Crossing Guard: Mediating Host-Accelerator Coherence Interactions

Lena E. Olson*, Mark D. Hill, David A. Wood University of Wisconsin-Madison

* Now at Google

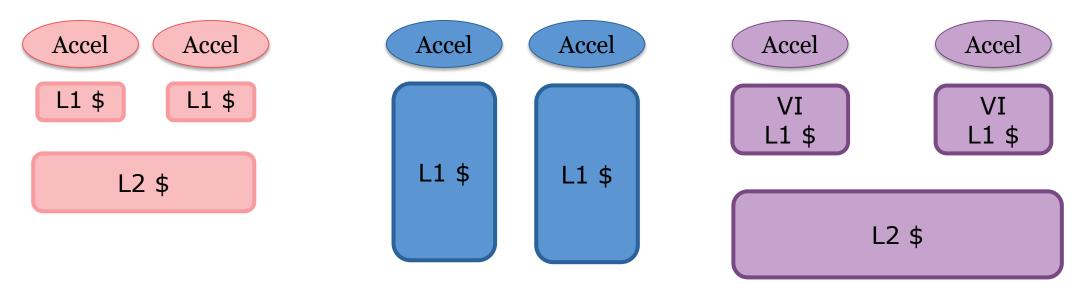
ASPLOS 2017 April 10th, 2017

Accelerators are here!


- Complex, programmable accelerators increasingly prevalent
- Many applications: graphics, scientific computing, video encoding, machine learning, etc...
- Accelerators may benefit from cache coherent shared memory
- May be designed by third parties

However...

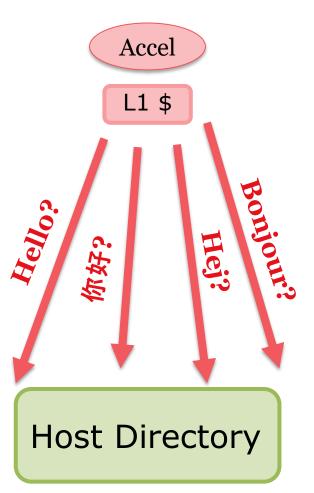
- Host coherence protocols may be proprietary and complex
- Bugs in accelerator implementations might crash host system!
- Crossing Guard: coherence interface to safely translate accelerator ↔ host protocol


Crossing Guard Goals

When adding accelerators to host coherence protocol:

- 1. Allow accelerators customized caches
- 2. Simple, standardized accelerator coherence interface
- **3**. Guarantee **safety** for the host system

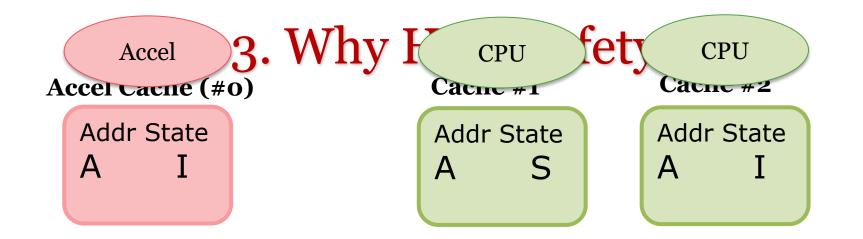
1. Why Customize Caches?

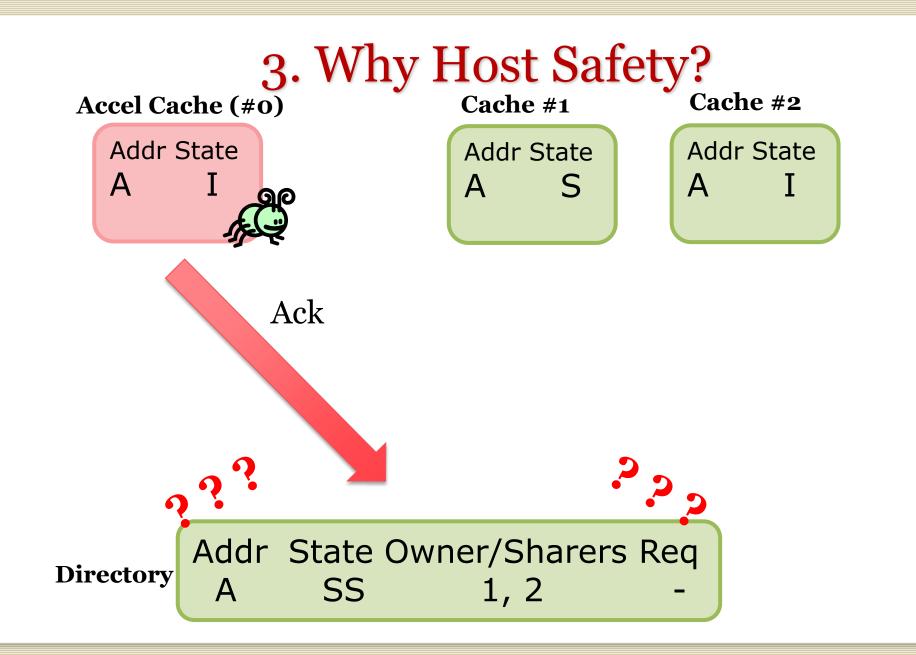

- CPU caches have to work with most types of workloads
- Accelerators may only run some workloads!
 - Optimize caches for likely data access patterns
 - Number of levels, writeback vs. writethrough, MSI vs VI, etc.

2. Why Simple, Standardized Interface?

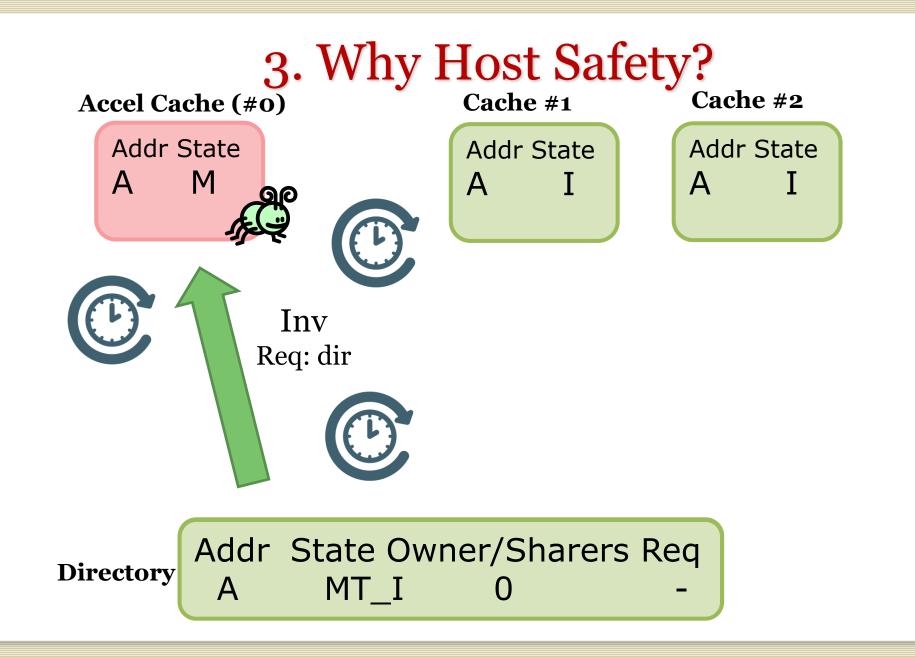
Host systems speak different protocols...

- Expensive to redesign for each one!
 - Intel, AMD, ARM, IBM, Oracle...
 - CCIX shows industry cares!

