

1

Heterogeneous-race-free Memory Models

Derek R. Hower
†
, Blake A. Hechtman

†§
, Bradford M. Beckmann

†
, Benedict R. Gaster

†
,

Mark D. Hill
‡†

, Steven K. Reinhardt
†
, David A. Wood

‡†

†
AMD Research

§
Duke University

Electrical and Computer Engineering

‡
University of Wisconsin-Madison

Computer Sciences

{derek.hower, brad.beckmann,
benedict.gaster,steve.reinhardt}@amd.com

blake.hechtman@duke.edu {markhill, david}@cs.wisc.edu

Abstract

Commodity heterogeneous systems (e.g., integrated CPUs

and GPUs), now support a unified, shared memory address

space for all components. Because the latency of global

communication in a heterogeneous system can be prohibi-

tively high, heterogeneous systems (unlike homogeneous

CPU systems) provide synchronization mechanisms that

only guarantee ordering among a subset of threads, which

we call a scope. Unfortunately, the consequences and se-

mantics of these scoped operations are not yet well under-

stood. Without a formal and approachable model to reason

about the behavior of these operations, we risk an array of

portability and performance issues.

In this paper, we embrace scoped synchronization with a

new class of memory consistency models that add scoped

synchronization to data-race-free models like those of C++

and Java. Called sequential consistency for heterogeneous-

race-free (SC for HRF), the new models guarantee SC for

programs with "sufficient" synchronization (no data races)

of "sufficient" scope. We discuss two such models. The

first, HRF-direct, works well for programs with highly regu-

lar parallelism. The second, HRF-indirect, builds on HRF-

direct by allowing synchronization using different scopes in

some cases involving transitive communication. We quanti-

tatively show that HRF-indirect encourages forward-looking

programs with irregular parallelism by showing up to a 10%

performance increase in a task runtime for GPUs.

Categories and Subject Descriptors C.0 [Computer Sys-

tems Organization]: Hardware/software interfaces, systems

specifications methodology

Keywords: memory consistency model; heterogeneous sys-

tems; data-race-free; task runtime

1 Introduction

Though it took nearly 30 years, languages for CPU systems

like C++ [7] and Java [26] have started to adopt a class of

memory models called sequential consistency for data-race-

free (SC for DRF) [3]. These models are formal and precise

definitions that allow many low-level optimizations. SC for

DRF models are also accessible to most programmers be-

cause they guarantee sequential consistency to any program

that is synchronized correctly – meaning that most pro-

grammers need not concern themselves with the gory de-

tails. A goal of this work is to achieve the same benefits for

heterogeneous systems in significantly less time.

Unfortunately, it is not straightforward to apply SC for

DRF models in heterogeneous systems because current het-

erogeneous systems support synchronization operations

with non-global side effects. For performance reasons, lan-

guages like OpenCL
TM

 [29] and CUDA [12] decompose a

problem into execution groups. Figure 1 shows the OpenCL

execution model, in which a work-item (like a CPU thread)

belongs to four different groups (which we call scopes):

sub-group
1
, work-group, device, and system

2
. Starting with

OpenCL 2.0 [28], programmers can synchronize a work-

item through shared memory
3
 with respect to any one of

these groups using what we call scoped synchronization

operations. For example, OpenCL provides a fence opera-

1 Sub-groups are optional in OpenCL, but will usually be defined on an
SIMT GPU, and correspond to vector units.
2 We use OpenCL terminology in this paper. In Section 6 we discuss the

CUDA equivalents.
3 As in CPU shared memory, not the CUDA “shared memory” scratchpad.

Figure 1. The OpenCL execution hierarchy.

Grid

Work-group

Work-item

Sub-group
(Hardware-specific size)

Dimension X

D
im

ension Z
D

im
e
n

s
io

n
 Y

Dimension X

D
im

ension Z

D
im

e
n

s
io

n
 Y

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS’14, March 1–5, 2014, Salt Lake City, Utah, USA.

Copyright © 2014 ACM 978-1-4503-2305-5/14/03…$15.00.

http://dx.doi.org/10.1145/2541940.2541981

2

tion that synchronizes a work-item with other work-items in

its own work-group but not with work-items in a different

work-group.

Scoped synchronization breaks some fundamental tenets

of SC for DRF models. For example, in OpenCL 2.0 it is

possible to write a racey program that is composed entirely

of atomics if those atomics do not use scopes correctly. It

may also be possible to write a program in which all ordi-

nary accesses are protected with atomics such that there can

be no concurrent conflicting accesses, yet that program may

still contain a race if those atomics are not scoped correctly.

We find that many of the consequences of these differences

are not yet well understood.

In this paper, we propose a new class of memory models

for platforms that use scoped synchronization called sequen-

tial consistency for heterogeneous-race-free (SC for HRF).

SC for HRF models define correctness in terms of a sequen-

tially consistent execution and rules for what is considered

“enough” synchronization to avoid races. The SC for HRF

models achieve two fundamental goals: they provide a pre-

cise definition of memory behavior in a heterogeneous exe-

cution and they provide a framework to describe that behav-

ior in a way that typical programmers can understand. While

we focus on GPUs in this paper due to their prevalence, we

expect the SC-for-HRF concepts and insights to apply to

other heterogeneous parts (e.g., DSPs).

We describe two possible SC for HRF variants:

 HRF-direct requires communicating work-items to

synchronize using the exact same scope.

 HRF-indirect extends HRF-direct to support transitive

communication using different scopes.

In HRF-direct, if a producer wants to synchronize with a

consumer, the producer must execute a release to scope S

and the consumer must later execute an acquire to that exact

same scope S. Even though it is (relatively) simple, we find

that HRF-direct is a perfectly adequate model to use with

highly regular data-parallel algorithms like the ones that

currently exist in most general-purpose GPU (GPGPU) ap-

plications. In these workloads, it is easy to precisely deter-

mine the work-items involved in a communication, thereby

making it easy to choose the correct minimal scope for syn-

chronization (Section 3.1). HRF-direct can also be used to

understand the OpenCL 2.0 (and likely CUDA; see Section

5.1.3) memory model, thereby giving programmers a more

intuitive description of the memory behavior of existing

languages.

While HRF-direct is good for today’s workloads, it may

not be sufficient for emerging heterogeneous applications.

First, it makes it difficult to optimize applications with ir-

regular parallelism in which the producer and consumer

may not be known a priori. For this same reason it can be

difficult to write composable library functions in HRF-

direct. Second, HRF-direct is overly conservative for current

GPU memory systems; some actual hardware will support a

more permissive model (from the software perspective). For

these reasons, we define an alternative model that relaxes

HRF-direct’s strict scoping requirements and may enable a

wider range of parallel software on heterogeneous accelera-

tors.

In the forward-looking HRF-indirect model, two threads

can synchronize indirectly through a third party even if the

two threads interact with that third party using different

scopes. For example, threads A and C can communicate if A

synchronizes with another thread B using scope S1 and then

B synchronizes with C using scope S2. This type of transi-

tive interaction can enable more irregular parallelism in fu-

ture heterogeneous applications (e.g., in an algorithm in

which A does not know who C is or where C is located).

HRF-indirect better supports programmability features like

composability and is currently supported by existing GPU

hardware. However, HRF-indrect may be harder to support

if heterogeneous memories are non-hierarchical and it can

prevent some future low-level optimizations allowed by

HRF-direct (Section 6).

