
Crossing Guard: Mediating
Host-Accelerator Coherence Interactions

Lena E. Olson*, Mark D. Hill, David A. Wood

University of Wisconsin-Madison
* Now at Google

ASPLOS 2017
April 10th, 2017

Accelerators are here!

 Complex, programmable accelerators increasingly prevalent

 Many applications: graphics, scientific computing, video
encoding, machine learning, etc…

 Accelerators may benefit from cache coherent shared memory

 May be designed by third parties

2

However…

 Host coherence protocols may be proprietary and complex

 Bugs in accelerator implementations might crash host system!

 Crossing Guard: coherence interface to safely translate
accelerator ↔ host protocol

3

Accel $

XG

Host $

Accel CPU

Outline

4

Goals Design

Guarantees Evaluation

Crossing Guard Goals

When adding accelerators to host coherence protocol:

1. Allow accelerators customized caches

2. Simple, standardized accelerator coherence interface

3. Guarantee safety for the host system

5

1. Why Customize Caches?

 CPU caches have to work with most types of workloads

 Accelerators may only run some workloads!

 Optimize caches for likely data access patterns

 Number of levels, writeback vs. writethrough, MSI vs VI, etc.

6

Accel Accel Accel Accel Accel

L1 $ L1 $

L2 $ L1 $ L1 $

VI
L1 $

Accel

VI
L1 $

L2 $

2. Why Simple, Standardized Interface?

Host systems speak different protocols…

 Expensive to redesign for each one!

 Intel, AMD, ARM, IBM, Oracle…

 CCIX shows industry cares!

7

Accel

L1 $

Host Directory

2. Why Simple, Standardized Interface?

8

(Transition table in style of Sorin et al.)

L1 controller from gem5’s MOESI_hammer

Events
S

ta
te

s

Addr State

A S

3. Why Host Safety?

9

Addr State Owner/Sharers Req
A SS 1, 2 -

Addr State

A I
Addr State

A I

Directory

Accel Cache (#0) Cache #1 Cache #2

Accel CPU CPU

Addr State

A S

3. Why Host Safety?

10

Addr State Owner/Sharers Req
A SS 1, 2 -

Addr State

A I

Ack

Addr State

A I

Directory

Accel Cache (#0) Cache #1 Cache #2

Addr State

A I

3. Why Host Safety?

11

Addr State Owner/Sharers Req
A MT 0 -

Addr State

A M
Addr State

A I

Directory

Accel Cache (#0) Cache #1 Cache #2

Inv
Req: dir

Addr State Owner/Sharers Req
A MT_I 0 -

Outline

12

Goals Design

Guarantees Evaluation

Crossing Guard

 Hardware translating between host and accelerator protocols

 Set of accelerator ↔ host coherence messages (like an API)

13

Accel $

XG

Host $

Accel CPU

Crossing Guard Interface

Accelerator  Host Requests

GetS, GetM

 PutS, PutE, PutM

Host  Accelerator Responses

DataS, DataE, DataM

Writeback Ack

14

Host  Accelerator Requests

 Invalidate

Accelerator  Host Responses

 InvAck, Clean Writeback,

Dirty Writeback

Crossing Guard

 Hides implementation details of host protocol

 No counting acks, sending unblocks, handling races, etc.

 Moves protocol complexity into Crossing Guard hardware

 Only implemented once per host system

 By experts!

