
Minimally Ordered
Durable Datastructures for

Persistent Memory
Swapnil Haria, Mark D. Hill, Michael M. Swift

ASPLOS 2020



Executive Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:

• ~73% of runtime is overhead: mostly flushing data to PM

• Overlapping flushes reduces flush costs by 75%

Minimally Ordered Durable (MOD) Datastructures:

• C++ datastructures: easy to use & good performance

• Increases flush overlap with techniques from functional datastructures

• ~40% speedup compared to PMDK-STM

• Code at https://zenodo.org/record/3563186

2

https://zenodo.org/record/3563186


Outline

BACKGROUND MOD DATASTRUCTURES EVALUATION



Outline

BACKGROUND MOD DATASTRUCTURES EVALUATION



Persistent Memory is Here!

User-space access to non-volatile memory

Enables recoverable applications with durable in-memory data

5

Intel Optane Memory



Programming Challenges

6

L2 Cache

DRAM 
Controller

PM 
Controller

Persistent Memory

L1 Cache

Volatile Memory

CPU 1

Persistence 
Domain

1.Durability

2.Failure Atomicity



Background: Software Transactional Memory

7

CACHE

PM

X Y

X Y

Y

Index1=X

array

array

LOG

LOG

Index1=X

Y

FLUSH LOG

FENCE: 

FLUSH DATA

LOG DURABLE!



Background: Software Transactional Memory

8

CACHE

PM

X Y

X Y

Y

Index1=X

array

array

LOG

LOG Index1=X

YSystem Crash

Use LOG to clean

up the mess



PMDK-STM performance on Optane

9



PMDK-STM performance on Optane

10~73% of STM runtime is overhead, mostly from flushing



PMDK-STM performance on Optane

11~73% of STM runtime is overhead, mostly from flushing



Flush (CLWB) Overheads on Optane

12

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

…

0

1

2

3

4

5

6

7

1:1 1:2 1:4 1:8 1:16

E
x
e
c

u
ti

o
n

 T
im

e
 (

in
 u

s
)

Fence to Flush Ratio

Flushing overhead falls with overlap (following Amdahl’s Law)



Flush (CLWB) Overheads on Optane

13

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

FLUSH

FENCE

0

1

2

3

4

5

6

7

1:1 1:2 1:4 1:8 1:16

E
x
e
c

u
ti

o
n

 T
im

e
 (

in
 u

s
)

Fence to Flush Ratio

Flushing overhead falls with overlap (following Amdahl’s Law)

PM workloads have up to 23 flushes 

and 11 fences per transaction!



Outline

BACKGROUND MOD DATASTRUCTURES EVALUATION



Goal: Minimize Ordering!

Reduce FENCEs (ordering), even if extra computation required

How to provide failure-atomicity with minimal ordering?

Shadow Paging: Out-of-place updates instead of overwriting data

15



Background: Shadow Paging

16

shadow = array // Create shadow copy
shadow[index1] = X
shadow[index2] = Y
FLUSH (shadow)
FENCE
// Application uses shadow subsequently
array = shadow

CACHE

PM

X Y

X Y

array

array

X YX Y

shadow

shadow

Y X



Cue Functional Datastructures!

Purely Functional datastructures are immutable

Implemented as efficient trees: Hash Array Mapped trie, RRBTree

Copying overheads reduced by structural sharing

17

array[8] updatedArray[8]

YX Y X

swap



Minimally Ordered Durable Datastructures

Recoverable datastructures adapted from existing functional ones 

Durability: PM allocator + Flushes

Failure-Atomicity: Fences + out-of-place updates 

Leverage 20+ years of work from functional programming community

Read/Write APIs that hides flushes, fences, out-of-place updates

18



Update(arrayPtr, index, value) // Atomic, Durable w/ 1 FENCE

Atomic Update of Single Datastructure

19

arrayPtr

array[8]

X



shadowArray = arrayPtr->Update(updateParams) 
FENCE
arrayPtr = &shadowArray

Atomic Update of Single Datastructure

20

arrayPtr

array[8]

X

shadowArray[8]

Y

Overlapped 

Flushes



Advanced MOD usages

Multiple Atomic Updates to One Datastructure (in the paper)

Atomically Updating Multiple Datastructures

21

ds ds’
Update1

ds’’
Update2

ds1 ds1’
Update1

ds2 ds2’
Update2



3: Updating Multiple Datastructures

22

ds1PtrShadow = ds1Ptr->Update1(updateParams1) 
ds2PtrShadow = ds2Ptr->Update2(updateParams2)
...
Commit (ds1Ptr, ds1PtrShadow,

ds2Ptr, ds2PtrShadow, ...)

All Flushes 

Overlapped

More ordering points 

but short transaction

FENCE
Begin-TX {

ds1Ptr = ds1PtrShadow
ds2Ptr = ds2PtrShadow
...

} End-TX



3: Updating Multiple Datastructures

23

ds1PtrShadow = ds1Ptr->Update1(updateParams1) 
ds2PtrShadow = ds2Ptr->Update2(updateParams2)
...
FENCE
Begin-TX {

ds1Ptr = ds1PtrShadow
ds2Ptr = ds2PtrShadow
...

} End-TX

Paper describes alternate 

method w/o transactions that 

handles many such cases



Outline

BACKGROUND MOD DATASTRUCTURES EVALUATION



Evaluation Methodology

Used C++ library of functional datastructures:

https://github.com/arximboldi/immer

Used off-the-shelf persistent memory allocator:

https://github.com/hyrise/nvm_malloc.git

MOD library released at:

https://zenodo.org/record/3563186

Compared against Intel PMDK v1.5 (hybrid undo-redo logging):

https://github.com/pmem/pmdk

25

https://github.com/arximboldi/immer
https://github.com/hyrise/nvm_malloc.git
https://zenodo.org/record/3563186
https://github.com/pmem/pmdk


Performance Comparison on Optane

26



Performance Comparison on Optane

27MOD offers ~43% speedup for pointer-based datastructures (map, set, stack, queue)



Performance Comparison on Optane

28MOD degrades update performance of vectors by 120%



Performance Comparison on Optane

29MOD speeds up our 3 recoverable applications by ~38%



Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:

• ~73% of runtime is overhead: mostly flushing

• Flushing overhead reduces by 75% with flush overlap

Minimally Ordered Durable Datastructures:

• C++ datastructures: easy to use & good performance

• Increases flush overlap with techniques from functional datastructures

• ~40% speedup compared to PMDK-STM

• Code at https://zenodo.org/record/3563186

30

https://zenodo.org/record/3563186

