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Abstract 

Commodity heterogeneous systems (e.g., integrated CPUs 

and GPUs), now support a unified, shared memory address 

space for all components. Because the latency of global 

communication in a heterogeneous system can be prohibi-

tively high, heterogeneous systems (unlike homogeneous 

CPU systems) provide synchronization mechanisms that 

only guarantee ordering among a subset of threads, which 

we call a scope. Unfortunately, the consequences and se-

mantics of these scoped operations are not yet well under-

stood. Without a formal and approachable model to reason 

about the behavior of these operations, we risk an array of 

portability and performance issues. 

In this paper, we embrace scoped synchronization with a 

new class of memory consistency models that add scoped 

synchronization to data-race-free models like those of C++ 

and Java. Called sequential consistency for heterogeneous-

race-free (SC for HRF), the new models guarantee SC for 

programs with "sufficient" synchronization (no data races) 

of "sufficient" scope. We discuss two such models. The 

first, HRF-direct, works well for programs with highly regu-

lar parallelism. The second, HRF-indirect, builds on HRF-

direct by allowing synchronization using different scopes in 

some cases involving transitive communication. We quanti-

tatively show that HRF-indirect encourages forward-looking 

programs with irregular parallelism by showing up to a 10% 

performance increase in a task runtime for GPUs. 

Categories and Subject Descriptors C.0 [Computer Sys-

tems Organization]: Hardware/software interfaces, systems 

specifications methodology 

Keywords: memory consistency model; heterogeneous sys-

tems; data-race-free; task runtime 

1 Introduction 

Though it took nearly 30 years, languages for CPU systems 

like C++ [7] and Java [26] have started to adopt a class of 

memory models called sequential consistency for data-race-

free (SC for DRF) [3]. These models are formal and precise 

definitions that allow many low-level optimizations. SC for 

DRF models are also accessible to most programmers be-

cause they guarantee sequential consistency to any program 

that is synchronized correctly – meaning that most pro-

grammers need not concern themselves with the gory de-

tails. A goal of this work is to achieve the same benefits for 

heterogeneous systems in significantly less time. 

Unfortunately, it is not straightforward to apply SC for 

DRF models in heterogeneous systems because current het-

erogeneous systems support synchronization operations 

with non-global side effects. For performance reasons, lan-

guages like OpenCL
TM

 [29] and CUDA [12] decompose a 

problem into execution groups. Figure 1 shows the OpenCL 

execution model, in which a work-item (like a CPU thread) 

belongs to four different groups (which we call scopes): 

sub-group
1
, work-group, device, and system

2
. Starting with 

OpenCL 2.0 [28], programmers can synchronize a work-

item through shared memory
3
 with respect to any one of 

these groups using what we call scoped synchronization 

operations. For example, OpenCL provides a fence opera-

                                                           
1 Sub-groups are optional in OpenCL, but will usually be defined on an 
SIMT GPU, and correspond to vector units. 
2 We use OpenCL terminology in this paper. In Section 6 we discuss the 

CUDA equivalents. 
3 As in CPU shared memory, not the CUDA “shared memory” scratchpad. 

 

Figure 1. The OpenCL execution hierarchy. 
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tion that synchronizes a work-item with other work-items in 

its own work-group but not with work-items in a different 

work-group. 

Scoped synchronization breaks some fundamental tenets 

of SC for DRF models. For example, in OpenCL 2.0 it is 

possible to write a racey program that is composed entirely 

of atomics if those atomics do not use scopes correctly. It 

may also be possible to write a program in which all ordi-

nary accesses are protected with atomics such that there can 

be no concurrent conflicting accesses, yet that program may 

still contain a race if those atomics are not scoped correctly. 

We find that many of the consequences of these differences 

are not yet well understood.  

In this paper, we propose a new class of memory models 

for platforms that use scoped synchronization called sequen-

tial consistency for heterogeneous-race-free (SC for HRF). 

SC for HRF models define correctness in terms of a sequen-

tially consistent execution and rules for what is considered 

“enough” synchronization to avoid races. The SC for HRF 

models achieve two fundamental goals: they provide a pre-

cise definition of memory behavior in a heterogeneous exe-

cution and they provide a framework to describe that behav-

ior in a way that typical programmers can understand. While 

we focus on GPUs in this paper due to their prevalence, we 

expect the SC-for-HRF concepts and insights to apply to 

other heterogeneous parts (e.g., DSPs). 

We describe two possible SC for HRF variants: 

 HRF-direct requires communicating work-items to 

synchronize using the exact same scope.  

 HRF-indirect extends HRF-direct to support transitive 

communication using different scopes.  

In HRF-direct, if a producer wants to synchronize with a 

consumer, the producer must execute a release to scope S 

and the consumer must later execute an acquire to that exact 

same scope S. Even though it is (relatively) simple, we find 

that HRF-direct is a perfectly adequate model to use with 

highly regular data-parallel algorithms like the ones that 

currently exist in most general-purpose GPU (GPGPU) ap-

plications. In these workloads, it is easy to precisely deter-

mine the work-items involved in a communication, thereby 

making it easy to choose the correct minimal scope for syn-

chronization (Section 3.1). HRF-direct can also be used to 

understand the OpenCL 2.0 (and likely CUDA; see Section 

5.1.3) memory model, thereby giving programmers a more 

intuitive description of the memory behavior of existing 

languages. 

While HRF-direct is good for today’s workloads, it may 

not be sufficient for emerging heterogeneous applications. 

First, it makes it difficult to optimize applications with ir-

regular parallelism in which the producer and consumer 

may not be known a priori. For this same reason it can be 

difficult to write composable library functions in HRF-

direct. Second, HRF-direct is overly conservative for current 

GPU memory systems; some actual hardware will support a 

more permissive model (from the software perspective). For 

these reasons, we define an alternative model that relaxes 

HRF-direct’s strict scoping requirements and may enable a 

wider range of parallel software on heterogeneous accelera-

tors.  

In the forward-looking HRF-indirect model, two threads 

can synchronize indirectly through a third party even if the 

two threads interact with that third party using different 

scopes. For example, threads A and C can communicate if A 

synchronizes with another thread B using scope S1 and then 

B synchronizes with C using scope S2. This type of transi-

tive interaction can enable more irregular parallelism in fu-

ture heterogeneous applications (e.g., in an algorithm in 

which A does not know who C is or where C is located). 

HRF-indirect better supports programmability features like 

composability and is currently supported by existing GPU 

hardware. However, HRF-indrect may be harder to support 

if heterogeneous memories are non-hierarchical and it can 

prevent some future low-level optimizations allowed by 

HRF-direct (Section 6). 