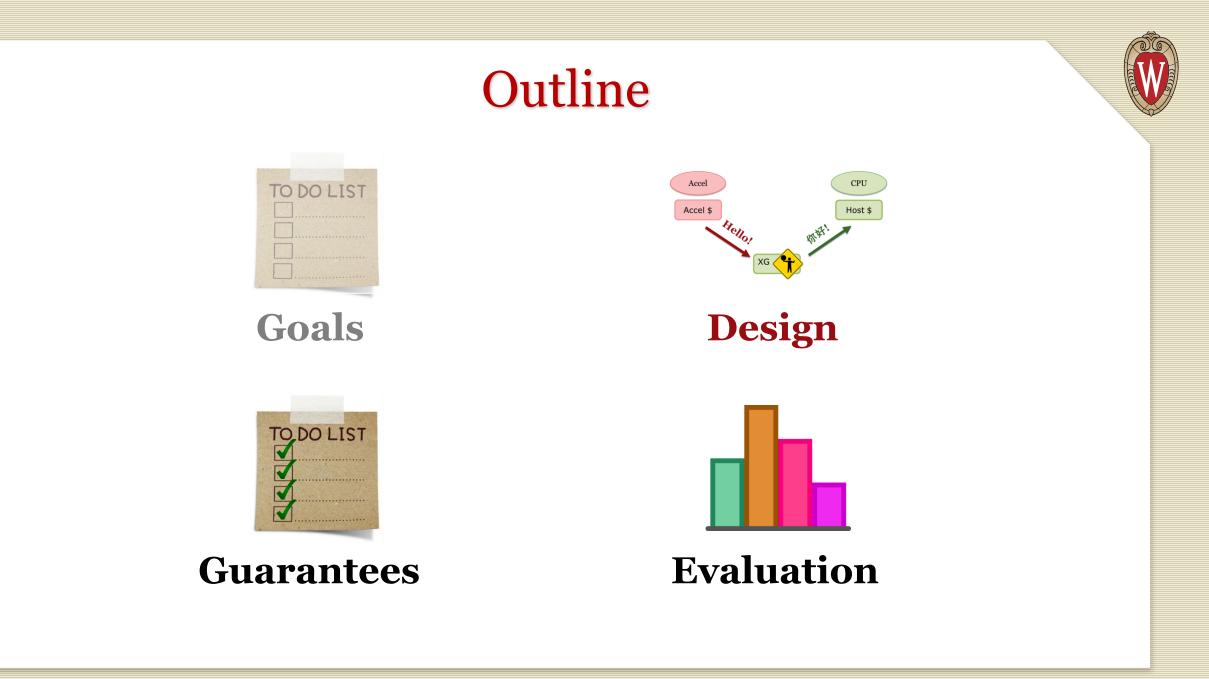

2. Why Simple, Standardized Interface?

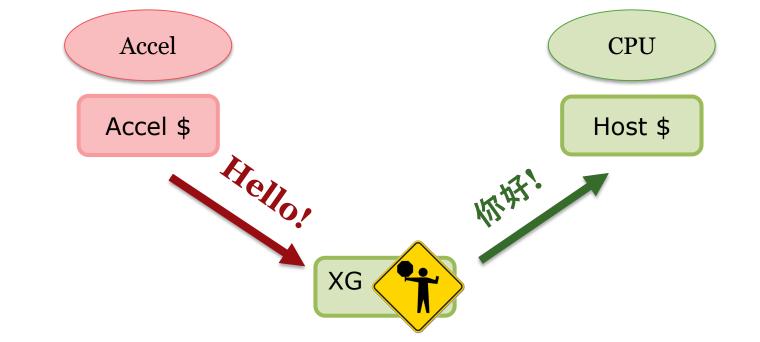

L1 controller from gem5's MOESI_hammer

Events


	lfetch	Load	Store	Invalidate	Other	Other	Merged	Other		Shared	Data	Shared Data	Exclusive		Writeback	Allacks	All acks no	L2	L1 to	Trigger L2	Trigger L2	
-				Invalidate	GETS only	GETS	GETS	GETX		Ack	Data	Stared Data	Data	Ack	Nack	Allacks	sharers	Replacement	<u>L2</u>	to L1D	to L11	to L1
1	<u>i a Uim Um</u> k / IS	<u>liaudmum</u> k/IS	<u>l i b udm um k</u> / IM	<u>fl</u>	<u>e</u>	<u>f1</u>		<u>e</u>														
<u>s</u>	h uih k	h udh k	i b udm um k / SM	f ce gr 1/I	<u>n</u>	<u>n</u>		<u>f ce gr 1/ 1</u>										<u>cc r ka / I</u>	igv lis	i r i fu s z ll/ ST	i rj fuszll/ ST	
<u>0</u>	<u>h uih k</u>	<u>h udh k</u>	i b u dm u m k / OM	<u>e ce gr1/1</u>	<u>e 1</u>	<u>e l</u>	em l	<u>e ce gr1/I</u>										<u>i d cc r ka / 0</u>	igv lis	irifuszll/ <u>OT</u>	i rj fuszll/ <u>OT</u>	
м	<u>h uih k</u>	<u>h udh k</u>	<u>h.udh.k</u> / <u>MM</u>	<u>c cc grl/1</u>	<u>e1/0</u>	<u>e1/0</u>	<u>em 1/ 0</u>	<u>e ce gr1/1</u>										<u>i d ce r ka /</u> <u>Mi</u>	igv lis	i r l fu s z ll / <u>MT</u>	i rj fuszll/ <u>MT</u>	
<u>MM</u>	<u>h uih k</u>	<u>h udh k</u>	<u>h udh k</u>	<u>e ce gr1/1</u>	<u>e1/0</u>	<u>c cc grl</u> /1	<u>em 1/ 0</u>	<u>e ce gr1/1</u>										i d c e r ka / <u>MI</u>		i r l fu s z ll / <u>MMT</u>	i r j fu s z ll / MMT	
IR	i a Uim Um	lia Udm Um	Libudmumk	z	z	z	z	z											z			
<u> </u>	<u>k/IS</u> h uim uh k ka	<u>k/15</u>	/ <u>IM</u> i b u dm u m k /				<u> </u>	<u> </u>	╞													
<u>SR</u>	<u>n um un к ка</u> / <u>S</u>	ka/S	SM	<u>z</u>	z	<u>z</u>	<u>z</u>	<u>z</u>											z			
OR	h u im u h k ka		i b u dm u m k /												1				-			
	/ <u>0</u>	<u>ka / O</u>	<u>OM</u>	<u>^</u>	<u>-</u>	<u> </u>	<u> </u>	<u>-</u>						ļ	<u> </u>			ļ	<u> </u>			
MR	<u>h uim uh k ka</u> / M	<u>h udm uh k</u> ka / M	<u>h udm uh k</u> ka/MM	z	z	z	z	z											z			
MMR	h uim uh k ka		h udm uh k		i				1	<u> </u>					1							-
PIPIR	/ <u>MM</u>	<u>ka / MM</u>	ka / MM	z	<u>×</u>	z.	<u>z</u>	<u>×</u>											<u>×</u>			
ш	z	z	z	сı	<u>a</u>	a		a	<u>m.o</u> <u>n</u>		<u>u m o n / ISM</u>		<u>u m o sx n kd /</u> <u>MM</u> W				<u>kk gm sxt s i</u> <u>kd / MM</u>	z	z			
<u>SM</u>	<u>h uih k</u>	<u>h udh k</u>	z	<u>f ec 1/ IM</u>	<u>n</u>	<u>r1</u>		<u>f ce 1/ IM</u>	<u>m o</u> <u>n</u>		<u>v m o n / ISM</u>		<u>vmon/ISM</u>				<u>kk svi gm s j</u> <u>kd / MM</u>	<u>z</u>	z			
<u>om</u>	<u>h uih k</u>	<u>h udh k</u>	z	<u>e. ec 1</u> / <u>IM</u>	<u>e l</u>	<u>e l</u>	em l	e_cc1/IM	<u>mo</u> n		<u>kk m o n</u>		<u>kk m o n</u>			<u>sxt gm s j kd</u> / <u>MM</u>	sxt gm s j kd / MM	z	z			
<u>ISM</u>	<u>h uih k</u>	<u>h udh k</u>	z						<u>m o</u> <u>n</u>		<u>kk m o n</u>		<u>kk m o n</u>				<u>sxt gm s j kd /</u> <u>MM</u>	z	z			
<u>M</u> ^W	<u>h uih k</u>	<u>h udh k</u>	<u>h udh k</u> / <u>MM</u> W						<u>m o</u> n	<u>kk m o</u> n	<u>kk m o n</u>	<u>kk m o n</u>	<u>kk m o n</u>			<u>kk gm sjkd</u> / <u>M</u>	<u>gm s j kd / M</u>	z	z			
<u>MM</u> ^W	<u>h uih k</u>	<u>h udh k</u>	<u>h udh k</u>						<u>m o</u> n	<u>kk m o</u> n	<u>kk m o n</u>	<u>kk m o n</u>	<u>kk m o n</u>			<u>kk gm sjkd</u> / <u>MM</u>	<u>gm s j kd / MM</u>	z	z			
<u>15</u>	z	z	z	<u>EI</u>	а	a		а	m o n	<u>m ron</u>	u <u>m o hx uo n</u> kd / <u>SS</u>	u r m o hx uo n kd / <u>SS</u>	<u>umohxnkd</u> / <u>M</u> ^W			<u>kk gsshi</u> <u>kd/O</u>	<u>kk gsshikd</u> ∕ Ω	z	z			
<u>ss</u>	<u>h uih k</u>	<u>h udh k</u>	z						<u>mo</u> n	<u>m ron</u>	<u>kk m o n</u>	<u>kk mon</u>	<u>kk m o n</u>			<u>gs s j kd / S</u>	<u>gs s i kd / S</u>	z	z			
<u>0</u>	z	<u>z</u>	Z	<u>a 1/ II</u>	<u>94 l</u>	<u>sq l</u>	<u>qm l</u>	<u>91/1</u>						<u>qslkd/I</u>	<u>kk slkd/</u> [z	z			
MI	<u>z</u>	<u>z</u>	Z	<u>a 1/ 11</u>	<u>sq 1/ OI</u>	sa L/ OL	<u>qm 1/ OI</u>	<u>a1/1</u>							<u>kk s1kd/[</u>			<u>z</u>	z			
Ш		Z	Z	<u>11</u>	<u>u</u>	<u>[]</u>		<u>EI</u>						<u>g sl kd/I</u>	<u>s1kd/1</u>			z	z			
<u>ST</u>		Z	<u>z</u>	<u>z</u>	z	z	<u>z</u>	z										Z	<u>z</u>			<u>i kd</u> /
<u>0</u>	-	Z	Z	z	z	z	z	z										Z	Z			<u>i kd /</u>
MT	-	Z	Z	<u>z</u>	<u>z</u>	z	z	<u>z</u>										<u>x</u>	Z			<u>i kd / 1</u>
MMT	Z	Z	Z	Z	Z	<u>z</u>	Z	Z										Z	Z			i kd/

