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Abstract
Recent advances in memory technologies mean that com-
modity machines may soon have terabytes of memory; how-
ever, such machines remain expensive and uncommon today.
Hence, few programmers and researchers can debug and pro-
totype fixes for scalability problems or explore new system
behavior caused by terabyte-scale memories.

To enable rapid, early prototyping and exploration of sys-
tem software for such machines, we built and open-sourced
the 0sim simulator. 0sim uses virtualization to simulate the
execution of huge workloads on modest machines. Our key
observation is that many workloads follow the same control
flow regardless of their input. We call such workloads data-
oblivious. 0sim harnesses data-obliviousness to make huge
simulations feasible and fast via memory compression.

0sim is accurate enough for many tasks and can simu-
late a guest system 20-30x larger than the host with 8x-100x
slowdown for the workloads we observed, with more com-
pressible workloads running faster. For example, we simulate
a 1TB machine on a 31GB machine, and a 4TB machine on a
160GB machine. We give case studies to demonstrate the util-
ity of 0sim. For example, we find that for mixed workloads,
the Linux kernel can create irreparable fragmentation despite
dozens of GBs of free memory, and we use 0sim to debug
unexpected failures of memcached with huge memories.
CCS Concepts. • Computing methodologies→ Simula-
tion types and techniques; • Software and its engineer-
ing→Memory management; Extra-functional properties.
Keywords. operating systems; simulation; huge-memory
system; memory capacity scaling; data-obliviousness
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1 Introduction
Computer memory sizes have grown continuously since the
dawn of computing. Past designs that rigidly limited the max-
imum amount of memory faced huge difficulties as memory
capacity increased exponentially (e.g., IBM’s System/360 had
an architectural limit of 28MB [11]). This growth trend will
continue as technological advances greatly expand the den-
sity and decrease the cost of memory. Most recently, Intel’s
3D Xpoint memory supports up to 6TB on a two-socket
machine [48]. Consequently, multi-terabyte systems may
become common, paving the way for future systems with
tens to hundreds of terabytes of memory.

There is a pressing need to study the scalability of system
software and applications on huge-memory systems (multi-
ple TBs or more) to prepare for increased memory capacity.
While tolerable today, the linear compute and space over-
heads of many common operating system algorithms may be
unacceptable with 10-100x more memory. Other system soft-
ware, such as language runtimes and garbage collectors also
need redesigns to run efficiently on multi-terabyte memory
systems [64]. In Linux, many scalability issues are tolerable
for small memories but painful at larger scale. For example:

• With 4TB of memory, Linux takes more than 30s at
boot time to initialize page metadata, which reduces
availability when restarts are needed.

• Kernel metadata grows to multiple gigabytes on large
systems. On heterogeneous systems, metadata may
overwhelm smaller fast memories [26].

• Memory management algorithms with linear complex-
ity, such as memory reclamation and defragmenta-
tion, can cause significant performance overheadwhen
memory scales up 10x in size, as we show later.

• Huge pages are critical to TLB performance on huge
systems, but memory defragmentation to form huge
pages has previously been found to cause large latency
spikes for some applications [4, 32, 58, 63].

• Memory management policies built for smaller memo-
ries, such as allowing a fixed percentage of cached file
contents to be dirty, perform poorly with huge memo-
ries when that small percentage comprises hundreds
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of gigabytes [59].

We expect system designers to encounter new scalability
problems as memory sizes grow to terabyte scales and be-
yond. But, exploring system behavior with huge memories,
reproducing scalability issues, and prototyping solutions re-
quires a developer to own or rent a system at great cost or
inconvenience. Cloud offerings for 4TB instances cost over
$25 per hour [9, 41, 57]. Larger instances require a three-year
contract at an expense of over $780,000 [10, 57].

To this end, we built and open-sourced 0sim (“zero·sim”),
a virtualization-based platform for simulating system soft-
ware behavior on multi-terabyte machines. 0sim runs on
a commodity host machine, the platform, and provides a
user with a virtual machine, the simulation target, which
has a huge physical memory. 0sim is fast enough to allow
huge, long-running simulations and even direct interaction,
enabling both performance measurements and interactive
debugging of scalability issues.
We employ several novel techniques to fit terabytes of

target memory contents into gigabytes of platform memory.
First, we observe that many programs are data oblivious: they
perform the same computation independent of input values.
Therefore, we can exercise the target with predetermined
input; then, 0sim can compress a 4KB page with predeter-
mined content to 1 bit. Second, current processors may have
small physical address spaces to simplify the CPU design. We
use software virtualization techniques to ensure that simu-
lated physical addresses are never seen by the platform CPU,
but instead are translated by 0sim. Thus, our system can
simulate the maximum allowable address space for a given
target architecture. Finally, we enable efficient performance
measurement within the simulation by exposing hardware
timestamp counters that report the passage of target time.

0sim simulates both functional and performance aspects
of the target as if measured on a real multi-terabyte ma-
chine. 0sim does not aim to be an architecture simulator or
to be perfectly accurate, as the target may differ from the
platform in many ways including processor microarchitec-
ture. Instead, 0sim simulates system software well enough for
the important use cases of reproducing scalability problems,
prototyping solutions, and exploring system behavior. 0sim
sacrifices some accuracy for simulation speed, enabling huge,
long-running simulations and interactive debugging.

In this paper, we describe the architecture and implemen-
tation of 0sim. We validate 0sim’s accuracy and simulation
speed with these goals in mind. 0sim can simulate a target
system 20-30x larger than the platform with only 8x-100x
slowdown compared to native execution for the workloads
we tested, with more compressible workloads running faster.
For example, we simulate a 4TB memcached target on a
160GB platform and 1TB memcached target on a 30GB plat-
form with only 8x slowdown. By comparison, architecture
simulators incur 10,000x or worse slowdown [21].

We perform several case studies demonstrating the use-
fulness of 0sim: we reproduce and extend developer perfor-
mance results for a proposed kernel patch; we measure the
worst-case impact of memory compaction on tail latency for
memcached as a 22x slowdown; we show that for a mix of
workloads Linux can incur irreparable memory fragmenta-
tion even with dozens of GBs of free memory; and that synchro-
nous page reclamation can be made much more efficient at
the cost of very small additional delay. Furthermore, we used
0sim to interactively debug a scalability bug in memcached
that only occurs with more than 2TB of memory. 0sim is
available at https://github.com/multifacet/0sim-workspace.

2 Problem: Scaling with Memory Capacity
0sim addresses a critical need to study how software scales
with memory capacity, including making efficient use of
memory, addressing algorithmic bottlenecks, and designing
policies with huge memory capacity in mind. Moreover, it re-
moves barriers for developers that limit software from being
effectively tested and deployed for huge-memory systems.

Computational Inefficiency. Any operation whose ex-
ecution time increases linearly with the amount of memory
may become a bottleneck. For example, the Page Frame Recla-
mation Algorithm, huge page compaction, page deduplica-
tion, memory allocation, and dirty/referenced bit sampling
all operate over per-page metadata. If the kernel attempts
to transparently upgrade a range of pages to a huge page,
running huge page compaction may induce unpredictable
latency spikes and long tail latencies in applications. This has
led many databases and storage systems to recommend turn-
ing off such kernel features despite potential performance
gains [4, 32, 58, 63].
Likewise, allocating, initializing, and destroying page ta-

bles can be expensive. This impacts the time to create and de-
stroy processes or service page faults. Linus Torvalds has sug-
gested that the overhead of allocating pages to pre-populate
page tables makes the MAP_POPULATE flag for mmap less useful
because its latency is unacceptably high [75].
Another example is the Linux kernel’s struct page [27].

