, 2002] 
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Encryption 
17 
Hearing Aid 
18 
FIR for disk read 
19 
MPEG Encoder 
20 
802.11 Baseband 



X-level Parallelism and Software 

Instruction-Level Parallelism: ILP transparent to SW; SW flourishes 
 

Thread-Level Parallelism: TLP SW was a crisis; mixed success even today 

Data-Level Parallelism: DLP SW specialized w/ point successes 
•  Vectorization (pioneering), CPU SIMD (intrinsics), GPU SIMT (Cuda) 
 

NEW Accelerator-level Parallelism: point success for Mobile SoCs 
•  Lacking SW/HW “science” 
 

Hypothesis: More ubiquitous ALP will happen 
•  Driven by scaling perf., constrained power, & slow tech change (like SoCs) 
 

Hypothesis: More ubiquitous ALP desperately needs more SW/HW “science”  
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I. From ILP to Accelerator-level Parallelism 
•  ALP = Parallelism among workload components 

concurrently executing on multiple accelerators (IPs) 
 

II. Mobile SoCs as Harbinger 
•  Mobile SoC already have ALP 
•  Some Pitfalls already emerging 

III. Gables ALP SoC Model [HPCA’19 Industrial Session] 
Some “first answers” to multi-IP questions   
 
 

Outline w/ Key Points 
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Example Usecase 
(recording 4K video) 
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Janapa Reddi, et al., 
IEEE Micro, Jan/Feb 2019 

Accelerator-level Parallelism (ALP) 
& repeated off-chip bandwidth use! 
 



Must run each usecase sufficiently fast -- no need faster 
Must run all usecases – average irrelevant (esp. real-time) 
A usecase uses IPs concurrently: more ALP than serial 
For each usecase, how much IP[i] acceleration needed? 
 

Mobile SoCs Run Usecases 
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AP Display G2DS GPU ISP JPEG IPU VDEC VENC DSP 

HDR+ X X X X X X 

Videocapture X X X X X 

VideocaptureHDR X X X X X 

VideoplaybackUI X X X X X 

Google Lens X X X X X 



 
Envision usecases  
(2-3 years ahead) 
Select IPs 
Size IPs 
Design Uncore 
 
 
 
 

Some Pitfalls emerging for SoCs & Beyond 
 

Mobile SoCs Hard To Design 
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Envision usecases  
(years ahead) 
Port to many SoCs?? 
 
Port to few finalists? 
 
Early downselect? 
 
IP diversity hinders use [Facebook, HPCA’19] 
 

Mobile SoCs Hard To Select 
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AP Display GPU ISP JPEG IPU VDEC VENC DSP 

HDR+ X X X X X X 

Videocapture X X X X X 

VideocaptureHDR X X X X X 

VideoplaybackUI X X X X 

Google Lens X X X X 

Pitfall 1: Succumbing to Conway’s Law 

TEAM TEAM 

TEAM 

TEAM 

Conway’s Law [1967]: Software (& HW) ends up 
"shaped like" the organizational structure it's designed in 
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AP Display GPU ISP JPEG IPU VDEC VENC DSP 

HDR+ X X X X X X 

Videocapture X X X X X 

VideocaptureHDR X X X X X 

VideoplaybackUI X X X X 

Google Lens X X X X 

Pitfall 1: Succumbing to Conway’s Law 

Recommend:  
Develop org. mechanisms to combat Conway’s Law 
E.g., usecase teams for SoC  
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Many locally opt. IPs ⇒ Globally opt. SoC?? 
 

Pitfall 2: Optimize IPs in Isolation 
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E.g., Where put SRAM for xPU? 