(Transition table in style of Sorin et al.)





Crossing Guard

Hardware translating between host and accelerator protocols

■ Set of accelerator ↔ host coherence messages (like an API)

Crossing Guard Interface

Accelerator → Host Requests

- GetS, GetM
- PutS, PutE, PutM

Host → Accelerator Requests

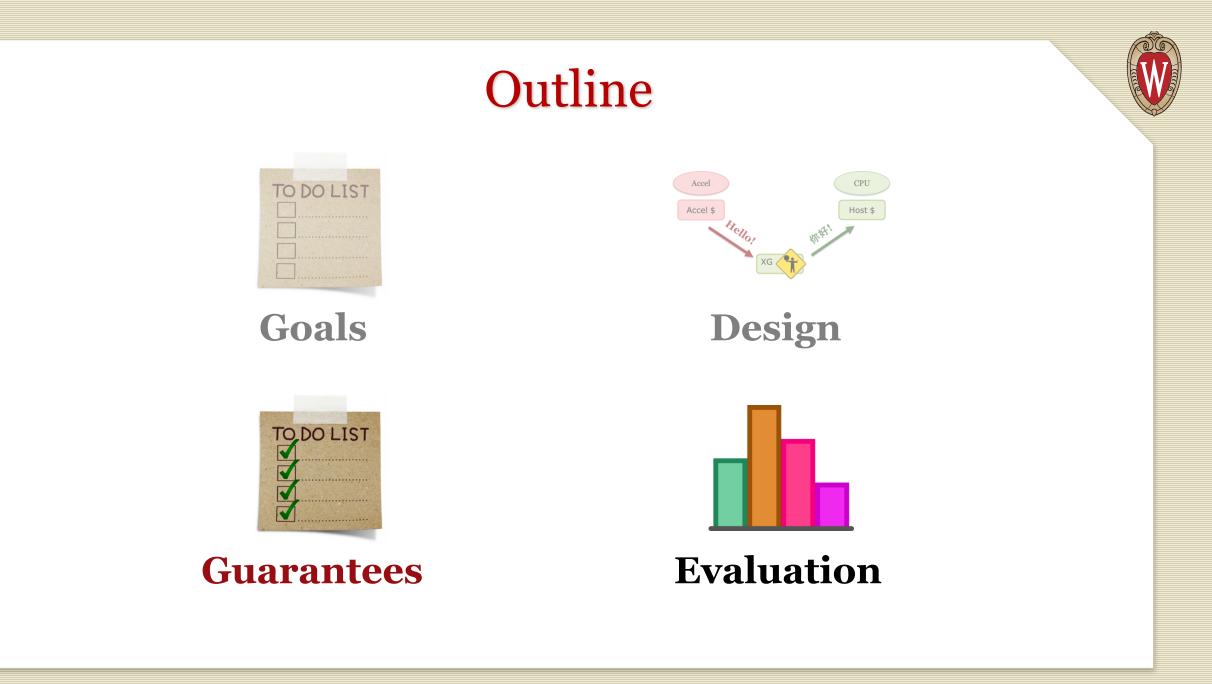
Invalidate

Host → Accelerator Responses

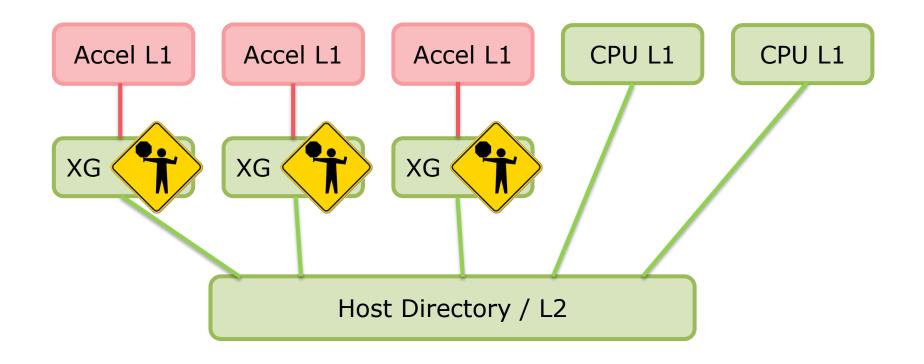
- DataS, DataE, DataM
- Writeback Ack

Accelerator → **Host Responses**

InvAck, Clean Writeback,
Dirty Writeback

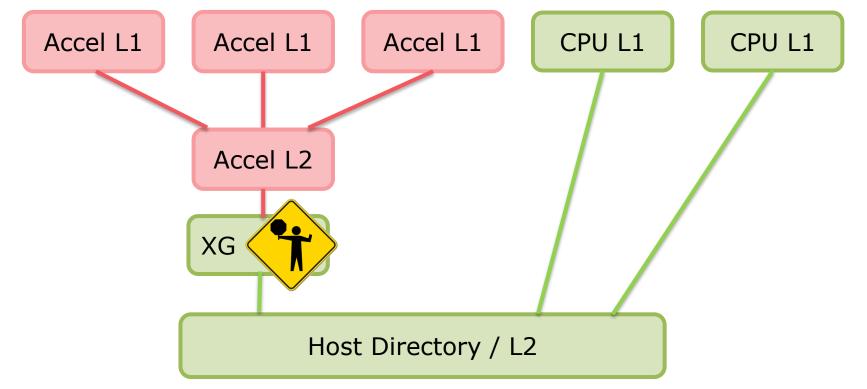


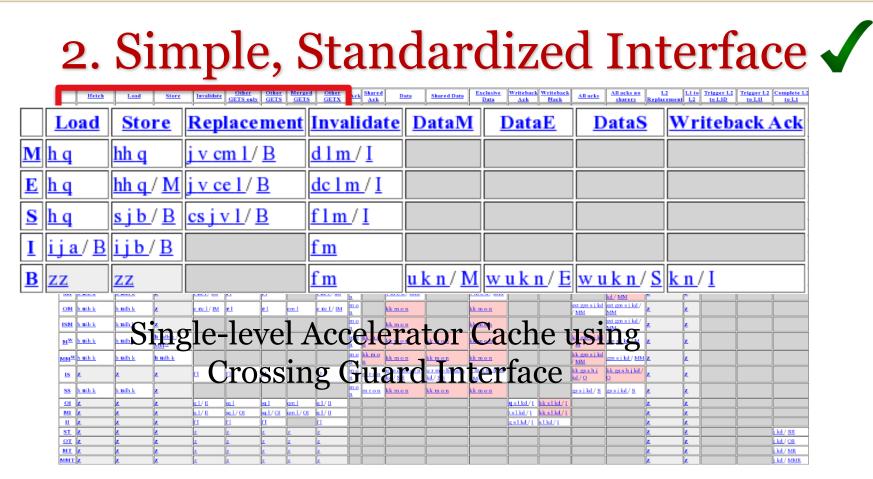
- **Crossing Guard**
- Hides implementation details of host protocol
 - No counting acks, sending unblocks, handling races, etc.
- Moves protocol complexity into Crossing Guard hardware
 - Only implemented once per host system
 - By experts!


Experimental Implementation

- Coherence controllers / protocols implemented in slicc
- Simulations using gem5
- Code and transition tables available online
 - http://research.cs.wisc.edu/multifacet/xguard/