Huge-memory systems may have billions of these structures
storing metadata for each 4KB page of physical memory. In
a 4TB system, initializing each of them and freeing them to
the kernel’s memory allocator at boot time takes 18 and 15
seconds, respectively, on our test machines. This has impli-
cations for service availability, where the boot time of the
kernel may be on the critical path of a service restart.

Memory Usage. Any memory usage that is proportional
to main memory size may consume too much space in some
circumstances. For example, amachinewith amodest amount
of DRAM and terabytes of non-volatile memory may find all
of its DRAM consumed by page tables and memory manage-
ment metadata for non-volatile memory [26].
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As previously mentioned, for each 4KB page, the Linux
kernel keeps a 200-byte struct page with metadata. Simi-
larly, page tables for address translation can consume dozens
of gigabytes of memory on huge systems [37]. While this
space may be a small fraction of total memory, it consumes
a valuable system resource, and as discussed above, imposes
a time cost for management.

Huge-Memory-Aware Policies. Effective memory man-
agement policies for small memories may perform poorly at
huge scales. For example, the Linux kernel used to flush dirty
pages to storage once they exceeded a percentage of memory,
but on huge machines this led to long pauses as gigabytes
of data were flushed out [59]. Also, some applications that
use huge memories to buffer streaming data have found the
kernel page cache to be a bottleneck [30]. In an era of huge
and/or non-volatile memories, its not clear what role page
caching should play. As high-throughput, low-latency net-
work and storage and huge memories becomemore common,
it is important to reevaluate kernel policies for buffering and
flushing dirty data.
Likewise, policies for large contiguous allocations and

fragmentation control need to be examined. Many modern
high-performance I/O devices, such as network cards and
solid-state drives, use large physically contiguous pinned
memory buffers [33]. Researchers have proposed large con-
tiguous allocations to mitigate TLB miss overheads [14, 39].
In order to satisfy such memory allocations, the kernel must
control fragmentation of physical memory, which has been a
problem in Linux [28, 30]. A complementary issue is the im-
pact of internal fragmentation caused by eager paging [39]
and transparent huge pages onmulti-terabyte systems. These
problems are well-studied for smaller systems, but to our
knowledge they have not been revisited on huge-memory
systems and workloads.

Capacity scalability problems are not unique to operating
systems. Other system software, such as language runtimes,
also needs to be adapted for huge memory systems. For ex-
ample, Oracle’s Java Virtual Machine adopted a new garbage
collector optimized for huge-memory systems [64].

Barriers to Development. Huge-memory systems are
uncommon due to their expense. Hence, system software is
not well-tested for huge-memory systems that will become
common soon. In our work, we often found that software
had bugs and arbitrary hard-coded limits that caused it to fail
on huge-memory systems. Usually, limitations were not well-
documented, and failures were hard to debug due to user-
unfriendly failure modes such as unrelated kernel panics or
hanging indefinitely. 0sim makes it easier for developers to
test software at scale.

3 Related Work
Simulation is often used when hardware is unavailable (e.g.,
processor simulators [21]). Unlike other hardware advances,

such as increasing processor cores or device speed, simulat-
ingmemory capacity on existing hardware is challenging due
to the amount of state that must be maintained. Alameldeen
et al. address this by painstakingly scaling down and tuning
the benchmarks and systems they test [8]. While accurate,
this methodology is error prone, tedious, and difficult to val-
idate. In Quartz and Simics, simulation size is limited by the
size of the host machine [37, 76]. 0sim is able to run huge sim-
ulations on amodest host by leveraging data-obliviousness to
store more memory state than the memory or storage capac-
ity of the host. Researchers have simulated fast networks by
slowing down the simulated machine’s clock [44]. 0sim sim-
ilarly adjusts the target’s view of the passage of time. David
[6] and Exalt [78] simulate large storage systems by storing
only metadata and generating contents at read time. This
technique is difficult for memory because important meta-
data is not separated from disposable data in most programs.
0sim uses data-obliviousness with pre-determined inputs
to accomplish a similar result. Several systems virtualize a
cluster of machines to produce a single large virtual machine
[16, 23, 72, 74]; Firesim uses cloud-based accelerators to scale
simulations [52]. In contrast, 0sim uses virtualization but on
a single commodity host machine, which is more accessible
to researchers and developers.

Scalability. Extensive prior work has examined different
kinds of scalability problems in system software. For example,
RadixVM tries to overcome performance issues in highly con-
current workloads due to serialization of memory manage-
ment operations on kernel data structures [24]. Other studies
have suggested that struct page, struct vm_area_struct,
and page tables tend to comprise a large portion of memory
management overhead [37]. Java 11 features a new garbage
collector that allows it to scale to terabyte-scale heaps while
retaining low latency [64]. However, there has been fairly
little work aimed at improving the scalability of systems
with respect to the memory capacity. 0sim makes it easy to
prototype and test software that address this problem.

Techniques. 0sim’s design and implementation make use
of a number of known software techniques to efficiently over-
commit memory. One of our contributions is to show how
0sim uses these techniques to build a novel approach to sim-
ulation. Page compression and deduplication can increase
memory utilization in the presence of overcommitment; they
are implemented in widely-used software, such as Linux,
MacOS, and VMware ESX Server [2, 3, 12, 77]. In Linux,
work has been done to increase the achievable memory com-
pression ratio by using more efficient allocators [60] and
optimizing for same-filled pages [35]. Remote-memory pro-
posals swap pages out over the network to a remote machine,
allowing larger workloads to run locally [38, 43]. Work has
also been done on hardware-based memory compression
[5] and zero-aware optimizations [36], but these proposals
require specialized hardware, unlike 0sim.
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Figure 1. Design of 0sim (left) and Simulation State (right).

4 Design of 0sim
0sim enables evaluation of system software on machines with
huge physical memories. We emphasize that 0sim is not an
architecture simulator; instead it has the following goals:

• Run on inexpensive commodity hardware.
• Require minimal changes to simulated software.
• Preserve performance trends, not exact performance.
• Run fast enough to simulate long-running workloads.

Figure 1 (left) shows an overview of 0sim’s architecture.
0sim boots a virtual machine (VM), the target, with physical
memory that is orders-of-magnitude larger than available
physical memory on the host, or platform, while maintain-
ing reasonable simulation speed. 0sim is implemented as a
modified kernel and hypervisor running on the platform but
requires no target changes. Any unmodified target OS and
a wide variety of workloads can be simulated by executing
them in the target (e.g., via SSH). The x86 rdtsc instruction
can be used in the target to read the hardware timestamp
counter (TSC) for simulated time measurement.

0sim trades off simulation speed and ease of use of the
system against accuracy by seeking to preserve trends rather
than precisely predict performance. 0sim preserves trends
in both temporal metrics (e.g., latency) and non-temporal
metrics (e.g., memory usage) in the simulated environment.
For example, 0sim can be used to compare the performance
of two targets to measure the impact of an optimization.

The central challenges facing 0sim are (1) emulating huge
memories and (2) preserving temporal metrics. We address
(1) using data-oblivious workloads andmemory compression.
We address (2) by virtualizing the TSC.

