Accelerator-level Parallelism

Mark D. Hill, Wisconsin & Vijay Janapa Reddi, Harvard

@ Technion (Virtually), June 2020

Aspects of this work on Mobile SoCs and Gables were developed while the authors were "interns" with Google's Mobile Silicon Group. Thanks!

Accelerator-level Parallelism Call to Action

Future apps demand much more computing

Standard tech scaling & architecture NOT sufficient

Mobile SoCs show a promising approach:

ALP = Parallelism among workload components concurrently executing on multiple accelerators (IPs)

Call to action to develop "science" for ubiquitous ALP

Outline

- I. Computer History & X-level Parallelism
- II. Mobile SoCs as ALP Harbinger
- III. Gables ALP SoC Model
- **IV.** Call to Action for Accelerator-level Parallelism

20th Century Information & Communication Technology

Has Changed Our World

<long list omitted>

Required innovations in algorithms, applications, programming languages, ..., & system software

Key (invisible) enablers (cost-)performance gains

- Semiconductor technology ("Moore's Law")
- Computer architecture (~80x per Danowitz et al.)

Enablers: Technology + Architecture

How did Architecture Exploit Moore's Law?

MORE (& faster) transistors \rightarrow even faster computers

Memory – transistors in parallel

- Vast semiconductor memory (DRAM)
- Cache hierarchy for fast memory illusion

Processing – transistors in parallel Bit-, Instruction-, Thread-, & Data-level Parallelism

Now Accelerator-level Parallelism

1 CPU

BLP+ILP Bit/Instrn-Level Parallelism

Bit-level Parallelism (BLP)

Early computers: few switches (transistors)

- → compute a result in many steps
- E.g., 1 multiplication partial product per cycle

Bit-level parallelism

- More transistors → compute more in parallel
- E.g., Wallace Tree multiplier (right)

Larger words help: $8b \rightarrow 16b \rightarrow 32b \rightarrow 64b$

Important: Easy for software

NEW: Smaller word size, e.g. machine learning inference accelerators

Instruction-level Parallelism (ILP)

E.g., Intel Skylake has 224-entry reorder buffer w/ 14-19-stage pipeline

Important: Easy for software

1 CPUMultiprocessorBLP+ILP+ TLPBit/Instrn-LevelThread-LevelParallelismParallelism

Thread-level Parallelism (TLP)

Thread-level Parallelism

- HW: Multiple sequential processor cores
- SW: Each runs asynchronous thread

SW must partition work, synchronize, & manage communication

• E.g. pThreads, OpenMP, MPI

On-chip TLP called "multicore" – forced choice

Less easy for software but

- More TLP in cloud than desktop \rightarrow cloud!!
- Bifurcation: experts program TLP; others use it

CDC 6600, 1964, (TLP via multithreaded processor)

Intel Pentium Pro Extreme Edition, early 2000s

1 CPUMulticoreBLP+ILP+ TLPBit/Instrn-Level
ParallelismThread-Level
Parallelism

Data-level Parallelism (DLP)

Need same operation on many data items Do with parallelism → DLP

- Array of single instruction multiple data (SIMD)
- Deep pipelines like Cray vector machines
- Intel-like Streaming SIMD Extensions (SSE)

Illinois ILLIAC IV, 1966

Broad DLP success awaited General-Purpose GPUs

- **1. Single Instruction Multiple Thread (SIMT)**
- 2. SW (CUDA) & libraries (math & ML)
- 3. Experimentation as \$1-10K not \$1-10M

NVIDIA Tesla

Bifurcation again: experts program SIMT (TLP+DLP); others use it

1 CPUMulticoreBLP+ILP+ TLPBit/Instrn-LevelThread-LevelParallelismParallelism

+ Discrete GPU

+ DLP Data-Level Parallelism

1 CPUMulticore+ Integrated GPUBLP+ILP+ TLP+ DLPBit/Instrn-LevelThread-LevelData-LevelParallelismParallelismParallelism

1940 1950 1960 1970 1980 1990 2000 2010 2020

Outline

- I. Computer History & X-level Parallelism
- **II.** Mobile SoCs as ALP Harbinger
- III. Gables ALP SoC Model
- **IV.** Call to Action for Accelerator-level Parallelism

1 CPU BLP+ILP Bit/Instrn-Level Parallelism Multicore + Integrated GPU

+ TLP Thread-Level

Parallelism

+ DLP Data-Level Parallelism System on a Chip (SoC) + ALP Accelerator-Level Parallelism

Potential for Specialized Accelerators (IPs)

Accelerator is a hardware component that executes a targeted computation class faster & usually with (much) less energy.

16 Encryption17 Hearing Aid18 FIR for disk read19 MPEG Encoder20 802.11 Baseband

[Brodersen & Meng, 2002]

CPU, GPU, xPU (i.e., Accelerators or IPs)

2019 Apple A12 w/ 42 accelerators

42 Really?

The Hitchhiker's Guide to the Galaxy?

Mobile SoCs Run Usecases

Accelerators (IPs) → Usecases (rows)	CPUs (AP)	Display	Media Scaler	GPU	Image Signal Proc.	JPEG	Pixel Visual Core	Video Decoder	Video Encoder	Dozens More
Photo Enhancing	Х	Х		x	Х	Х	Х			
Video Capture	Х	Х		Х	Х				X	
Video Capture HDR	Х	Х		Х	Х				Х	
Video Playback	Х	Х	Х	Х				Х		
Image Recognition	Х	Х	Х	Х						

Must run each usecase sufficiently fast -- no need faster A usecase uses IPs concurrently: **more ALP** than serial For each usecase, how much acceleration for each IP?