1. Customize Caches 🗸

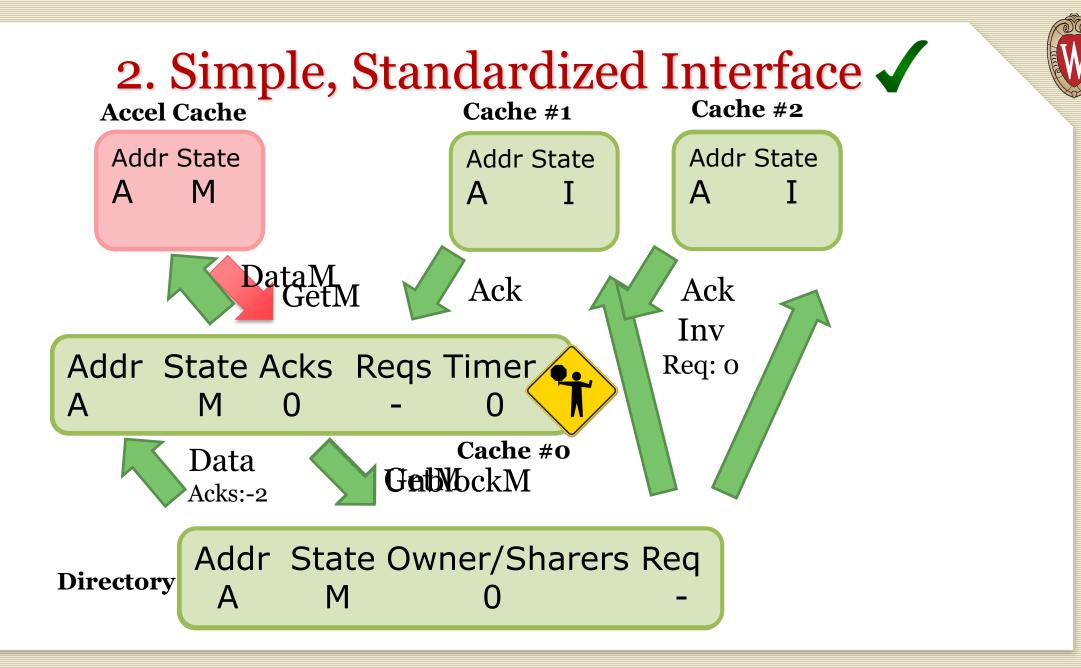

Designed + implemented two sample systems
Private Per-Core L1 at Accelerator



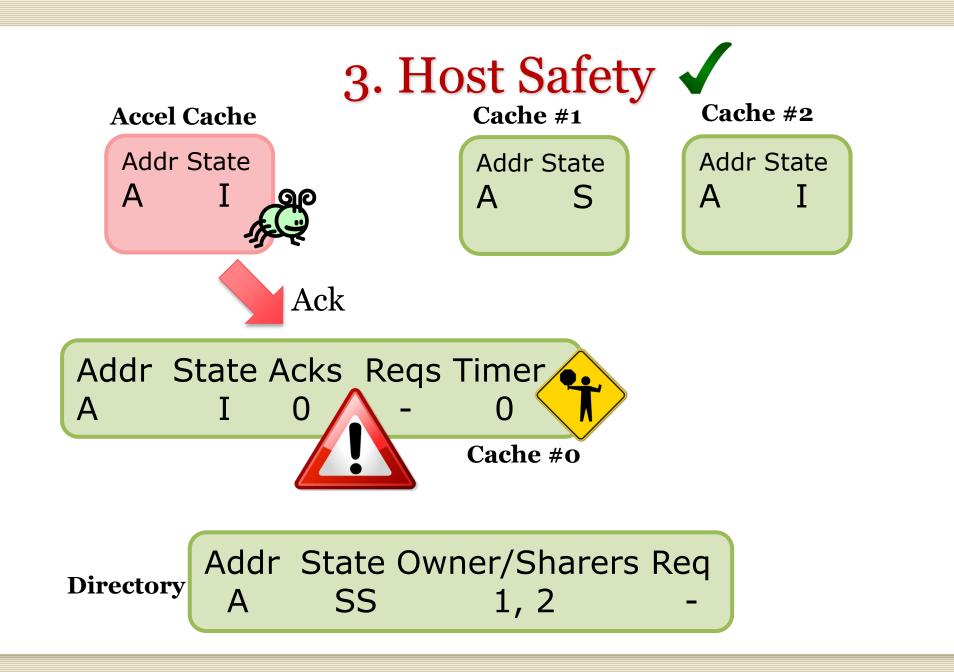
1. Customize Caches 🗸

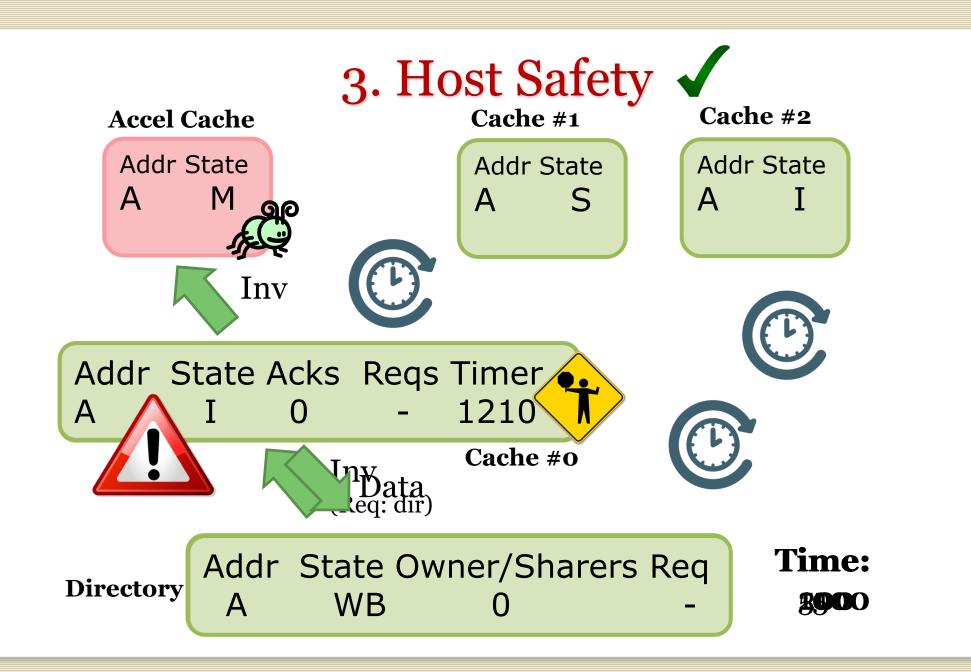
Designed + implemented two sample systems

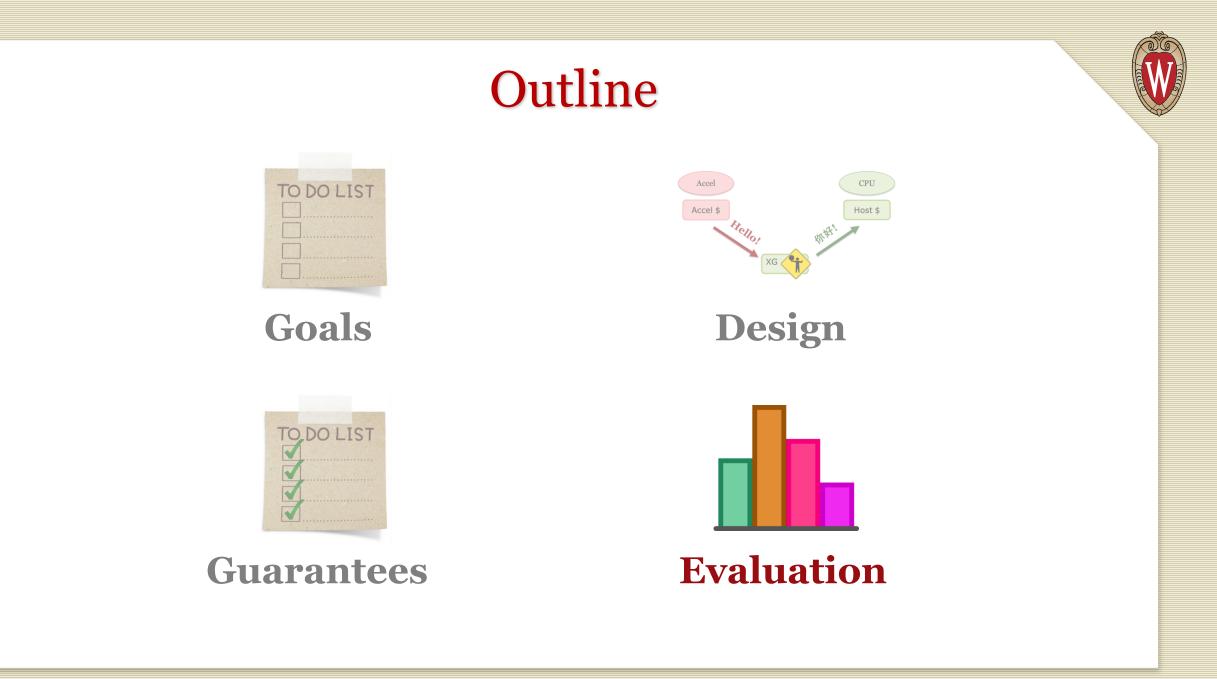
Private L1s + Shared L2 at Accelerator




Controller	States	Transitions
AMD Hammer-like Private \$\$	24	148