4.1 Data-Obliviousness
Simulating huge-memory systems is fundamentally different
from simulating faster hardware, such as CPUs or network
devices. As previouslymentioned, simulating hugememories
requires maintaining more state than the platform is capable
of holding. 0sim relies on the platform kernel’s swapping
subsystem to transparently overflow target state to a swap
device. However, the platform may not have enough swap
space for the state we wish to simulate; even if it did, writing

and reading all state from the storagewould be painfully slow
and would make huge, long-running simulations impractical.
Our key observation is that many workloads follow the

same control flow regardless of their input. We call such
workloads data-oblivious. For example, the memcached in-
memory key-value store does not behave differently based
on the values in key-value pairs – only the keys. Another ex-
ample is fixed computation, such asmatrix multiplication; we
can provide matrix workloads with sparse or known matri-
ces. One workload, the NAS Conjugate Gradient Benchmark
[13], naturally uses sparse matrices.

Figure 1 (right) depicts the management of target state in
0sim. Providing predetermined datasets to a data-oblivious
workload makes it highly amenable to memory compression
without changing its behavior. 0sim recognizes pages with
the predetermined content (e.g., a zeroed page) and com-
presses them down to 1 bit, storing them in a bitmap called
zbit. Pages that do not match the predetermined content
can instead be compressed and stored in a highly efficient
memory pool called ztier. This allows 0sim to run huge work-
loads while maintaining simulation state on a much more
modest platform machine. Moreover, because much of the
simulation state is kept in memory, zbit enables much faster
simulation than if all state had to be written to a swap device.
For example, on our workstations writing 4KB to an SSD
takes about 24µs, while LZO compression [62] takes only
4µs.

0sim depends on data-obliviousness for simulation per-
formance. Some interesting workloads are difficult to make
data-oblivious, such as graphs and workloads with feedback
loops. Nonetheless, to study system software, such as ker-
nels, data-oblivious workloads usefully exercise the system
in different ways including different memory allocation and
access patterns. Thus, we believe data-oblivious workloads
are sufficient to expose numerous problems, and that many
of our findings generalize to other workloads. For example,
much of the kernel memory management subsystem can be
exercised because it is agnostic to page contents. We demon-
strate this using several case studies in Section 8. Moreover,
preparing systems for data-oblivious workloads benefits non-
data-oblivious workloads too.

4.2 Hardware Limitations
Existing commodity systems may not support the amounts
of memory we wish to study. For example, one of our exper-
imental platforms has 39 physical address bits, only enough
to address 512GB of memory, whereas we want to simu-
late multi-terabyte systems. This hardware limitation pre-
vents running huge-memory workloads. 0sim overcomes
the address-size limitation using shadow page tables [22]:
the hypervisor, not hardware, translates the target physical
addresses to platform physical addresses of the appropriate
width. While not implemented, targets running virtual ma-
chines [17] or with 5-level paging, which was announced by
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Intel but is not yet widely supported [46], can also be simu-
lated with this technique. Similarly, 0sim supports memory
sizes larger than the available swap space by transparently
using memory compression in the hypervisor to take advan-
tage of workload data-obliviousness.

4.3 Time Virtualization
Hardware simulators, such as gem5 [21], often simulate the
passage of time using discrete events generated by the simula-
tor. However, this is extremely slow, leading to many orders-
of-magnitude slowdown compared to native execution. Such
slowdowns make it impractical to study the behavior of
huge-memory systems over medium or long time scales. In-
stead, 0sim uses hardware timestamp counters (TSCs) on the
platform to measure the passage of time.

Each physical core has an independent hardware TSC that
runs continuously. However, there are numerous sources of
overhead in the hypervisor, such as page faults, that should
not be reflected in target performance measurements. We
create a virtual hardware TSC for the target that the hypervi-
sor advances only when the target is running.We accomplish
this with existing hardware virtualization support to adjust
the target’s virtualized TSC. Thus, within the simulation, the
hardware reports target time.

5 Implementation
This section describes challenging and novel parts of 0sim’s
implementation. Note that 0sim only runs in the platform
kernel; 0sim can run any unmodified target kernel. We im-
plement 0sim as a modification to Linux kernel 4.4 and the
KVM hypervisor. The kernel changes comprise about 4,100
new lines of code and 770 changed lines, and for KVM 400
new lines and 12 changed lines. By comparison, the gem5
simulator is almost 500,000 lines of code [21].

5.1 Memory Compression
Wemodify Linux’s Zswap memory compression kernel mod-
ule [3] to take advantage of data-obliviousness.
First, we modify Zswap to achieve compression ratios of

215 for data in the common case: we represent zero pageswith
a single bit in the zbit bitmap, indicating whether it is a zero
page or not. In practice, page tables and less-compressible
pages (e.g., text sections or application metadata) limit com-
pressibility, but ideally 1TB can be compressed to 32MB. In
zbit, each page gets a bit. When selected for swapping by the
platform, an all-zero target page will be identified by Zswap
and compressed down to 1 bit in zbit. When the swapping
subsystem queries Zswap to retrieve a page, it checks zbit. If
the page’s bit is set, we return a zero page; otherwise, Zswap
proceeds as normal. Internally, zbit uses a radix tree to store
sparse bitmaps efficiently.

Second, we observe that even non-zero pages can still be
significantly compressed and densely stored. Zswap uses

special memory allocators call “zpools” to store compressed
pages. The default zpool, zbud, avoids computational over-
head and implementation complexity at the expense of mem-
ory overhead. It limits the effective compression ratio to 2:1
and stores 24 bytes of metadata per compressed page [3].

We implement our own zpool, ztier, that significantly im-
proves over zbud. All memory used by ztier goes toward
storing compressed pages. It reduces metadata with neg-
ligible computational overhead by making use of unused
fields of struct page and maintaining free-lists in the un-
allocated space of pages in the pool. Moreover, it supports
multiple allocation sizes, leading to higher space efficiency.
Thus, ztier achieves higher effective compression ratios than
Linux’s zbud at the expense of implementation complexity.
For example, using zbud for a 500GB memcached workload
on unmodified Zswap requires 294GB of memory. With zbit,
zbud requires 15GB of RAM to store the compressed pages.
In contrast, ztier consumes less than 6GB.

Overall, with our modifications a target page with prede-
termined content takes 66 bits of platform memory: 64 bits
for a page table entry, 1 bitmap bit, and 1 bit amortized for
upper levels of the page tables.

These optimizations allow the platform to keep most tar-
get state in memory, but a swap device is still needed since
not all simulation state is compressible, and state may still
need to overflow to the swap device. The amount of needed
swap space depends heavily on the workload. Linux assigns
swap space before attempting to insert into Zswap, even
though it does not actually write to the swap space if Zswap
is used. Thus, we thin-provision the swap space using device
mapper [1] to look much larger than it actually is. We found
that 1TB of swap space was sufficient for most of our work-
loads. Workloads with high churn or low compressibility
required 2-3TB of swap space.

5.2 Shadow Page Tables
As mentioned in Section 4.2, 0sim uses shadow page tables
to decouple the size of the target address space from the
amount of physical address bits in the platform processor.
The hypervisor reads the guest kernel’s page tables and
constructs the shadow page tables which are used by the
hardware to translate guest virtual addresses to host physical
addresses. Hardware never sees guest physical addresses.
Thus, the target physical and virtual address spaces are as
large as the platform virtual address space (48 bits, rather
than 39 bits, on our machine).