To explore the practical differences between HRF-direct 

and HRF-indirect, we have developed a task-parallel 

runtime for GPUs that performs automatic load balancing as 

an example of irregular parallelism. We describe the 

runtime in Section 7 focusing on the design differences be-

tween HRF-direct and HRF-indirect implementations of the 

runtime. In Section 8 we evaluate the performance conse-

quences of those differences, showing that the HRF-indirect 

version can outperform the HRF-direct version by 3-10% in 

a system resembling modern hardware. However, we also 

point out the caveats to this result, including considerations 

about system optimizations prohibited by HRF-indirect that 

could be used in HRF-direct systems. 

HRF-direct and HRF-indirect are two of many possible 

formulations of an SC for HRF model. In Section 5.2 we 

discuss some other properties that SC for HRF models could 

adopt in the future, notably including a property called 

scope inclusion that exploits the hierarchical nature of most 

scope definitions. In summary, in this paper we make the 

following contributions to the state of the art: 

Define with Scoped Synchronization: We identify the need 

to more formally define and better describe the semantics of 

scoped synchronization operations, especially when work-

items interact through different scopes. 

SC for HRF Models: We propose a class of programmer-

centric memory models called sequential consistency for 

heterogeneous-race-free to describe systems with scoped 

synchronization support.  

HRF-direct: We define the HRF-direct model for today’s 

highly regular GPGPU programs with current standards 

(e.g., OpenCL 2.0).  

HRF-indirect: We define the forward-looking HRF-indirect 

model for future irregular GPGPU programs with runtime-

determined data flow from producers to consumers.  
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2 Background and Setup 

In this section, we first provide a history of memory con-

sistency models for CPUs, focusing particularly on the data-

race-free models that we build on in this paper. Then we 

describe the features of modern GPU hardware that necessi-

tate scoped synchronization for good performance.  

2.1 Memory Consistency Models 

A memory (consistency) model specifies the semantics of 

shared memory, so that both users and implementers can 

push limits using precise correctness definitions [2, 36]. 

Low-level models interface low-level software (e.g., compil-

ers, JITs, and runtime) to hardware, while high-level models 

interface high-level languages (e.g., C++ and Java) to the 

"system" that includes low-level software and hardware.  

For microprocessors and multi-core chips, low- and 

high-level memory models have arguably taken (at least) 

three decades to mature. Microprocessors emerged in 1971 

for uniprocessors and were also put in multiprocessors in 

the early 1980's (e.g., Sequent Balance [37]). Even though 

Lamport [24] specified sequential consistency (SC) in 1979, 

most multiprocessors do not implement SC due to their use 

of write buffers. In 1991, Sindhu et al. [35] formalized total 

store order (TSO) as a low-level memory consistency model 

that captured what microprocessors often do in the presence 

of a write buffer. Meanwhile, to increase flexibility, aca-

demics investigated more relaxed low-level memory mod-

els, such as weak ordering [14], release consistency [15], 

and data-race-free (DRF) [3]. Notably, providing sequential 

consistency to data-race-free programs (SC for DRF) [3], 

became a cornerstone of the Java [26] and C++ [7] models 

in 2005 and 2008, respectively. In 2008, a full 15 years after 

the first multiprocessor x86 architecture came to market, 

Intel released a formalization of x86-TSO (summarized by 

Owen, et al. [33]). 

A goal of this work is to accelerate the process of defin-

ing high- and low-level memory models for heterogeneous 

systems so that it takes much less than three decades. 

2.2 Sequential Consistency for Data-race-free 

Sequentially consistency guarantees that the observed order 

of all memory operations is consistent with a theoretical 

execution in which each instruction is performed one at a 

time by a single processor [24]. SC preserves programmer 

sanity by allowing them to think about their parallel algo-

rithms in sequential steps. Unfortunately, true SC can be 

difficult to implement effectively without sacrificing per-

formance or requiring deeply speculative execution [17]. As 

a result, most commercially relevant architectures, runtimes, 

and languages use a model weaker than SC that allows cer-

tain operations to appear out of program order at the cost of 

increased programmer effort.  

To bridge the gap between the programming simplicity 

of SC and the high performance of weaker models, a class 

of models, called SC for DRF, was created that guarantees 

an SC execution if the program has no data races (i.e., is 

protected by control synchronization and memory fences). 

In the absence of data races, the system is free to perform 

any reordering as long as it does not cause an observable 

violation of SC. SC for DRF models differ on the defined 

behavior in the presence of race, and vary from providing no 

guarantees [3, 7] to providing weak guarantees like write 

causality [26]. 

In Figure 2 we give a concrete example of a sequentially 

consistent data-race-free program in C++.
4
 In this program, 

the load into R2 does not race with the store X=1 because 

they are separated by paired synchronization accesses on 

atomic variable A. The later load into R3 also does not 

cause a race because in SC for DRF models, synchroniza-

tion has a transitive effect (a property that will be important 

in our subsequent discussion of HRF models). In the exam-

ple, the load into R3 does not form a race with the store X=1 

by thread t1 even though t1 and t3 do not use the same syn-

chronization variable. In this case, the threads are synchro-

nized indirectly through the causal chain involving atomics 

A and B.  

2.3 Modern GPU Hardware 

Because current GPU hardware is optimized to stream 

through data (as is common for graphics), GPU caches are 

managed differently than CPU caches. CPU memory sys-

tems optimize for reads and writes with high locality via 

read-for-ownership (RFO) cache coherence protocols. RFO 

protocols obtain exclusive permission for a line before writ-

ing it. Fortunately, good locality makes it likely that this 

initial cost gets amortized over many subsequent low-cost 

cache hits. 

                                                           
4 Those familiar with C++ will notice that the explicit memory order syntax 

is unnecessary. We use the verbose form to match with OpenCL examples 
later. 

  atomic<int> A = {0}; 
  atomic<int> B = {0}; 
  int X; 
 
Thread t1                               
 
X = 1; 
A.store(1, memory_order_seq_cst);     // release 
 
Thread t2                                 
  
  while(!A.load(memory_order_seq_cst)); // acquire 
  int R2 = X; // R2 will receive X=1 from t1 
  B.store(1, memory_order_seq_cst);     // release 
 
Thread t3 
 
    while(!B.load(memory_order_seq_cst)); // acquire 
    int R3 = X;  // R3 will receive X=1 from t1 

Figure 2. An example of a data-race-free execution in C++11.  

t1 and t3 do not race on location X because of a transitive in-

teraction through t2.  
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RFO protocols make less sense for GPUs whose data 

streams afford little opportunity to amortize the latency of 

obtaining exclusive coherence permission because subse-

quent caches hits are less common. Current GPU caches 

behave less like conventional CPU caches and more like 

streaming write-combining buffers that complete writes 

without obtaining exclusive coherence permission (Section 

3.2). 