To explore the practical differences between HRF-direct

and HRF-indirect, we have developed a task-parallel

runtime for GPUs that performs automatic load balancing as

an example of irregular parallelism. We describe the

runtime in Section 7 focusing on the design differences be-

tween HRF-direct and HRF-indirect implementations of the

runtime. In Section 8 we evaluate the performance conse-

quences of those differences, showing that the HRF-indirect

version can outperform the HRF-direct version by 3-10% in

a system resembling modern hardware. However, we also

point out the caveats to this result, including considerations

about system optimizations prohibited by HRF-indirect that

could be used in HRF-direct systems.

HRF-direct and HRF-indirect are two of many possible

formulations of an SC for HRF model. In Section 5.2 we

discuss some other properties that SC for HRF models could

adopt in the future, notably including a property called

scope inclusion that exploits the hierarchical nature of most

scope definitions. In summary, in this paper we make the

following contributions to the state of the art:

Define with Scoped Synchronization: We identify the need

to more formally define and better describe the semantics of

scoped synchronization operations, especially when work-

items interact through different scopes.

SC for HRF Models: We propose a class of programmer-

centric memory models called sequential consistency for

heterogeneous-race-free to describe systems with scoped

synchronization support.

HRF-direct: We define the HRF-direct model for today’s

highly regular GPGPU programs with current standards

(e.g., OpenCL 2.0).

HRF-indirect: We define the forward-looking HRF-indirect

model for future irregular GPGPU programs with runtime-

determined data flow from producers to consumers.

3

2 Background and Setup

In this section, we first provide a history of memory con-

sistency models for CPUs, focusing particularly on the data-

race-free models that we build on in this paper. Then we

describe the features of modern GPU hardware that necessi-

tate scoped synchronization for good performance.

2.1 Memory Consistency Models

A memory (consistency) model specifies the semantics of

shared memory, so that both users and implementers can

push limits using precise correctness definitions [2, 36].

Low-level models interface low-level software (e.g., compil-

ers, JITs, and runtime) to hardware, while high-level models

interface high-level languages (e.g., C++ and Java) to the

"system" that includes low-level software and hardware.

For microprocessors and multi-core chips, low- and

high-level memory models have arguably taken (at least)

three decades to mature. Microprocessors emerged in 1971

for uniprocessors and were also put in multiprocessors in

the early 1980's (e.g., Sequent Balance [37]). Even though

Lamport [24] specified sequential consistency (SC) in 1979,

most multiprocessors do not implement SC due to their use

of write buffers. In 1991, Sindhu et al. [35] formalized total

store order (TSO) as a low-level memory consistency model

that captured what microprocessors often do in the presence

of a write buffer. Meanwhile, to increase flexibility, aca-

demics investigated more relaxed low-level memory mod-

els, such as weak ordering [14], release consistency [15],

and data-race-free (DRF) [3]. Notably, providing sequential

consistency to data-race-free programs (SC for DRF) [3],

became a cornerstone of the Java [26] and C++ [7] models

in 2005 and 2008, respectively. In 2008, a full 15 years after

the first multiprocessor x86 architecture came to market,

Intel released a formalization of x86-TSO (summarized by

Owen, et al. [33]).

A goal of this work is to accelerate the process of defin-

ing high- and low-level memory models for heterogeneous

systems so that it takes much less than three decades.

2.2 Sequential Consistency for Data-race-free

Sequentially consistency guarantees that the observed order

of all memory operations is consistent with a theoretical

execution in which each instruction is performed one at a

time by a single processor [24]. SC preserves programmer

sanity by allowing them to think about their parallel algo-

rithms in sequential steps. Unfortunately, true SC can be

difficult to implement effectively without sacrificing per-

formance or requiring deeply speculative execution [17]. As

a result, most commercially relevant architectures, runtimes,

and languages use a model weaker than SC that allows cer-

tain operations to appear out of program order at the cost of

increased programmer effort.

To bridge the gap between the programming simplicity

of SC and the high performance of weaker models, a class

of models, called SC for DRF, was created that guarantees

an SC execution if the program has no data races (i.e., is

protected by control synchronization and memory fences).

In the absence of data races, the system is free to perform

any reordering as long as it does not cause an observable

violation of SC. SC for DRF models differ on the defined

behavior in the presence of race, and vary from providing no

guarantees [3, 7] to providing weak guarantees like write

causality [26].

In Figure 2 we give a concrete example of a sequentially

consistent data-race-free program in C++.
4
 In this program,

the load into R2 does not race with the store X=1 because

they are separated by paired synchronization accesses on

atomic variable A. The later load into R3 also does not

cause a race because in SC for DRF models, synchroniza-

tion has a transitive effect (a property that will be important

in our subsequent discussion of HRF models). In the exam-

ple, the load into R3 does not form a race with the store X=1

by thread t1 even though t1 and t3 do not use the same syn-

chronization variable. In this case, the threads are synchro-

nized indirectly through the causal chain involving atomics

A and B.

2.3 Modern GPU Hardware

Because current GPU hardware is optimized to stream

through data (as is common for graphics), GPU caches are

managed differently than CPU caches. CPU memory sys-

tems optimize for reads and writes with high locality via

read-for-ownership (RFO) cache coherence protocols. RFO

protocols obtain exclusive permission for a line before writ-

ing it. Fortunately, good locality makes it likely that this

initial cost gets amortized over many subsequent low-cost

cache hits.

4 Those familiar with C++ will notice that the explicit memory order syntax

is unnecessary. We use the verbose form to match with OpenCL examples
later.

 atomic<int> A = {0};
 atomic<int> B = {0};
 int X;

Thread t1

X = 1;
A.store(1, memory_order_seq_cst); // release

Thread t2

 while(!A.load(memory_order_seq_cst)); // acquire
 int R2 = X; // R2 will receive X=1 from t1
 B.store(1, memory_order_seq_cst); // release

Thread t3

 while(!B.load(memory_order_seq_cst)); // acquire
 int R3 = X; // R3 will receive X=1 from t1

Figure 2. An example of a data-race-free execution in C++11.

t1 and t3 do not race on location X because of a transitive in-

teraction through t2.

4

RFO protocols make less sense for GPUs whose data

streams afford little opportunity to amortize the latency of

obtaining exclusive coherence permission because subse-

quent caches hits are less common. Current GPU caches

behave less like conventional CPU caches and more like

streaming write-combining buffers that complete writes

without obtaining exclusive coherence permission (Section

3.2).

With GPU write-combining (non-RFO) caches, when

two work-items in a GPU synchronize, hardware must en-

sure both work-items read/write from a mutually shared

cache or memory level. To implement this correctly, current

hardware may make potentially shared data uncachable,

disable private caches for all potentially shared data, or

flush/invalidate caches at synchronization points [4, 30]. In

the final approach, the particular caches that need to be

flushed/invalidated depend on which work-items are syn-

chronizing (i.e., what the scope of synchronization is), and

therefore some synchronizations are more costly than oth-

ers. This is in stark contrast to a CPU using RFO coherence,

in which the hardware actions necessary at synchronization

events (e.g., handling probes or flushing a store buffer) are

the same regardless of which threads are involved in the

communication.

2.4 Data-race-free is Not Enough

There are two ways to achieve the benefits of SC for DRF

models in heterogeneous systems. First, we could use an

existing SC for DRF model as-is by forcing all synchroniza-

tion to use global scope. However, this would eschew the

benefits of scoped operations, likely resulting in inefficient

and poorly performing software.