Recommend:  
SoC: Usecase-centric design across many IPs (see Gables) 
Future: Consider appropriate end-to-end workflows   

(2) 

SHARED 

xPU yPU 

(1) 
xPU 

zPU & beyond 



24 

Design IPs examining their peak acceleration 
Consider new IP xPU. If 100% of usecase: 

Pitfall 3: Not Applying Amdahl’s Law 
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1X @ 100% 

5X @ 100% 

25X @ 100% 

If 25% of usecase: 
1X @ 25% 

5X @ 25% 
25X @ 25% 

Concurrent yPU è 5X enough 
Concurrent zPUè xPU not needed 

SoC: End-to-end work fraction at 
each IP; fast enough? (See Gables) 
 

Future: Work fraction again; 
workload goals? 

time à 



25 

Zero in “inner-loop” performance @ IP, ignoring: 
Pitfall 4: Hyper focus on IP HW Peak Perf. 

E.g, Simpler HW ≠ Simpler HW+SW 
 
Simple HW: IP HW has instruction memory 
Hard SW: Compiler generates code & runtime 
“overlays” dynamically into instruction memory 
 
HW++: IP HW instruction cache w/ 4 blocks 
EZ SW: Regular compiler; opt. key routines 
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Zero in “inner-loop” performance @ IP, ignoring: 
Pitfall 4: Hyper focus on IP HW Peak Perf. 

●  Simpler HW ≠ Simpler HW+SW 
●  Driver startup/shutdown 
●  Interrupt latencies 
●  Time/BW to read input data & write output data 
●  SW stack for inter-IP communication (e.g., Android) 

(two device drivers rarely communicate directly) 
SoC & Future: Must estimate SW overhead, even if 
imperfectly (0 is a bad estimate); see LogCA [ISCA’17] 
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Pitfall 5: Not Managing Co-Design Mismatches 

HW takes years 
& must work 
 
System SW is similar 
& run multiple HW 
 
App SW multiple-month planning 
w/ frequent, incremental releases 
 



28 

Pitfall 5: Not Managing Co-Design Mismatches 

Apocryphal story: 
HW Designer: What will app do in 3 years? 
App developer: You meant 3 months right?  

SoC: Careful planning (despite Conway’s Law) 
& HW flexibility as function of SW/app unpredictability 
(e.g., DNNs more unpredictable than MPEG decoding) 
Future: Same or TBD 



II. Mobile SoCs as Harbinger 
•  Mobile SoC already have ALP 
•  Some Pitfalls already emerging 

III. Gables ALP SoC Model [HPCA’19 Industrial Session] 
•  Some “first answers” to multi-IP questions   
 
 

Outline w/ Key Points 
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Pitfall 1: Succumbing to Conway’s Law 
Pitfall 2: Optimize IPs in Isolation 
Pitfall 3: Not Applying Amdahl’s Law 
Pitfall 4: Hyper focus on IP HW Peak Perf. 
Pitfall 5: Not Managing Co-Design Mismatches 



Mobile SoCs have many IPs running in parallel (ALP) 
•  CPUs, GPUs, DSPs, & 10+ other “IPs” (accelerators) 
•  Which IPs have potential? How big? How many? 
•  Need initial answers for IP HW/SW to create/simulate 

Gables [HPCA’19 Industrial Session] 
•  Models give initial answers: Amdahl’s Law & Roofline 
•  Gables: Roofline per IP & apportion concurrent work 
•  E.g., balance each IP’s acceleration & communication

  
 
 

Modeling Accelerator-level Parallelism 
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Computer Architecture & Models 
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Models vs Simulation 
●  More insight 
●  Less effort 
●  But less accuracy 

Models give first answer, not final answer 
Gables extends Roofline è first answer for SoC ALP 
C.f.,  https://www.sigarch.org/three-other-models-of-computer-system-performance-part-1/  
and  https://www.sigarch.org/three-other-models-of-computer-system-performance-part-2/ 
 



Mobile System on Chip (SoC) 

Gables uses Roofline per IP to provide first answer!  
  
 

& Gables 
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What’s a Roofline? 
  