With GPU write-combining (non-RFO) caches, when 

two work-items in a GPU synchronize, hardware must en-

sure both work-items read/write from a mutually shared 

cache or memory level. To implement this correctly, current 

hardware may make potentially shared data uncachable, 

disable private caches for all potentially shared data, or 

flush/invalidate caches at synchronization points [4, 30]. In 

the final approach, the particular caches that need to be 

flushed/invalidated depend on which work-items are syn-

chronizing (i.e., what the scope of synchronization is), and 

therefore some synchronizations are more costly than oth-

ers. This is in stark contrast to a CPU using RFO coherence, 

in which the hardware actions necessary at synchronization 

events (e.g., handling probes or flushing a store buffer) are 

the same regardless of which threads are involved in the 

communication.  

2.4 Data-race-free is Not Enough 

There are two ways to achieve the benefits of SC for DRF 

models in heterogeneous systems. First, we could use an 

existing SC for DRF model as-is by forcing all synchroniza-

tion to use global scope. However, this would eschew the 

benefits of scoped operations, likely resulting in inefficient 

and poorly performing software.  

Second, we could adapt the SC for DRF models to deal 

with the behavior of scoped operations. In our view, this 

approach fundamentally changes the understanding of race-

free. Informally, many understand data-race-free to mean 

“conflicting accesses do not occur at the same time” [1]. As 

we will show in the next section, that informal understand-

ing is not strong enough with scoped synchronization. With 

scoped synchronization, control flow (with synchronization 

semantics) can ensure that the conflicting data accesses will 

not be concurrent, but because of scope there is no guaran-

tee that the result will be sequentially consistent. Also, as 

we will show, certain properties of an SC for HRF model 

are quite foreign to SC for DRF models – for example, in 

the models presented in this paper, it is possible for two 

atomic accesses to race with each other. 

That is why we next extend the understanding of race-

free to include what we call heterogeneous races involving 

synchronization of insufficient scope. 

3 HRF-direct: Basic Scope Synchronization 

In the HRF-direct synchronization model, if two threads 

communicate, they must synchronize using operations of the 

exact same scope. If − in some sequentially consistent 

execution of a program − two conflicting data accesses are 

⋃(  ⃗⃗⃗⃗     ⃗⃗⃗⃗⃗⃗ ) 

    

 

Formal Definition of HRF-direct 

We formally define the HRF-direct model using set relational 

notation, using the style adopted by Adve and Hill [3]. 

Conflict Definitions 

Ordinary Conflict: Two operations op1 and op2 conflict 

iff both are to the same address, at least one is a write, 

and at least one is an ordinary data operation. 

Synchronization Conflict: Two synchronization opera-

tions op1 and op2 conflict iff both are to the same loca-

tion, at least one is a write (or a read-modify-write), and 

are performed with respect to different scopes. 

Definitions for a Sequentially Consistent  

Candidate Execution 

Program Order (  ⃗⃗⃗⃗  ⃗): op1   ⃗⃗⃗⃗  op2 iff both are from the 

same work-item or thread and op1 completes before op2.  

Scoped Synchronization Order (   ⃗⃗ ⃗⃗ ⃗⃗  ): Release rel1 ap-

pears before acquire acq2 in     ⃗⃗⃗⃗⃗⃗  iff both are performed 

with respect to scope S, and rel1 completes before acq2. 

Heterogeneous-happens-before-direct (     ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗): The un-

ion of the irreflexive transitive closures of all scope syn-

chronization orders with program order:  

where   is the set of all scopes in an execution. Note that 

in the above equation, the closure applies only to the in-

ner union and is not applied to the outer union. 

Heterogeneous Race: A heterogeneous race occurs iff a 

pair of operations op1 and op2 that are either an ordinary 

or a synchronization conflict are unordered in      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 
Heterogeneous-race-free Execution: An execution is 

heterogeneous-race-free iff there are no heterogeneous 

races. 

Program and Model Definitions 

Heterogeneous-Race-Free Program: A program is heter-

ogeneous-race-free iff all possible sequentially consistent 

executions of the program are heterogeneous-race-free. 

Sequential Consistency for Heterogeneous-race-free-

direct (HRF-direct): A system obeys the HRF-direct 

memory model iff all actual executions of a heterogene-

ous-race-free program are sequentially consistent. 

Corollary 
 

Other Total Orders: Because any heterogeneous-race-

free program is sequentially consistent in HRF-direct, 

implementations must ensure an apparent total order of 

all heterogeneous-race-free operations, including these 

notable subsets: 

- A total order of all synchronization operations with 

respect to the same scope. 

- A total order of all the heterogeneous-race-free syn-

chronization operations that could be observed by 

any single work-item or thread. 
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performed without being separated by paired synchroniza-

tion of identical scope, then those accesses form a heteroge-

neous race and the result on an HRF-direct system is unde-

fined. Otherwise, a conforming implementation will guaran-

tee that the execution is sequentially consistent. HRF-direct 

is a good match for existing, highly regular GPGPU work-

loads and provides considerable hardware implementation 

flexibility (Section 6).  

If a memory model is effective, programmers should be 

able to easily determine the minimal amount of synchroni-

zation that must be performed for correctness. In a system 

with scoped synchronization, this includes selecting the 

smallest (i.e., fastest) scope operation possible. In HRF-

direct, programmers can follow a simple rule to achieve a 

correct and fast execution: use the smallest scope that in-

cludes all producers and all consumers of the data being 

shared. If, for example, work-items in a work-group are 

coordinating to share data only within the work-group, then 

a work-group scope should be used. If, on the other hand, 

some of that data may be shared beyond that work-group in 

the future, a larger (e.g., device) scope must be used by all 

of the work-items.  

In the sidebar on page 4 we provide a formal definition 

of HRF-direct that can be used to reason rigorously about 

program behavior or system optimizations in terms of a 

well-defined happens-before relation. There are two key 

differences in HRF-direct compared to a traditional DRF 

model. First, HRF-direct considers synchronization opera-

tions performed at different scopes to be conflicting opera-

tions. Second, HRF-direct creates a separate happens-before 

order relative to each scope. For each scope S1, the S1 hap-

pens-before order is the conventional notion of DRF hap-

pens-before but where all synchronization with respect to a 

different scope S2 ≠ S1 is treated as an ordinary operation. 

An execution contains a race in HRF-direct if any two con-

flicting operations are unordered in all the scope-relative 

happens-before orders.  

