
Accelerator-level Parallelism

Mark D. Hill, Wisconsin & Vijay Janapa Reddi, Harvard

@ Technion (Virtually), June 2020

1

Aspects of this work on Mobile SoCs and Gables were developed while
the authors were “interns” with Google’s Mobile Silicon Group. Thanks!

Future apps demand much more computing
Standard tech scaling & architecture NOT sufficient
Mobile SoCs show a promising approach:

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Call to action to develop “science” for ubiquitous ALP

Accelerator-level Parallelism Call to Action

4

I. Computer History & X-level Parallelism

II. Mobile SoCs as ALP Harbinger

III. Gables ALP SoC Model

IV. Call to Action for Accelerator-level Parallelism

Outline

5

20th Century Information & Communication Technology
Has Changed Our World
• <long list omitted>

Required innovations in algorithms, applications,
programming languages, … , & system software

Key (invisible) enablers (cost-)performance gains
• Semiconductor technology (“Moore’s Law”)
• Computer architecture (~80x per Danowitz et al.)

6

Enablers: Technology + Architecture

9

Danowitz et al., CACM 04/2012

Technology

Architecture

How did Architecture Exploit Moore’s Law?

MORE (& faster) transistors è even faster computers

Memory – transistors in parallel
• Vast semiconductor memory (DRAM)
• Cache hierarchy for fast memory illusion

Processing – transistors in parallel
Bit-, Instruction-, Thread-, & Data-level Parallelism

Now Accelerator-level Parallelism
10

X-level Parallelism in Computer Architecture

11

P

$

M

bus

i/f

dev

1 CPU

BLP+ILP
Bit/Instrn-Level

Parallelism

Bit-level Parallelism (BLP)
Early computers: few switches (transistors)
• è compute a result in many steps
• E.g., 1 multiplication partial product per cycle

Bit-level parallelism
• More transistors è compute more in parallel
• E.g., Wallace Tree multiplier (right)

Larger words help: 8bà16bà32bà64b

Important: Easy for software

NEW: Smaller word size, e.g. machine learning inference accelerators 12

Instruction-level Parallelism (ILP)

13

Processors logically do instructions sequentially (timeà)
add

Predict direction: target or fall thru

Actually do instructions in parallel è ILP
add

load

branch

and Speculate!

store Speculate more!

load

E.g., Intel Skylake has 224-entry reorder buffer w/ 14-19-stage pipeline

Important: Easy for software

IBM Stretch [1961]

X-level Parallelism in Computer Architecture

14

P

$

M

bus

i/f

dev

1 CPU Multiprocessor

BLP+ILP + TLP
Thread-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-level Parallelism (TLP)
Thread-level Parallelism
• HW: Multiple sequential processor cores
• SW: Each runs asynchronous thread

SW must partition work, synchronize,
& manage communication
• E.g. pThreads, OpenMP, MPI

On-chip TLP called “multicore” – forced choice

Less easy for software but
• More TLP in cloud than desktop à cloud!!
• Bifurcation: experts program TLP; others use it

15

Intel Pentium Pro Extreme Edition,
early 2000s

CDC 6600, 1964,
(TLP via multithreaded processor)

X-level Parallelism in Computer Architecture

17

P

$

M

bus

i/f

dev

1 CPU Multicore

BLP+ILP + TLP
Bit/Instrn-Level

Parallelism
Thread-Level
Parallelism

Data-level Parallelism (DLP)
Need same operation on many data items
Do with parallelism è DLP
• Array of single instruction multiple data (SIMD)
• Deep pipelines like Cray vector machines
• Intel-like Streaming SIMD Extensions (SSE)

Broad DLP success awaited General-Purpose GPUs
1. Single Instruction Multiple Thread (SIMT)
2. SW (CUDA) & libraries (math & ML)
3. Experimentation as $1-10K not $1-10M

Bifurcation again: experts program SIMT (TLP+DLP); others use it
18

Illinois ILLIAC IV, 1966

NVIDIA Tesla

X-level Parallelism in Computer Architecture

19

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

dev-M

+ Discrete GPU

BLP+ILP + TLP + DLP
Data-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-Level
Parallelism

X-level Parallelism in Computer Architecture

20

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

+ Integrated GPU

BLP+ILP + TLP + DLP
Data-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-Level
Parallelism

X-level Parallelism in Computer Architecture

21

I. Computer History & X-level Parallelism

II. Mobile SoCs as ALP Harbinger

III. Gables ALP SoC Model

IV. Call to Action for Accelerator-level Parallelism

Outline

22

X-level Parallelism in Computer Architecture

23

P

$

M

bus

i/f

dev

1 CPU Multicore

GPU

+ Integrated GPU
System on a Chip

(SoC)
BLP+ILP + TLP + DLP

Data-Level
Parallelism

Bit/Instrn-Level
Parallelism

Thread-Level
Parallelism

+ ALP
Accelerator-Level

Parallelism

Potential for Specialized Accelerators (IPs)

25

[Brodersen & Meng, 2002]

v

v

16 Encryption
17 Hearing Aid
18 FIR for disk read
19 MPEG Encoder
20 802.11 Baseband

Accelerator is a hardware component that executes a targeted
computation class faster & usually with (much) less energy.

