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Executive Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:
« ~73% of runtime is overhead: mostly flushing data to PM
» Overlapping flushes reduces flush costs by 75%

Minimally Ordered Durable (MOD) Datastructures:

« C++ datastructures: easy to use & good performance

* Increases flush overlap with techniques from functional datastructures
« ~40% speedup compared to PMDK-STM

« Code at https://zenodo.org/record/3563186



https://zenodo.org/record/3563186
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Persistent Memory Is Here!

User-space access to non-volatile memory

Enables recoverable applications with durable in-memory data

Intel Optane Memory




Programming Challenges

L1 Cache

1. Durabllity
2. Failure Atomicity

DRAM Persistence
Controller Controller Domain

| |

Volatile Memory Persistent Memory




Background: Software Transactional Memory

LOG § Index1=X

FLUSH DATA




Background: Software Transactional Memory

Use
up the

System Crash

LOG | Index1=X




PMDK-STM performance on Optane
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PMDK-STM performance on Optane
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Q ~73% of STM runtime is overhead, mostly from flushing




PMDK-STM performance on Optane
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Flush (CLWB) Overheads on Optane
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1:1 1:2 1:4 1:8
Fence to Flush Ratio

Q Flushing overhead falls with overlap (following Amdahl’s Law)




Flush (CLWB) Overheads on Optane

PM workloads have up to 23 flushes
and 11 fences per transaction!

1:1 1:2 1:4 1:8
Fence to Flush Ratio

Q Flushing overhead falls with overlap (following Amdahl’s Law)
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Goal: Minimize Ordering!

Reduce FENCEs (ordering), even if extra computation required

How to provide failure-atomicity with minimal ordering?

Shadow Paging: Out-of-place updates instead of overwriting data




Background: Shadow Paging

shadow = array // Create shadow copy
shadow][index1] = X

shadowl[index2] =Y

FLUSH (shadow)

FENCE

// Application uses shadow subsequently
array = shadow

CACHE array

N El .

shadow

[ DT BT |

PM
array

I 3 B 1

shadow




Cue Functional Datastructures!

Purely Functional datastructures are immutable
Implemented as efficient trees: Hash Array Mapped trie, RRBTree

Copying overheads reduced by structural sharing
array|[8] swap updatedArray|[8]
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Minimally Ordered Durable Datastructures

Recoverable datastructures adapted from existing functional ones
Durability: PM allocator + Flushes
Failure-Atomicity: Fences + out-of-place updates

Leverage 20+ years of work from functional programming community

Read/Write APIs that hides flushes, fences, out-of-place updates




Atomic Update of Single Datastructure

Update(arrayPtr, index, value) // Atomic, Durable w/ 1 FENCE

arrayPtr

U




Atomic Update of Single Datastructure

shadowArray = arrayPtr->Update(updateParams) } Overlapped
FENCE Flushes

arrayPtr = &shadowArray

arrayPtr

Il




Advanced MOD usages

Multiple Atomic Updates to One Datastructure (in the paper)

S”

Atomically Updating Multiple Datastructures




3: Updating Multiple Datastructures

ds1PtrShadow = dsl1Ptr->Updatel(updateParamsl) All Elushes
ds2PtrShadow = ds2Ptr->Update2(updateParams2) Overlapped

E&NCEt (ds1Ptr, dslPtrShadow, ]
Begin-TXd{§2Ptr, ds2PtrShadow, ...) More ordering points
ds1lPtr = dsl1PtrShadow ~ but short transaction
ds2Ptr = ds2PtrShadow




3: Updating Multiple Datastructures

ds1PtrShadow = dsl1Ptr->Updatel(updateParamsl)
ds2PtrShadow = ds2Ptr->Update2(updateParams2)

FENCE
Begin-TX { Paper describes alternate

ds1 Shad method w/o transactions that
> r->nadow handles many such cases
ds2P rShadow
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Evaluation Methodology

Used C++ library of functional datastructures:
https://github.com/arximboldi/immer

Used off-the-shelf persistent memory allocator:
https://github.com/hyrise/nvm_malloc.qit

MOD library released at:
https://zenodo.org/record/3563186

Compared against Intel PMDK v1.5 (hybrid undo-redo logging):
https://github.com/pmem/pmdk



https://github.com/arximboldi/immer
https://github.com/hyrise/nvm_malloc.git
https://zenodo.org/record/3563186
https://github.com/pmem/pmdk

Performance Comparison on Optane
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Performance Comparison on Optane
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-Q_ MOD offers ~43% speedup for pointer-based datastructures (map, set, stack, queue) 27



Performance Comparison on Optane
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'Q' MOD degrades update performance of vectors by 120%
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Performance Comparison on Optane
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'Q'MOD speeds up our 3 recoverable applications by ~38%




Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:
« ~73% of runtime is overhead: mostly flushing
* Flushing overhead reduces by 75% with flush overlap

Minimally Ordered Durable Datastructures:

« C++ datastructures: easy to use & good performance

* Increases flush overlap with techniques from functional datastructures
« ~40% speedup compared to PMDK-STM

» Code at https://zenodo.org/record/3563186
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