When the platform has enough physical address bits, 0sim
can optionally use hardware-based nested paging extensions
[20]. Nested paging does not have the space overhead of
shadow page tables, and is faster because the hypervisor
is not on the critical path of address translation. However,
the added simulation speed comes at the expense of some
accuracy, as 0sim cannot account for the overhead of nested
paging, which happens transparently in the hardware. Thus,
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Figure 2. Example of proposed DTS mechanism. Both vC-
PUs start at target time t̂0 at platform (real) time t0. At time
t1, vCPU-A pauses due to a trap or interrupt to the hypervi-
sor, but vCPU-B continues to execute. At time t3, vCPU-A
continues, while vCPU-B is paused. At time t4, vCPU-B is
ready to run again but is ahead by D time units, so we delay
it by δ time units to give vCPU-A time to reach target time
t̂2. At platform time t5, vCPU-A has caught up, so vCPU-B is
allowed to run.

there is a tradeoff between simulation speed and accuracy;
for more accuracy, one can disable nested paging extensions.

5.3 Time Virtualization
0sim virtualizes the rdtsc x86 instruction, which returns a
cycle-level hardware timestamp counter (TSC). Each phys-
ical core has an independent TSC, and the Linux kernel
synchronizes them at boot time. Most Intel processors have
the ability to virtualize the TSC so that the guest TSC is an
offset from the platform TSC of the processor it runs on [47].
0sim adjusts this offset per-vCPU to hide time spent in the
hypervisor rather than executing the target.
Virtualization itself has associated overheads. For exam-

ple, the hypervisor emulates privileged instructions and I/O
operations from the target kernel. We modify KVM to hide
most virtualization overhead from the simulation. We record
platform TSC values whenever a vCPU stops (i.e., when tar-
get time pauses). Before the vCPU resumes, we read the
platform TSC again and offset the target TSC by the elapsed
time.

Preserving timing inmulti-core simulations presents
an additional challenge because the hypervisor executes sim-
ulated cores concurrently on different platform cores. Since
vCPUs can be run or paused independently by the hypervi-
sor, their target TSCs may become unsynchronized. This can
be problematic if timing measurements may cross cores or
be influenced by events on other cores (e.g., synchronization
events, responses from server threads). For some use cases,
this can cause measurement inaccuracy.
In this section, we propose a solution to this problem,

which we call Dynamic TSC Synchronization (DTS). While

we have implemented DTS in 0sim, we leave it off for all the
experiments in this paper because it increases simulation
time and our current implementation can sometimes cause
instability; more evaluation is needed before it should be
used. While we have observed drift in our experiments, we
find that 0sim is still accurate enough for many use case, as
shown in sections 6 and 8.
DTS works as follows: To prevent excessive drift, 0sim

delays vCPUs that run too far ahead to give other cores
a chance to catch up. Specifically, let t̂v be the target TSC
of vCPU v . 0sim delays a vCPU c by descheduling it from
running for δ time units if it is at least D time units ahead of
the most lagging target TSC:
t̂min := min

v
t̂v ▷ Most lagging target TSC

if t̂min < t̂c − D then delay c by δ
else run c
Periodic events such as timer interrupts prevent cores

from running ahead indefinitely. Figure 2 walks through
an example. Generally, simulator speed will decrease as D
decreases and as the number of simulated cores increases.
Users can adjust the parameters D and δ as needed.
DTS has many desirable properties. Most importantly,

it bounds the amount of drift between target TSCs to the
threshold D. This means that it is possible to get more ac-
curate measurements by measuring longer, since error does
not accumulate. Moreover, it does not cause target time to
jump or go backwards.

LAPIC Timer Interrupts.Operating systems commonly
use the arrival of timer interrupts as a form of clock tick.
For example, the Linux kernel scheduler and certain syn-
chronization events (e.g., rcu_sched) perceive the passage
of time using jiffies, which are measured by the delivery
of interrupts. We virtualize the delivery of timer interrupts
by delaying their delivery to the target kernel until the ap-
propriate guest time is reached on the vCPU receiving the
interrupt. We empirically verified that the target perceives
an interrupt rate comparable to the platform.

Limitations.Becausemany events (e.g., I/O) are emulated
by the hypervisor, there is no clear way to properly know
how much time they would take on native hardware. Rather
than guess or use an arbitrary constant, we opt to make
such events take no target time; effectively, the target time
is paused while they are handled by the hypervisor. As a
result, 0sim is not suitable for measuring the latency of I/O
events, though it can measure the CPU latency of events in
I/O-bound processes. This is similar to other simulators [21].
Our scheme does not account for microarchitectural and

architectural behavior changes from virtualization. Context
switching to the platform may have microarchitectural ef-
fects that may affect target performance, such as polluting
the caches or the TLB of the platform processor. For example,
after the hypervisor swaps in a page from Zswap, the target
may take a TLB miss, which is not accounted for.
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In addition, 0sim does not perfectly preserve hardware
events. In particular, Linux uses multiple sources of time,
including processor timestamps (e.g., rdtsc), other hardware
clocks (e.g., to track time when the processor sleeps), and
the rate of interrupt delivery. 0sim only virtualizes processor
timestamps and LAPIC timer interrupts.

In practice, we find that 0sim preserves behavior well, as
we show in Section 6. However, targets see a higher-than-
normal rate of I/O interrupts (e.g., networking or storage),
which can lead to poor performance and crashes of I/O in-
tensive workloads.

6 Simulator Validation
Before showing case studies in Section 8, we demonstrate
that 0sim is accurate enough to be useful for reproducing
scalability issues, prototyping solutions, and exploring sys-
tem behavior. Since 0sim does not modify the data structures
or algorithms of the target, it automatically preserves non-
temporal metrics, such as the amount of memory consumed.

6.1 Methodology
0sim runs on a wide range of commodity hardware, from
older workstations to servers. The specifications of our test
platforms can be found in Table 1. wk-old is a 6-year-old
workstation machine with 31GB of DRAM. wk-new is a 4-
year-old workstation machine with 64GB of DRAM. Both
machines cost around $1000-2000 when originally bought.
server is a server-class machine with 160GB of DRAM. These
machines all cost orders-of-magnitude less than a huge mem-
ory machine or prolonged rental of cloud instances.
We set the CPU scaling governor to performance. Hyper-

threads and Intel Turbo Boost are enabled everywhere for
consistency because the server testbed we used does not
have a way to disable them.
In all simulations, the target OS is CentOS 7.6.1810 with

Linux kernel v5.1.4 since the stock CentOS kernel is several
years old. We disable Meltdown and Spectre [54, 56] mitiga-
tions because they cause severe performance degradation
when the host is overcommitted.

To collect metrics from the simulation, we export an NFS
server from the platform to the target. This has reasonable
performance and does not introduce new performance ar-
tifacts. We provide workloads, such as memcached and re-
dis, with all-zero data sets. We modify microbenchmarks,
like memhog, to use all-zero values. In all experiments with
server applications (e.g., memcached), we run the client pro-
gram driving the workload in the same VM as the server.
Otherwise, I/O virtualization quickly becomes the bottle-
neck, so measurements are actually measuring aspects of the
hypervisor, not the target.

