Accelerator-level Parallelism: Mobile SoCs as Harbinger of the Future

Mark D. Hill, Wisconsin & Vijay Janapa Reddi, Harvard ISPASS FastPath, March 2019

Outline

- I. From ILP to Accelerator-level Parallelism
- II. Mobile SoCs as Harbinger
- III. Gables ALP SoC Model

Thanks for Google Mobile Silicon Group internship Ideas are the authors' & not necessarily Google's

Accelerator-level Parallelism: Mobile SoCs as Harbinger of the Future Mark D. Hill [1] and Vijay Janapa Reddi [2] [1] University of Wisconsin-Madison [2] Harvard University

Abstract:

This talk will first discuss how computer systems are transitioning from homogeneous parallelism to heterogeneity: ILP, TLP, and new Accelerator-level Parallelism (ALP). It will then discuss systems on a chip (SoCs) for mobile computing, and why they may be a harbinger of computer systems's ALP future. It will conclude presenting the Gables model largely developed at Google's Mobile Silicon Group for HPCA 2019's Industrial Session. Gables seeks to make SoC selection and design more scientific via extending Roofline and bottleneck analysis to provide the first answers, not the final answers. Mark D. Hill will present the work.

Biography:

Mark D. Hill (<u>http://www.cs.wisc.edu/~markhill</u>) is John P. Morgridge Professor and Gene M. Amdahl Professor of Computer Sciences at the University of Wisconsin-Madison, where he also has a courtesy appointment in Electrical and Computer Engineering. His research interests include parallel-computer system design, memory system design, and computer simulation. He is a fellow of IEEE and the ACM. He serves as Chair of the Computer Community Consortium (2018-19) and served as Wisconsin Computer Sciences Department Chair 2014-2017. Hill has a PhD in computer science from the University of California, Berkeley.

Outline w/ Key Points

I. From ILP to Accelerator-level Parallelism

• ALP = Parallelism among workload components concurrently executing on multiple accelerators (IPs)

II. Mobile SoCs as Harbinger

- Mobile SoCs already have ALP
- Some Pitfalls already emerging

III. Gables ALP SoC Model [HPCA'19 Industrial Session]

• Some "first answers" to multi-IP questions

1 CPU

ILP Instrn-Level Parallelism

1 CPUMultiprocessorILP+ TLPInstrn-LevelThread-LevelParallelismParallelism

1 CPUMulticoreILP+ TLPInstrn-LevelThread-LevelParallelismParallelism

1 CPUMulticoreILP+ TLPInstrn-LevelThread-LevelParallelismParallelism

+ Discrete GPU

+ DLP Data-Level Parallelism

1 CPU	Multicore	+	Integrated GPU	
ILP	+ TLP		+ DLP	
Instrn-Level	Thread-Level		Data-Level	
Parallelism	Parallelism		Parallelism	

1 CPUMulticore+ Integrated GPUILP+ TLP+ DLPInstrn-LevelThread-LevelData-LevelParallelismParallelismParallelism

System on a Chip (SoC) + ALP Accelerator-Level Parallelism

 Parallelism among workload components concurrently executing on multiple accelerators (IPs)

CPU, GPU, xPU (i.e., Accelerators)

The CPU and GPU occupy less than 50% of the die area. What's the rest?

CPU, GPU, xPU (i.e., Accelerators)

The rapid rise of hardware accelerators in smartphone chips.

Potential for Specialized Accelerators

16 Encryption 17 Hearing Aid 18 FIR for disk read 19 MPEG Encoder 20 802.11 Baseband

[Brodersen and Meng, 2002]

X-level Parallelism and Software

Instruction-Level Parallelism: ILP transparent to SW; SW flourishes

Thread-Level Parallelism: TLP SW was a crisis; mixed success even today

Data-Level Parallelism: DLP SW specialized w/ point successes

• Vectorization (pioneering), CPU SIMD (intrinsics), GPU SIMT (Cuda)

NEW Accelerator-level Parallelism: point success for Mobile SoCs

Lacking SW/HW "science"

Hypothesis: More ubiquitous ALP will happen

• Driven by scaling perf., constrained power, & slow tech change (like SoCs)

Hypothesis: More ubiquitous ALP desperately needs more SW/HW "science"