For now, we focus on the high-level concepts behind 

HRF-direct by applying it to an example to show how it can 

be used to reason about a high-performance heterogeneous 

application. We will discuss more in-depth details of the 

model in Section 3.3. 

3.1 Race-free Example 

In Figure 3 we show the skeleton of a simple GPGPU kernel 

that is synchronized correctly under HRF-direct. The algo-

rithm, loosely modeled after the HotSpot application in the 

Rodinia benchmark suite [11], performs a stencil computa-

tion over a series of timesteps. The application uses a small 

amount of data and computation replication to reduce global 

synchronization. Rather than globally synchronize between 

each timestep, the program instead computes several 

timesteps locally within a work-group before having to ex-

change boundary conditions with neighboring work- groups. 

Notably, within the inner loop of Figure 3, work-items 

communicate only with other work-items inside their work-

group and in the outer loop work-items communicate only 

with other work-items outside their work-group. 

Because the communication pattern in the application is 

highly regular and predictable, it is easy to choose minimal 

scope for the synchronization points that will be race-free in 

HRF-direct. The timestep barrier in the inner loop should 

use work-group scope and the timestep barrier in the outer 

loop should use device (assuming the CPU is not involved) 

scope. The programmer can be sure this is race-free because 

between any work-item communication there is (a) syn-

chronization using (b) scope to which both work-items be-

long. 

While this example may seem simple, this pattern of 

communication is common in today’s GPGPU applications. 

However, readers familiar with Rodinia or OpenCL / CUDA 

programming in general will notice two notable simplifica-

tions in the pseudocode. First, in the actual applications, the 

inner loop uses the GPU scratchpad memory (“local 

memory” in OpenCL and “shared memory” in CUDA) for 

all work-item communication. Second, the outer “barrier” is 

actually a series of distinct kernel launches. We believe that 

both of these characteristics will be less common in future 

GPGPU applications as global memory caches increase in 

size and inter-work-group communication becomes more 

possible. Models like HRF-direct will help ease that transi-

tion and ultimately make GPUs more programmable

For t=0; t < nsteps; t+= group_step_size: 
    group_step_size times do: 
        <stencil calculation on shared grid> 
        BarrierSync(work-group scope) 
    BarrierSync(device scope) 
    <exchange work-group boundary conditions> 

 
Figure 3. An example race-free HRF-direct algorithm 

 

Figure 4. Example hardware implementation for HRF-direct 

that closely approximates a GPU architecture. 
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3.2 Implementation 

In Figure 4, we show a baseline memory architecture similar 

to a modern GPU. It has a two-level cache hierarchy in 

which each compute unit (which runs a work-group) has a 

private L1 cache and the device as a whole shares an L2 

cache. We assume that all caches use a write-combining 

strategy, and notably do not use a read-for-ownership coher-

ence protocol. Because the caches write without exclusive 

permission, they keep track of partial cache block writes to 

avoid data corruption in the presence of false sharing. For 

each block, the caches maintain a bitmask of dirty bytes. 

When a block is evicted to the next level of cache/memory, 

only those dirty bytes are written back. 

In general, we make this example implementation com-

patible with HRF-direct by (1) on a release event, flushing 

dirty data from any cache/memory that are not visible to all 

threads in the scope of synchronization, (2) on an acquire 

event, invalidating the now-stale data from caches/memories 

that are not visible to all threads in the scope of synchroni-

zation, and (3) completing all atomic operations in the 

cache/memory corresponding to the scope of the atomic. For 

example, on a work-group-scope release, the sub-group (i.e., 

SIMT vector)-private write buffers will be flushed to the L1 

because the write buffers are not visible to all work-items in 

the work-group. On a device-scope acquire, the system 

would invalidate the acquiring work-item’s L1 cache be-

cause it is not visible to all work-items on the device. On a 

device-scope atomic increment, the system would perform 

the read-modify-write entirely in the L2 cache controller.  

This policy results in an SC execution of race-free HRF-

direct programs. To see why, recall that HRF-direct requires 

conflicting accesses (same location, at least one is a write) 

to be separated by synchronization of the same scope. In the 

example implementation, that means the conflicting access-

es both will have reached (at least) the same level in the 

memory hierarchy, and the location’s most recent update 

will be returned. The location could not see some other val-

ue because that would constitute a race. 

While this example implementation is simple, it is also 

representative of current hardware. Qualitatively, it also 

clearly shows the performance benefit of scoped synchroni-

zation; there is an obvious difference in the cost of a work-

group-scope release (flush write buffers, if any) compared to 

a system-scope release (flush dirty data from L1 and L2 

caches). When combined with the previous observation that 

HRF-direct is easy to use in regular heterogeneous applica-

tions, we conclude that HRF-direct is a reasonable and use-

ful model for heterogeneous systems.  

3.3 Subtleties of Synchronization  

In HRF-direct, a program composed entirely of atomic syn-

chronization operations could contain a race – and therefore 

the execution would be undefined. This is a major diver-

gence from SC for DRF models in which any program com-

posed entirely of synchronizing atomics is race-free. In Fig-

ure 5 we show an example all-atomic program that is racey 

in HRF-direct when the work-items are in different work-

groups.  

In general, to avoid confusion about racing synchroniza-

tion, a best practice when using HRF-direct is to associate a 

single scope with each atomic or synchronization variable. 

For example, software could be constructed so that variable 

A is always used with work-group-scope, variable B with 

device-scope, etc. If this practice is followed, atomic or syn-

chronization operations will never race with each other 

(though other types of heterogeneous races can certainly 

still occur). Future languages may want to provide first-class 

support for mapping synchronization variables to scopes in 

this way. 

3.3.1 Digging Deep: The Order of Atomics 

An HRF-direct implementation must ensure an observable 

total order among some atomics but not others. In a hierar-

chical scope layout (like OpenCL’s in Figure 1), an HRF-

direct implementation is free to reorder two atomics if they 

are performed with respect to disjoint scopes. If the scopes 

are disjoint, no work-item or thread in the system could ob-

serve the atomic operations without forming a race
5
. Be-

cause all attempts to observe an order directly would form a 

race, an implementation is not bound to produce any reliable 

order or even ensure atomicity. In the racey version of Fig-

ure 5, in which the two work-items belong to different 

work-groups, an implementation does not need to ensure the 

two accesses to A are ordered or atomic because the two 

accesses use disjoint scopes. 