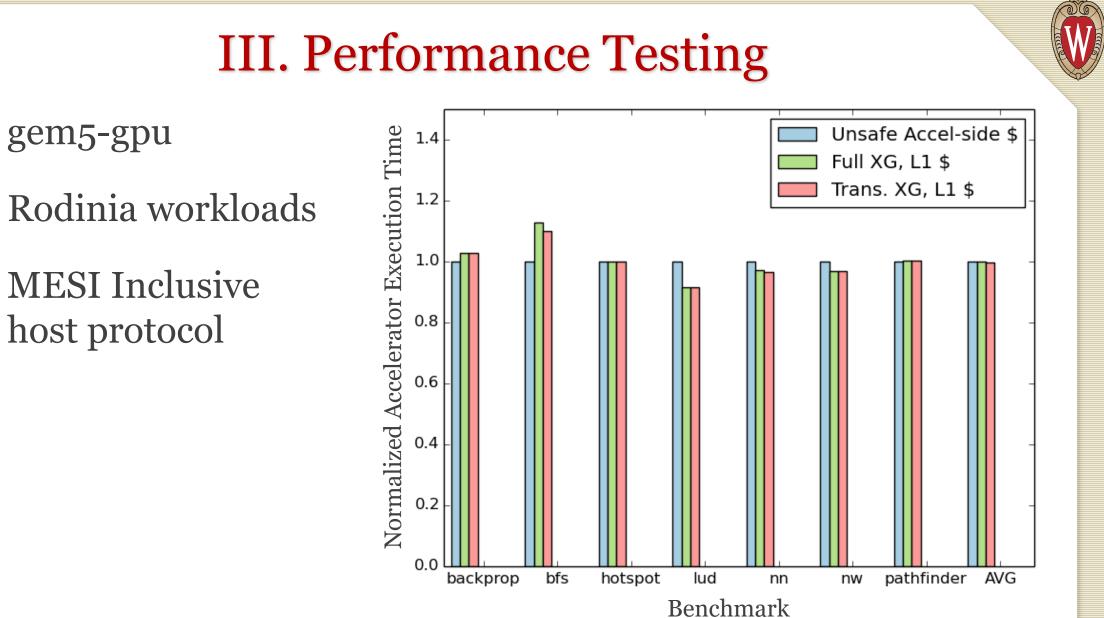

2. Simple, Standardized Interface \checkmark




- Implemented Crossing Guard controller for two host protocols
 - AMD Hammer-like Exclusive MOESI
 - Two-Level MESI Inclusive
- Modularity: Host and Accelerator protocol choice is completely independent

Evaluation

- **I**. Does it provide coherence to correct accelerator?
- **II**. Does it provide safety to host?
- **III**. Does it allow high performance?