A Parallelism Lattice

Outline w/ Key Points

I. From ILP to Accelerator-level Parallelism

• ALP = Parallelism among workload components concurrently executing on multiple accelerators (IPs)

II. Mobile SoCs as Harbinger

- Mobile SoC already have ALP
- Some Pitfalls already emerging

III. Gables ALP SoC Model [HPCA'19 Industrial Session] Some "first answers" to multi-IP questions

Mobile SoCs Run Usecases

	AP	Display	G2DS	GPU	ISP	JPEG	IPU	VDEC	VENC	DSP
HDR+	Х	Х		Х	Х	X	Х			
Videocapture	Х	Х		Х	Х				Х	
VideocaptureHDR	Х	Х		Х	Х				Х	
VideoplaybackUI	Х	Х	Х	Х				Х		
Google Lens	Х	X	Х	Х						X

Must run each usecase sufficiently fast -- no need faster Must run all usecases – average irrelevant (esp. real-time) A usecase uses IPs concurrently: **more ALP** than serial For each usecase, how much IP[i] acceleration needed?

Mobile SoCs Hard To Design

Envision usecases (2-3 years ahead) Select IPs Size IPs Design Uncore

Some **Pitfalls** emerging for SoCs & Beyond

Mobile SoCs Hard To Select

Envision usecases (years ahead) Port to many SoCs??

Number of SoCs

Early downselect?

Port to few finalists?

141 141 150 123 114 100 93 64 50 25 2008 200 201 201 2012 2013 2014 2015 2010 2017

IP diversity hinders use [Facebook, HPCA'19]

Conway's Law [1967]: Software (& HW) ends up "shaped like" the organizational structure it's designed in

Pitfall 1: Succumbing to Conway's Law

	AP	Display	GPU	ISP	JPEG	IPU	VDEC	VENC	DSP
HDR+	Х	Х	Х	Х	Х	Х			\bigwedge
Videocapture	Х	Х	Х	Х				Х	\bigwedge
VideocaptureHDR	Х	Х	Х	Х				Х	
VideoplaybackUI	Х	Х	Х				Х		
Google Lens	Х	Х	Х						X

Recommend:

Develop org. mechanisms to combat Conway's Law E.g., usecase teams for SoC

Pitfall 2: Optimize IPs in Isolation

Many locally opt. IPs \Rightarrow Globally opt. SoC??

E.g., Where put SRAM for xPU? xPU (1) (2) SHARED

Recommend:

SoC: Usecase-centric design across many IPs (see **Gables**) **Future**: Consider appropriate end-to-end workflows

Pitfall 3: Not Applying Amdahl's Law

Design IPs examining their peak acceleration Consider new IP **xPU**. If 100% of usecase:

1X @ 100% time →

SoC: End-to-end work fraction at

Future: Work fraction again;

each IP; fast enough? (See **Gables**)

If 25% of usecase:

5X @ 25%

25X @ 25%

Concurrent yPU → 5X enough

Concurrent zPU→ xPU not needed

workload goals?

Pitfall 4: Hyper focus on IP HW Peak Perf.

Zero in "inner-loop" performance @ IP, ignoring:

E.g, Simpler HW ≠ Simpler HW+SW

Simple HW: IP HW has instruction memory Hard SW: Compiler generates code & runtime "overlays" dynamically into instruction memory

HW++: IP HW instruction cache w/ 4 blocks **EZ SW:** Regular compiler; opt. key routines

Pitfall 4: Hyper focus on IP HW Peak Perf.

Zero in "inner-loop" performance @ IP, ignoring:

- Simpler HW ≠ Simpler HW+SW
- Driver startup/shutdown
- Interrupt latencies
- Time/BW to read input data & write output data
- SW stack for inter-IP communication (e.g., Android) (two device drivers rarely communicate directly)

SoC & Future: Must estimate SW overhead, even if imperfectly (0 is a bad estimate); see LogCA [ISCA'17]