However, an implementation must still produce an ob-

servable total order (1) among all race-free atomics per-

                                                           
5 Unless the atomic operations are ordered as ordinary loads/stores through 
other, race-free, synchronization 

__global atomic<int> A = {0}; 
__global atomic<int> B = {0}; 
// __global means “not in a scratchpad” in OpenCL 
 
Work-item wi1 
 
  A.store(1, memory_order_seq_cst, 
          memory_scope_work_group);     
  B.load(memory_order_seq_cst, 
         memory_scope_device);     
 
Work-item wi2 
 
      B.store(1, memory_order_seq_cst, 
              memory_scope_device); 
 
      // A.load forms a race when 
      // workgroup of wi1 ≠ workgroup of wi2 
      A.load(memory_order_seq_cst, 
             memory_scope_work_group);  

Figure 5. Subtleties of synchronization order. 

This is race-free if work-group of wi1 = work-group of wi2.  

This is racey if work-group of wi1 ≠ work-group of wi2.  
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formed with respect to the same scope and (2) among all 

race-free atomics performed with respect to overlapping 

scopes. We illustrate this point in the race-free version of 

Figure 5, in which both work-items belong to the same 

work-group. Because the example is race-free, an imple-

mentation must ensure a total order between the four ac-

cesses to A and B (i.e., A = B = 0 not allowed) even though 

the accesses to A and B are performed with respect to dif-

ferent (but overlapping) scopes.  

Our example implementation in Section 3.2 seeks high 

performance by exploiting the weaker order of atomics rela-

tive to an SC for DRF-compliant system. In that implemen-

tation, atomics are completed in the cache or memory asso-

ciated with target scope (e.g., a work-group scope atomic 

increment is completed in the L1 cache without obtaining 

exclusive global permission). This implementation meets 

the requirements of an HRF-direct system: all race-free 

atomic accesses will use the same physical resource, ensur-

ing that all work-items will observe race-free accesses in the 

same order.   

3.3.2 Function Composition 

Scopes complicate generic library functions that synchro-

nize. In HRF-direct, because producers and consumers must 

use the same scope, it is not good enough for a generic li-

brary function to assume the worst and always synchronize 

with global scope. A future consumer of the data produced 

by that function may synchronize with a different scope, 

forming a race. To get around this problem, libraries may 

need to accept a scope as a parameter. For example, a li-

brary might provide a lock(memory_scope s) routine that 

guarantees the caller is synchronized with respect to scope s 

after the lock is acquired.   

3.4 Limitations 

While we have shown HRF-direct is a sufficient and (rela-

tively) easy-to-understand model for programs with highly 

regular parallelism, it does have limitations that may impede 

the adoption of forward-looking software. Most notably, the 

HRF-direct requirement that all threads use the exact same 

scope could make it difficult to write high-performance syn-

chronization in software with irregular parallelism. In situa-

tions when the producer and consumer are not known a pri-

ori, HRF-direct software will likely be forced to conserva-

tively use the largest scope that includes any work-item that 

could be a consumer. Often, this will be the much slower 

device or system scope (see Section 7 for a more in-depth 

analysis).  

4 HRF-indirect: Adding Transitivity 

HRF-indirect builds on the HRF-direct model by permitting 

communication that involves a transitive chain of synchro-

nization that uses different scopes. We show an example of 

HRF-indirect’s scope transitivity in Figure 6 in which work-

(  ⃗⃗⃗⃗  ⋃    ⃗⃗⃗⃗⃗⃗ 

    

)

 

 

Formal Definition of HRF-indirect 

The structure of HRF-indirect is identical to the HRF-direct 

definition but with a different happens-before relation: 

Heterogeneous-happens-before-indirect (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗): The ir-

reflexive transitive closure of all scope synchronization 

orders and program order:  

where   represents the set of all scopes in an execution. 

 

  __global atomic<int> A = {0}; 
  __global atomic<int> B = {0}; 
  __global int X; 
// __global means “not in a scratchpad” in OpenCL 
 
Work-item wi1 -- in work-group wgX       
 
  11: X = 1; 
  12: A.store(1, memory_order_seq_cst,      // release 
              memory_scope_work_group); 
 
Work-item wi2 -- in work-group wgX 
 
   21: while(!A.load(memory_order_seq_cst,  // acquire 
                     memory_scope_work_group)); 
   22: int R2 = X; // R2 will get value 1 
   23: B.store(1, memory_order_seq_cst,     // release 
               memory_scope_device); 
 
Work-item wi3 -- in work-group wgY (Note! not wgX) 
 
   31: while(!B.load(memory_order_seq_cst,  // acquire 
                     memory_scope_device)); 
   32: int R3 = X;  // R3 will get value 1 

 

 
 

Figure 6. An example of a racey execution in HRF-direct that 

is data-race-free in HRF-indirect.  

In the diagram below the code, we show the orders established 

in both HRF models (left) and the happens-before order in 

HRF-direct (middle) and HRF-indirect (right). 
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item wi1 synchronizes with wi2 in their shared work-group 

scope and then wi2 synchronizes with wi3 with a different 

device scope. Note that this is the same execution as the 

DRF example in Figure 2, but altered so that the two syn-

chronization pairs use different scopes. Notably, each pair 

of direct synchronization (e.g., between wi1 and wi2 using 

A) must still use the same scope (we discuss relaxing this 

requirement in Section 5.2).  

From the programming standpoint, HRF-indirect has 

several advantages relative to HRF-direct. First, as Figure 6 

shows, in HRF-indirect producers and consumers do not 

have to be aware of each other, which can expand the types 

of algorithms practically possible on accelerator architec-

tures. In Section 7 we show how this situation may arise in 

practice. Second, it gives programmers more flexibility in 

the choice of scope and could lead to improved perfor-

mance. If, for example, a producer knows that a work-item 

outside its work-group will eventually consume its data, but 

also knows that several steps must first occur within the 

work-group, then the producer may choose to perform a 

smaller work-group-scope synchronization and rely on 

work-group peers to synchronize with the more distant 

work-items later. 

HRF-direct is compatible with HRF-indirect: all pro-

grams that are race-free in HRF-direct are also race-free in 

HRF-indirect. This property opens the possibility of extend-

ing existing models to support HRF-indirect in the future; 

such a change will not break the compatibility of existing 

well-behaved software.  

We provide a formal definition of HRF-indirect in the 

sidebar on page 7. In HRF-indirect, operations are ordered 

in the happens-before relation if they can be linked by any 

transitive combination of synchronization and program or-

der. Figure 6 visually shows the difference between the 

happens-before relations of HRF-direct and HRF-indirect, 

and emphasizes the fact that in HRF-direct, order can only 

be established with respect to a single scope. In Figure 6, we 

break the happens-before relation of HRF-direct into com-

ponents attributable to the work-group and device scopes, 

respectively.  