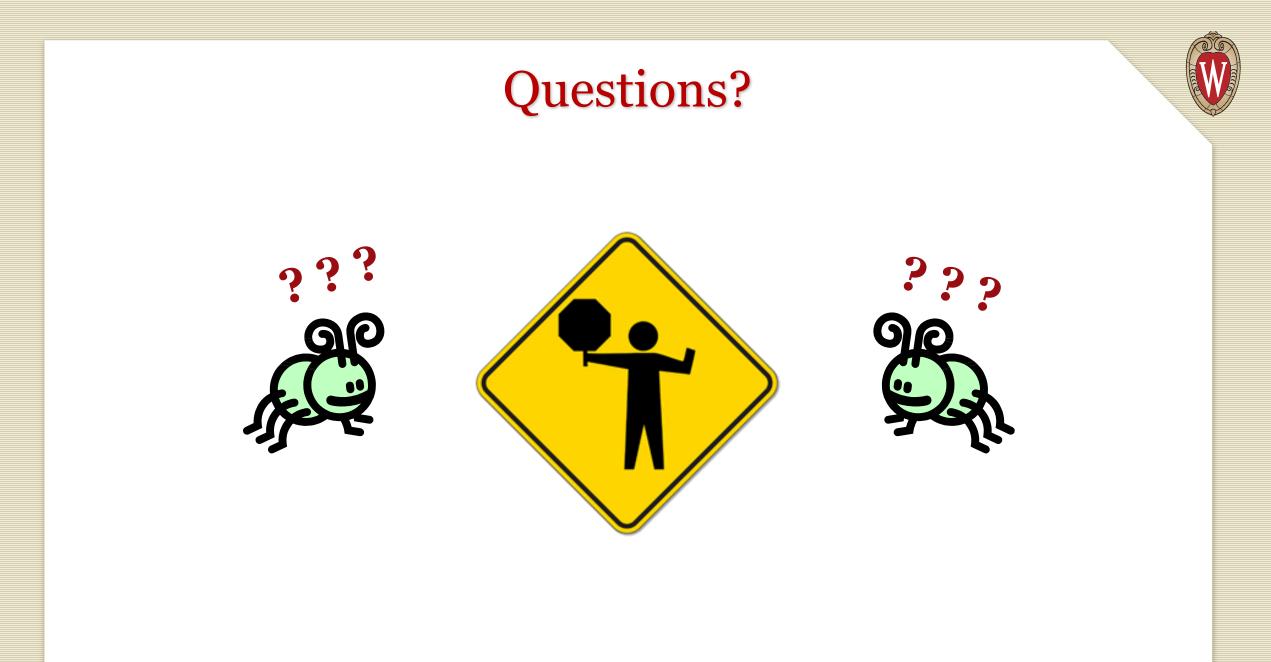


I. Correctness Testing

- Are coherence invariants are maintained when accelerator is acting correctly?
- How? Random tester
 - Store-Load pairs to random addresses
 - Check integrity of data
- Ran for 160 billion load/store pairs
- Local coverage: 100% states, 100% events, > 99% transitions

II. Fuzz Testing

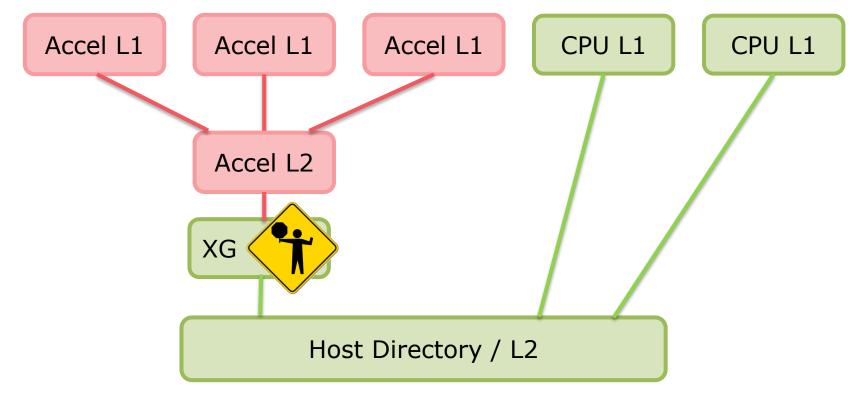
- Is host safety maintained when accelerator misbehaves?
- How? Replace accelerator cache with evil controller
 - Generates random coherence messages to random addresses
 - Desired outcome: No deadlocks / crashes
- Ran for 7 billion load/store pairs
- Local Coverage: 100% states, 100% events, > 99% transitions


MESI Inclusive host protocol

gem5-gpu

Crossing Guard Summary

- Provides simple, standardized interface to ease accelerator development
- Correctness when accelerator is correct
- **Host safety** when accelerator is incorrect
- Low performance overhead



Backup Follows

Two-Level Accelerator Protocol (1)

Private L1s + Shared L2 at Accelerator

Two-Level Accelerator Protocol (2)

L1 Controller (M state contains dirty/clean bit)

	Load	<u>Store</u>	<u>Replacement</u>	<u>Invalidate</u>	DataM	DataS	Writeback Ack
M	<u>h q</u>	<u>hh q</u>	<u>j c v l</u> / <u>MI</u>	<u>dlm/I</u>			
<u>S</u>	<u>h q</u>	<u>j b q</u> / <u>IM</u>	<u>l/I</u>	<u>flm/I</u>			
I	<u>ijaq</u> / <u>IS</u>	<u>i j b q</u> / <u>IM</u>		<u>f m</u>			
<u>IS</u>	<u>Z</u>	<u>Z</u>	<u>Z</u>	<u>f m / IS I</u>		<u>w u k xxlh n / S</u>	
IM	<u>Z</u>	<u>Z</u>	<u>Z</u>	<u>f m</u>	<u>u k xxsh n</u> / <u>M</u>		
MI	<u>Z</u>	<u>Z</u>	<u>Z</u>	<u>f m</u>			<u>k n / I</u>
<u>IS I</u>		<u>Z</u>	<u>Z</u>	<u>f m</u>		<u>w u xxlh k l n</u> / <u>I</u>	

Two-Level Accelerator Protocol (3) L2 Controller (Coordinates Sharing among Accelerator L1s)