Second, we could adapt the SC for DRF models to deal

with the behavior of scoped operations. In our view, this

approach fundamentally changes the understanding of race-

free. Informally, many understand data-race-free to mean

“conflicting accesses do not occur at the same time” [1]. As

we will show in the next section, that informal understand-

ing is not strong enough with scoped synchronization. With

scoped synchronization, control flow (with synchronization

semantics) can ensure that the conflicting data accesses will

not be concurrent, but because of scope there is no guaran-

tee that the result will be sequentially consistent. Also, as

we will show, certain properties of an SC for HRF model

are quite foreign to SC for DRF models – for example, in

the models presented in this paper, it is possible for two

atomic accesses to race with each other.

That is why we next extend the understanding of race-

free to include what we call heterogeneous races involving

synchronization of insufficient scope.

3 HRF-direct: Basic Scope Synchronization

In the HRF-direct synchronization model, if two threads

communicate, they must synchronize using operations of the

exact same scope. If − in some sequentially consistent

execution of a program − two conflicting data accesses are

⋃(⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗)

Formal Definition of HRF-direct

We formally define the HRF-direct model using set relational

notation, using the style adopted by Adve and Hill [3].

Conflict Definitions

Ordinary Conflict: Two operations op1 and op2 conflict

iff both are to the same address, at least one is a write,

and at least one is an ordinary data operation.

Synchronization Conflict: Two synchronization opera-

tions op1 and op2 conflict iff both are to the same loca-

tion, at least one is a write (or a read-modify-write), and

are performed with respect to different scopes.

Definitions for a Sequentially Consistent

Candidate Execution

Program Order (⃗⃗⃗⃗ ⃗): op1 ⃗⃗⃗⃗ op2 iff both are from the

same work-item or thread and op1 completes before op2.

Scoped Synchronization Order (⃗⃗ ⃗⃗ ⃗⃗): Release rel1 ap-

pears before acquire acq2 in ⃗⃗⃗⃗⃗⃗ iff both are performed

with respect to scope S, and rel1 completes before acq2.

Heterogeneous-happens-before-direct (⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗): The un-

ion of the irreflexive transitive closures of all scope syn-

chronization orders with program order:

where is the set of all scopes in an execution. Note that

in the above equation, the closure applies only to the in-

ner union and is not applied to the outer union.

Heterogeneous Race: A heterogeneous race occurs iff a

pair of operations op1 and op2 that are either an ordinary

or a synchronization conflict are unordered in ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.
Heterogeneous-race-free Execution: An execution is

heterogeneous-race-free iff there are no heterogeneous

races.

Program and Model Definitions

Heterogeneous-Race-Free Program: A program is heter-

ogeneous-race-free iff all possible sequentially consistent

executions of the program are heterogeneous-race-free.

Sequential Consistency for Heterogeneous-race-free-

direct (HRF-direct): A system obeys the HRF-direct

memory model iff all actual executions of a heterogene-

ous-race-free program are sequentially consistent.

Corollary

Other Total Orders: Because any heterogeneous-race-

free program is sequentially consistent in HRF-direct,

implementations must ensure an apparent total order of

all heterogeneous-race-free operations, including these

notable subsets:

- A total order of all synchronization operations with

respect to the same scope.

- A total order of all the heterogeneous-race-free syn-

chronization operations that could be observed by

any single work-item or thread.

5

performed without being separated by paired synchroniza-

tion of identical scope, then those accesses form a heteroge-

neous race and the result on an HRF-direct system is unde-

fined. Otherwise, a conforming implementation will guaran-

tee that the execution is sequentially consistent. HRF-direct

is a good match for existing, highly regular GPGPU work-

loads and provides considerable hardware implementation

flexibility (Section 6).

If a memory model is effective, programmers should be

able to easily determine the minimal amount of synchroni-

zation that must be performed for correctness. In a system

with scoped synchronization, this includes selecting the

smallest (i.e., fastest) scope operation possible. In HRF-

direct, programmers can follow a simple rule to achieve a

correct and fast execution: use the smallest scope that in-

cludes all producers and all consumers of the data being

shared. If, for example, work-items in a work-group are

coordinating to share data only within the work-group, then

a work-group scope should be used. If, on the other hand,

some of that data may be shared beyond that work-group in

the future, a larger (e.g., device) scope must be used by all

of the work-items.

In the sidebar on page 4 we provide a formal definition

of HRF-direct that can be used to reason rigorously about

program behavior or system optimizations in terms of a

well-defined happens-before relation. There are two key

differences in HRF-direct compared to a traditional DRF

model. First, HRF-direct considers synchronization opera-

tions performed at different scopes to be conflicting opera-

tions. Second, HRF-direct creates a separate happens-before

order relative to each scope. For each scope S1, the S1 hap-

pens-before order is the conventional notion of DRF hap-

pens-before but where all synchronization with respect to a

different scope S2 ≠ S1 is treated as an ordinary operation.

An execution contains a race in HRF-direct if any two con-

flicting operations are unordered in all the scope-relative

happens-before orders.

For now, we focus on the high-level concepts behind

HRF-direct by applying it to an example to show how it can

be used to reason about a high-performance heterogeneous

application. We will discuss more in-depth details of the

model in Section 3.3.

3.1 Race-free Example

In Figure 3 we show the skeleton of a simple GPGPU kernel

that is synchronized correctly under HRF-direct. The algo-

rithm, loosely modeled after the HotSpot application in the

Rodinia benchmark suite [11], performs a stencil computa-

tion over a series of timesteps. The application uses a small

amount of data and computation replication to reduce global

synchronization. Rather than globally synchronize between

each timestep, the program instead computes several

timesteps locally within a work-group before having to ex-

change boundary conditions with neighboring work- groups.

Notably, within the inner loop of Figure 3, work-items

communicate only with other work-items inside their work-

group and in the outer loop work-items communicate only

with other work-items outside their work-group.

Because the communication pattern in the application is

highly regular and predictable, it is easy to choose minimal

scope for the synchronization points that will be race-free in

HRF-direct. The timestep barrier in the inner loop should

use work-group scope and the timestep barrier in the outer

loop should use device (assuming the CPU is not involved)

scope. The programmer can be sure this is race-free because

between any work-item communication there is (a) syn-

chronization using (b) scope to which both work-items be-

long.

While this example may seem simple, this pattern of

communication is common in today’s GPGPU applications.

However, readers familiar with Rodinia or OpenCL / CUDA

programming in general will notice two notable simplifica-

tions in the pseudocode. First, in the actual applications, the

inner loop uses the GPU scratchpad memory (“local

memory” in OpenCL and “shared memory” in CUDA) for

all work-item communication. Second, the outer “barrier” is

actually a series of distinct kernel launches. We believe that

both of these characteristics will be less common in future

GPGPU applications as global memory caches increase in

size and inter-work-group communication becomes more

possible. Models like HRF-direct will help ease that transi-

tion and ultimately make GPUs more programmable.

For t=0; t < nsteps; t+= group_step_size:
 group_step_size times do:
 <stencil calculation on shared grid>
 BarrierSync(work-group scope)
 BarrierSync(device scope)
 <exchange work-group boundary conditions>

Figure 3. An example race-free HRF-direct algorithm

Figure 4. Example hardware implementation for HRF-direct

that closely approximates a GPU architecture.

wi1wi1wi1wi

NDRange/device

Work-group

Sub-group

wi1wi1wi1wi
wi1wi1wi1wi

wi1wi1wi1wi Visibility

L1 L1

L2

6

3.2 Implementation

In Figure 4, we show a baseline memory architecture similar

to a modern GPU. It has a two-level cache hierarchy in

which each compute unit (which runs a work-group) has a

private L1 cache and the device as a whole shares an L2

cache. We assume that all caches use a write-combining

strategy, and notably do not use a read-for-ownership coher-

ence protocol. Because the caches write without exclusive

permission, they keep track of partial cache block writes to

avoid data corruption in the presence of false sharing. For

each block, the caches maintain a bitmask of dirty bytes.