Pitfall 5: Not Managing Co-Design Mismatches

HW takes years & must work

2019	2020	2021
Jac.wy Feldoary In: In: 1 = 10	January February 10	January Federaty In 10: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
March Appl 10:10:10:10:10:10:10:10:10:10:10:10:10:1	Harvin Applie 1 3 5 5 5 7 1 2 3 1 <td< th=""><th>March Appl In: Int 0 0</th></td<>	March Appl In: Int 0 0
	Bits No N	May Joint Joint Joint 14 16
May Longest Longest 1 2 0 5 4 2 6 0 5 4 3 0 0 5 4 3 0 0 0 0 31 30 0 0 1 1	Joby Lagest In An N <td< td=""><td>Addy Example Description <thdescription< th=""> <thdescription< th=""> <thdescrip< td=""></thdescrip<></thdescription<></thdescription<></td></td<>	Addy Example Description Description <thdescription< th=""> <thdescription< th=""> <thdescrip< td=""></thdescrip<></thdescription<></thdescription<>
Exploring Column Colu	September Column Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITa Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITA Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITA Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITA Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITA Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITA Linit Nitz Jak Mar Har, Namita Pin Jak Hei UNITA Linit Nitz Jak Mar Har, Namita	Englaminist October An (A)
Convertient Ber (M-) (1) (N) N / N (1) N / N	Nonvertier Second all Provertier Provertier 61 64 75 64 76 64 76 64 76 64 76 64 76 76 64 76	Normality Solution Description 1 </th
Poderal Holidaya 2010 Art Instruction Art Instruction	Pederal Holidaya 2028 Sectoral model and Norman Im Norf Using the sector model and Norman Im Norf Using the sector model and Norman Im Norf Using the sector model And Pressent Im Norf Using the sector model And Pressent Im Norf Normal model	Poderal Holidaya 2021 Colorador 201 Art I terrarritori Art Revention Articles Poly Pol Present Present Present Pol Present Present Present Pol Present Present Present Pol Pre

System SW is similar & run multiple HW

App SW multiple-month planning w/ frequent, incremental releases

Pitfall 5: Not Managing Co-Design Mismatches

Apocryphal story: HW Designer: What will app do in 3 **years**? App developer: You meant 3 **months** right?

SoC: Careful planning (despite Conway's Law) & HW flexibility as function of SW/app unpredictability (e.g., DNNs more unpredictable than MPEG decoding) **Future:** Same or TBD

Outline w/ Key Points

- II. Mobile SoCs as Harbinger
- Mobile SoC already have ALP
- Some Pitfalls already emerging

Pitfall 1: Succumbing to Conway's Law
Pitfall 2: Optimize IPs in Isolation
Pitfall 3: Not Applying Amdahl's Law
Pitfall 4: Hyper focus on IP HW Peak Perf.
Pitfall 5: Not Managing Co-Design Mismatches

III. Gables ALP SoC Model [HPCA'19 Industrial Session]

• Some "first answers" to multi-IP questions

Modeling Accelerator-level Parallelism

Mobile SoCs have many IPs running in parallel (ALP)

- CPUs, GPUs, DSPs, & 10+ other "IPs" (accelerators)
- Which IPs have potential? How big? How many?
- Need initial answers for IP HW/SW to create/simulate

Gables [HPCA'19 Industrial Session]

- Models give initial answers: Amdahl's Law & Roofline
- Gables: Roofline per IP & apportion concurrent work
- E.g., balance each IP's acceleration & communication

Computer Architecture & Models

Multiprocessor &

Amdahl's Law

CPU &

Iron Law

Multicore &

Roofline

Models vs Simulation

- More insight
- Less effort
- But less accuracy

Models give first answer, not final answer

Gables extends **Roofline →** first answer for SoC ALP

C.f., <u>https://www.sigarch.org/three-other-models-of-computer-system-performance-part-1/</u> and <u>https://www.sigarch.org/three-other-models-of-computer-system-performance-part-2/</u>

Mobile System on Chip (SoC) & Gables

Gables uses Roofline per IP to provide first answer! What's a Roofline?