All multi-core simulations have 8 simulated cores on desktop-
class machines and 6 simulated cores on server-class ma-
chines. We found that even unmodified KVM is unable to

boot multi-terabyte virtual machines with more than 6 cores
on server when the platform is overcommitted. We believe
this is because KVM’s emulated hardware devices use real
(platform) time, and the overhead of running very huge ma-
chines causes hardware protocol timeouts. In the future, we
would like to extend 0sim’s virtualization of time to address
this. In the meantime, we expect 6 simulated cores to be
enough to exercise multi-core effects of software.
Our comparison baseline is direct execution (not simula-

tion) on an AWS x1e.32xlarge instance with 3904GB which
costs $26.818 per hour [9]. This is the largest on-demand
cloud instance we could find. We have run simulations up to
8TB, but here we use a maximum size of 4TB for comparison
with the baseline. While 0sim simulates the performance of
a native execution (excluding time spent in the hypervisor),
the AWS instance is a virtual machine, so the overheads of
virtualization are present, though it is not overcommitted.

6.2 Single-core Accuracy
We first evaluate the accuracy of 0sim for single-core targets.
To measure how well 0sim hides hypervisor activity from
the target, we record the differences between subsequent
executions of rdtsc. Figure 3a shows the CDF of timestamp
differences. For all targets and the baseline, there are three
main patterns: first, almost all measurements are less than
10ns, which is as fine-grained as rdtsc can measure and
corresponds roughly to the pipeline depth of the processor.
Second, there is a set of measurements of about 3µs. These
correspond to the page faults from storing the results of
the experiment. Finally, some measurements fit neither pat-
tern and correspond to other system phenomena such as
target interrupt handlers and times when the target kernel
scheduler takes the processor away from the workload. 0sim
hides hypervisor activity to closely approximate the baseline
behavior on all three simulation platforms.
Conclusion 1: 0sim is able to hide idle hypervisor activity, such
as servicing interrupts, from the target at the granularity of
tens of nanoseconds up to the 99%-tile of measurements.

To validate that 0sim preserves the accuracy of the target
OS, we run aworkload that mmaps and sequentially touches all
target memory. This causes significant kernel activity, as the
kernel must handle page faults and allocate and zero memory.
Likewise, significant hypervisor activitymust be hidden from
the target. Figure 3b shows the resulting time per page. Note
that the server platform has much larger caches, aiding its
performance. We see that 0sim is able to roughly preserve
the time to touch memory, though we note that 0sim is not
intended for such fine-grained measurements. The latency
for the baseline machine is much higher (about 2.5µs) for
75% of operations because it includes hypervisor activity,
such as allocating and zeroing pages, across NUMA nodes.
In the simulations, hypervisor activity causes new pages to
be cached, hiding inter-NUMA-node latency from the target.
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Table 1. Specifications for test platforms.

Machine OS CPU DRAM Boot Disk Swap Disk

wk-old CentOS 7.6.1810
Linux kernel 4.4.0

Intel Core i7-4770K, 3.50GHz
Haswell 2013

39-bit physical address
48-bit virtual address

31GB DDR3 1600MHz
1TB HDD

SATA 6GBps
7200RPM

2TB HDD
SATA 6GBps
7200RPM

wk-new CentOS 7.6.1810
Linux kernel 4.4.0

Intel Core i7-6700K, 4.00GHz
Skylake 2015

39-bit physical address
48-bit virtual address

62GB DDR4 2133MHz

100GB SSD shared with swap
SATA 6GBps

555MBps seq read
500MBps seq write

10TB thin-provisioned
device backed by

365GB SSD partition

server CentOS 7.6.1810
Linux kernel 4.4.0

2x Intel E5-2660v3, 3.00 GHz
Haswell 2014

46-bit physical address
48-bit virtual address

160GB DDR4 2133MHz
1.2TB HDD
SAS 6GBps
10000RPM

10TB thin-provisioned
device backed by

480GB SSD

baseline (AWS) RHEL 8.0.0
Linux kernel 5.1

Intel E7-8880v3, 2.3 GHz
Haswell 2015

46-bit physical address
48-bit virtual address

3904GB
Frequency Unknown

30GB SSD
AWS EBS gp2 N/A
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Figure 3. (a) CDF of ∆ Time between subsequent calls to rdtsc in simulations on different host machines. Note the log scale.
(b) CDF of latency to touch and fault pages in simulations on different host machines. (c) Latency of sets of 100 insertions to
memcached in simulations on different host machines.

Conclusion 2: In the presence of significant platform activity,
0sim is able to preserve timing of events to within 2.5µs, though
it does not model NUMA effects.
To validate that 0sim can simulate more realistic work-

loads accurately, we simulate a workload that fills a large
memcached server. The keys are unique integers, while the
values are 512KB of zeros. We measure the latency of sets
of 100 insertions in a 1TB workload. Memcached is imple-
mented as a hashmap, so the time to insert is roughly con-
stant for the entire workload. Figure 3c shows that 0sim
preserves both the constant insertion time of memcached
and the latency of requests compared to the baseline. The
linear (note the logarithmic scale) trend of points at the top
of the figure correspond to memcached resizing its hashmap,
which blocks clients because they time-share the single core.
This trend is not present in the baseline which is a multi-core
machine and does resizing concurrently on a different core.
Conclusion 3: For real applications on single-core targets, 0sim
is able to accurately preserve important trends, in addition to

preserving high-level timing behavior.
Conclusion 4: 0sim produces comparable results when run on
different platforms, down to scale of tens of microseconds.

To evaluate the sensitivity of simulation results to activity
on the platform, we rerun the previous memcached exper-
iment with a Linux kernel build running on the platform.
Figure 4a shows the results on wk-old compared with the
corresponding measurements from above. Despite the signif-
icant activity on the platform, the target sees similar results
and trends to those collected above.
Conclusion 5: 0sim masks platform activity well enough to
hide significant activity from the target.

6.3 Multi-core Accuracy
We evaluate 0sim’s accuracy when running multi-core tar-
gets. A memcached client is pinned to one core and measures
the latency of requests to a multi-threaded server not pinned
to any core. Figure 4b shows a CDF of the measured latencies.
The results are noisier than for the single-core simulations, as
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Figure 4. (a) Latency per 100 sequential insertions to memcached while host is idle and doing a kernel build. (b) CDF of latency
per 100 sequential insertions to memcached in multi-core simulations on different host machines. (c) CDF of ∆ Time between
subsequent memory accesses in simulations on different host machines for a workload with poor memory locality.

expected. 0sim is able to preserve the constant-time behavior
of memcached, even without dynamic TSC synchronization.
We believe the tail events for wk-old and wk-new represent
increased jitter from multi-core interactions such as locking.
We believe the long tail for server is due to the use of In-
tel nested paging extensions (EPT): nested page faults are
hidden from the hypervisor, so we cannot adjust for them,
as section 5.2 notes. Note that we measure 100 requests to-
gether, accumulating all of their cache misses, TLB misses,
guest and host page faults, and nested page walks. One can
obtain more accurate measurements by disabling EPT.
Conclusion 6: While 0sim produces less accurate results for
multi-core targets, important trends and timing are preserved.

6.4 Worst-case Inaccuracy
To measure the worst-case impact of microarchitectural
events, we run a workload with poor temporal and spatial
locality that touches random addresses in a 4GB memory
range. It incurs cache and TLB misses and both platform
and target page faults, which are expensive since the host is
oversubscribed. Figure 4c shows that these artifacts result in
significant latency visible to the simulation. Around 90% of
these events have a latency of 500ns or less, corresponding
to the latency of cache and TLB misses in modern processors.
Also, the server machine shows fewer such events, corre-
sponding to its larger caches and TLB.
Conclusion 7: Experiments that measure largely microarchi-
tectural performance differences such as TLB and cache misses
may be inaccurate on 0sim.