  
 



Williams et al., Roofline, CACM 4/2009 
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Source: https://commons.wikimedia.org/wiki/
File:Example_of_a_naive_Roofline_model.svg 

Ppeak 

Bpeak* I  

(I) 

(Patt)  

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes 

Patt =  
MIN(Bpeak* I, Ppeak) 



Gables for N IP SoC 
A0 = 1 

A0*Ppeak 

B0 

CPUs 
IP[0] 

← Share off-chip Bpeak → 
 

 
A1*Ppeak 

B1 

IP[1] 

 
AN-1*Ppeak 

BN-1 

IP[N-1] 
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Usecase at each IP[i] 
•  Non-negative work fi (fi’s sum to 1) w/ IPs in parallel 
•  Operational intensity Ii operations/byte 
 



Example Balanced Design Start w/ Gables 
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DRAM 

IP[0] 
CPUs 

Bpeak = 10 
 

TWO-IP SoC 

IP[1] 
GPU 

Ppeak = 40 
 

A1*Ppeak = 5*40 = 200 

B0 = 6 
 

B1 = 15 
 

Workload (Usecase): 
 

f0 = 1 & f1 = 0  
I0 = 8 = good caching 
I1 = 0.1 = latency tolerant 
 

Performance?  



36 

Perf limited by IP[0] at I0 = 8 
I[1] not used so no roofline 
Where do rooflines come from? 

Ppeak = 40 
Bpeak = 10 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0 
I0 = 8 

I1 = 0.1 
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Roofline:       MIN(Bpeak * I, Ppeak) 
                     MIN(Bpeak * I, 1 * Ppeak)   /   1 
 
1 / TIP[i]      =  MIN(Bi * Ii, Ai * Ppeak)   /   fi            fi ≠ 0 
 
1 / Tmemory   =  Bpeak * Iavg            Iavg = 1 / Σi=1,N-1(fi / Ii) 
 
Perf =  MIN(1/TIP[0] , …1/TIP[N-1], 1/Tmemory)     
 

Gables Math: Roofline / Work Fraction 
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Do better? 
Assign IP[1] work: f1 = 0 à 0.75 

Ppeak = 40 
Bpeak = 10 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0 
I0 = 8 

I1 = 0.1 
 
 
 
 
 
 
  

38 



39 

IP[1] present but Perf drops to 1! Why? 
I1 = 0.1 à memory bottleneck 
Enhance Bpeak = 10 à 30 
(at a cost) 

Ppeak = 40 
Bpeak = 10 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0.75 
I0 = 8 

I1 = 0.1 
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Perf only 2 with IP[1] bottleneck 
 

IP[1] SRAM/reuse I1 = 0.1 à 8 
Reduce overkill Bpeak = 30 à 20 

Ppeak = 40 
Bpeak = 30 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0.75 
I0 = 8 

I1 = 0.1 
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Perf = 160 < A*Ppeak = 200 
Can you do better? 
It’s possible! 

Ppeak = 40 
Bpeak = 20 

A1 = 5 
B0 = 6 

B1 = 15 
 

f1 = 0.75 
I0 = 8 
I1 = 8 
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For each usecase repeat until sufficiently fast 
•  Pick bottleneck IP[i] improve compute/communication 

Pick non-bottleneck IP[i] reduce cost 
Pick IP[i] configs that satisfy all usecases; done if cost ok 

A Gables Workflow for a 1st SoC Answer 
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AP Display G2DS GPU ISP JPEG IPU VDEC VENC DSP 

HDR+ X X X X X X 
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VideocaptureHDR X X X X X 

VideoplaybackUI X X X X X 

Google Lens X X X X X 



1. Include Accelerator IP[i]? 
2. IP[i] over-provisioned? 
3. IP[i] over-communicates? 
  
 

Mobile System on Chip (SoC) 

Or give work to enhanced CPUs 
Make IP[i] acceleration less  
IP[i] less compute; more SRAM 
  
 

& Gables 
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Pixel 2 (Snapdragon 835) w/ Aux. Thermal Mangmt 
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       CPUs                               GPU      DSP (SCALAR)  
Ppeak = 7.5 GF                     AGPU = 47                    ADSP-SCALAR = 0.40 

µBenchmark w/ Qualcomm SnapdragonTM 835 
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•  All elements load from array & vary FP SP op intensity 
•  Finds empirical lower bound on rooflines 

•  Preliminary evidence that multiple rooflines useful 



Case Study: Allocating SRAM 

Where SRAM? 