Williams et al., Roofline, CACM 4/2009

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

Usecase at each IP[i] Non-negative work f_i (f_i's sum to 1) w/ IPs in parallel Operational intensity l_i operations/byte

Example Balanced Design Start w/ Gables

Gables Math: Roofline / Work Fraction

Roofline: $MIN(B_{peak} * I, P_{peak})$ $MIN(B_{peak} * I, 1) * P_{peak}) / (1)$ $1 / T_{IP[i]} = MIN(B_i * I_i, A_i * P_{peak}) / (f_i)$ **f**_i ≠ 0 $1 / T_{memory} = B_{peak} * I_{avg}$ $I_{avg} = 1 / \Sigma_{i=1,N-1}(f_i / I_i)$ **Perf = MIN(1/T_{IP[0]}, ...1/T_{IP[N-1]}, 1/T_{memory})**

A Gables Workflow for a 1st SoC Answer

	AP	Display	G2DS	GPU	ISP	JPEG	IPU	VDEC	VENC	DSP
HDR+	Х	Х		Х	Х	Х	Х			
Videocapture	Х	Х		Х	Х				Х	
VideocaptureHDR	Х	Х		Х	Х				Х	
VideoplaybackUI	Х	Х	Х	Х				Х		
Google Lens	Х	Х	Х	Х						X

For each usecase repeat until sufficiently fast
Pick bottleneck IP[i] improve compute/communication Pick non-bottleneck IP[i] reduce cost
Pick IP[i] configs that satisfy all usecases; done if cost ok

Mobile System on Chip (SoC) & Gables

Include Accelerator IP[i]? Or give work to enhanced CPUs
 IP[i] over-provisioned? Make IP[i] acceleration less
 IP[i] over-communicates? IP[i] less compute; more SRAM

Pixel 2 (Snapdragon 835) w/ Aux. Thermal Mangmt

µBenchmark w/ Qualcomm Snapdragon[™] 835

- All elements load from array & vary FP SP op intensity
- Finds empirical lower bound on rooflines

Preliminary evidence that multiple rooflines useful

Case Study: Allocating SRAM

SHARED

Where SRAM?

- Private w/i each IP
- Shared resource

What determines I_i?

SW Usecase (most important)

- Dense v. sparse matrices
- E.g. vision v. audio ML

<u>Hardware</u>

More A_i toward BW-bound (recall f_i too!) More B_i toward compute-bound

More \boldsymbol{M}_{i} toward compute-bound if \boldsymbol{reuse}

Whither I_i as function of M_i?

Non-linear function that increases when new footprint/working-set fits

Should consider these plots when sizing IP[i] SRAM

Later evaluation can use simulation performance on y-axis

Gables Paper & Home Page

Extensions: memory-side buffer, interconnect, serial work

Interactive tool for 2-IP & 3-IP SoCs

Gables Android Source at GitHub

bttp://research.cs.wisc.edu/multifacet/gables/

CPU Roofline

) 2 4 6 Operational Intensity (FLOPS/byte

8:02 🏟 🗂

ce (GFLOPS)

Gables Executive Summary

All models are wrong, but some are useful. –George Box, Statistician, 1987

Gables Mobile SoC Model [HPCA'19 Industrial Session]

- Models give initial answers: Amdahl's Law & Roofline
- Gables: Roofline per IP & apportion concurrent work
- E.g., how much IP[i] acceleration needed?

Accelerator-level Parallelism

ALP = Parallelism among workload components concurrently executing on multiple accelerators (IPs)

Mobile SoCs: point successes, lacking SW/HW science

Hypothesis: More ubiquitous ALP will happen

- Due to scaling perf., constrained power, & slow tech change
- Retarded by SW/HW "science" of ALP among CPUs (ILP+TLP), GPUs (+DLP), & many IPs (xLP)

Hennessy & Patterson: A New Golden Age for Computer Architecture

Accelerator-level Parallelism: Research Call

Parallelism Success -> Deep Thinking Infrastructure

- ILP: basic blocks too short → branch prediction SimpleScalar
- TLP: SW to manage (OpenMP) or hide (SQL) gem5
- DLP: SIMT surpasses SIMD/vectors on <\$1K GPUs

GPGPU-Sim

Aladdin++?

Let's do Deep Thinking for ALP

- Enhance or coalesce IPs (in progress)
- Create SW/HW for coordination & communication
- SW abstraction/implementation for each IP hard
- SW abstractions/implementations for ALP harder
- All needed for continued computer performance scaling₅₂

Outline w/ Key Points

I. From ILP to Accelerator-level Parallelism

• ALP = Parallelism among workload components concurrently executing on multiple accelerators (IPs)