CPU, GPU, xPU (i.e., Accelerators or IPs)

26
2019 Apple A12 w/ 42 accelerators

42 Really?

The Hitchhiker's
Guide to the
Galaxy?

Example Usecase
(recording 4K video)

27

Janapa Reddi, et al.,
IEEE Micro, Jan/Feb 2019

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Must run each usecase sufficiently fast -- no need faster
A usecase uses IPs concurrently: more ALP than serial
For each usecase, how much acceleration for each IP?

Mobile SoCs Run Usecases

28

Accelerators (IPs) è

Usecases (rows)
CPUs
(AP) Display Media

Scaler GPU
Image
Signal
Proc.

JPEG
Pixel
Visual
Core

Video
Decoder

Video
Encoder

Dozens
More

Photo Enhancing X X X X X X

Video Capture X X X X X

Video Capture HDR X X X X X

Video Playback X X X X X

Image Recognition X X X X

ALP(t) = #IPs concurrently active at time t

29

Time to perform usecase (sec)

Active
IPs

10
9
8
7
6
5
4
3
2
1
0

Disclaimer:
Made up Data

I. Computer History & X-level Parallelism

II. Mobile SoCs as ALP Harbinger

III. Gables ALP SoC Model [HPCA’19]

IV. Call to Action for Accelerator-level Parallelism

Outline

30

Envision usecases
(years ahead)
Port to many SoCs??

Diversity hinders use
[Facebook, HPCA’19]

How to reason about
SoC performance?

Mobile SoCs Hard To Program For and Select

31

Envision usecases
(2-3 years ahead)
Select IPs
Size IPs
Design Uncore

Which accelerators? How big? How to even start?

Mobile SoCs Hard To Design

32

Computer Architecture & Performance Models

33

Multiprocessor &
Amdahl’s Law

Multicore &
Roofline

Insight

Accuracy
Effort

Models vs Simulation
● More insight
● Less effort
● But less accuracyModels give first answer, not final answer

Gables extends Roofline è first answer for SoC ALP

Multicore HW
• Ppeak = peak perf of all cores
• Bpeak = peak off-chip bandwidth

Multicore SW
• I = operational intensity = #operations/#off-chip-bytes
• E.g., 2 ops / 16 bytes à I = 1/8

Output Patt = upper bound on performance attainable

Roofline for Multicore Chips, 2009

34

Roofline for Multicore Chips, 2009

35

Source:
https://commons.wikimedia.org/wiki/File:Exam

ple_of_a_naive_Roofline_model.svg

Ppeak

Bpeak* I

(I)

(Patt)

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

ALP System on Chip (SoC) Model:

Gables uses Roofline per IP to provide first answer!
• SW: performance model of a “gabled roof?”
• HW: select & size accelerators

NEW Gables

36

2019 Apple A12 w/ 42 accelerators

Gables for N IP SoC
A0 = 1

A0*Ppeak

B0

CPUs
IP[0]

← Share off-chip Bpeak →

A1*Ppeak

B1

IP[1]
AN-1*Ppeak

BN-1

IP[N-1]

37

Usecase at each IP[i]
• Operational intensity Ii operations/byte
• Non-negative work fi (fi’s sum to 1) w/ IPs in parallel

Example Balanced Design Start w/ Gables

38

DRAM

IP[0]
CPUs

Bpeak = 10

TWO-IP SoC

IP[1]
GPU

Ppeak = 40 A1*Ppeak = 5*40 = 200

B0 = 6 B1 = 15

Workload (Usecase):
f0 = 1 & f1 = 0
I0 = 8 = good caching
I1 = 0.1 = latency tolerant
Performance?

39

Perf limited by IP[0] at I0 = 8
IP[1] not used à no roofline
Let’s Assign IP[1] work: f1 = 0 à 0.75

Ppeak = 40
Bpeak = 10

A1 = 5
B0 = 6

B1 = 15

f1 = 0
I0 = 8

I1 = 0.1
39

40

IP[1] present but Perf drops to 1! Why?
I1 = 0.1 à memory bottleneck
Enhance Bpeak = 10 à 30
(at a cost)

Ppeak = 40
Bpeak = 10

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8

I1 = 0.1
40

41

Perf only 2 with IP[1] bottleneck

IP[1] SRAM/reuse I1 = 0.1 à 8
Reduce overkill Bpeak = 30 à 20

Ppeak = 40
Bpeak = 30

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8

I1 = 0.1
41

42

Perf = 160 < A*Ppeak = 200
Can you do better?
It’s possible!

Ppeak = 40
Bpeak = 20

A1 = 5
B0 = 6

B1 = 15

f1 = 0.75
I0 = 8
I1 = 8

42

Usecases using K accelerators à
Gables has K+1 rooflines

44Into Synopsys design flow << 6 months of publication!