7 Data-obliviousness and Speed
To achieve reasonable simulation performance, 0sim requires
that the target have good compressibility. We believe this
includes a large class of useful workloads. Table 2 reports the
aggregate compressibility ratio for a few example workloads

Table 2. Observed aggregate compressibility ratio for vari-
ous workloads. NAS CG (class E) runs with its natural dataset,
a sparse matrix. Metis runs a matrix multiplication workload.

Workload Platform Target Compressibility
memcached 62GB 1TB 215:1

redis 160GB 1TB 231:1
Metis 160GB 4TB 327:1

NAS CG 31GB 500GB 16:1
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Figure 5. Simulation duration and slowdown compared to
native execution (computed from TSC offset) for 1TB mem-
cached workload as number of simulated cores varies.

from our experiments, which is the average compressibility
of all pages the kernel attempted to insert into Zswap (this is
not the same as the ratio of platform memory to target mem-
ory). Note that an aggregate compressibility ratio of only 20:1
represents a 95% saving in memory usage over the course
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of the workload. A few results deserve comment. Metis is
an in-memory map-reduce framework [51]; unfortunately,
it crashes mid-way through huge workloads, highlighting
a need to test systems software on huge-memory systems.
Also, NAS CG runs unmodified with its standard data set (a
sparse matrix), which is compression-friendly but not data-
oblivious. Overall, these results show that 0sim is able to
vastly decrease the memory footprint of huge data-oblivious
workloads, making huge simulations feasible.

Data-obliviousness is critical to simulation performance
and has some role in accuracy. We run an experiment in
which we turn off Zswap, relying entirely on swapping. A
1TB memcached workload takes 3x longer to boot and 10x
longer to run. Worse, the overhead is so high that despite
0sim’s TSC offsetting scheme, overhead still leaks into the
simulation and leads to target performance degradation pro-
portional to the size of the workload.
Simulation speed depends heavily on the workload, plat-

form, and number of simulated cores. Figure 5 shows the sim-
ulation speed of a 1TB memcached workload as the number
of simulated cores increases. Generally, overhead increases
with the number of simulated cores, but runtime may de-
crease due to improved workload performance.

In our experiments, we generally observe between 8x and
100x slowdown compared to native multi-core execution.
For reference, this is comparable to running the workload
on a late-1990s or early 2000s processor [71]. Architecture
simulations often incur slowdowns of 10,000x or worse [21].
We found that workloads with heavy I/O are slower due to
I/O virtualization.
Simulator performance degrades gracefully as platform

memory becomes increasingly overcommitted. Users can
balance simulation speed and scalability testing by vary-
ing the amount of target physical memory. In practice, we
find that simulation size is limited by hard-coded limits and
software bugs, rather than memory capacity. For example,
KVM-QEMU does not accept parameter strings for anything
larger than 7999GB. With engineering effort, such limita-
tions can be overcome. Overall, we find that 0sim makes
huge multi-core simulations of data-oblivious workloads
feasible and performant.

8 Case Studies
0sim is useful both for prototyping and testing and for re-
search and exploration. We give case studies showing how
we debugged scalability bugs in memcached, explored design
space issues in Linux memory fragmentation management
and page reclamation, evaluated a proposed kernel patchset,
and reproduced known performance issues.

8.1 Development
The ability to interact with 0sim workloads proved invalu-
able. While running experiments, memcached returned an

unexpected out-of-memory error after inserting only two
2TB of data out of 8TB. To understand why memcached was
misbehaving, we started an interactive (albeit slow) debug-
ging session on the running memcached instance. We found
that memcached’s allocation pattern triggered a pathologi-
cal case in glibc’s malloc implementation that led to a huge
number of calls to mmap. This caused allocations to fail due to
a system parameter that limits per-process memory regions.
Increasing the limit resolves the issue.

This incident demonstrates that 0sim is useful for finding,
reproducing, debugging, and verifying solutions for bugs
that only occur on huge-memory systems. A lead developer
of memcached was unsure of the problem because they had
not tried memcached on a system larger than 1.5TB.We hope
that 0sim can better prepare the systems community for the
wider availability of huge-memory systems.

8.2 Exploration
We give two case studies in the Linux kernel demonstrating
how 0sim can be useful for design space exploration.

8.2.1 Memory Fragmentation . Memory fragmentation
at the application level and at the system level has been
extensively studied in prior literature [7, 15, 18, 19, 34, 40, 42,
45, 49, 55, 61, 65, 66, 66–69, 73]. However, we are aware of
little work addressing the effects of fragmentation in huge-
memoryworkloads. Some have suggested that huge-memory
workloads do not suffer extensively from fragmentation [14].
0sim is well-suited for studying such workloads and their
system-level effects.
The Linux kernel allocator is a variant of the buddy al-

locator [42, 53, 68] and uses different free lists for different
sizes of contiguous free memory regions. Specifically, there
is a free list for each order of allocation, where the order-n
free list contains contiguous regions of 2n pages. The kernel
merges free regions to form the largest possible free memory
regions before adding them to the appropriate free list. Thus,
if a large percentage of free pages is in the low-order free
lists (closer to 0), memory is highly fragmented.

Methodology.We record the distribution of pages across
free lists over time in the Linux v5.1.4 physical memory al-
locator. We simulate a 1TB Redis instance in isolation with
snapshotting enabled. Redis periodically snapshots its con-
tents: the Redis process forks, and the child writes its con-
tents to disk, relying on kernel copy-on-write, and termi-
nates, while the parent continues processing requests.
We then simulate a mixed workload: a redis client and

server pair are used to represent a typical key-value server
found in many distributed applications; a Metis workload
represents a concurrent CPU and memory intensive compu-
tation; and a memhog workload modified to pin memory and
be data-oblivious mimics high-performance I/O drivers that
use large pinned physical memory regions for buffers [33].
These applications each receive 1/3 of system memory.
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Figure 6. Amount of memory in each kernel page allocator
free list in mix workload. The y-axis is truncated to 400GB
to show more detail. More red indicates high fragmentation.

Results. Running alone, Redis does not suffer from frag-
mentation, but in the presence of other workloads it does.
Figure 6 shows the amount of free memory in each buddy
list throughout the mix workload. More purple (top) indi-
cates more large-contiguous free physical memory regions,
whereas more red (bottom) indicates that physical memory
is highly fragmented. Each time free memory runs low, frag-
mentation degrades for subsequent portions of the workload:
before time 2.5h, there is little fragmentation, but after 2.5h,
almost 40GB of free memory is in orders 8 or lower, and after
4.2h, almost 100GB is in orders 8 or lower. Note that order
9 or higher is required to allocate a huge page. Upon closer
inspection, we see that while most regions are contiguous,
many individual base pages are scattered around physical
memory. These pages represent some sort of “latent” frag-
mentation that persists despite the freeing and coalescing
of hundreds of gigabytes of memory. This suggests that any
true anti-fragmentation solution must also deal with this
“latent” fragmentation.

The above results deal with external fragmentation – that
is, fragmentation that causes the waste of unallocated space.
While running our experiments, we also discovered that for
some workloads, internal fragmentation (wasted spacewithin
an allocation) is a problem at the application-level. Specif-
ically, we observed that in some cases, a 4TB memcached
instance could only hold 2-3TB of data due to pathological
internal fragmentation. If the size of values inserted does
not match memcached’s internal unit of memory allocation,
memory is wasted. This wastage increases proportionally to
the size of the workload, so it becomes problematic for multi-
terabyte memcached instances. We had to carefully tune the
parameters of memcached to get acceptable memory usage.
These observations also suggest that internal fragmentation
may be a more important problem on huge-memory systems.