II. Mobile SoCs as Harbinger

- Mobile SoCs already have ALP
- Some Pitfalls already emerging

III. Gables ALP SoC Model [HPCA'19 Industrial Session]

• Some "first answers" to multi-IP questions

Thanks to Mobile Silicon Team @ Google

Backup Slides

Related Work

Builds on Roofline & Amdahl's Law

Closest: SoC MultiAmdahl [Kelassy et al., CAL'12] Gables adds BW per-IP & chip & uses concurrent work

Gables can be extended

- CPU-GPU "Valley" [Guz et al., CAL'09]
- LogCA interaction overheads [Altaf & Wood, ISCA'17]
- Richer IP models, e.g., [Jog et al., ISMS'15]

Gables Caveats

Base Assumptions

- SW has perfect Accelerator-level Parallelism
- All IP's concurrent w/ each other & memory BW
- BW limits of Roofline appropriate (proxy for power?)

But

- Insight but not cycle-level accuracy
- Omits interrupt latencies, etc., to manage IPs
- IP acceleration varying w/ usecase (Roofline ceiling?)
- <your concern here>

Gables Conjectures

Gables provides a way to conceptualize many-IP SoCs

- Roofline per IP forces early parameter estimation
- Insight for much less work than porting usecases

Operational intensity I_i zeros in on SRAM utility & reuse

Understanding work fraction f_i valuable to estimate the acceleration A_i necessary for each usecase

SoCs harbinger of accel.-level parallelism broadly

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png

Pitfall X: Design for (Hyped) Importance

IPs should target important workloads, but ...

Recommend: Provision IP resources (compute & SRAM) only as needed for important usecases

LogCA Perf. Model of HW Accelerator

Inspired by LogP [CACM1996]

Abstract accelerator using five parameters

- L Latency: Cycles to move data
- • Overhead: Setup cost
- **g** Granularity: Size of the off-loaded data
- C Computational index: Work done per data byte
- A Acceleration: Speedup ignoring overheads

Gables Glossary

SoC HW Inputs

- P_{peak} & B_{peak} CPU perf. & off-chip BW from Roofline
- A_i & B_i acceleration & BW for each IP[i]

SW Usecase Inputs

- **f**_i fraction work at each IP[i]
- I operational intensity at each IP[i]

Output

• P_{attainable} SoC performance upper bound

Numbers Behind Gables's Example

6**A** -----

Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A = 5, B0 = 6 and B1 = 15. I0 = 8 operations/byte on IP[0], I1 = 0.1 for IP[1], and f = 0.00.

6**B** ------Ppeak = 40 Gops/s, Bpeak = 10 Gbytes/s, A = 5, B0 = 6 and B1 = 15. I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.75.

Ppeak = 40 Gops/s, Bpeak = 30 Gbytes/s, A = 5, B0 = 6 and B1 = 15. I0 = 8 operations/byte on IP[0], I1 =0.1 for IP[1], and f =0.75.

$$\begin{array}{lll} 1 \ / \ T_{IP[0]} &= \ MIN(B_0 \ ^* \ I_0, \ P_{peak}) \ / \ (1-f) & f \neq 1 \\ 1 \ / \ T_{IP[1]} &= \ MIN(B_1 \ ^* \ I_1, \ A \ ^* \ P_{peak}) \ / \ f & f \neq 0 \\ 1 \ / \ T_{memory} &= \ B_{peak} \ ^* \ I_{avg} & I_{avg} = 1/[(1-f)/ \ I_0) + (f \ / \ I_1)] \\ \textbf{Perf = } \ MIN(1/T_{IP[0]}, \ 1/T_{IP[1]}, \ 1/T_{memory}) \end{array}$$