Like HRF-direct, in HRF-indirect synchronization re-

lease and acquire operations are only paired if they are from 

the same scope. As such, it is still possible to write a racey 

program consisting entirely of atomics. In fact, the same 

subtleties of synchronization mentioned in Section 3.3 for 

HRF-direct also apply to HRF-indirect.  

4.1 Example Implementation 

As a testament to practicality of HRF-indirect, the example 

implementation described in Section 3.2 for HRF-direct 

works as-is. That simple system, which is a good approxi-

mation of existing hardware, is a conservative implementa-

tion of HRF-direct. With HRF-indirect, software can better 

exploit the capabilities of existing hardware. Though, as we 

discuss in Section 6, HRF-indirect does not allow as many 

potential optimizations in the future as HRF-direct. 

To see why the example implementation is compatible 

with HRF-indirect, consider Figure 4. When the system per-

forms a release to device scope by flushing the L1 cache, it 

is not just flushing prior writes performed by that work-item 

– it is also flushing any prior write in the L1 performed by a 

different work-item in the same work-group. Therefore, in 

the implementation, the release actions effectively perform 

on behalf of the entire scope associated with that 

cache/memory. That is why the example in Figure 6 works. 

When wi2 performs the device-scope release and flushes the 

L1, it is also flushing the prior store to X by wi1 that must 

be in (at least) the L1 cache because of the prior work-

group-scope release. 

5 Exploring HRF Properties 

In this section, we compare the properties of HRF-direct and 

HRF-indirect to existing academic and commercial memory 

models. Then we discuss another property that is not present 

in either HRF variant that future models may consider.  

5.1 Memory Model Comparisons 

5.1.1 DRF 

Both HRF-direct and HRF-indirect are compatible with a 

DRF model. In other words, any program that exclusively 

uses system-scope synchronization and is free of ordinary 

data races will be sequentially consistent with either model. 

Notably, this means that programmers have the option of 

writing data-race-free programs to begin with for functional 

correctness, and then adjusting scope later for performance. 

5.1.2 OpenCL 

The first OpenCL specifications (1.x) have very restrictive 

memory models that do not support any communication 

outside of a work-group between kernel invocations. 

OpenCL 2.0 solves this particular issue with a broader defi-

nition of atomic operations.  

OpenCL 2.0’s execution model [28] is extended to sup-

port, among other things, fine-grain shared virtual memory 

(SVM), a single flat address space, and an extended subset 

of the recently introduced C11-style atomics [7]. The speci-

fication also contains a rigorously defined memory model 

that brings each of these disjoint features together into a 

single framework. 
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The OpenCL 2.0 memory model is an SC for HRF mod-

el when the sequentially consistent ordering 

(memory_order_seq_cst) is used. OpenCL 2.0 is more re-

strictive than either HRF-direct or HRF-indirect– for exam-

ple, in OpenCL 2.0, a program can use either device scope 

or system scope for atomics but not both within the same 

kernel. This intermix of different scoped atomics is disal-

lowed even if individual locations are consistently accessed 

using atomics of the same scope. Should the designers want 

to relax the model in the future to allow intermixing atomics 

with different scope, they will need to consider the issues 

discussed above. 

5.1.3  CUDA 

Recent versions of CUDA (compute capability ≥ 2.0) sup-

port global shared memory and scoped synchronization. 

More specifically, CUDA supports a __threadfence instruc-

tion that acts as a memory fence with block (work-group), 

device (GPU), or system (GPU + CPU) scope. Other in-

structions with control-flow effects like __syncthreads also 

have scoped synchronization semantics. 

Because CUDA uses a different framework to define its 

memory model, it is hard to make a direct comparison to the 

HRF models. CUDA does support a form of scope transitiv-

ity (e.g., example in Section B.5 of the CUDA Program-

ming Guide [12]). However, because CUDA is not defined 

axiomatically, it is difficult to say if it has the same proper-

ties of scope transitivity defined for HRF-indirect. 

5.1.4 Heterogenous System Architecture and  
Parallel Thread Execution 

HRF models are not limited to high-level languages. Low-

level intermediate languages like HSAIL [21] and PTX [30] 

also use synchronization scopes and could benefit from a 

formal HRF definition. HSAIL is particularly well-suited 

for the HRF models in this paper because it uses a variant of 

scoped acquire/release synchronization.  

5.1.5 Non-global Memory Types 

In our discussion we have disregarded the scratchpad mem-

ories that exist in GPUs and that are exposed by both the 

OpenCL and CUDA programming models. While our mod-

els could be extended to include these software-controlled 

memories, we assume they will be less relevant in the future 

as heterogeneous software becomes more portable. As evi-

dence for this trend, the more recent OpenACC program-

ming model [32] does not include scratchpads.  

5.2 Future HRF Models -- Scope Inclusion 

Other HRF models are possible that support properties be-

yond those in HRF-direct/indirect. One such property is 

what we call scope inclusion
6
, in which two work-items are 

allowed to synchronize directly (e.g., non-transitively) with 

each other using operations of different scope. Informally, 

scope inclusion would support race-free paired synchroniza-

tion when the scope of the first is a subset of the scope of 

the second (i.e., one includes the other). We show an exam-

ple in Figure 7. 

Scope inclusion would require an implementation to en-

sure that synchronization operations with respect to inclu-

sive scopes are ordered. This requirement is very similar to 

the requirement already present both in HRF-direct and 

HRF-indirect (and discussed in Section 3.3.1) – that atomics 

from overlapping scopes must be ordered. Therefore, we 

expect any conceivable implementation of HRF-direct or 

HRF-indirect would also support scope inclusion. 

We did not define scope inclusion as part of the model 

because precisely defining when scope inclusion does and 

does not apply can be nuanced (as demonstrated by the 

complexity of Section 3.3.1 describing a similar property). 

However, given a concise and understandable definition, 

scope inclusion could be added to either HRF model by al-

tering the definition of a synchronization conflict.  

                                                           
6 OpenCL 2.0 uses the term “scope inclusion” to mean “the exact same 

scope.” However, the term is defined in such a way that extending to the 
notion of inclusion described here would be straightforward in the future.  

__global atomic<int> A = {0}; 
__global atomic<int> B = {0}; 
// __global means “not in a scratchpad” in OpenCL 
 
Work-item wi1 – in workgroup wgX 
 
  A.store(1, memory_order_seq_cst, 
          memory_scope_device);     
  B.load(memory_order_seq_cst, 
         memory_scope_device);     
 
Work-item wi2 – in same workgroup wgX 
 
      B.store(1, memory_order_seq_cst, 
              memory_scope_work_group); 
      A.load(memory_order_seq_cst, 
             memory_scope_work_group); 

Figure 7. An example of scope inclusion. 

