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Executive Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:

• ~73% of runtime is overhead: mostly flushing data to PM

• Overlapping flushes reduces flush costs by 75%

Minimally Ordered Durable (MOD) Datastructures:

• C++ datastructures: easy to use & good performance

• Increases flush overlap with techniques from functional datastructures

• ~40% speedup compared to PMDK-STM

• Code at https://zenodo.org/record/3563186

2

https://zenodo.org/record/3563186


Outline

BACKGROUND MOD DATASTRUCTURES EVALUATION



Outline

BACKGROUND MOD DATASTRUCTURES EVALUATION



Persistent Memory is Here!

User-space access to non-volatile memory

Enables recoverable applications with durable in-memory data
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Intel Optane Memory



Programming Challenges
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Background: Software Transactional Memory
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Background: Software Transactional Memory
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PMDK-STM performance on Optane
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Flush (CLWB) Overheads on Optane
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Flush (CLWB) Overheads on Optane
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PM workloads have up to 23 flushes 

and 11 fences per transaction!
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Goal: Minimize Ordering!

Reduce FENCEs (ordering), even if extra computation required

How to provide failure-atomicity with minimal ordering?

Shadow Paging: Out-of-place updates instead of overwriting data
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Background: Shadow Paging

16

shadow = array // Create shadow copy
shadow[index1] = X
shadow[index2] = Y
FLUSH (shadow)
FENCE
// Application uses shadow subsequently
array = shadow

CACHE

PM

X Y

X Y

array

array

X YX Y

shadow

shadow

Y X



Cue Functional Datastructures!

Purely Functional datastructures are immutable

Implemented as efficient trees: Hash Array Mapped trie, RRBTree

Copying overheads reduced by structural sharing
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Minimally Ordered Durable Datastructures

Recoverable datastructures adapted from existing functional ones 

Durability: PM allocator + Flushes

Failure-Atomicity: Fences + out-of-place updates 

Leverage 20+ years of work from functional programming community

Read/Write APIs that hides flushes, fences, out-of-place updates
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Update(arrayPtr, index, value) // Atomic, Durable w/ 1 FENCE

Atomic Update of Single Datastructure
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shadowArray = arrayPtr->Update(updateParams) 
FENCE
arrayPtr = &shadowArray

Atomic Update of Single Datastructure
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Advanced MOD usages

Multiple Atomic Updates to One Datastructure (in the paper)

Atomically Updating Multiple Datastructures
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3: Updating Multiple Datastructures
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ds1PtrShadow = ds1Ptr->Update1(updateParams1) 
ds2PtrShadow = ds2Ptr->Update2(updateParams2)
...
Commit (ds1Ptr, ds1PtrShadow,

ds2Ptr, ds2PtrShadow, ...)

All Flushes 

Overlapped

More ordering points 

but short transaction

FENCE
Begin-TX {

ds1Ptr = ds1PtrShadow
ds2Ptr = ds2PtrShadow
...

} End-TX



3: Updating Multiple Datastructures

23

ds1PtrShadow = ds1Ptr->Update1(updateParams1) 
ds2PtrShadow = ds2Ptr->Update2(updateParams2)
...
FENCE
Begin-TX {

ds1Ptr = ds1PtrShadow
ds2Ptr = ds2PtrShadow
...

} End-TX

Paper describes alternate 

method w/o transactions that 

handles many such cases
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Evaluation Methodology

Used C++ library of functional datastructures:

https://github.com/arximboldi/immer

Used off-the-shelf persistent memory allocator:

https://github.com/hyrise/nvm_malloc.git

MOD library released at:

https://zenodo.org/record/3563186

Compared against Intel PMDK v1.5 (hybrid undo-redo logging):

https://github.com/pmem/pmdk
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https://github.com/arximboldi/immer
https://github.com/hyrise/nvm_malloc.git
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Performance Comparison on Optane
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Performance Comparison on Optane

27MOD offers ~43% speedup for pointer-based datastructures (map, set, stack, queue)



Performance Comparison on Optane

28MOD degrades update performance of vectors by 120%



Performance Comparison on Optane

29MOD speeds up our 3 recoverable applications by ~38%



Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:

• ~73% of runtime is overhead: mostly flushing

• Flushing overhead reduces by 75% with flush overlap

Minimally Ordered Durable Datastructures:

• C++ datastructures: easy to use & good performance

• Increases flush overlap with techniques from functional datastructures

• ~40% speedup compared to PMDK-STM

• Code at https://zenodo.org/record/3563186

30

https://zenodo.org/record/3563186

