THE UNIVF_RSITY

DDDDD

I\/I|n|aIIy Ordered
Durable Datastructures for

Persistent Memory
Swapnil Haria, I\/Iark D.ﬁ Hill, Michael. Swift

ASPLOS 2020

Executive Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:
« ~73% of runtime is overhead: mostly flushing data to PM
» Overlapping flushes reduces flush costs by 75%

Minimally Ordered Durable (MOD) Datastructures:

« C++ datastructures: easy to use & good performance

* Increases flush overlap with techniques from functional datastructures
« ~40% speedup compared to PMDK-STM

« Code at https://zenodo.org/record/3563186

https://zenodo.org/record/3563186

BACKGROUND

array[8]

MOD DATASTRUCTURES

139 1.82 3.06
T Ll T
1.24 3 PMDK-other ~[EZ PMDK-Flushing [EEJ PMDK-logging [EE MOD-Flushing [EEE MOD-other

0 nsert find |insert find | push pop |write read swaps |push pop
map set stack vector

EVALUATION

m:\ TJ

Source v 139 1.82 3.06
: = arrav(8 — o —
" 1.24 3 PMDK-other [EZ3 PMDK-Flushing [EEH PMDK-logging M MOD-Flushing ([EEE MOD-other
Si substrate

0- .
nsert find |insert find | push pop [write read swaps
map set stack vector

BACKGROUND MOD DATASTRUCTURES EVALUATION

Persistent Memory Is Here!

User-space access to non-volatile memory

Enables recoverable applications with durable in-memory data

Intel Optane Memory

Programming Challenges

L1 Cache

1. Durabllity
2. Failure Atomicity

DRAM Persistence
Controller Controller Domain

| |

Volatile Memory Persistent Memory

Background: Software Transactional Memory

LOG § Index1=X

FLUSH DATA

Background: Software Transactional Memory

Use
up the

System Crash

LOG | Index1=X

PMDK-STM performance on Optane

B PMDK-other

i
—
>
A4
(@)
=
o
o
.
o
)
N
'©
£
-
o]
=z
()
£
-
c
o
]
>
|9
)
X
L

PMDK-STM performance on Optane

B PMDK-other
23 PMDK-Flush

ok
—
>
A
o
=
[a W
O
+
°
)
N
'©
€
—_
o
=
)
£
-
c
o
=
>
O
7}
X
w

maP ., set queve gtack yectol | ,cowaP DS \facaﬂonmemcached

Q ~73% of STM runtime is overhead, mostly from flushing

PMDK-STM performance on Optane

B PMDK-other
1 PMDK-Flush
1 B8 PMDK-Log

1
—
>
¥
()
=
o
(@]
e
©
Q
N
®
£
| -
O
=
()]
£
|_
e
S
e
-]
o
(O]
x
L

map -, set queue stack ector yec-swaP bfs \,acationmemcached

Q ~73% of STM runtime is overhead, mostly from flushing

Flush (CLWB) Overheads on Optane

[e)]

Ul

S

w

N

~
%]
>
c
<
)
E
c
o
-
>
O
Q
x
L

(=Y

1:1 1:2 1:4 1:8
Fence to Flush Ratio

Q Flushing overhead falls with overlap (following Amdahl’s Law)

Flush (CLWB) Overheads on Optane

PM workloads have up to 23 flushes
and 11 fences per transaction!

1:1 1:2 1:4 1:8
Fence to Flush Ratio

Q Flushing overhead falls with overlap (following Amdahl’s Law)

BACKGROUND

array[8]

MOD DATASTRUCTURES

139 182 3.06
T w— T
1.24 [0 PMDK-other [ZN PMDK-Flushing [EE PMDK-Logging [EE MOD-Flushing [MOD-other

Oiinsert find |insert find | push pop |write read swaps |push pop
map set stack vector

EVALUATION

Goal: Minimize Ordering!

Reduce FENCEs (ordering), even if extra computation required

How to provide failure-atomicity with minimal ordering?

Shadow Paging: Out-of-place updates instead of overwriting data

Background: Shadow Paging

shadow = array // Create shadow copy
shadow][index1] = X

shadowl[index2] =Y

FLUSH (shadow)

FENCE

// Application uses shadow subsequently
array = shadow

CACHE array

N El .

shadow

[DT BT |

PM
array

I 3 B 1

shadow

Cue Functional Datastructures!