Table 3. Time spent and pages scanned and reclaimed with
different reclamation policies and modes.

Mode CPU Time (s) Scanned Reclaimed
Idle 24 25,637,891 6,631,878
Direct 5 2,473,659 706,596
Idle 4x 21 19,594,007 5,657,472
Direct 4x 7 6,382,659 1,695,243

8.2.2 PageReclamation. Datacenterworkloadsmay over-
commit servers [31] to improve efficiency. A page reclama-
tion algorithm satisfies kernel allocations when memory is
scarce. In Linux, direct reclamation (DR) satisfies an outstand-
ing allocation that is blocking userspace (e.g., from a page
fault), while idle reclamation (IR) happens in the background
when the amount of free memory goes below a threshold.
Reclamation on huge-memory systems can be computation-
ally expensive because it scans through billions of pages
to check for idleness, potentially offsetting any gains made
from the additional available memory. Google and Facebook
both use in-house IR solutions to achieve better memory uti-
lization efficiently [31]. Using 0sim, we measure the amount
of time each algorithm spends per reclaimed page and ex-
plore policy modifications to the DR algorithm to attempt to
make it more efficient.

Methodology. We run a workload that hogs all memory
and sleeps. Then, we run a memcached workload that only
performs insertions into the key-value store. This causes
idle and direct reclamation from the hog workload. We in-
strument Linux to measure the time spent in idle and direct
reclamation and the number of pages scanned and reclaimed.

Results. The top of Table 3 (“Idle” and “Direct”) shows
that DR costs 7µs per reclaimed page, whereas IR costs 3.5µs
per reclaimed page but runs about 5 times longer. This makes
sense; DR blocks userspace execution, so it is optimized for
latency, rather than efficiency. Thus, it stops as soon as it can
satisfy the required allocation, whereas IR continues until a
watermark is met.

We hypothesized that DR would run less frequenctly if
it were more efficient. We modify DR to reclaim four times
more memory than requested. Table 3 (Idle 4x and Direct
4x) shows that direct and IR now both spend about 4µs per
reclaimed page. Direct reclaim consumes about 2s more than
before but runs about 36% less often, decreasing overall re-
claimation time by 1s. This suggests that on continually busy
systems, applications that can tolerate slightly longer latency
may benefit from our modification.

8.3 Reproducing and Prototyping
0sim can be used to reproduce known scalability issues and
prototype fixes for them. We demonstrate this with two case
studies in the Linux kernel.
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Table 4. Number of chunks and amount of time spent ini-
tializing and freeing memory during boot with ktask.

machine cores memory chunks init time free time
wk-new 1 1TB 8035 3.5s 2.6s
wk-new 8 1TB 8035 1.1s 1.0s
server 1 4TB 32224 16.2s 13.1s
server 20 4TB 32224 2.5s 3.4s
no-ktask 20 4TB 1 18.2s 15.2s

8.3.1 ktask scalability. The proposed ktask patchset par-
allelizes CPU-intensive kernel-space work [29, 50], such as
struct page initalization. Using 0sim, we reproduce and
extend developer results for the ktask patchset.

Methodology.We apply the patchset [50] to Linux kernel
5.1 and instrument the kernel to measure the amount of time
elapsed during initialization using rdtsc. During boot, the
structs are first initialized; then, they are freed to the kernel
memory allocator, making them available to the system. We
also record the number of 32,768-page “chunks” used by
ktask, which can be initialized in parallel with each other.

Results. Table 4 shows 3x and 5x improvement in initial-
ization for 1TB machine with 8 cores and a 4TB machine
with 20 cores, respectively. This is proportional to the results
posted by the patchset author for a real 512GB machine [50].
However, even with ktask, page initialization is still expen-
sive! On a 4TB machine, almost 6 seconds of boot time are
consumed, whereas, for example, an availability of 5 “nines”
corresponds to about 5 minutes of downtime annually. Some
prior discussions among kernel developers [25, 27] have in-
vestigated eliminating struct page for some use cases, and
our results suggest that struct page usage in the kernel is
unscalable. Memorymanagement algorithms are needed that
do not scale linearly with the amount of physical memory.

8.3.2 Memory Compaction. Using 0sim, we reproduce
and quantify memory compaction overheads. Huge pages
and many high-performance I/O devices (e.g., network cards)
[28, 30] require large contiguous physical memory alloca-
tions. The Linux kernel creates contiguous regions with
an expensive memory compaction algorithm. Sudden com-
paction can produce unpredictable performance dips in ap-
plications, leading many databases and storage systems to
recommend disabling features like Transparent Huge Pages,
including Oracle Database [63], Redis [4], Couchbase [32],
and MongoDB [58].

Methodology. We measure the latency of memcached
requests in the presence and absence of compaction. Com-
paction usually happens in short bursts, making it hard to
reproduce, so we modify the kernel to retry compaction con-
tinuously. Measurements with this modification approximate
the worst-case during compaction on a normal kernel.

Results. Figure 7 shows the latency of memcached re-
quests in the presence and absence of compaction for a 1 TB
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Figure 7. Latency of memcached requests in the presence
and absence of continuous compaction. Note the log scale.

workload. Median latency degrades by 22x, while 99.999%-
tile latency degrades by 10,000x, leading to occasional very-
long latency spikes. Some of the tail effects are due to 0sim
overhead, but Figure 3a shows that this overhead cannot
cause such a large effect. This suggests that in a production
system, compaction can lead to events that define service
tail latency. 0sim can be used to further explore memory
allocation and compaction policies for huge systems.

9 Conclusion
System scalability with respect to memory capacity is crit-
ical but under-studied. The memory usage, computational
inefficiency, and policy choices of current systems are often
unsuitable for huge systems. 0sim is a simulation platform
designed to address this problem. It takes advantage of the
data-obliviousness of many workloads to make their mem-
ory contents highly-compressible. 0sim runs on hardware
that is easily available to researchers and developers, en-
abling both prototyping and exploration of system software.
It accurately preserves behavior and trends. 0sim allowed us
to debug unexpected behavior. By open-sourcing 0sim, we
hope to enable both researchers and developers to prepare
system software for a world with terabyte-scale memories.
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A Artifact Appendix
A.1 Abstract
We have put significant effort into building tools that 0sim’s
installation and usage easy. We open-source 0sim and its
tools to allow other researchers and developers to use and
improve it in their own work. These tools should enable
others to reproduce a subset of our results and conduct their
own studies on huge-memory systems.
Our suggested workflow dedicates a machine to 0sim. A

user drives 0sim via SSH from another machine such as one’s
desktop workstation or an instructional lab machine. The
tooling we built assumes this setup.
Our artifact consists of three parts that work together:

(1) the 0sim simulator itself; (2) the runner tool which is a
program that runs the various experiments under the con-
figurations presented in the paper. It is also extensible, so
other users can modify it for their experiments; and (3) the
jobserver tool which makes it easy to queue up and run
large numbers of simulations on a remote machine or cluster.