	get <u>M</u>	getS	putM	InvAck	<u>Writeback</u>	Inv	<u>DataM</u>	DataS	<u>WBAck</u>	All Acks	L2 Replacemen	t L2 Replacement Clean
Ī	<u>a r k greq1 / IM</u>	<u>b r m qreq1 / IS</u>				<u>d qreqBC</u>						
<u>S</u>	<u>t k i p rrr qreq1</u> / <u>SM</u>	<u>m fr rrr uu h qreq1</u>				<u>t w i s qreqBC</u> / <u>SI</u>						<u>twis</u> / <u>SR</u>
<u>MO</u>	<u>e r g rrr uu h qreq1</u> / <u>M</u>	<u>m fr rrr uu h qreq1</u> / MOS				<u>t w c s u qreqBC</u> /I					<u>t w c wm s</u> / <u>MR</u>	Ĺ
M	<u>h k qreq1 / MM</u>	<u>h m qreq1 / MMOS</u>	n1p yo j qput1 / MO			<u>t w h s qreqBC / MI</u>					<u>t w h s</u> / <u>MR</u>	
MOS	<u>t w k i p rrr qreq1</u> / <u>MOSM</u>	<u>m fr uu h rrr qreq1</u>				<u>t w i s qreqBC</u> / <u>MOSI</u>					<u>twis</u> / <u>MOSR</u>	<u>twis</u> / <u>ER</u>
IM	<u>zz 1r</u>	<u>zz 1r</u>				<u>d qreqBC</u>	<u>n g rrr uu m qrspBC / M</u>				Z	<u>Z</u>
IS	<u>zz 1r</u>	<u>m greq1</u>				<u>d qreqBC</u>	<u>n f uu m rrr qrspBC</u> / MOS	<u>n f uu m rrr qrspBC</u> / <u>S</u>			Z	Z
<u>SM</u>	<u>zz 1r</u>	<u>zz 1r</u>		<u>o p qrsp1</u>		<u>zz BCr</u>				<u>y u a qt</u> / <u>IM</u>	<u>z</u>	<u>Z</u>
<u>SI</u>	<u>Z</u>	Z		<u>o p qrsp1</u>						<u>d u qt</u> / <u>I</u>		
<u>SR</u>	<u>Z</u>	<u>Z</u>		<u>o p qrsp1</u>		<u>qreqBC / SI</u>				<u>c ws qt</u> / <u>SRI</u>		
<u>SRI</u>		<u>Z</u>				<u>d qreqBC</u>			<u>u qrspBC / I</u>			
MR		<u>Z</u>	<u>n1 tp j qput1 / MRi</u>	<u>hr qrsp1</u>		<u>qreqBC / MI</u>						
MRI		<u>Z</u>				<u>d qreqBC</u>			<u>u qrspBC / I</u>			
MI		<u>Z</u>	<u>n1 tp j qput1 / MIi</u>	<u>hr qrsp1</u>	<u>n t yo c u qrsp1 / I</u>							
MOSI		<u>Z</u>		<u>o p qrsp1</u>						<u>c u qt / I</u>		
MOSR		Z		<u>o p qrsp1</u>		<u>qreqBC / MOSI</u>				<u>c wm qt / MRI</u>		
ER		<u>Z</u>		<u>o p qrsp1</u>		<u>qreqBC / MOSI</u>				<u>c we qt</u> / <u>MRI</u>		
<u>MM</u>	<u>zz 1r</u>	<u>zz 1r</u>	<u>n1p j qput1 / MMi</u>	<u>hr qrsp1</u>	<u>nw g uu m qrsp1 / M</u>	zz BCr					<u>Z</u>	<u>Z</u>
MMOS	<u>zz 1r</u>	<u>zz 1r</u>	<u>n1p j qput1 / MMOSi</u>	<u>hr qrsp1</u>	<u>nw f uu m yo qrsp1</u> / <u>MOS</u>	<u>zz BCr</u>					<u>Z</u>	Z
MOSM	<u>zz 1r</u>	<u>zz 1r</u>		<u>o p qrsp1</u>		<u>zz BCr</u>				<u>g rrr y u uu m qt</u> / <u>1</u>	<u>4</u> <u>z</u>	Z
MIi	<u>Z</u>	Z		<u>yo c u qrsp1 / I</u>								
MRi	<u>Z</u>	Z		<u>yo c wm qrsp1 / MRI</u>		<u>qreqBC / MIi</u>						
MMi	<u>zz 1r</u>	<u>zz 1r</u>		<u>g uu m qrsp1 / M</u>		<u>zz BCr</u>					Z	Z
MMOS	i <u>zz 1r</u>	<u>zz 1r</u>		<u>f uu m yo qrsp1</u> / MOS		<u>zz BCr</u>					<u>Z</u>	<u>Z</u>

Crossing Guard Invariants

Crossing Guard Guarantees to Host:

- 1. Accelerator **requests** must be correct
 - a) Consistent with block stable state at accelerator
 - b) Consistent with block transient state at accelerator
- 2. Accelerator **responses** must be correct
 - a) Consistent with block stable state at accelerator
 - b) Consistent with block transient state at accelerator
 - c) Received within a reasonable time

(+ Border Control Protections!)

Crossing Guard Variants

- Full State Crossing Guard
 - Inclusive directory of accelerator state
 - + Places few restrictions on host protocol
 - + Can hide all errors
 - Requires tag + metadata storage for all blocks
- Transactional Crossing Guard
 - Stores only data for in-flight transactions
 - + Small storage
 - + Provides most safety properties
 - Requires some host tolerance

Single-Level Cache

	A	Accelerator Event	ts	XG Requests		XG Re	esponses	
States	Load	Store	Replacement	Invalidate	DataM	DataE	DataS	WB Ack
Μ	hit	hit	issue PutM / B	send Dirty WB / I	-	-	-	-
E	hit	hit / M	issue PutE / B	send Clean WB / I	-	-	-	-
S	hit	issue GetM / B	issue PutS / B	send InvAck / I	-	-	-	-
I	issue GetS / B	issue GetM / B	-	send InvAck	-	-	-	-
В	stall	stall	stall	send InvAck	/ M	/ E	/ S	/ I

Simulation Parameters

					GPGPU	
				Cor	es	4
				GPU Fre	equency	700 MHz
CPU			GPGPU Caches (Hammer-like)			
CPU	J Cores	1		Accel-side	Host-side / 1-level	2-level
CPU F	requency	3 GHz	L1	16kB I and D	160kB	32kB
Host Caches			L2	128kB private	-	512kB shared
	Hammer-like	MESI Inclusive	GPGPU Caches (MESI Inclusive)			ive)
L1I & L1D	32kB each	32kB each		Accel-side	Host-side / 1-level	2-Level
L2	128kB private	512kB shared w/ GPGPU	L1	32kB I and D	64kB	16kB
•		L2	-	-	192kB shared	
Table 4: CPU simulation configuration details.			Cache-to-Cache Latency			
				Accelerator	r L1 to L2	10 cycles
				Accelerator	L2 to XG	200 cycles

XG to Directory/Shared L2	10 cycles
Accelerator to Host-side Cache	210 cycles

Table 5: GPGPU simulation configuration details.

Time Spent Simulating (Random)

Configuration	Time
XG Full + Hammer + 1 Level	5.28 years
XG Full + Hamer + 2 Level	2.51 years
XG Full + MESI Inc + 1 Level	133 days
XG Full + MESI Inc + 2 Level	223 days
XG Trans. + Hammer + 1 Level	3.17 years
XG Trans. + Hammer + 2 Level	1.38 years
XG Trans + Inc + 1 Level	90 days
XG Trans + Inc + 2 Level	103 days
TOTAL	13.9 years

Full Coverage %s (Random)

Full State XG	Single-level	Two-level
Hammer-like	99	99.8
MESI Inclusive	100	99.4
Transactional XG	Single-level	Two-level
Hammer-like	99.3	99.5
MESI Inclusive	100	99.7

Time Spent Simulating (Fuzz)

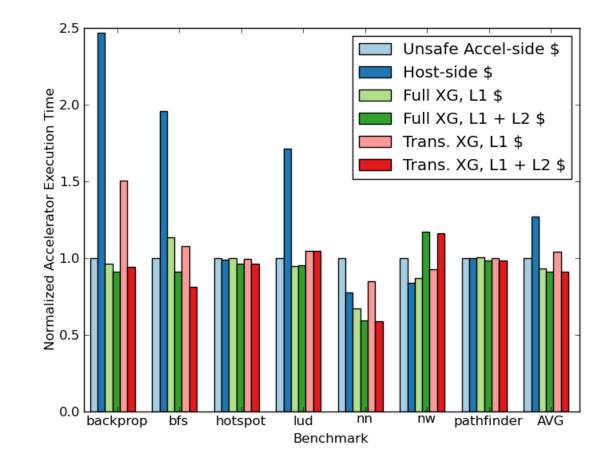
Configuration	Time
XG Full + Hammer-like	1.62 years
XG Full + MESI Inclusive	287 days
XG Transactional + Hammer-like	5.3 years
XG Transactional + MESI Inclusive	41 days
Total	7.82 years

Full Coverage %s (Fuzz)

Full State Crossing Guard	Fuzz Tester
Hammer-like	99.3
MESI Inclusive	99.7
Transactional Crossing Cuard	
Transactional Crossing Guard	Fuzz Tester
Hammer-like	99.7