When a block is evicted to the next level of cache/memory,

only those dirty bytes are written back.

In general, we make this example implementation com-

patible with HRF-direct by (1) on a release event, flushing

dirty data from any cache/memory that are not visible to all

threads in the scope of synchronization, (2) on an acquire

event, invalidating the now-stale data from caches/memories

that are not visible to all threads in the scope of synchroni-

zation, and (3) completing all atomic operations in the

cache/memory corresponding to the scope of the atomic. For

example, on a work-group-scope release, the sub-group (i.e.,

SIMT vector)-private write buffers will be flushed to the L1

because the write buffers are not visible to all work-items in

the work-group. On a device-scope acquire, the system

would invalidate the acquiring work-item’s L1 cache be-

cause it is not visible to all work-items on the device. On a

device-scope atomic increment, the system would perform

the read-modify-write entirely in the L2 cache controller.

This policy results in an SC execution of race-free HRF-

direct programs. To see why, recall that HRF-direct requires

conflicting accesses (same location, at least one is a write)

to be separated by synchronization of the same scope. In the

example implementation, that means the conflicting access-

es both will have reached (at least) the same level in the

memory hierarchy, and the location’s most recent update

will be returned. The location could not see some other val-

ue because that would constitute a race.

While this example implementation is simple, it is also

representative of current hardware. Qualitatively, it also

clearly shows the performance benefit of scoped synchroni-

zation; there is an obvious difference in the cost of a work-

group-scope release (flush write buffers, if any) compared to

a system-scope release (flush dirty data from L1 and L2

caches). When combined with the previous observation that

HRF-direct is easy to use in regular heterogeneous applica-

tions, we conclude that HRF-direct is a reasonable and use-

ful model for heterogeneous systems.

3.3 Subtleties of Synchronization

In HRF-direct, a program composed entirely of atomic syn-

chronization operations could contain a race – and therefore

the execution would be undefined. This is a major diver-

gence from SC for DRF models in which any program com-

posed entirely of synchronizing atomics is race-free. In Fig-

ure 5 we show an example all-atomic program that is racey

in HRF-direct when the work-items are in different work-

groups.

In general, to avoid confusion about racing synchroniza-

tion, a best practice when using HRF-direct is to associate a

single scope with each atomic or synchronization variable.

For example, software could be constructed so that variable

A is always used with work-group-scope, variable B with

device-scope, etc. If this practice is followed, atomic or syn-

chronization operations will never race with each other

(though other types of heterogeneous races can certainly

still occur). Future languages may want to provide first-class

support for mapping synchronization variables to scopes in

this way.

3.3.1 Digging Deep: The Order of Atomics

An HRF-direct implementation must ensure an observable

total order among some atomics but not others. In a hierar-

chical scope layout (like OpenCL’s in Figure 1), an HRF-

direct implementation is free to reorder two atomics if they

are performed with respect to disjoint scopes. If the scopes

are disjoint, no work-item or thread in the system could ob-

serve the atomic operations without forming a race
5
. Be-

cause all attempts to observe an order directly would form a

race, an implementation is not bound to produce any reliable

order or even ensure atomicity. In the racey version of Fig-

ure 5, in which the two work-items belong to different

work-groups, an implementation does not need to ensure the

two accesses to A are ordered or atomic because the two

accesses use disjoint scopes.

However, an implementation must still produce an ob-

servable total order (1) among all race-free atomics per-

5 Unless the atomic operations are ordered as ordinary loads/stores through
other, race-free, synchronization

__global atomic<int> A = {0};
__global atomic<int> B = {0};
// __global means “not in a scratchpad” in OpenCL

Work-item wi1

 A.store(1, memory_order_seq_cst,
 memory_scope_work_group);
 B.load(memory_order_seq_cst,
 memory_scope_device);

Work-item wi2

 B.store(1, memory_order_seq_cst,
 memory_scope_device);

 // A.load forms a race when
 // workgroup of wi1 ≠ workgroup of wi2
 A.load(memory_order_seq_cst,
 memory_scope_work_group);

Figure 5. Subtleties of synchronization order.

This is race-free if work-group of wi1 = work-group of wi2.

This is racey if work-group of wi1 ≠ work-group of wi2.

7

formed with respect to the same scope and (2) among all

race-free atomics performed with respect to overlapping

scopes. We illustrate this point in the race-free version of

Figure 5, in which both work-items belong to the same

work-group. Because the example is race-free, an imple-

mentation must ensure a total order between the four ac-

cesses to A and B (i.e., A = B = 0 not allowed) even though

the accesses to A and B are performed with respect to dif-

ferent (but overlapping) scopes.

Our example implementation in Section 3.2 seeks high

performance by exploiting the weaker order of atomics rela-

tive to an SC for DRF-compliant system. In that implemen-

tation, atomics are completed in the cache or memory asso-

ciated with target scope (e.g., a work-group scope atomic

increment is completed in the L1 cache without obtaining

exclusive global permission). This implementation meets

the requirements of an HRF-direct system: all race-free

atomic accesses will use the same physical resource, ensur-

ing that all work-items will observe race-free accesses in the

same order.

3.3.2 Function Composition

Scopes complicate generic library functions that synchro-

nize. In HRF-direct, because producers and consumers must

use the same scope, it is not good enough for a generic li-

brary function to assume the worst and always synchronize

with global scope. A future consumer of the data produced

by that function may synchronize with a different scope,

forming a race. To get around this problem, libraries may

need to accept a scope as a parameter. For example, a li-

brary might provide a lock(memory_scope s) routine that

guarantees the caller is synchronized with respect to scope s

after the lock is acquired.

3.4 Limitations

While we have shown HRF-direct is a sufficient and (rela-

tively) easy-to-understand model for programs with highly

regular parallelism, it does have limitations that may impede

the adoption of forward-looking software. Most notably, the

HRF-direct requirement that all threads use the exact same

scope could make it difficult to write high-performance syn-

chronization in software with irregular parallelism. In situa-

tions when the producer and consumer are not known a pri-

ori, HRF-direct software will likely be forced to conserva-

tively use the largest scope that includes any work-item that

could be a consumer. Often, this will be the much slower

device or system scope (see Section 7 for a more in-depth

analysis).

4 HRF-indirect: Adding Transitivity

HRF-indirect builds on the HRF-direct model by permitting

communication that involves a transitive chain of synchro-

nization that uses different scopes. We show an example of

HRF-indirect’s scope transitivity in Figure 6 in which work-

(⃗⃗⃗⃗ ⋃ ⃗⃗⃗⃗⃗⃗

)

Formal Definition of HRF-indirect

The structure of HRF-indirect is identical to the HRF-direct

definition but with a different happens-before relation:

Heterogeneous-happens-before-indirect (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗): The ir-

reflexive transitive closure of all scope synchronization

orders and program order:

where represents the set of all scopes in an execution.

 __global atomic<int> A = {0};
 __global atomic<int> B = {0};
 __global int X;
// __global means “not in a scratchpad” in OpenCL

Work-item wi1 -- in work-group wgX

 11: X = 1;
 12: A.store(1, memory_order_seq_cst, // release
 memory_scope_work_group);

Work-item wi2 -- in work-group wgX

 21: while(!A.load(memory_order_seq_cst, // acquire
 memory_scope_work_group));
 22: int R2 = X; // R2 will get value 1
 23: B.store(1, memory_order_seq_cst, // release
 memory_scope_device);

Work-item wi3 -- in work-group wgY (Note! not wgX)

 31: while(!B.load(memory_order_seq_cst, // acquire
 memory_scope_device));
 32: int R3 = X; // R3 will get value 1

Figure 6. An example of a racey execution in HRF-direct that

is data-race-free in HRF-indirect.