6C -----

 $\begin{array}{l} \text{6D} & ------\\ \text{Ppeak} = 40 \text{ Gops/s}, & \textbf{Bpeak} = 20 \text{ Gbytes/s}, \text{ A} = 5, \text{ B0} = 6 \text{ and } \text{B1} = 15.\\ \text{I0} = 8 \text{ operations/byte on IP[0], I1 = 8 for IP[1], and f = 0.75.}\\ 1 / \mathsf{T}_{\mathsf{IP}[0]} & = \mathsf{MIN}(\mathsf{B}_0 * \mathsf{I}_0, \mathsf{P}_{\mathsf{peak}}) / (1 - f) & f \neq 1\\ 1 / \mathsf{T}_{\mathsf{IP}[1]} & = \mathsf{MIN}(\mathsf{B}_1 * \mathsf{I}_1, \mathsf{A} * \mathsf{P}_{\mathsf{peak}}) / f & f \neq 0\\ 1 / \mathsf{T}_{\mathsf{memory}} & = \mathsf{B}_{\mathsf{peak}} * \mathsf{I}_{\mathsf{avg}} & \mathsf{I}_{\mathsf{avg}} = 1/[(1 - f) / \mathsf{I}_0) + (f / \mathsf{I}_1)]\\ \textbf{Perf} = \textbf{MIN}(1/\mathsf{T}_{\mathsf{IP}[0]}, 1/\mathsf{T}_{\mathsf{IP}[1]}, 1/\mathsf{T}_{\mathsf{memory}})\\ 1 / \mathsf{T}_{\mathsf{IP}[0]} & = \mathsf{MIN}(6 * 8, 40) / 0.25 & = 40/0.25 = 160\\ 1 / \mathsf{T}_{\mathsf{IP}[1]} & = \mathsf{MIN}(15 * 8, 5 * 40) / 0.75 & = 120/0.75 = 160 \end{array}$

Perf = MIN(1	60, 160	, 160)	= 160
$1/T_{memory} =$	20 * 8		= 160
IETTI	`	,	

Numbers Behind Gables's 3-IPExample

TESTING IN PROGRESS

Ppeak = 40 Gops/s, Bpeak = 30 Gbytes/s, $A_0 = 1$, $A_1 = 3$, $A_2 = 5$, $B_0 = 6$, $B_1 = 15$ and $B_2 = 10$. $I_0 = 4$, $I_1 = 6$, I2 = 8, $f_0=20\%$, $f_1 = 30\%$, and $f_2 = 50\%$.

1 / T _{IP[0]}	= MIN(B ₀ * I ₀ , A ₀ * P _{peak}) / f ₀ $f_0 \neq 0$
1 / T _{IP[1]}	= MIN(B ₁ * I ₁ , A ₁ * P _{peak}) / f ₁ $f_1 \neq 0$
1 / T _{IP[2]}	= MIN(B ₂ * I ₂ , A ₂ * P _{peak}) / f ₂ $f_2 \neq 0$
l _{avg}	$= 1/[f_0/I_0) + (f_1/I_1) + (f_2/I_2)]$
1 / T _{memory}	= B _{peak} * I _{avg}
Perf	= MIN(1/T _{IP[0]} , 1/T _{IP[1]} , 1/T _{IP[12} , 1/T _{memory})
1 / T _{IP[0]}	= MIN(6 * 4, 1* 40) / 0.20 = 24/0.20 = 120
1 / T _{IP[0]} 1 / T _{IP[1]}	= MIN(6 * 4, 1* 40) / 0.20 = 24/0.20 = 120 = MIN(15 * 6, 3 * 40) / 0.30 = 90/0.30 = 300
1 / T _{IP[0]} 1 / T _{IP[1]} 1 / T _{IP[2]}	= MIN(6 * 4, 1* 40) / 0.20 = 24/0.20 = 120 = MIN(15 * 6, 3 * 40) / 0.30 = 90/0.30 = 300 = MIN(10 * 8, 5 * 40) / 0.50 = 80/0.50 = 160
1 / T _{IP[0]} 1 / T _{IP[1]} 1 / T _{IP[2]} I _{avo}	= MIN(6 * 4, 1* 40) / 0.20 = 24/0.20 = 120 = MIN(15 * 6, 3 * 40) / 0.30 = 90/0.30 = 300 = MIN(10 * 8, 5 * 40) / 0.50 = 80/0.50 = 160 = 1/[0.20/ 4) + (0.30 / 6) + (0.50/ 8)] = 1 / 0.1625 = 6.1538
1 / T _{IP[0]} 1 / T _{IP[1]} 1 / T _{IP[2]} I _{avg} 1 / T _{memory}	= MIN(6 * 4, 1* 40) / 0.20 = 24/0.20 = 120 = MIN(15 * 6, 3 * 40) / 0.30 = 90/0.30 = 300 = MIN(10 * 8, 5 * 40) / 0.50 = 80/0.50 = 160 = 1/[0.20/ 4) + (0.30 / 6) + (0.50/ 8)] = 1 / 0.1625 = 6.1538 = 30 * 6.1538 = 185