ALP(t) = #IPs concurrently active at time t

Outline

- I. Computer History & X-level Parallelism
- II. Mobile SoCs as ALP Harbinger
- III. Gables ALP SoC Model [HPCA'19]
- **IV.** Call to Action for Accelerator-level Parallelism

Mobile SoCs Hard To Program For and Select

Envision usecases (years ahead) Port to many SoCs??

Diversity hinders use [Facebook, HPCA'19]

How to reason about SoC performance?

Mobile SoCs Hard To Design

Envision usecases (2-3 years ahead) Select IPs Size IPs Design Uncore

Which accelerators? How big? How to even start?

Computer Architecture & Performance Models

Amdahl's Law

Multicore & Roofline

Models vs Simulation

- More insight
- Less effort

But less accuracy Models give first answer, not final answer **Gables** extends Roofline **→** first answer for SoC ALP

Roofline for Multicore Chips, 2009

Multicore HW

- P_{peak} = peak perf of all cores
- B_{peak} = peak off-chip bandwidth

Multicore SW

- I = operational intensity = #operations/#off-chip-bytes
- E.g., 2 ops / 16 bytes \rightarrow I = 1/8

Output P_{att} = upper bound on performance attainable

Roofline for Multicore Chips, 2009

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

ALP System on Chip (SoC) Model: NEW Gables

2019 Apple A12 w/ 42 accelerators

Gables uses Roofline per IP to provide first answer!

- SW: performance model of a "gabled roof?"
- HW: select & size accelerators

Usecase at each IP[i] Operational intensity I_i operations/byte Non-negative work f_i (f_i's sum to 1) w/ IPs in parallel

Example Balanced Design Start w/ Gables

Approach: Combine Analytical and Simulation Models

Case Study: IT Company + Synopsys

Two cases where: Gables >> Actual

- 1. Communication between two IP blocks
- **Root:** Too few buffers to cover communication latency
- Little's Law: # outstanding msgs = avg latency * avg BW
- https://www.sigarch.org/three-other-models-of-computer-system-performance-part-1/
- Solution: Add buffers; actual performance \rightarrow Gables
- 2. More complex interaction among IP blocks
- **Root:** Usecase work (task graph) not completely parallel
- **Solution:** No change, but useful double-check

Case Study: Allocating SRAM

Where SRAM?

- Private w/i each IP
- Shared resource

Does more IP[i] SRAM help Op. Intensity (I_i)?

Compute v. Communication: Op. Intensity (I) = #operations / #off-chip bytes

Non-linear function that increases when new footprint/working-set fits

Should consider these plots when sizing IP[i] SRAM

Later evaluation can use simulation performance on y-axis

Gables Home Page

[HPCA'19]

Model Extensions

Interactive tool

Gables Android Source at GitHub

http://research.cs.wisc.edu/multifacet/gables/

Mobile System on Chip (SoC) & Gables

SW: Map usecase to IP's w/ many BWs & acceleration HW: IP[i] under/over-provisioned for BW or acceleration? Gables—like Amdahl's Law—gives intuition & a first answer But still missing is SoC "architecture" & programming model

Outline

- I. Computer History & X-level Parallelism
- **II.** Mobile SoCs as ALP Harbinger
- III. Gables ALP SoC Model
- **IV.** Call to Action for Accelerator-level Parallelism

Future Apps Demand Much More Computing

Accelerator-level Parallelism Call to Action

Future apps demand much more computing

- Standard tech scaling & architecture NOT sufficient
- Mobile SoCs show a promising approach:
- ALP = Parallelism among workload components concurrently executing on multiple accelerators (IPs)

Call to action to develop "science" for ubiquitous ALP

- An SoC architecture that exposes & hides?
- A whole SoC programming model/runtime?

Key: P == processor core; A-E == accelerators

SW+HW Lessons from GP-GPUs?

Programming for data-level parallelism: **four decades** SIMD→Vectors→SSE→SIMT!

Nvidia GK110 BLP+TLP+DLP

Feature	Then
1. Programming	Graphics OpenGL
2. Concurrency	Either CPU or GPU only; Intra-GPU mechanisms
3. Communication	Copy data between host & device memories
4. Design	Driven by graphics only; GP: \$0B market

SW+HW Directions for ALP?

Need programmability for broad success!!!! In less than four decades?

Apple A12: BLP+ILP+TLP+DLP+ALP

Feature	Now
1. Programming	Local: Per-IP DSL & SDK Global: Ad hoc
2. Concurrency	Ad hoc
3. Communication	SW: Up/down OS stack HW: Via off-chip memory
4. Design, e.g., select, combine, & size IPs	Ad hoc

Opportunities

1. Programmability

Whither global model/runtime? DAG of streams for SoCs?

3. Communication

How should SW stack reason about local/global memory, caches, queues, & scratchpads? HW assist for scheduling? Virtualize & partition?

2. Concurrency

When combine "similar" accelerators? Power vs. area? **4. Design Space**

Science

Hennessy & Patterson: A New Golden Age for Computer Architecture

New Feb 2020!

A Primer on Memory Consistency and Cache Coherence Second Edition

> Vijay Nagarajan Daniel J. Sorin Mark D. Hill David A. Wood

Synthesis Lectures on Computer Architecture

Natalie Enright Jerger & Margaret Martonosi, Series Editors