In the diagram below the code, we show the orders established

in both HRF models (left) and the happens-before order in

HRF-direct (middle) and HRF-indirect (right).

8

item wi1 synchronizes with wi2 in their shared work-group

scope and then wi2 synchronizes with wi3 with a different

device scope. Note that this is the same execution as the

DRF example in Figure 2, but altered so that the two syn-

chronization pairs use different scopes. Notably, each pair

of direct synchronization (e.g., between wi1 and wi2 using

A) must still use the same scope (we discuss relaxing this

requirement in Section 5.2).

From the programming standpoint, HRF-indirect has

several advantages relative to HRF-direct. First, as Figure 6

shows, in HRF-indirect producers and consumers do not

have to be aware of each other, which can expand the types

of algorithms practically possible on accelerator architec-

tures. In Section 7 we show how this situation may arise in

practice. Second, it gives programmers more flexibility in

the choice of scope and could lead to improved perfor-

mance. If, for example, a producer knows that a work-item

outside its work-group will eventually consume its data, but

also knows that several steps must first occur within the

work-group, then the producer may choose to perform a

smaller work-group-scope synchronization and rely on

work-group peers to synchronize with the more distant

work-items later.

HRF-direct is compatible with HRF-indirect: all pro-

grams that are race-free in HRF-direct are also race-free in

HRF-indirect. This property opens the possibility of extend-

ing existing models to support HRF-indirect in the future;

such a change will not break the compatibility of existing

well-behaved software.

We provide a formal definition of HRF-indirect in the

sidebar on page 7. In HRF-indirect, operations are ordered

in the happens-before relation if they can be linked by any

transitive combination of synchronization and program or-

der. Figure 6 visually shows the difference between the

happens-before relations of HRF-direct and HRF-indirect,

and emphasizes the fact that in HRF-direct, order can only

be established with respect to a single scope. In Figure 6, we

break the happens-before relation of HRF-direct into com-

ponents attributable to the work-group and device scopes,

respectively.

Like HRF-direct, in HRF-indirect synchronization re-

lease and acquire operations are only paired if they are from

the same scope. As such, it is still possible to write a racey

program consisting entirely of atomics. In fact, the same

subtleties of synchronization mentioned in Section 3.3 for

HRF-direct also apply to HRF-indirect.

4.1 Example Implementation

As a testament to practicality of HRF-indirect, the example

implementation described in Section 3.2 for HRF-direct

works as-is. That simple system, which is a good approxi-

mation of existing hardware, is a conservative implementa-

tion of HRF-direct. With HRF-indirect, software can better

exploit the capabilities of existing hardware. Though, as we

discuss in Section 6, HRF-indirect does not allow as many

potential optimizations in the future as HRF-direct.

To see why the example implementation is compatible

with HRF-indirect, consider Figure 4. When the system per-

forms a release to device scope by flushing the L1 cache, it

is not just flushing prior writes performed by that work-item

– it is also flushing any prior write in the L1 performed by a

different work-item in the same work-group. Therefore, in

the implementation, the release actions effectively perform

on behalf of the entire scope associated with that

cache/memory. That is why the example in Figure 6 works.

When wi2 performs the device-scope release and flushes the

L1, it is also flushing the prior store to X by wi1 that must

be in (at least) the L1 cache because of the prior work-

group-scope release.

5 Exploring HRF Properties

In this section, we compare the properties of HRF-direct and

HRF-indirect to existing academic and commercial memory

models. Then we discuss another property that is not present

in either HRF variant that future models may consider.

5.1 Memory Model Comparisons

5.1.1 DRF

Both HRF-direct and HRF-indirect are compatible with a

DRF model. In other words, any program that exclusively

uses system-scope synchronization and is free of ordinary

data races will be sequentially consistent with either model.

Notably, this means that programmers have the option of

writing data-race-free programs to begin with for functional

correctness, and then adjusting scope later for performance.

5.1.2 OpenCL

The first OpenCL specifications (1.x) have very restrictive

memory models that do not support any communication

outside of a work-group between kernel invocations.

OpenCL 2.0 solves this particular issue with a broader defi-

nition of atomic operations.

OpenCL 2.0’s execution model [28] is extended to sup-

port, among other things, fine-grain shared virtual memory

(SVM), a single flat address space, and an extended subset

of the recently introduced C11-style atomics [7]. The speci-

fication also contains a rigorously defined memory model

that brings each of these disjoint features together into a

single framework.

9

The OpenCL 2.0 memory model is an SC for HRF mod-

el when the sequentially consistent ordering

(memory_order_seq_cst) is used. OpenCL 2.0 is more re-

strictive than either HRF-direct or HRF-indirect– for exam-

ple, in OpenCL 2.0, a program can use either device scope

or system scope for atomics but not both within the same

kernel. This intermix of different scoped atomics is disal-

lowed even if individual locations are consistently accessed

using atomics of the same scope. Should the designers want

to relax the model in the future to allow intermixing atomics

with different scope, they will need to consider the issues

discussed above.

5.1.3 CUDA

Recent versions of CUDA (compute capability ≥ 2.0) sup-

port global shared memory and scoped synchronization.

More specifically, CUDA supports a __threadfence instruc-

tion that acts as a memory fence with block (work-group),

device (GPU), or system (GPU + CPU) scope. Other in-

structions with control-flow effects like __syncthreads also

have scoped synchronization semantics.

Because CUDA uses a different framework to define its

memory model, it is hard to make a direct comparison to the

HRF models. CUDA does support a form of scope transitiv-

ity (e.g., example in Section B.5 of the CUDA Program-

ming Guide [12]). However, because CUDA is not defined

axiomatically, it is difficult to say if it has the same proper-

ties of scope transitivity defined for HRF-indirect.

5.1.4 Heterogenous System Architecture and
Parallel Thread Execution

HRF models are not limited to high-level languages. Low-

level intermediate languages like HSAIL [21] and PTX [30]

also use synchronization scopes and could benefit from a

formal HRF definition. HSAIL is particularly well-suited

for the HRF models in this paper because it uses a variant of

scoped acquire/release synchronization.

5.1.5 Non-global Memory Types

In our discussion we have disregarded the scratchpad mem-

ories that exist in GPUs and that are exposed by both the

OpenCL and CUDA programming models. While our mod-

els could be extended to include these software-controlled

memories, we assume they will be less relevant in the future

as heterogeneous software becomes more portable. As evi-

dence for this trend, the more recent OpenACC program-

ming model [32] does not include scratchpads.

5.2 Future HRF Models -- Scope Inclusion

Other HRF models are possible that support properties be-

yond those in HRF-direct/indirect. One such property is

what we call scope inclusion
6
, in which two work-items are

allowed to synchronize directly (e.g., non-transitively) with

each other using operations of different scope. Informally,

scope inclusion would support race-free paired synchroniza-

tion when the scope of the first is a subset of the scope of

the second (i.e., one includes the other). We show an exam-

ple in Figure 7.

Scope inclusion would require an implementation to en-

sure that synchronization operations with respect to inclu-

sive scopes are ordered. This requirement is very similar to

the requirement already present both in HRF-direct and

HRF-indirect (and discussed in Section 3.3.1) – that atomics

from overlapping scopes must be ordered. Therefore, we

expect any conceivable implementation of HRF-direct or

HRF-indirect would also support scope inclusion.