Two cases where: Gables >> Actual
1. Communication between two IP blocks
• Root: Too few buffers to cover communication latency
• Little’s Law: # outstanding msgs = avg latency * avg BW
• https://www.sigarch.org/three-other-models-of-computer-system-performance-part-1/
• Solution: Add buffers; actual performance à Gables

2. More complex interaction among IP blocks
• Root: Usecase work (task graph) not completely parallel
• Solution: No change, but useful double-check

Case Study: IT Company + Synopsys

45

https://www.sigarch.org/three-other-models-of-computer-system-performance-part-1/

Case Study: Allocating SRAM

Where SRAM?

● Private w/i each IP
● Shared resource

SHARED

IP0

IP1

IP2

48

Does more IP[i] SRAM help Op. Intensity (Ii)?

Non-linear function that increases when new footprint/working-set fits

Should consider these plots when sizing IP[i] SRAM

Later evaluation can use simulation performance on y-axis

Ii

IP[i] SRAM

Not
much

fits

Small
W/S
fits Med.

W/S
fits

Large
W/S
fits

W/S = working set

50

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

[HPCA’19]

Model Extensions

Interactive tool

Gables Android Source at GitHub

http://research.cs.wisc.edu/multifacet/gables/

Gables Home Page

51

http://research.cs.wisc.edu/multifacet/gables/

SW: Map usecase to IP’s w/ many BWs & acceleration
HW: IP[i] under/over-provisioned for BW or acceleration?
Gables—like Amdahl’s Law—gives intuition & a first answer
But still missing is SoC “architecture” & programming model

Mobile System on Chip (SoC) & Gables

52

I. Computer History & X-level Parallelism

II. Mobile SoCs as ALP Harbinger

III. Gables ALP SoC Model

IV. Call to Action for Accelerator-level Parallelism

Outline

53

Future Apps Demand Much More Computing

54

Future apps demand much more computing
Standard tech scaling & architecture NOT sufficient
Mobile SoCs show a promising approach:

ALP = Parallelism among workload components
concurrently executing on multiple accelerators (IPs)

Call to action to develop “science” for ubiquitous ALP
• An SoC architecture that exposes & hides?
• A whole SoC programming model/runtime?

Accelerator-level Parallelism Call to Action

55

ALP/SoC Software Descent to Hellfire!

57

Hellfire!

P P P P
P P P P
P P P P
P P P P

Heterogeneous
Multicore

Thought bridge:
Must divide work
heterogeneouslyP P P P

P P P P
P P P P
P P P P

Homogeneous
Multicore

Any thread-level
parallelism, e.g.,
homogeneous

P P D E
A A C C
A A C C
A B B B

Heterogeneous
Accelerators

Accelerate each
differently with
unique HLLs

(DSLs) & SDKs

P P D E
A A C C
A A C C
A B B B

Today: Device
Accelerators

All of above &
hide in many

kernel drivers L
P

Uniprocessor

No visible
parallelism

Key: P == processor core; A-E == accelerators

Local SW stack abstracts
each accelerator.

But no good, general SW
abstraction for SoC ALP!

SW+HW Lessons from GP-GPUs?

58

Nvidia GK110
BLP+TLP+DLP

Feature Then Now
1. Programming Graphics OpenGL SIMT (Cuda/OpenCL/HIP)

2. Concurrency Either CPU or GPU only;
Intra-GPU mechanisms

Finer-grain interaction
Intra-GPU mechanisms

3. Communication Copy data between
host & device memories

Maybe shared memory,
sometimes coherence

4. Design Driven by graphics only;
GP: $0B market

GP major player, e.g.,
deep neural networks

Programming for data-level parallelism: four decades
SIMDàVectorsàSSEàSIMT!

SW+HW Directions for ALP?

59

Feature Now Future?
1. Programming Local: Per-IP DSL & SDK

Global: Ad hoc
Abstract ALP/SoC like
SIMT does for GP-GPUs

2. Concurrency Ad hoc GP-GPU-like scheduling?
Virtualize/partition IP?

3. Communication SW: Up/down OS stack
HW: Via off-chip memory

SW+HW for queue pairs?
Want control/data planes

4. Design, e.g., select,
combine, & size IPs

Ad hoc Make a “science.” Speed
with tools/frameworks

Apple A12: BLP+ILP+TLP+DLP+ALP

Need programmability for broad success!!!!
In less than four decades?

Challenges

60

1. Programmability

4. Design Space

3. Communication

2. Concurrency
Whither global
model/runtime?
DAG of streams
for SoCs?

HW assist for scheduling?
Virtualize & partition?

How should SW
stack reason about
local/global memory,
caches, queues, &
scratchpads?

When combine
“similar” accelerators?

Power vs. area?

Opportunities

Hennessy & Patterson: A New Golden Age for Computer Architecture
Science

New Feb 2020!

61