 

 

Figure 8. Architecture and scope layout of a possible pro-

grammable pipeline. 
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6 System Optimizations 

While the more permissive HRF-indirect model enables 

higher performance on current hardware, it may limit some 

hardware optimizations in the future compared to HRF-

direct. To support HRF-direct in a system like the one in 

Figure 4, on a release, an implementation only needs to 

flush locations that have been written by the releasing work-

item. Other blocks in the cache could remain untouched, 

potentially reducing the negative effect synchronization has 

on other work-items sharing those resources. 

The same targeted flush optimization would be incorrect 

on an HRF-indirect-compatible system. Because of the tran-

sitivity property, a release in HRF-indirect does not just 

guarantee visibility of locations touched by the releasing 

work-item. Rather, it also guarantees visibility of any loca-

tion touched by another work-item that previously synchro-

nized with the releasing work-item. Thus, while an imple-

mentation with more targeted flush operations is possible, it 

would take considerable design effort to determine which 

blocks are safe to ignore.  

An efficient implementation of HRF-indirect in a non-

RFO system relies on a hierarchical memory layout and 

scopes that do not partially overlap. This is likely to be a 

feature of foreseeable GPU architectures but could be an 

issue with future non-hierarchical memory systems. For 

example, the architecture of the recently proposed Convolu-

tion Engine by Qadeer, et al. [34] resembles a programma-

ble pipeline. To reduce the latency of communicating be-

tween neighboring pipeline stages, a designer might want to 

build a cache between the stages that can be controlled with 

an HRF scope, as shown in Figure 8. While possible, it 

would likely take considerable engineering effort to avoid 

flushing the inter-stage caches on all synchronization 

events, even when an inter-stage scope is used.  

7 Case Study: Work-sharing Task Runtime 

We have previously argued that HRF-direct is suitable for 

current regular GPGPU programs and that both HRF-direct 

and HRF-indirect are supported by some current hardware. 

Here we seek to show that programmers who confront 

HRF-indirect’s complexity can be rewarded with higher 

performance than with HRF-direct. To this end, we have 

developed a work-sharing, task-parallel runtime for GPUs 

that serves as an example of a workload with irregular paral-

lelism and unpredictable synchronization. This section de-

scribes the design of that runtime and discusses how HRF-

direct and HRF-indirect affect software design decisions. In 

Section 8, we will show how those decisions affect perfor-

mance on a system resembling modern GPU hardware.  

We have built a work-sharing runtime whose internal 

task queue is split into a hierarchy resembling the entities in 

the OpenCL execution model and, by extension, physical 

components in GPU hardware. For now, the runtime only 

supports GPU work-item workers and does not support CPU 

(host) thread workers. In the future the runtime could be 

extended to support participation from the CPU. The work-

sharing task queue is broken into three levels, namely the 

device queue, multiple work-group queues, and multiple 

sub-group queues, as shown in Figure 9(a). 

7.1 Runtime Description 

Applications use the runtime by defining tasks from the 

perspective of a single, independent worker. Notably, the 

programmer does not need to consider the OpenCL execu-

tion hierarchy, because the runtime scheduler effectively 

hides those details. The runtime itself is built using the per-

sistent threads [18] execution model, and takes complete 

control of task scheduling and load balancing by bypassing 

the hardware scheduler (by monopolizing all execution 

units). 

To map the task-parallel execution model exposed by 

the runtime onto the OpenCL hierarchy, the runtime collects 

tasks created by workers into sub-group-sized (e.g., 64) 

groups called task-fronts. As shown in Figure 9c, task-fronts 

are the objects held in the task queues, and are assigned to 

ready sub-groups. Each task in a task front will run on a 

different work-item in the sub-group. To reduce control 

divergence that could decrease performance, the runtime 

ensures that all tasks in a task front call the same function. A 

sub-group will generally wait until a task front is full before 

dequeueing work except in some corner cases where it may 

be beneficial to grab a partial task-front and tolerate idle 

work-items (e.g., at the beginning of execution).  

The runtime implements a work-sharing, as opposed to a 

work-stealing, load-balancing policy. When a sub-group has 

produced enough tasks to fill a task front, it will first 

enqueue it onto its own private sub-group queue. Then, the 

sub-group may decide to donate one or more task fronts 

from its private queue if the occupancy of either the work-

group or device queues is below a minimum threshold. A 

 

Figure 9. (a) Task queue hierarchy, (b) the heterogeneous hard-

ware it maps to (same as Figure 4), and (c) queue contents. 
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sub-group always donates the oldest task in the queue under 

the assumption that the oldest task will create the most new 

work and thus avoid future donations.  

7.2 HRF-direct/HRF-indirect Runtimes 

In the runtime, inter-worker communication occurs at task 

enqueue/dequeue points. At those points, the runtime must 

decide which scope to use for synchronization. The decision 

is complicated by the fact that the worker does not know at 

enqueue time who the eventual consumer will be. For ex-

ample, if a worker makes a donation to the work-group 

queue, it must assume that another worker could later do-

nate the work to the device queue. Thus, the eventual con-

sumer could be anywhere in the system. 

This unknown-consumer aspect makes it difficult to ef-

ficiently synchronize with the HRF-direct model. Recall that 

HRF-direct mandates that both producer and consumer use 

identical scope to synchronize. In a straightforward HRF-

direct implementation, all synchronization must use device 

(NDRange) scope since neither producer nor consumer 

know each other. There may be ways to avoid an always-

global scope policy, but it would complicate the runtime and 

could require invasive policies such as a restriction on 

which tasks can be donated from a queue (potentially im-

pacting performance since “oldest first” donation, which has 

been shown to have optimal performance in some task 

runtimes [6], would not be straightforward). 

In contrast, the transitive property of HRF-indirect 

makes it possible to perform smaller scope synchronization 

even when the exact producer/consumer pair is not known a 

priori.  Consider the problematic (for HRF-direct) case 

above in which a task front is donated by a different worker 

than the one that originally performed the enqueue. When 

the donation occurs, the donating worker will perform a 

larger scope synchronization operation and will form a tran-

sitive link between the original producer and the eventual 

consumer, much like the interaction shown in Figure 6. 

Thus, the execution will be race-free and workers can use 

smaller scope in the common (non-donating) case.  

8 Evaluation 

In this section, we seek to qualitatively show that there are 

practical differences between the HRF-direct and HRF-

indirect models in current heterogeneous hardware. We do 

so by evaluating the performance of HRF-direct and HRF-

indirect versions of the task runtime previously discussed. 