●  Private w/i each IP 
●  Shared resource 

 

SHARED 

IP0 

IP1 

IP2 

46 



What determines Ii? 

Hardware 

More Ai toward BW-bound (recall fi too!) 

More Bi toward compute-bound 

More Mi toward compute-bound if reuse 

Whither Ii as function of Mi? 

SW Usecase (most important) 

●  Dense v. sparse matrices 
●  E.g. vision v. audio ML 

 

 
Ai*Ppeak 

Bi 

IP[i] 

Mi 

Compute 
-bound Ii 

BW -
bound Ii 

Ii 

 Patt 
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Does more IP[i] SRAM help Op. Intensity (Ii)? 

Non-linear function that increases when new footprint/working-set fits 

Should consider these plots when sizing IP[i] SRAM 

Later evaluation can use simulation performance on y-axis 
 

Ii 

IP[i] SRAM 

Not 
much 

fits 

Small 
W/S 
 fits 

Med. 
W/S 
fits Large 

W/S 
fits 

W/S = working set 
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Extensions: memory-side buffer, interconnect, serial work 

 

Interactive tool for 2-IP & 3-IP SoCs 
 
 

Gables Android Source at GitHub 
 
 
 

http://research.cs.wisc.edu/multifacet/gables/ 
 
 

Gables Paper & Home Page 
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Mobile SoCs have “extreme heterogeneity” 
•  CPUs, GPUs, DSPs, & 10+ other “IPs” (accelerators) 
•  Which IPs have potential? How big? How many? 
•  Need initial answers before authoring IP HW/SW 
 
Gables Mobile SoC Model [HPCA’19 Industrial Session] 
•  Models give initial answers: Amdahl’s Law & Roofline 
•  Gables: Roofline per IP & apportion concurrent work 
•  E.g., how much IP[i] acceleration needed?   
 
 

Gables Executive Summary 
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All models are wrong, but some are useful.  

–George Box, Statistician, 1987 
 



ALP = Parallelism among workload components 
concurrently executing on multiple accelerators (IPs) 
 

Mobile SoCs: point successes, lacking SW/HW science 
 

Hypothesis: More ubiquitous ALP will happen 
•  Due to scaling perf., constrained power, & slow tech change 
•  Retarded by SW/HW “science” of ALP among 

CPUs (ILP+TLP), GPUs (+DLP), & many IPs (xLP) 
 
Hennessy & Patterson: A New Golden Age for Computer Architecture 

Accelerator-level Parallelism 
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Parallelism Success è Deep Thinking 
•  ILP: basic blocks too short à branch prediction 
•  TLP: SW to manage (OpenMP) or hide (SQL) 
•  DLP: SIMT surpasses SIMD/vectors on <$1K GPUs 
 

Let’s do Deep Thinking for ALP 
•  Enhance or coalesce IPs (in progress) 
•  Create SW/HW for coordination & communication  
•  SW abstraction/implementation for each IP hard 
•  SW abstractions/implementations for ALP harder 
•  All needed for continued computer performance scaling 

III. Gables ALP SoC Model 
•  Some “first answers” to multi-IP questions   
 
 

Accelerator-level Parallelism: Research Call 
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Infrastructure 
SimpleScalar 

gem5 
 

GPGPU-Sim 
 

Aladdin++? 



I. From ILP to Accelerator-level Parallelism 
•  ALP = Parallelism among workload components 

concurrently executing on multiple accelerators (IPs) 
 

II. Mobile SoCs as Harbinger 
•  Mobile SoCs already have ALP 
•  Some Pitfalls already emerging 

III. Gables ALP SoC Model [HPCA’19 Industrial Session] 
•  Some “first answers” to multi-IP questions   
 
 

Outline w/ Key Points 
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Thanks to Mobile Silicon Team @ 

54 



Backup Slides 
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Builds on Roofline & Amdahl’s Law 
 
Closest: SoC MultiAmdahl [Kelassy et al., CAL’12] 
Gables adds BW per-IP & chip & uses concurrent work 
 
Gables can be extended 
•  CPU-GPU “Valley” [Guz et al., CAL’09] 
•  LogCA interaction overheads [Altaf & Wood, ISCA’17] 
•  Richer IP models, e.g., [Jog et al., ISMS’15] 

 
 
 

Related Work 

56 



Base Assumptions 
●  SW has perfect Accelerator-level Parallelism 
●  All IP’s concurrent w/ each other & memory BW 
●  BW limits of Roofline appropriate (proxy for power?) 