We did not define scope inclusion as part of the model

because precisely defining when scope inclusion does and

does not apply can be nuanced (as demonstrated by the

complexity of Section 3.3.1 describing a similar property).

However, given a concise and understandable definition,

scope inclusion could be added to either HRF model by al-

tering the definition of a synchronization conflict.

6 OpenCL 2.0 uses the term “scope inclusion” to mean “the exact same

scope.” However, the term is defined in such a way that extending to the
notion of inclusion described here would be straightforward in the future.

__global atomic<int> A = {0};
__global atomic<int> B = {0};
// __global means “not in a scratchpad” in OpenCL

Work-item wi1 – in workgroup wgX

 A.store(1, memory_order_seq_cst,
 memory_scope_device);
 B.load(memory_order_seq_cst,
 memory_scope_device);

Work-item wi2 – in same workgroup wgX

 B.store(1, memory_order_seq_cst,
 memory_scope_work_group);
 A.load(memory_order_seq_cst,
 memory_scope_work_group);

Figure 7. An example of scope inclusion.

Figure 8. Architecture and scope layout of a possible pro-

grammable pipeline.

L1-2 L2-3Stage 1 Stage 2 Stage 3

L1/L2/DRAM

Scope 1-2 Scope 2-3

Scope Global

10

6 System Optimizations

While the more permissive HRF-indirect model enables

higher performance on current hardware, it may limit some

hardware optimizations in the future compared to HRF-

direct. To support HRF-direct in a system like the one in

Figure 4, on a release, an implementation only needs to

flush locations that have been written by the releasing work-

item. Other blocks in the cache could remain untouched,

potentially reducing the negative effect synchronization has

on other work-items sharing those resources.

The same targeted flush optimization would be incorrect

on an HRF-indirect-compatible system. Because of the tran-

sitivity property, a release in HRF-indirect does not just

guarantee visibility of locations touched by the releasing

work-item. Rather, it also guarantees visibility of any loca-

tion touched by another work-item that previously synchro-

nized with the releasing work-item. Thus, while an imple-

mentation with more targeted flush operations is possible, it

would take considerable design effort to determine which

blocks are safe to ignore.

An efficient implementation of HRF-indirect in a non-

RFO system relies on a hierarchical memory layout and

scopes that do not partially overlap. This is likely to be a

feature of foreseeable GPU architectures but could be an

issue with future non-hierarchical memory systems. For

example, the architecture of the recently proposed Convolu-

tion Engine by Qadeer, et al. [34] resembles a programma-

ble pipeline. To reduce the latency of communicating be-

tween neighboring pipeline stages, a designer might want to

build a cache between the stages that can be controlled with

an HRF scope, as shown in Figure 8. While possible, it

would likely take considerable engineering effort to avoid

flushing the inter-stage caches on all synchronization

events, even when an inter-stage scope is used.

7 Case Study: Work-sharing Task Runtime

We have previously argued that HRF-direct is suitable for

current regular GPGPU programs and that both HRF-direct

and HRF-indirect are supported by some current hardware.

Here we seek to show that programmers who confront

HRF-indirect’s complexity can be rewarded with higher

performance than with HRF-direct. To this end, we have

developed a work-sharing, task-parallel runtime for GPUs

that serves as an example of a workload with irregular paral-

lelism and unpredictable synchronization. This section de-

scribes the design of that runtime and discusses how HRF-

direct and HRF-indirect affect software design decisions. In

Section 8, we will show how those decisions affect perfor-

mance on a system resembling modern GPU hardware.

We have built a work-sharing runtime whose internal

task queue is split into a hierarchy resembling the entities in

the OpenCL execution model and, by extension, physical

components in GPU hardware. For now, the runtime only

supports GPU work-item workers and does not support CPU

(host) thread workers. In the future the runtime could be

extended to support participation from the CPU. The work-

sharing task queue is broken into three levels, namely the

device queue, multiple work-group queues, and multiple

sub-group queues, as shown in Figure 9(a).

7.1 Runtime Description

Applications use the runtime by defining tasks from the

perspective of a single, independent worker. Notably, the

programmer does not need to consider the OpenCL execu-

tion hierarchy, because the runtime scheduler effectively

hides those details. The runtime itself is built using the per-

sistent threads [18] execution model, and takes complete

control of task scheduling and load balancing by bypassing

the hardware scheduler (by monopolizing all execution

units).

To map the task-parallel execution model exposed by

the runtime onto the OpenCL hierarchy, the runtime collects

tasks created by workers into sub-group-sized (e.g., 64)

groups called task-fronts. As shown in Figure 9c, task-fronts

are the objects held in the task queues, and are assigned to

ready sub-groups. Each task in a task front will run on a

different work-item in the sub-group. To reduce control

divergence that could decrease performance, the runtime

ensures that all tasks in a task front call the same function. A

sub-group will generally wait until a task front is full before

dequeueing work except in some corner cases where it may

be beneficial to grab a partial task-front and tolerate idle

work-items (e.g., at the beginning of execution).

The runtime implements a work-sharing, as opposed to a

work-stealing, load-balancing policy. When a sub-group has

produced enough tasks to fill a task front, it will first

enqueue it onto its own private sub-group queue. Then, the

sub-group may decide to donate one or more task fronts

from its private queue if the occupancy of either the work-

group or device queues is below a minimum threshold. A

Figure 9. (a) Task queue hierarchy, (b) the heterogeneous hard-

ware it maps to (same as Figure 4), and (c) queue contents.

NDRange (Device) Queue

Queue
Task front

TaskTaskTaskTask Task front Task frontTaskTaskTaskTaskTaskTaskTaskTaskTaskTask

(a)

(c)

WIWIWIWIWIWIWIWIWIwi WIWIWIWIWIWIWIWIWIwi WIWIWIWIWIWIWIWIWIwi WIWIWIWIWIWIWIWIWIwi

Sub-group
Queue

Work-group Queue Work-group Queue

wi1wi1wi1wi
wi1wi1wi1wi

wi1wi1wi1wi
wi1wi1wi1wi

L1 L1

L2

(b)

Sub-group
Queue

Sub-group
Queue

Sub-group
Queue

11

sub-group always donates the oldest task in the queue under

the assumption that the oldest task will create the most new

work and thus avoid future donations.

7.2 HRF-direct/HRF-indirect Runtimes

In the runtime, inter-worker communication occurs at task

enqueue/dequeue points. At those points, the runtime must

decide which scope to use for synchronization. The decision

is complicated by the fact that the worker does not know at

enqueue time who the eventual consumer will be. For ex-

ample, if a worker makes a donation to the work-group

queue, it must assume that another worker could later do-

nate the work to the device queue. Thus, the eventual con-

sumer could be anywhere in the system.

This unknown-consumer aspect makes it difficult to ef-

ficiently synchronize with the HRF-direct model. Recall that

HRF-direct mandates that both producer and consumer use

identical scope to synchronize. In a straightforward HRF-

direct implementation, all synchronization must use device

(NDRange) scope since neither producer nor consumer

know each other. There may be ways to avoid an always-

global scope policy, but it would complicate the runtime and

could require invasive policies such as a restriction on

which tasks can be donated from a queue (potentially im-

pacting performance since “oldest first” donation, which has

been shown to have optimal performance in some task

runtimes [6], would not be straightforward).