Purely Functional datastructures are immutable
Implemented as efficient trees: Hash Array Mapped trie, RRBTree

Copying overheads reduced by structural sharing
array|[8] swap updatedArray|[8]

EE—

Minimally Ordered Durable Datastructures

Recoverable datastructures adapted from existing functional ones
Durability: PM allocator + Flushes
Failure-Atomicity: Fences + out-of-place updates

Leverage 20+ years of work from functional programming community

Read/Write APIs that hides flushes, fences, out-of-place updates

Atomic Update of Single Datastructure

Update(arrayPtr, index, value) // Atomic, Durable w/ 1 FENCE

arrayPtr

U

Atomic Update of Single Datastructure

shadowArray = arrayPtr->Update(updateParams) } Overlapped
FENCE Flushes

arrayPtr = &shadowArray

arrayPtr

Il

Advanced MOD usages

Multiple Atomic Updates to One Datastructure (in the paper)

S”

Atomically Updating Multiple Datastructures

3: Updating Multiple Datastructures

ds1PtrShadow = dsl1Ptr->Updatel(updateParamsl) All Elushes
ds2PtrShadow = ds2Ptr->Update2(updateParams2) Overlapped

E&NCEt (ds1Ptr, dslPtrShadow,]
Begin-TXd{§2Ptr, ds2PtrShadow, ...) More ordering points
ds1lPtr = dsl1PtrShadow ~ but short transaction
ds2Ptr = ds2PtrShadow

3: Updating Multiple Datastructures

ds1PtrShadow = dsl1Ptr->Updatel(updateParamsl)
ds2PtrShadow = ds2Ptr->Update2(updateParams2)

FENCE
Begin-TX { Paper describes alternate

ds1 Shad method w/o transactions that
> r->nadow handles many such cases
ds2P rShadow

v w—
PMDK-Logging BB MOD-Flushing [MOD-other

EVALUATION

MOD DATASTRUCTURES

BACKGROUND

Evaluation Methodology

Used C++ library of functional datastructures:
https://github.com/arximboldi/immer

Used off-the-shelf persistent memory allocator:
https://github.com/hyrise/nvm_malloc.qit

MOD library released at:
https://zenodo.org/record/3563186

Compared against Intel PMDK v1.5 (hybrid undo-redo logging):
https://github.com/pmem/pmdk

https://github.com/arximboldi/immer
https://github.com/hyrise/nvm_malloc.git
https://zenodo.org/record/3563186
https://github.com/pmem/pmdk

Performance Comparison on Optane

B PMDK-other
E PMDK-Flush
"~ | PMDK-Log

1
>
A4
Q
=
o
o]
]
©
u
N
'©
£
-
(@]
=
(0]
£
|_
e
e
—
>
&)
Q
>
L

Performance Comparison on Optane

I PMDK-other [—1 MOD-other
E= PMDK-Flush —1 MOD-Flush
I PMDK-Log

0
S
%
o
=
o
[
4
§e
@
N
'©
S
-
o
=
w
£
|_
j
e
4
>
(@)
@
X
i

map gqueue grack

-Q_ MOD offers ~43% speedup for pointer-based datastructures (map, set, stack, queue) 27

Performance Comparison on Optane

2.2 2.2

NP \fector VeC.S\Nap
'Q' MOD degrades update performance of vectors by 120%

0
S
%
o
=
o
[
4
§e
@
N
'©
S
-
o
=
w
£
|_
j
e
4
>
(@)
@
X
i

Performance Comparison on Optane

0
S
%
o
=
o
[
4
§e
@
N
'©
S
-
o
=
w
£
|_
j
e
4
>
(@)
@
X
i

NP bfs Vacat"onmemcached
'Q'MOD speeds up our 3 recoverable applications by ~38%

Summary

Persistent memory enables recoverable applications

Analysis on Intel Optane memory reveals:
« ~73% of runtime is overhead: mostly flushing
* Flushing overhead reduces by 75% with flush overlap

Minimally Ordered Durable Datastructures:

« C++ datastructures: easy to use & good performance

* Increases flush overlap with techniques from functional datastructures
« ~40% speedup compared to PMDK-STM

» Code at https://zenodo.org/record/3563186

https://zenodo.org/record/3563186