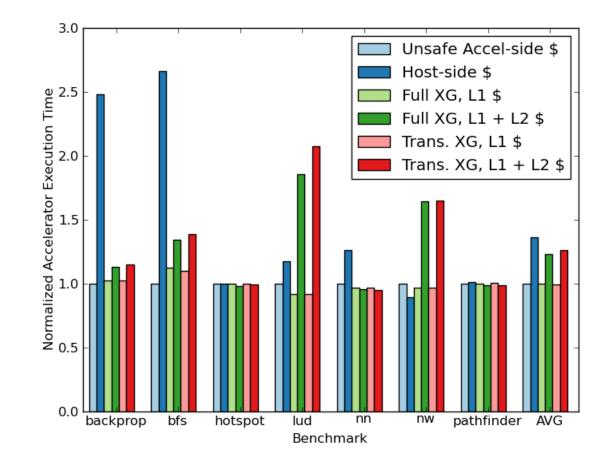
PutS Accelerator Messages

- Why?
 - Some host protocols use them
 - Simplify management of Full State Crossing Guard
 - Cannot implement Transactional Crossing Guard + host protocol with PutS without them
- Bandwidth Impact
 - Carry no data
 - Only between accelerator cache \rightarrow Crossing Guard, not host system
 - ~1-4% of that bandwidth in experiments.
 - Could be reduced by setting a flag at Crossing Guard.

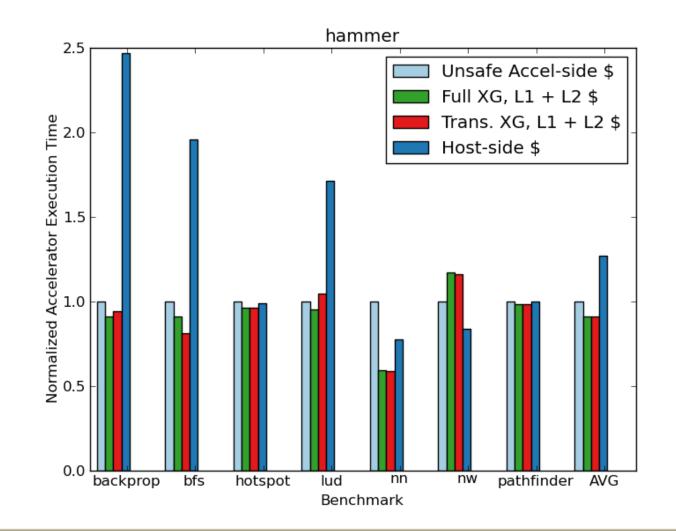


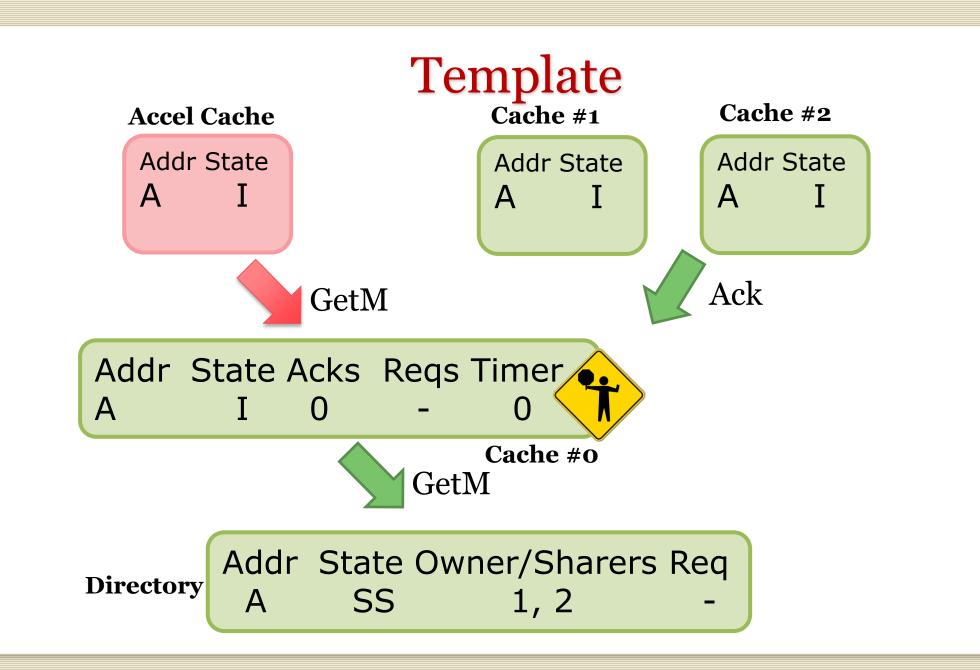
Why not Model Checking?

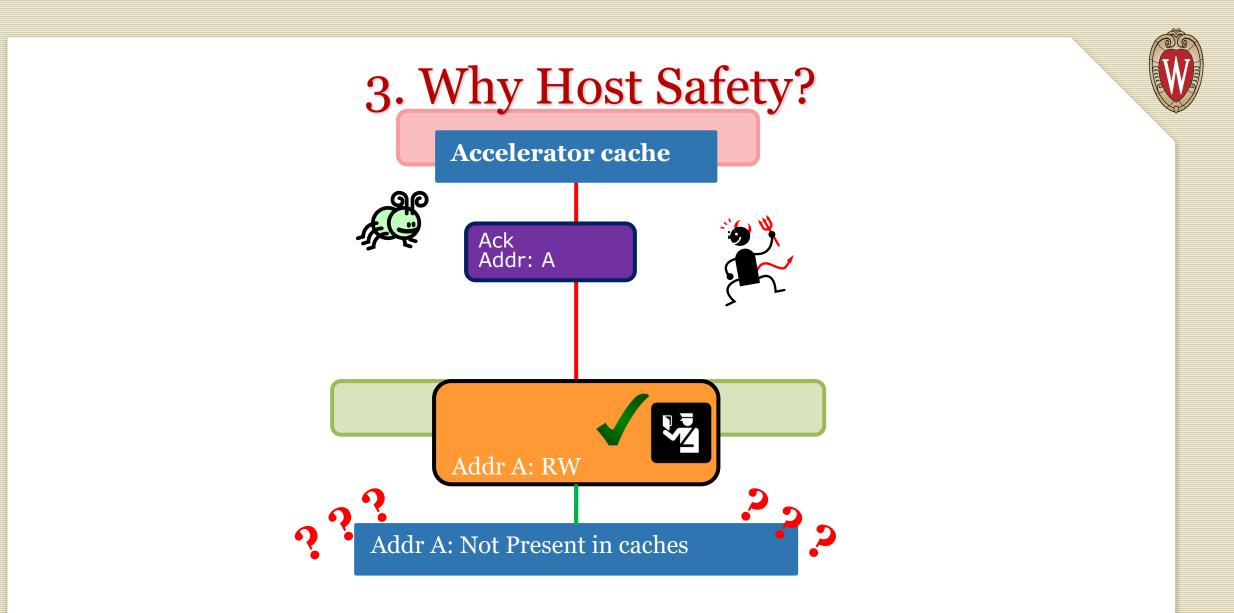
- Model checking is useful! Industrial implementation of Crossing Guard would use.
- Academic tools have limitations $\ensuremath{\mathfrak{S}}$
 - Benefit from symmetry, but Crossing Guard system asymmetric
 - May only work with one block in system
 - Substantial implementation overhead
- This work was a proof of concept
 - Random / Fuzz testing not perfect, but results suggestive.
 - Even models can have mistakes!



Performance: Hammer-like




Performance: MESI Inclusive


Performance (Hammer-like)

