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Accelerators are here!

 Complex, programmable accelerators increasingly prevalent

 Many applications: graphics, scientific computing, video 
encoding, machine learning, etc…

 Accelerators may benefit from cache coherent shared memory

 May be designed by third parties
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However…

 Host coherence protocols may be proprietary and complex

 Bugs in accelerator implementations might crash host system!

 Crossing Guard: coherence interface to safely translate 
accelerator ↔ host protocol
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Crossing Guard Goals

When adding accelerators to host coherence protocol:

1. Allow accelerators customized caches

2. Simple, standardized accelerator coherence interface

3. Guarantee safety for the host system
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1. Why Customize Caches?

 CPU caches have to work with most types of workloads

 Accelerators may only run some workloads!

 Optimize caches for likely data access patterns

 Number of levels, writeback vs. writethrough, MSI vs VI, etc.
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2. Why Simple, Standardized Interface?

Host systems speak different protocols…

 Expensive to redesign for each one!

 Intel, AMD, ARM, IBM, Oracle…

 CCIX shows industry cares!
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2. Why Simple, Standardized Interface?
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Addr State

A S

3. Why Host Safety?
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Addr State

A S

3. Why Host Safety?
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3. Why Host Safety?
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Crossing Guard

 Hardware translating between host and accelerator protocols

 Set of accelerator ↔ host coherence messages (like an API)
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Crossing Guard Interface

Accelerator  Host Requests

GetS, GetM

 PutS, PutE, PutM

Host  Accelerator Responses

DataS, DataE, DataM

Writeback Ack
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Crossing Guard

 Hides implementation details of host protocol

 No counting acks, sending unblocks, handling races, etc.

 Moves protocol complexity into Crossing Guard hardware

 Only implemented once per host system

 By experts!

15



Experimental Implementation

 Coherence controllers / protocols implemented in slicc

 Simulations using gem5

 Code and transition tables available online
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http://research.cs.wisc.edu/multifacet/xguard/
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1. Customize Caches

 Designed + implemented two sample systems

18

Accel L1 Accel L1 Accel L1 CPU L1 CPU L1

Host Directory / L2

XG XG XG

Private Per-Core L1 at Accelerator



1. Customize Caches

 Designed + implemented two sample systems
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2. Simple, Standardized Interface
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2. Simple, Standardized Interface

 Implemented Crossing Guard controller for two host protocols

 AMD Hammer-like Exclusive MOESI

 Two-Level MESI Inclusive

 Modularity: Host and Accelerator protocol choice is 
completely independent
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3. Host Safety
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Evaluation

I. Does it provide coherence to correct accelerator?

II. Does it provide safety to host?

III.Does it allow high performance?
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I. Correctness Testing

 Are coherence invariants are maintained when accelerator is 
acting correctly?

 How? Random tester

 Store-Load pairs to random addresses

 Check integrity of data

 Ran for 160 billion load/store pairs

 Local coverage: 100% states, 100% events, > 99% transitions
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II. Fuzz Testing

 Is host safety maintained when accelerator misbehaves?

 How? Replace accelerator cache with evil controller

 Generates random coherence messages to random addresses

 Desired outcome: No deadlocks / crashes

 Ran for 7 billion load/store pairs

 Local Coverage: 100% states, 100% events, > 99% transitions
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III. Performance Testing

 gem5-gpu

 Rodinia workloads

 MESI Inclusive 
host protocol
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Crossing Guard Summary

 Provides simple, standardized interface to ease 
accelerator development

 Correctness when accelerator is correct

 Host safety when accelerator is incorrect

 Low performance overhead
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Questions?
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Backup Follows
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Two-Level Accelerator Protocol (1)
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Two-Level Accelerator Protocol (2)
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L1 Controller (M state contains dirty/clean bit)



Two-Level Accelerator Protocol (3)
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Crossing Guard Invariants

Crossing Guard Guarantees to Host:

1. Accelerator requests must be correct

a) Consistent with block stable state at accelerator

b) Consistent with block transient state at accelerator

2. Accelerator responses must be correct

a) Consistent with block stable state at accelerator

b) Consistent with block transient state at accelerator

c) Received within a reasonable time
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( + Border Control Protections!)



Crossing Guard Variants

 Full State Crossing Guard
 Inclusive directory of accelerator state

 + Places few restrictions on host protocol

 + Can hide all errors

 - Requires tag + metadata storage for all blocks

 Transactional Crossing Guard
 Stores only data for in-flight transactions

 + Small storage

 + Provides most safety properties

 - Requires some host tolerance

38



Single-Level Cache
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Simulation Parameters
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Time Spent Simulating (Random)

Configuration Time

XG Full + Hammer + 1 Level 5.28 years

XG Full + Hamer + 2 Level 2.51 years

XG Full + MESI Inc + 1 Level 133 days

XG Full + MESI Inc + 2 Level 223 days

XG Trans. + Hammer + 1 Level 3.17 years

XG Trans. + Hammer + 2 Level 1.38 years

XG Trans + Inc + 1 Level 90 days

XG Trans + Inc + 2 Level 103 days

TOTAL 13.9 years
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Full Coverage %s (Random)

Full State XG Single-level Two-level

Hammer-like 99 99.8

MESI Inclusive 100 99.4

Transactional XG Single-level Two-level

Hammer-like 99.3 99.5

MESI Inclusive 100 99.7
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Time Spent Simulating (Fuzz)

Configuration Time

XG Full + Hammer-like 1.62 years

XG Full + MESI Inclusive 287 days

XG Transactional + Hammer-like 5.3 years

XG Transactional + MESI Inclusive 41 days

Total 7.82 years
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Full Coverage %s (Fuzz)

Full State Crossing Guard Fuzz Tester

Hammer-like 99.3

MESI Inclusive 99.7

Transactional Crossing Guard Fuzz Tester

Hammer-like 99.7

MESI Inclusive 100
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PutS Accelerator Messages

 Why?
 Some host protocols use them

 Simplify management of Full State Crossing Guard

 Cannot implement Transactional Crossing Guard + host protocol with 
PutS without them

 Bandwidth Impact
 Carry no data

 Only between accelerator cache  Crossing Guard, not host system

 ~1-4% of that bandwidth in experiments.

 Could be reduced by setting a flag at Crossing Guard.
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Why not Model Checking?

 Model checking is useful! Industrial implementation of 
Crossing Guard would use.

 Academic tools have limitations 

 Benefit from symmetry, but Crossing Guard system asymmetric

 May only work with one block in system

 Substantial implementation overhead

 This work was a proof of concept

 Random / Fuzz testing not perfect, but results suggestive.

 Even models can have mistakes!
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Performance: Hammer-like
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Performance: MESI Inclusive
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Performance (Hammer-like)
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Old Slides
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3. Why Host Safety?
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Directory

3. Why Host Safety?
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Directory

Crossing Guard Example
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Directory

Crossing Guard Example
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