A.2 Artifact check-list (meta-information)
• Program: 0sim simulator and tooling
• Run-time environment: Centos 7 (0sim kernel) + tooling
• Hardware: Two machines: (1) server or workstation, ≥
32GB RAM, Intel x86_64 CPU with features tsc,
tsc_deadline_timer, tsc_adjust, constant_tsc,
tsc_known_freq, and (2) any other Linux machine with a
persistent network connection

• Execution: Automated by tooling.
• Run-time state: Managed by tooling automatically.
• Experiments: Huge-memory Simulations, key-value stores,
NAS CG, microbenchmarks (all run by tooling)

• Metrics: Simulation fidelity, speed, usability
• Output: Specific to experiment; see Table 5
• How much disk space required (approximately): On
0sim machine: 50GB in home directory + 1-2TB swap space.

• How much time is needed to prepare workflow (ap-
proximately): about 1 hour (mostly automated)

• How much time is needed to complete experiments
(approximately): usually < 14 hours, up to 48 hours, per
experiment. Parallelism recommended.

• Publicly available: Yes. Open-source on GitHub.
• Code licenses (if publicly available): 0sim is GPL; tool-
ing is Apache v2.

• Workflow framework used: Custom tooling.
• Archived: DOI: 10.5281/zenodo.3560996, but we recom-
mend using the master branch from GitHub.

A.3 Description
A.3.1 How delivered. All source code is open-source
and available on GitHub. Our workflow requires download-
ing https://github.com/multifacet/0sim-workspace, which
includes 0sim and the tooling, to a local machine. The tooling
downloads and installs 0sim on a remote machine. When
cloning to the local machine, only a shallow clone is need,

which is fast and requires less than 10MB of space.
A.3.2 Hardware dependencies. Twomachines are used:
The “remote” runs 0sim. The “local” runs the tooling which
drives the remote over SSH.

• The local machine can be an arbitrary machine but
should have a persistent network connection and should
be able to compile and run the tools in the 0sim-workspace.
We have only tested the tooling on Linux. The local
should also have internet access to download depen-
dencies for building the tools.

• The remote machine requires:
– Intel x86_64 processor (no AMD support yet)
– The following common CPU features, as reported
by the lscpu command: tsc, tsc_deadline_timer,

tsc_adjust, constant_tsc, tsc_known_freq.
– 50GB storage space in the home directory for VM
image and build artifacts.

– 1-2TB swap space. SSDs preferred.
– Internet access (can be behind a proxy) to clone 0sim
and the tooling and to install dependencies.

– If using CloudLab [70], the following profile works
well: https://www.cloudlab.us/p/SuperPages/centos-
n-bare-metalwithWisconsin cluster c220g2 instances.

A.3.3 Software dependencies. The following should be
installed on the local machine:

• Linux (tested on Ubuntu). MacOS and Windows may
also work, but are untested.

• ssh, openssl
• Stable Rust 1.37 or later, including cargo.

The following should be installed on the remote machine:

• Centos 7 (kernel version does not matter). Our tool-
ing uses yum and other Centos tooling. Centos gives
guarantees about supported amounts of RAM, whereas
Ubuntu does not as of this writing. RHEL, Fedora, or
more recent versions of Centos might also work, but
we have not tested them.

• SSH server listening at a well-known port.
• Other dependencies automatically installed by tooling.

A.4 Installation
Please see the README.md file of the https://github.com/multifacet/
0sim-workspace repository, which contains a detailed step-
by-step “Getting Started” guide.

A.5 Experiment workflow
The suggested workflow is documented more extensively in
the README.md file of the 0sim-workspace repository, linked
above. At a high level, the suggested workflow is as follows:

1. The user writes the script for an experiment by adding
a new module to the runner tool.
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Table 5. Commands for experiments. {MACHINE} = IP:PORT of remote SSH server (e.g., x.y.edu:22). {USER} = username on
remote. {RESULTS} = file path results. {FREQ} = frequency of remote CPU.

Experiment Section Commands to Run Experiments and Plot Results

memcached 6.2

run (1 core) ./runner exp00000 {MACHINE} {USER} 1024 1 -m

run (8 core) ./runner exp00000 {MACHINE} {USER} 1024 8 -m

plot raw ./plot-memcached_gen_data-time_per_op.py LABEL1:{RESULTS1} ...

plot CDF ./plot-memcached_gen_data-time_per_op-cdf.py LABEL1:{RESULTS1} ...

locality 6.2, 6.4 run ./runner exp00002 {MACHINE} {USER} 100000 -l -v 1024 -C 1

plot CDF ./plot-time-elapsed-deriv-cycles-cdf.py linear LABEL1:{RESULTS1} ...

fragmentation 8.2.1
run (redis) ./runner exp00007 {MACHINE} {USER} 30 -r --vm_size 1024 -C 1

run (mix) ./runner exp00007 {MACHINE} {USER} 30 -x --vm_size 1024 -C 1

plot ./plot-buddyinfo-over-time.py {RESULTS}

compaction 8.3.2
setup ./runner setup00001 {MACHINE} {USER} markm_instrument_thp_compaction

run ./runner exp00003 {MACHINE} {USER} 1024 -C 1 --continual_compaction 1

plot ./plot-time-elapsed-cycles-cdf.py close_to_one \

LABEL1:{RESULTS1}::{FREQ1} ...

2. runner is executed on the local machine and uses SSH
to execute commands on the remote machine, includ-
ing repeatably setting up the remote machine and start-
ing 0sim with appropriate configurations.

3. The experiment outputs results on the remote which
can be copied somewhere else for processing/analysis.

A.6 Experimental Results Format
After running, output from each experiment can be found in
the directory $HOME/vm_shared/results on the remote. The
name of each file contains important parameters of the exper-
iment and timestamp to make filenames unique. The output
for all experiments consists of multiple files, all with the
same name but different extensions:

1. The data generated by the experiment (usually .out,
but some experiments use other extensions, especially
if there are multiple generated data files).

2. The parameters/settings of the experiment (.params),
including the git hash of the workspace.

3. The time to run the experiment (.time).
4. Infomation about the platform and target, useful for

debugging (.sim), including the output of lscpu, lsblk,
and dmesg, memory usage, and zswap status.

A.7 Evaluation and expected result
We have two goals. First, since 0sim is a (set of) tool(s), we
hope that others will find our tooling useful and ergonomic.
We have built our tooling to encourage reproducibility of
results, including infrastructure for recording parameters
and git hashes of code used to generate results. Second, the
specific results in this paper should be reproducible. We
have ourselves reproduced some of our results across multi-
ple machines, as shown in section 6. In Table 5 we provide
commands for reproducing a subset of our results, including

our postprocessing scripts to generate the graphs in the pa-
per. We give the 1TB versions of the experiments, but the
parameters scaled up or down.
The first two rows of Table 5 refer to experiments from

section 6. The remaining rows refer to experiments from the
case studies in section 8. Some of the case studies require
specially instrumented kernels installed in the target. This
setup can be done with runner subcommand setup00001, and
we have included these commands in the table where needed.

The plotting scripts are in the following repository: https:
//github.com/multifacet/0sim-plotting-scripts. The resulting
plots should match the respective figures from the paper.

A.8 Experiment customization
The runner program is capable of running all of the experi-
ments reported in this paper (see the usage message). There
are a bunch of flags for each experiment that modify behav-
ior and 0sim configuration. Additionally, the code is well-
documented and written to be easily extensible so users can
add their own experiments. See the exp00000.rs module of
the runner for an example of how to write an experiment.

A.9 Notes
Sometimes 0sim will cause the remote to become unrespon-
sive for large experiments or experiments with many cores.
Often, restarting the experiment with more swap space is
needed. More troubleshooting and known issues can be
found in the README of the workspace repository.

A.10 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-
badging
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