In contrast, the transitive property of HRF-indirect

makes it possible to perform smaller scope synchronization

even when the exact producer/consumer pair is not known a

priori. Consider the problematic (for HRF-direct) case

above in which a task front is donated by a different worker

than the one that originally performed the enqueue. When

the donation occurs, the donating worker will perform a

larger scope synchronization operation and will form a tran-

sitive link between the original producer and the eventual

consumer, much like the interaction shown in Figure 6.

Thus, the execution will be race-free and workers can use

smaller scope in the common (non-donating) case.

8 Evaluation

In this section, we seek to qualitatively show that there are

practical differences between the HRF-direct and HRF-

indirect models in current heterogeneous hardware. We do

so by evaluating the performance of HRF-direct and HRF-

indirect versions of the task runtime previously discussed.

8.1 Methodology

We wrote the task runtime in OpenCL 2.0, extended to sup-

port HRF-indirect in addition to HRF-direct. On top of that,

we ported the Unbalanced Tree Search (uts) synthetic work-

load [31]. uts represents the traversal of an unbalanced

graph whose topology is determined dynamically as the

program runs. On visiting a node, the program computes

how many children to create using (deterministic) SHA-1

hash computation. Thus, the tasks themselves are short and

the number of children varies widely, making the workload

a good test of task-parallel runtimes.

We evaluate the runtime using four different input sets

to uts. The four represent scaled-down versions of the T1,

T2, T4, and T5 graphs suggested in the source code release

[38], and contain approximately 125K nodes each. We do

not include results from the T3 graph because it does not

have enough parallelism for GPU execution.

To calculate the performance of the workload, we run it

in a version of the gem5 simulator [5] that has been extend-

ed with a GPU execution and memory model. We config-

ured the GPU to resemble a modern mid-sized device with

eight compute units, with the precise options shown in Ta-

ble 1. The memory system for the GPU operates like the

example system in Section 3.2, in which caches are write-

combining and are flushed/invalidated based on the scope of

synchronization. We do not implement the potential future

hardware optimizations discussed in Section 6.

8.2 Results

Figure 10 shows the performance of each input set for the

HRF-direct and HRF-indirect versions of the task runtime.

In all cases, the HRF-indirect version has higher perfor-

mance due to the reduction in the number of expensive L1

flush/invalidate operations. The exact speed-ups vary be-

tween 3% and 10%, and correlate with the number of dona-

tions that occur during the traversal of a particular graph.

Generally, more donations (caused by a more unbalanced

tree) lead to better relative performance with the HRF-

indirect implementation.

Table 1. Configuration Parameters

Parameter Value

Compute Units 8

SIMD Units / Compute Unit 4

L1 cache 32Kb, 16-way

L2 cache 2MB, 16-way

Figure 10. Performance normalized to HRF-direct.

0.95

1

1.05

1.1

1.15

uts_t1 uts_t2 uts_t4 uts_t5P
e

rf
o

rm
an

ce
 N

o
rm

al
iz

e
d

to

 H
R

F-
d

ir
e

ct

HRF-direct HRF-indirect

12

8.2.1 Limitations and Caveats

We have not implemented the HRF-direct hardware optimi-

zations discussed in Section 6 nor the HRF-direct software

improvements discussed in Section 7.2. Doing any one or a

combination of these optimizations may alter the results and

conclusions discussed above. However, for reasons dis-

cussed in Section 7.2, including a sub-optimal task ordering,

our intuition tells us it is unlikely to surpass the performance

of HRF-indirect in this workload.

9 Related Work

Hechtman and Sorin recently argued that GPU systems

should implement SC, in part, by showing that the perfor-

mance of an SC GPU is comparable to one implementing a

weaker model [20]. Their analysis, however, assumes a

GPU that implements read-for-ownership coherence and

does not take interaction with a CPU core into account. In

this paper, we assume hardware that better represents cur-

rent GPUs (e.g., write combining buffers, scoped synchroni-

zation, and no read-for-ownership coherence), and propose

SC for HRF as a class of models to reason about consisten-

cy in similar current and future GPUs.

Other implementations of an HRF-direct/indirect compat-

ible system are also possible. Hechtman et al. proposed a

compatible cache hierarchy that will perform better that our

basic example implementation in Section 3.2 for programs

that make use of fine-grain synchronization [19].

Scoped synchronization is not limited to GPU systems.

The Power7 CPU system uses scoped broadcasts in its coher-

ence protocol [22]. Though this scoping is not ex-posed to the

programmers, it nonetheless represents the trend toward

scoped synchronization in modern hardware.

One could argue that message-passing models like MPI

provide scoped consistency by allowing threads to specify

senders and receivers explictly [16]. Of course, message-

passing models do not use shared memory, and as a result are

difficult to use with algorithms involving pointer-based data

structures like linked lists. In addition, shared memory pro-

grams are easier for compilers to optimize because in MPI

compilers must have semantic knowledge of the API to per-

form effective operation reordering [13].

Recently, there has been an effort in the high-performance

community to push programming models that make use of a

partitioned global address space (PGAS). These include lan-

guages like X10 [10], UPC [8], and Chapel [9]. Like SC for

HRF models, these PGAS languages present a single shared

address space to all threads. However, not all addresses in that

space are treated equally. Some addresses can be accessed

only locally while others can be accessed globally but have an

affinity or home node. As a result, PGAS programs still ex-

plicitly copy data between memory regions for high perfor-

mance. In contrast, in an SC for HRF model, a particular ad-

dress is not bound to a home node and there is no need for

application threads to copy data explicitly between memory

regions. Instead, an SC for HRF model uses scoped synchro-

nization operations to limit the communication overhead be-

tween a subset of threads.

There has been recent work on coherence alternatives for

shared memory in GPU architectures. Cohesion is a system

for distinguishing coherent and incoherent data on GPU ac-

celerators [23]. The incoherent data has to be managed by

software with explicit hardware actions like cache flushes. SC

for HRF models, on the other hand, abstract away hardware

details for programmers and rely on an implementation to

manage memory resources.

One downside of both the SC for DRF and SC for HRF

models is that racey software has undefined behavior. This

can be especially problematic in codes that use intentional

(benign) data races or in codes containing unintentional bugs.

To address this, Marino, et al. proposed the DRFx model that,

in addition to guaranteeing sequential consistency for data-

race-free programs, will raise a memory model exception

when a racey execution violates sequential consistency [27].

To do so, the authors propose adding SC violation detection

hardware similar to conflict detection mechanisms in hard-

ware transactional memory proposals. Either of the HRF var-

iants discussed in this paper could benefit from a similar

memory model exception should designers wish to support it.

Lucia et al. concurrently proposed conflict exceptions that,

like DRFx, raise a memory model exception on a race [25].

However, conflict exceptions are more precise and mandate

that the exception be raised at the point of conflicting address.

10 Conclusions

We have introduced sequential consistency for heterogene-

ous-race-free (SC for HRF), a class of memory models to

intuitively and robustly define the behavior of scoped syn-

chronization operations in heterogeneous systems. We moti-

vated the need for SC for HRF by showing why the existing

understanding of race freedom in homogeneous CPU systems

is insufficient when applied to systems using synchronization

scopes. We proposed two initial SC for HRF models. HRF-

direct represents the capabilities of existing heterogeneous

languages and requires synchronizing threads to use the exact

same scope. In the forward-looking HRF-indirect model,

threads can synchronize transitively using different scopes.

Our results show that HRF-indirect may have performance

advantages for software with irregular parallelism, but may

also restrict some future hardware optimizations.

Acknowledgements

We thank the anonymous reviewers and Hans Boehm for

their insightful comments and feedback. We also thank Marc

Orr and Shuai Che for their participation in many constructive

discussions.

