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Toward GPUs being mainstream in 
analytic processing

An initial argument using simple scan-
aggregate queries
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Summary

▪ GPUs are energy efficient
▪ Discrete GPUs unpopular for DBMS
▪ New integrated GPUs solve the problems
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▪ Scan-aggregate GPU implementation
▪ Wide bit-parallel scan
▪ Fine-grained aggregate GPU offload

▪ Up to 70% energy savings over multicore CPU
▪ Even more in the future



6/1/2015 UNIVERSITY OF WISCONSIN

Analytic Data is Growing

▪ Data is growing 
rapidly

▪ Analytic DBs 
increasingly important
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Want: High performance Need: Low energy

Source: IDC’s  Digital Universe Study. 2012.
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GPUs to the Rescue?

▪ GPUs are becoming more general
▪ Easier to program
▪ Integrated GPUs are everywhere
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[Govindaraju ’04, He ’14, He ’14, Kaldewey ‘12,
Satish ’10, and many others]▪ GPUs show great promise

▪ Higher performance than CPUs
▪ Better energy efficiency

▪ Analytic DBs look like GPU workloads
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GPU Microarchitecture

5
L2 C

ache

Graphics Processing Unit
I-Fetch/Sched

SP SP SP SP

L1 Cache Scratchpad 
Cache

Register File

Compute Unit

SP SP SP SP

SP SP SP SP

CU



6/1/2015 UNIVERSITY OF WISCONSIN

Discrete GPUs
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Discrete GPUs
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Discrete GPUs
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Discrete GPUs

▪ Copy data over PCIe
▪ Low bandwidth
▪ High latency

▪ Small working memory

▪ High latency user→kernel calls

▪ Repeated many times
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98% of time spent not computing
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Integrated GPUs
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▪ No need for data copies
▪ Cache coherence and shared address space

▪ No OS kernel interaction
▪ User-mode queues

Heterogeneous System Arch.
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▪ API for tightly-integrated accelerators

▪ Industry support
▪ Initial hardware support today
▪ HSA foundation (AMD, ARM,Qualcomm, others)
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Outline

▪ Background

▪ Algorithms
▪ Scan
▪ Aggregate

▪ Results
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Analytic DBs

▪ Resident in main-memory

▪ Column-based layout
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▪ WideTable & BitWeaving [Li and Patel ‘13 & ‘14]

▪ Convert queries to mostly scans by pre-joining tables
▪ Fast scan by using sub-word parallelism
▪ Similar to industry proposals [SAP Hana, Oracle Exalytics, IBM DB2 BLU]

▪ Scan-aggregate queries
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Running Example
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Running Example
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Traditional Scan Algorithm
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Vertical Layout
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1101

CPU BitWeaving Scan
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GPU BitWeaving Scan
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GPU Scan Algorithm

▪ GPU uses very wide “words”
▪ CPU: 64-bits or 256-bits with SIMD
▪ GPU: 16,384 bits (256 lanes × 64-bits)

▪ Memory and caches optimized for bandwidth

▪ HSA programming model
▪ No data copies
▪ Low CPU-GPU interaction overhead
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GPU Aggregate Algorithm
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GPU Aggregate Algorithm
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Aggregate Algorithm

▪ Two phases
▪ Convert from BitVector to offsets (on CPU)
▪ Materialize data and compute (offload to GPU)

▪ Two group-by algorithms (see paper)

▪ HSA programming model
▪ Fine-grained sharing
▪ Can offload subset of computation
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Outline

▪ Background

▪ Algorithms

▪ Results
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Experimental Methods

▪ AMD A10-7850
▪ 4-core CPU
▪ 8-compute unit GPU
▪ 16GB capacity, 21 GB/s DDR3 memory
▪ Separate discrete GPU

▪ Watts-Up meter for full-system power

▪ TPC-H @ scale-factor 10
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Scan Performance & Energy
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Scan Performance & Energy
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Takeaway:
Integrated GPU most efficient for scans
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TPC-H Queries
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Query 12 Performance
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TPC-H Queries
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Query 12 Performance Query 12 Energy

Integrated GPU faster 
for both aggregate and 

scan computation
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TPC-H Queries
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Query 12 Performance Query 12 Energy
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TPC-H Queries
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Query 12 Performance Query 12 Energy

More energy:
Decrease in latency does 
not offset power increase 

Less energy:
Decrease in latency AND 

decrease in power
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Future Die Stacked GPUs
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▪ 3D die stacking

▪ Same physical & 
logical integration

▪ Increased compute

▪ Increased bandwidth
Board

Power et al.
Implications of 3D GPUs on the Scan Primitive

SIGMOD Record. Volume 44, Issue 1. March 2015

DRAM

CPU

GPU
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Conclusions
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Discrete 
GPUs

Integrated 
GPUs

3D Stacked
GPUs

Performance High  ☺ Moderate High  ☺
Memory 
Bandwidth High  ☺ Low   ☹ High  ☺

Overhead High  ☹ Low   ☺ Low   ☺
Memory 
Capacity Low   ☹ High  ☺ Moderate
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?
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HSA vs CUDA/OpenCL

▪ HSA defines a heterogeneous architecture
▪ Cache coherence
▪ Shared virtual addresses
▪ Architected queuing
▪ Intermediate language

▪ CUDA/OpenCL are a level above HSA
▪ Come with baggage
▪ Not as flexible
▪ May not be able to take advantage of all features
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Scan Performance & Energy
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Group-by Algorithms
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All TPC-H Results
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Average TPC-H Results
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Average Performance Average Energy
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What’s Next?
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▪ Developing cost model for GPU
▪ Using the GPU is just another algorithm to choose
▪ Evaluate exactly when the GPU is more efficient

▪ Future “database machines”
▪ GPUs are a good tradeoff between specialization and 

commodity 
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Conclusions

▪ Integrated GPUs viable for DBMS?
▪ Solve problems with discrete GPUs
▪ (Somewhat) better performance and energy
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▪ Looking toward the future...
▪ CPUs cannot keep up with bandwidth
▪ GPUs perfectly designed for these workloads