Gables Caveats  
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But 
●  Insight but not cycle-level accuracy 
●  Omits interrupt latencies, etc., to manage IPs 
●  IP acceleration varying w/ usecase (Roofline ceiling?) 
●  <your concern here> 



Gables provides a way to conceptualize many-IP SoCs 
●  Roofline per IP forces early parameter estimation 
●  Insight for much less work than porting usecases 

 

Operational intensity Ii zeros in on SRAM utility & reuse 
 

Understanding work fraction fi valuable to estimate 
the acceleration Ai necessary for each usecase 
 

SoCs harbinger of accel.-level parallelism broadly 

Gables Conjectures  
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https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png 
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IPs should target important workloads, but … 
 

Pitfall X: Design for (Hyped) Importance 

Recommend: Provision 
IP resources (compute & 
SRAM) only as needed 
for important usecases 

Gartner 



Inspired by LogP [CACM 1996] 
 
Abstract accelerator using five parameters 
●  L Latency: Cycles to move data 
●  o Overhead: Setup cost 
●  g Granularity:  Size of the off-loaded data 
●  C Computational index: Work done per data byte 
●  A Acceleration: Speedup ignoring overheads  

LogCA Perf. Model of HW Accelerators 
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SoC HW Inputs 
●  Ppeak & Bpeak CPU perf. & off-chip BW from Roofline 
●  Ai & Bi  acceleration & BW for each IP[i] 

 

SW Usecase Inputs 
●  fi fraction work at each IP[i] 
●  Ii operational  intensity at each IP[i] 

 

Output 
●  Pattainable SoC performance upper bound 
 

Gables Glossary  

62 



6A --------------------------------------- 
Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A = 5, B0 = 6 and B1 = 15.  
I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.00.  
  
1 / TIP[0]      =  MIN(B0 * I0, Ppeak)   /   (1 – f)             f ≠ 1 
1 / TIP[1]      =  MIN(B1 * I1,  A * Ppeak)   /   f            f ≠ 0 
1 / Tmemory   =  Bpeak * Iavg            Iavg = 1/[(1- f)/ I0) + (f / I1)] 
Perf =  MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)    
  
1 / TIP[0]      =  MIN(6 * 8, 40)   /   1.0    = 40             f ≠ 1 
1 / TIP[1]      =  MIN(B1 * I1,  A * Ppeak)   /   f            f ≠ 0 MOOT f = 0 
1 / Tmemory   =  10 * 8 = 80           Iavg = 8 since f = 0 
Perf =  MIN(40 , --, 80)   = 40 
  
6B --------------------------------------- 
Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A = 5, B0 = 6 and B1 = 15.  
I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.75.  
  
1 / TIP[0]      =  MIN(B0 * I0, Ppeak)   /   (1 – f)             f ≠ 1 
1 / TIP[1]      =  MIN(B1 * I1,  A * Ppeak)   /   f            f ≠ 0 
1 / Tmemory   =  Bpeak * Iavg            Iavg = 1/[(1- f)/ I0) + (f / I1)] 
Perf =  MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)    
  
1 / TIP[0]      =  MIN(6 * 8, 40)   /   0.25           = 40/0.25 = 160 
1 / TIP[1]      =  MIN(15 * 0.1,  5 * 40)   / 0.75   = 1.5/0.75 = 2    
1 / Tmemory   =  10 *   Iavg      Iavg = 1/[(0.25/ 8) + (0.75 / 0.1)]  =  0.13278 
1 / Tmemory   =  10 *  0.13278 =   1.3  
Perf =  MIN(160, 2, 1.3)   = 1.3 

Numbers Behind Gables’s Example 
 6C --------------------------------------- 
Ppeak = 40 Gops/s, Bpeak = 30 Gbytes/s, A = 5, B0 = 6 and B1 = 15.  
 I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.75.  
  