15

Experimental Implementation

 Coherence controllers / protocols implemented in slicc

 Simulations using gem5

 Code and transition tables available online

16

http://research.cs.wisc.edu/multifacet/xguard/

Outline

17

Goals Design

Guarantees Evaluation

1. Customize Caches

 Designed + implemented two sample systems

18

Accel L1 Accel L1 Accel L1 CPU L1 CPU L1

Host Directory / L2

XG XG XG

Private Per-Core L1 at Accelerator

1. Customize Caches

 Designed + implemented two sample systems

19

Accel L1 Accel L1 Accel L1 CPU L1 CPU L1

Host Directory / L2

XG

Private L1s + Shared L2 at Accelerator

Accel L2

2. Simple, Standardized Interface

20

Controller States Transitions

AMD Hammer-like Private $$ 24 148

Crossing Guard Single-Level Private L1 5 20

Single-level Accelerator Cache using
Crossing Guard Interface

2. Simple, Standardized Interface

 Implemented Crossing Guard controller for two host protocols

 AMD Hammer-like Exclusive MOESI

 Two-Level MESI Inclusive

 Modularity: Host and Accelerator protocol choice is
completely independent

21

Addr State Acks Reqs Timer
A I 0 - 0
Addr State Acks Reqs Timer
A IM 0 - 0

Addr State Acks Reqs Timer
A SM -2 - 0
Addr State Acks Reqs Timer
A SM -1 - 0

Addr State Acks Reqs Timer
A M 0 - 0

Addr State

A I

2. Simple, Standardized Interface

22

Addr State Owner/Sharers Req
A SS 1, 2 -

Addr State

A I
Addr State

A S
Addr State

A B

GetM

GetM

Addr State Owner/Sharers Req
A SM_MB 1, 2 0

Inv
Req: 0

Ack

Data
Acks:-2

Addr State

A I

AckDataM

Addr State

A M

Directory

Accel Cache Cache #1 Cache #2

Cache #0

UnblockM

Addr State Owner/Sharers Req
A M 0 -

Addr State Acks Reqs Timer
A I 0 - 0
Addr State Acks Reqs Timer
A IM 0 - 0

Addr State Acks Reqs Timer
A SM -2 - 0
Addr State Acks Reqs Timer
A SM -1 - 0

Addr State Acks Reqs Timer
A M 0 - 0

Addr State

A I

2. Simple, Standardized Interface

23

Addr State Owner/Sharers Req
A SS 1, 2 -

Addr State

A I
Addr State

A S
Addr State

A IM

GetM

GetM

Addr State Owner/Sharers Req
A SM_MB 1, 2 0

Ack

Data
Acks:-2

Addr State

A I

Ack
DataM

Addr State

A M

Directory

Accel Cache Cache #1 Cache #2

Cache #0

UnblockM

Addr State Owner/Sharers Req
A M 0 -

Addr State Acks Reqs Timer
A I 0 - 0

Addr State

A S

3. Host Safety

24

Addr State Owner/Sharers Req
A SS 1, 2 -

Addr State

A I

Ack

Addr State

A I

Directory

Accel Cache Cache #1 Cache #2

Cache #0

Addr State Acks Reqs Timer
A M 0 - 0

Addr State

A S

3. Host Safety

25

Addr State Owner/Sharers Req
A MT 0 -

Addr State

A M
Addr State

A I

Directory

Accel Cache Cache #1 Cache #2

Cache #0
Inv
(Req: dir)

Addr State Owner/Sharers Req
A MT_I 0 -

Addr State Acks Reqs Timer
A MI 0 dir 1210

Inv

Time:
200

Time:
210

Time:
500

Time:
1000

Time:
1500

Data

Addr State Acks Reqs Timer
A I 0 - 1210

Addr State Owner/Sharers Req
A WB 0 -

Outline

26

Goals Design

Guarantees Evaluation

Evaluation

I. Does it provide coherence to correct accelerator?

II. Does it provide safety to host?

III.Does it allow high performance?

27

I. Correctness Testing

 Are coherence invariants are maintained when accelerator is
acting correctly?

 How? Random tester

 Store-Load pairs to random addresses

 Check integrity of data

 Ran for 160 billion load/store pairs

 Local coverage: 100% states, 100% events, > 99% transitions

28

II. Fuzz Testing

 Is host safety maintained when accelerator misbehaves?

 How? Replace accelerator cache with evil controller

 Generates random coherence messages to random addresses

 Desired outcome: No deadlocks / crashes

 Ran for 7 billion load/store pairs

 Local Coverage: 100% states, 100% events, > 99% transitions

29

III. Performance Testing

 gem5-gpu

 Rodinia workloads

 MESI Inclusive
host protocol

30

N
o

rm
a

li
ze

d
 A

cc
e

le
ra

to
r

E
x

e
cu

ti
o

n
 T

im
e

Benchmark

Crossing Guard Summary

 Provides simple, standardized interface to ease
accelerator development

 Correctness when accelerator is correct

 Host safety when accelerator is incorrect

 Low performance overhead

31

Questions?