References

[1] Adve, S.V. and Boehm, H.-J. 2010. Semantics of shared vari-
ables & synchronization a.k.a. memory models.

13

[2] Adve, S.V. and Gharachorloo, K. 1996. Shared memory con-
sistency models: A tutorial. Computer. 29, 12 (1996), 66–76.

[3] Adve, S.V. and Hill, M.D. 1990. Weak ordering—a new

definition. Proceedings of the International Symposium on

Computer Architecture (New York, NY, USA, 1990), 2–14.

[4] AMD, Inc. 2012. Southern Islands series instruction set archi-
tecture. Advanced Micro Devices.

[5] Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi,

A., Basu, A., Hestness, J., Hower, D.R., Krishna, T. and Sar-

dashti, S. 2011. The gem5 simulator. ACM SIGARCH Com-
puter Architecture News. 39, 2 (2011), 1–7.

[6] Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E.,

Randall, K.H. and Zhou, Y. 1995. Cilk: An efficient multi-
threaded runtime system. ACM.

[7] Boehm, H.-J. and Adve, S.V. 2008. Foundations of the C++

concurrency memory model. International Symposium on

Programming Language Design and Implementation (PLDI)
(Tuscon, AZ, Jun. 2008), 68–78.

[8] Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K.,

Brooks, E. and Warren, K. 1999. Introduction to UPC and

language specification. Center for Computing Sciences, Insti-
tute for Defense Analyses.

[9] Chamberlain, B.L., Callahan, D. and Zima, H.P. 2007. Paral-

lel programmability and the chapel language. International

Journal of High Performance Computing Applications. 21, 3

(2007), 291–312.

[10] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra,

A., Ebcioglu, K., Von Praun, C. and Sarkar, V. 2005. X10: an

object-oriented approach to non-uniform cluster computing.
ACM SIGPLAN Notices (2005), 519–538.

[11] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee,

S.-H. and Skadron, K. 2009. Rodinia: a benchmark suite for

heterogeneous computing. IEEE International Symposium on

Workload Characterization, 2009. IISWC 2009 (Oct. 2009),
44 –54.

[12] CUDA 5.5 C programming guide: 2013.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

Accessed: 2013-12-19.

[13] Danalis, A., Pollock, L., Swany, M. and Cavazos, J. 2009.

MPI-aware compiler optimizations for improving communi-

cation-computation overlap. Proceedings of the 23rd interna-
tional conference on Supercomputing (2009), 316–325.

[14] Dubois, M., Scheurich, C. and Briggs, F. 1986. Memory

access buffering in multiprocessors. ISCA ’86 Proceedings of

the 13th annual international symposium on Computer archi-
tecture (1986), 434–442.

[15] Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gup-

ta, A. and Hennessy, J. 1990. Memory consistency and event

ordering in scalable shared-memory multiprocessors. Pro-

ceedings of the 17th annual International Symposium on
Computer Architecture (1990), 376–387.

[16] Gropp, W., Lusk, E. and Skjellum, A. 1999. Using MPI:

portable parallel programming with the message passing in-
terface. MIT press.

[17] Guiady, C., Falsafi, B. and Vijaykumar, T.N. 1999. Is

SC+ILP=RC? Proceedings of the 26th International Sympo-

sium on Computer Architecture, 1999 (1999), 162 –171.

[18] Gupta, K., Stuart, J. and Owens, J.D. 2012. A study of persis-

tent threads style GPU programming for GPGPU workloads.

Proceedings of Innovative Parallel Computing (InPar ’12)
(May 2012).

[19] Hechtman, B.A., Che, S., Hower, D.R., Tian, Y., Beckmann,

B.M., Hill, M.D., Reinhardt, S.K. and Wood, D.A. 2014.

QuickRelease: a throughput oriented approach to release con-

sistency on GPUs. Proceedings of the 20th International

Symposium on High Performance Computer Architecture
(HPCA) (Orland, FL, Feb. 2014).

[20] Hechtman, B.A. and Sorin, D.J. 2013. Exploring memory

consistency for massively-threaded throughput-oriented pro-

cessors. Proceedings of the 40th International Symposium on
Computer Architecture (ISCA) (Tel Aviv, Israel, Jun. 2013).

[21] HSA Foundation 2012. Heterogeneous System Architecture:
A Technical Review.

[22] Kalla, R., Sinharoy, B., Starke, W.J. and Floyd, M. 2010.

Power7: IBM’s next-generation server processor. IEEE Mi-

cro. 30, 2 (2010), 7–15.

[23] Kelm, J.H., Johnson, D.R., Tuohy, W., Lumetta, S.S. and

Patel, S.J. 2010. Cohesion: a hybrid memory model for accel-

erators. Proceedings of the 37th annual international sympo-

sium on Computer architecture (New York, NY, USA,
2010), 429–440.

[24] Lamport, L. 1979. How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE Trans-
actions on Computers. C-28, 9 (Sep. 1979), 690 –691.

[25] Lucia, B., Ceze, L., Strauss, K., Qadeer, S. and Boehm, H.J.

2010. Conflict exceptions: providing simple concurrent lan-

guage semantics with precise hardware exceptions. Interna-
tional Symposium on Computer Architecture (ISCA) (2010).

[26] Manson, J., Pugh, W. and Adve, S.V. 2005. The Java

memory model. Proceedings of the 32nd ACM SIGPLAN-

SIGACT symposium on Principles of programming lan-
guages (New York, NY, USA, 2005), 378–391.

[27] Marino, D., Singh, A., Millstein, T., Musuvathi, M. and Na-

rayanasamy, S. 2010. DRFX: a simple and efficient memory

model for concurrent programming languages. Proceedings

of the 2010 ACM SIGPLAN conference on Programming

language design and implementation (New York, NY, USA,
2010), 351–362.

[28] Munshi, A. ed. 2013. The OpenCL Specification, Version 2.0
(Provisional). Khronos Group.

[29] Munshi, A., Gaster, B. and Mattson, T.G. 2011. OpenCL

programming guide. Addison-Wesley Professional.

[30] NVIDIA Corporation 2012. Parallel Thread Execution ISA

Version 3.1.

[31] Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan,

P. and Tseng, C.-W. 2007. UTS: An unbalanced tree search

benchmark. Languages and Compilers for Parallel Compu-
ting. Springer. 235–250.

[32] OpenACC, Inc 2011. The OpenACCTM Application Pro-
gramming Interface, Version 1.0.

[33] Owens, S., Sarkar, S. and Sewell, P. 2009. A better x86

memory model: x86-TSO. Proceedings of the 22nd Interna-

tional Conference on Theorem Proving in Higher Order
Logics (Berlin, Heidelberg, 2009), 391–407.

[34] Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P.,

Kozyrakis, C. and Horowitz, M.A. 2013. Convolution engine:

balancing efficiency & flexibility in specialized computing.

14

Proceedings of the 40th Annual International Symposium on
Computer Architecture (2013), 24–35.

[35] Sindhu, P.S., Frailong, J.-M. and Cekleov, M. 1992. Formal

specification of memory models. Scalable Shared Memory

Multiprocessors: Proceedings. (1992), 25.

[36] Sorin, D.J., Hill, M.D. and Wood, D.A. 2011. A Primer on

Memory Consistency and Cache Coherence. Synthesis Lec-
tures on Computer Architecture. 6, 3 (2011), 1–212.

[37] Thakkar, S., Gifford, P. and Fielland, G. 1988. The balance
multiprocessor system. IEEE Micro. 8, 1 (Jan. 1988), 57–69.

[38] UTS source distribution: http://sourceforge.net/p/uts-
benchmark/wiki/Home/.