1 / TIP[0]      =  MIN(B0 * I0, Ppeak)   /   (1 – f)             f ≠ 1 
1 / TIP[1]      =  MIN(B1 * I1,  A * Ppeak)   /   f            f ≠ 0 
1 / Tmemory   =  Bpeak * Iavg            Iavg = 1/[(1- f)/ I0) + (f / I1)] 
Perf =  MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)     
  
1 / TIP[0]      =  MIN(6 * 8, 40)   /   0.25           = 40/0.25 = 160 
1 / TIP[1]      =  MIN(15 * 0.1,  5 * 40)   / 0.75   = 1.5/0.75 = 2    
1 / Tmemory   =  30 *   Iavg      Iavg = 1/[(0.25/ 8) + (0.75 / 0.1)]  =  0.13278 
1 / Tmemory   =  30 *  0.13278 =   3.98  
Perf =  MIN(160, 2, 3.98)                           = 2.0 
  
6D --------------------------------------- 
Ppeak = 40 Gops/s, Bpeak = 20 Gbytes/s, A = 5, B0 = 6 and B1 = 15.  
I0 = 8 operations/byte on IP[0], I1 =8 for IP[1], and f =0.75.  
1 / TIP[0]      =  MIN(B0 * I0, Ppeak)   /   (1 – f)             f ≠ 1 
1 / TIP[1]      =  MIN(B1 * I1,  A * Ppeak)   /   f            f ≠ 0 
1 / Tmemory   =  Bpeak * Iavg            Iavg = 1/[(1- f)/ I0) + (f / I1)] 
Perf =  MIN(1/TIP[0] , 1/TIP[1], 1/Tmemory)   
  
1 / TIP[0]      =  MIN(6 * 8, 40)   /   0.25           = 40/0.25 = 160 
1 / TIP[1]      =  MIN(15 * 8,  5 * 40)   / 0.75   = 120/0.75 = 160    
1 / Tmemory   =  20 * 8                                        = 160 
Perf =  MIN(160, 160 , 160)                           = 160 
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TESTING IN PROGRESS 
 
Ppeak = 40 Gops/s, Bpeak = 30 Gbytes/s, A0 = 1, A1 =3, A2 = 5, B0 = 6, B1 = 15 and B2 =10.  
I0 = 4, I1 = 6, I2 = 8, f0=20%, f1 = 30%, and f2 = 50%.  
  
1 / TIP[0]      =  MIN(B0 * I0, A0* Ppeak)   /   f0             f0 ≠ 0 
1 / TIP[1]      =  MIN(B1 * I1,  A1 * Ppeak)   /   f1           f1 ≠ 0 
1 / TIP[2]      =  MIN(B2 * I2,  A2 * Ppeak)   /   f2          f2 ≠ 0 
 Iavg            = 1/[f0/ I0) + (f1 / I1) + (f2 / I2)] 
1 / Tmemory  =  Bpeak * Iavg            
Perf           =  MIN(1/TIP[0] , 1/TIP[1], 1/TIP[12, 1/Tmemory)  
 
1 / TIP[0]      =  MIN(6 * 4, 1* 40)   /   0.20 = 24/0.20 =  120   
1 / TIP[1]      =  MIN(15 * 6,  3 * 40)   /   0.30 =   90/0.30 = 300 
1 / TIP[2]      =  MIN(10 * 8,  5 * 40)   /   0.50 = 80/0.50 =   160 
 Iavg            = 1/[0.20/ 4) + (0.30 / 6) + (0.50/ 8)] = 1 / 0.1625 = 6.1538 
1 / Tmemory  =  30 * 6.1538 =  185          
Perf           =  MIN(120, 300, 160, 185)   = 120 
   

Numbers Behind Gables’s 3-IPExample 
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