32

Backup Follows

33

Two-Level Accelerator Protocol (1)

34

Accel L1 Accel L1 Accel L1 CPU L1 CPU L1

Host Directory / L2

XG

Private L1s + Shared L2 at Accelerator

Accel L2

Two-Level Accelerator Protocol (2)

35

L1 Controller (M state contains dirty/clean bit)

Two-Level Accelerator Protocol (3)

36

L2 Controller
(Coordinates Sharing among Accelerator L1s)

Crossing Guard Invariants

Crossing Guard Guarantees to Host:

1. Accelerator requests must be correct

a) Consistent with block stable state at accelerator

b) Consistent with block transient state at accelerator

2. Accelerator responses must be correct

a) Consistent with block stable state at accelerator

b) Consistent with block transient state at accelerator

c) Received within a reasonable time

37

(+ Border Control Protections!)

Crossing Guard Variants

 Full State Crossing Guard
 Inclusive directory of accelerator state

 + Places few restrictions on host protocol

 + Can hide all errors

 - Requires tag + metadata storage for all blocks

 Transactional Crossing Guard
 Stores only data for in-flight transactions

 + Small storage

 + Provides most safety properties

 - Requires some host tolerance

38

Single-Level Cache

39

Simulation Parameters

40

Time Spent Simulating (Random)

Configuration Time

XG Full + Hammer + 1 Level 5.28 years

XG Full + Hamer + 2 Level 2.51 years

XG Full + MESI Inc + 1 Level 133 days

XG Full + MESI Inc + 2 Level 223 days

XG Trans. + Hammer + 1 Level 3.17 years

XG Trans. + Hammer + 2 Level 1.38 years

XG Trans + Inc + 1 Level 90 days

XG Trans + Inc + 2 Level 103 days

TOTAL 13.9 years

41

Full Coverage %s (Random)

Full State XG Single-level Two-level

Hammer-like 99 99.8

MESI Inclusive 100 99.4

Transactional XG Single-level Two-level

Hammer-like 99.3 99.5

MESI Inclusive 100 99.7

42

Time Spent Simulating (Fuzz)

Configuration Time

XG Full + Hammer-like 1.62 years

XG Full + MESI Inclusive 287 days

XG Transactional + Hammer-like 5.3 years

XG Transactional + MESI Inclusive 41 days

Total 7.82 years

43

Full Coverage %s (Fuzz)

Full State Crossing Guard Fuzz Tester

Hammer-like 99.3

MESI Inclusive 99.7

Transactional Crossing Guard Fuzz Tester

Hammer-like 99.7

MESI Inclusive 100

44

PutS Accelerator Messages

 Why?
 Some host protocols use them

 Simplify management of Full State Crossing Guard

 Cannot implement Transactional Crossing Guard + host protocol with
PutS without them

 Bandwidth Impact
 Carry no data

 Only between accelerator cache  Crossing Guard, not host system

 ~1-4% of that bandwidth in experiments.

 Could be reduced by setting a flag at Crossing Guard.

45

Why not Model Checking?

 Model checking is useful! Industrial implementation of
Crossing Guard would use.

 Academic tools have limitations 

 Benefit from symmetry, but Crossing Guard system asymmetric

 May only work with one block in system

 Substantial implementation overhead

 This work was a proof of concept

 Random / Fuzz testing not perfect, but results suggestive.

 Even models can have mistakes!

46

Performance: Hammer-like

47

Performance: MESI Inclusive

48

Performance (Hammer-like)

49

Addr State Acks Reqs Timer
A I 0 - 0

Addr State

A I

Template

50

Addr State Owner/Sharers Req
A SS 1, 2 -

Addr State

A I

GetM

GetM

Addr State

A I

Ack

Directory

Accel Cache Cache #1 Cache #2

Cache #0

Old Slides

51

3. Why Host Safety?

52

Accelerator cache

Directory

Addr A: ?

Addr A: RW

Addr A: Not Present in caches

Ack
Addr: A

Directory

3. Why Host Safety?

53

Accelerator cache

Addr A: M

Addr A: RW

Addr A: M, owned by accelerator

Fwd-GetM
Addr: A

Directory

Crossing Guard Example

54

Accelerator cache

Addr A: M

Addr A: RW

Addr A: M, owned by accelerator

A: waiting for WB

Writeback
Addr: A

Fwd-GetM
Addr: A

Invalidate
Addr: A

Directory

Crossing Guard Example

55

Accelerator cache

Addr A: M

Addr A: RW

Addr A: M, owned by accelerator

A: waiting for WB
Invalidate
Addr: A
Writeback
Addr: A

Fwd-GetM
Addr: A