8.1 Methodology 

We wrote the task runtime in OpenCL 2.0, extended to sup-

port HRF-indirect in addition to HRF-direct. On top of that, 

we ported the Unbalanced Tree Search (uts) synthetic work-

load [31]. uts represents the traversal of an unbalanced 

graph whose topology is determined dynamically as the 

program runs. On visiting a node, the program computes 

how many children to create using (deterministic) SHA-1 

hash computation. Thus, the tasks themselves are short and 

the number of children varies widely, making the workload 

a good test of task-parallel runtimes.  

We evaluate the runtime using four different input sets 

to uts. The four represent scaled-down versions of the T1, 

T2, T4, and T5 graphs suggested in the source code release 

[38], and contain approximately 125K nodes each. We do 

not include results from the T3 graph because it does not 

have enough parallelism for GPU execution.  

To calculate the performance of the workload, we run it 

in a version of the gem5 simulator [5] that has been extend-

ed with a GPU execution and memory model. We config-

ured the GPU to resemble a modern mid-sized device with 

eight compute units, with the precise options shown in Ta-

ble 1. The memory system for the GPU operates like the 

example system in Section 3.2, in which caches are write-

combining and are flushed/invalidated based on the scope of 

synchronization. We do not implement the potential future 

hardware optimizations discussed in Section 6. 

8.2 Results 

Figure 10 shows the performance of each input set for the 

HRF-direct and HRF-indirect versions of the task runtime. 

In all cases, the HRF-indirect version has higher perfor-

mance due to the reduction in the number of expensive L1 

flush/invalidate operations. The exact speed-ups vary be-

tween 3% and 10%, and correlate with the number of dona-

tions that occur during the traversal of a particular graph. 

Generally, more donations (caused by a more unbalanced 

tree) lead to better relative performance with the HRF-

indirect implementation. 

Table 1. Configuration Parameters 

Parameter Value 

# Compute Units 8 

# SIMD Units / Compute Unit 4 

L1 cache 32Kb, 16-way 

L2 cache 2MB, 16-way 

 

Figure 10. Performance normalized to HRF-direct. 
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8.2.1 Limitations and Caveats 

We have not implemented the HRF-direct hardware optimi-

zations discussed in Section 6 nor the HRF-direct software 

improvements discussed in Section 7.2. Doing any one or a 

combination of these optimizations may alter the results and 

conclusions discussed above. However, for reasons dis-

cussed in Section 7.2, including a sub-optimal task ordering, 

our intuition tells us it is unlikely to surpass the performance 

of HRF-indirect in this workload. 

9 Related Work 

Hechtman and Sorin recently argued that GPU systems 

should implement SC, in part, by showing that the perfor-

mance of an SC GPU is comparable to one implementing a 

weaker model [20]. Their analysis, however, assumes a 

GPU that implements read-for-ownership coherence and 

does not take interaction with a CPU core into account. In 

this paper, we assume hardware that better represents cur-

rent GPUs (e.g., write combining buffers, scoped synchroni-

zation, and no read-for-ownership coherence), and propose 

SC for HRF as a class of models to reason about consisten-

cy in similar current and future GPUs. 

Other implementations of an HRF-direct/indirect compat-

ible system are also possible. Hechtman et al. proposed a 

compatible cache hierarchy that will perform better that our 

basic example implementation in Section 3.2 for programs 

that make use of fine-grain synchronization [19].  

Scoped synchronization is not limited to GPU systems. 

The Power7 CPU system uses scoped broadcasts in its coher-

ence protocol [22]. Though this scoping is not ex-posed to the 

programmers, it nonetheless represents the trend toward 

scoped synchronization in modern hardware.  

One could argue that message-passing models like MPI 

provide scoped consistency by allowing threads to specify 

senders and receivers explictly [16]. Of course, message-

passing models do not use shared memory, and as a result are 

difficult to use with algorithms involving pointer-based data 

structures like linked lists. In addition, shared memory pro-

grams are easier for compilers to optimize because in MPI 

compilers must have semantic knowledge of the API to per-

form effective operation reordering [13]. 

Recently, there has been an effort in the high-performance 

community to push programming models that make use of a 

partitioned global address space (PGAS). These include lan-

guages like X10 [10], UPC [8], and Chapel [9]. Like SC for 

HRF models, these PGAS languages present a single shared 

address space to all threads. However, not all addresses in that 

space are treated equally. Some addresses can be accessed 

only locally while others can be accessed globally but have an 

affinity or home node. As a result, PGAS programs still ex-

plicitly copy data between memory regions for high perfor-

mance. In contrast, in an SC for HRF model, a particular ad-

dress is not bound to a home node and there is no need for 

application threads to copy data explicitly between memory 

regions.  Instead, an SC for HRF model uses scoped synchro-

nization operations to limit the communication overhead be-

tween a subset of threads. 

There has been recent work on coherence alternatives for 

shared memory in GPU architectures. Cohesion is a system 

for distinguishing coherent and incoherent data on GPU ac-

celerators [23]. The incoherent data has to be managed by 

software with explicit hardware actions like cache flushes. SC 

for HRF models, on the other hand, abstract away hardware 

details for programmers and rely on an implementation to 

manage memory resources. 

One downside of both the SC for DRF and SC for HRF 

models is that racey software has undefined behavior. This 

can be especially problematic in codes that use intentional 

(benign) data races or in codes containing unintentional bugs. 

To address this, Marino, et al. proposed the DRFx model that, 

in addition to guaranteeing sequential consistency for data-

race-free programs, will raise a memory model exception 

when a racey execution violates sequential consistency [27]. 

To do so, the authors propose adding SC violation detection 

hardware similar to conflict detection mechanisms in hard-

ware transactional memory proposals. Either of the HRF var-

iants discussed in this paper could benefit from a similar 

memory model exception should designers wish to support it. 

Lucia et al. concurrently proposed conflict exceptions that, 

like DRFx, raise a memory model exception on a race [25]. 

However, conflict exceptions are more precise and mandate 

that the exception be raised at the point of conflicting address.  

10 Conclusions 

We have introduced sequential consistency for heterogene-

ous-race-free (SC for HRF), a class of memory models to 

intuitively and robustly define the behavior of scoped syn-

chronization operations in heterogeneous systems. We moti-

vated the need for SC for HRF by showing why the existing 

understanding of race freedom in homogeneous CPU systems 

is insufficient when applied to systems using synchronization 

scopes. We proposed two initial SC for HRF models. HRF-

direct represents the capabilities of existing heterogeneous 

languages and requires synchronizing threads to use the exact 

same scope. In the forward-looking HRF-indirect model, 

threads can synchronize transitively using different scopes. 

Our results show that HRF-indirect may have performance 

advantages for software with irregular parallelism, but may 

also restrict some future hardware optimizations. 
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