
Optimizing Inter-Instruction Value Communication through Degree of Use Prediction

by

Jeffrey Adam Butts

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

University of Wisconsin–Madison

2004

© Copyright by Jeffrey Adam Butts 2004

All Rights Reserved

i

Abstract

Thedesignof high-performancevaluecommunicationstructuresrepresentsasignificantchal-

lengein the implementationof future microprocessors.The complexity of thesestructures—

namely, the register file, the bypassnetwork, and the instructionwindow—dwarfs that of the

actualinstructionexecutionhardwareandhasbecomethepredominantfactorin determiningthe

maximumoperatingfrequency. Being wire-dominated,thesestructuresalso benefit lessfrom

technology scaling than the execution circuitry, increasing the importance of this problem.

Valuecommunicationstructuresarecomplex becausethey areoverly general. Eachof these

structuresis built to supportthe most generalpossiblecommunicationpatternfor eachvalue.

However, examining value communicationin actual programsreveals that most values are

involved in simplecommunication,suchasproducerto singleconsumer. This dissertationpro-

posesanalternatemodelfor inter-instructionregistervaluecommunicationin which valuesmay

be handled differently by mechanisms optimized to their individual needs.

Thefoundationfor thismodelis knowledgeof communicationonaper-valuebasis.Thecom-

municationresourcerequirementsof avaluearesummarizedby its degreeof use,which is simply

the numberof consumersof that value. Accuratedegreeof useinformation may be obtained

speculatively via a predictionmechanism. This information may then be usedto handleeach

value in the most efficient manner available.

This dissertationmakesthreemajor contributionsto thedevelopmentof this communication

model. First, an in-depthstudyof registervaluecommunicationin termsof thedegreeof useis

presentedin order to demonstratethe opportunity for alternative communicationmechanisms.

Second,methodsfor the accuratepredictionof degreeof useare presentedand characterized.

Finally, two proof-of-conceptapplicationsof thedegreeof useknowledgearedeveloped.Useless

instructioneliminationexploits theoccurrenceof degreeof usezerovalues,which have no con-

sumers. Avoiding the executionof instructionsgeneratingsuchvaluesreducesresourceutiliza-

tion, and,underresourcecontention,improvesperformance.Use-basedregistercachingapplies

degreeof useinformationto themanagementof a registercache.Theresultinginsight into each

value’s communicationbehavior allows the limited cachespaceto beusedmoreeffectively than

previously proposed register caches.

ii

Acknowledgements

Above all others,I want to thankmy wife, SusanKalis. A Ph.D.candidateherself,shehas

beenremarkablyunderstandingof the afflictions associatedwith being a grad student:strange

hours,longbingesat thecomputer, lackof motivation,inability to maintainasociallife, andgen-

eralmalaise.Especiallyduringthepastseveralmonths,shehasput herown needsasidein order

to supportmeduringmy final pushto graduate.I amlooking forwardto returningthefavor. It is

saidthat it is easierto suffer togetherthanto suffer alone—truly, I would endureany hardshipso

longasshewastherewith me. I wouldnotbehere,norwould I wantto, withouther, sothiswork

is dedicated to her.

I owea tremendousamountto my parents,Jeffrey andStephanie.Rootedin thepacificnorth-

west,they have seenlittle of mesinceI left to attendcollegein themidwest11 yearsago. How-

ever, knowing that I had a homealways opento me hasbeena sourceof strength. It is their

upbringingto which I creditbeingoneof themostemotionallystablepeopleI know. They have

alwaysencouragedmeto excel andprovidedanenvironmentin which I coulddo so. I canonly

aspire to someday be as good a parent as each of them was to me.

My advisorGuri Sohihasbeeninstrumentalin makingmetheresearcherthatI amtoday. He

spentthebetterpartof thelastsix yearstrying to breakmeof my engineeringmentality, encour-

agingmeto stepbackandlook at thebiggerpictureinsteadof gettingboggeddown in gatesand

propagationdelays. He hastaughtmea greatdealnot only aboutthefield of computerarchitec-

ture, but about the practiceof performinggood research. I am also grateful for his inhuman

patience with my. . . flexible approach to time management.

In a very real sense,I have hadmany researchadvisors. An incrediblestrengthof the com-

putersciencedepartmentat the University of Wisconsinis the engagementof the faculty in the

developmentof eachand every graduatestudent. I have benefittedfrom discussionswith Ras

Bodik, Charlie Fischer, Jim Goodman,Mark Hill, SusanHorwitz, and Mary Vernon. David

Woodin particularhasbeena tremendousresourcein mattersbothtechnicalandotherwise.I am

also happy to count him among my friends (and fellow left wings).

All of the membersof my thesiscommitteedeserve credit for the researchcontainedherein

(althoughI bearfull responsibilityfor its shortcomings).In additionto Guri andDavid, Charlie

iii

Fischer, Mikko Lipasti, andJim Smithall contributedto my developmentasanarchitect. Aside

from their direct input on my researchboth past and present,I have learnedfrom their own

research.Perhapsmostof all, though,I have benefitedfrom theopportunityto observe themon

others’committeesandatconferences,whereI wasexposedto their thoughtprocessesandanaly-

ses of different research ideas.

For reasonsstill opaqueto me,Amir Roth,CraigZilles, andMilo Martin befriendedmeback

whenI wasa know-it-all first-yearstudent,despitebeingseveralyearsmy senior. They arethree

of thesmartestpeopleI haveevermet,andit wasaninvaluableexperienceto watchthemprogress

throughandsucceedin graduateschool. I have tried hardto emulatethem,which hasprobably

been a significant factor in my own graduation.

Many othercurrentandformerstudentsandstaff in thecomputersciencedepartmentat Wis-

consinhave also beenfriends and collaboratorsincluding RossDickson,Brian Fields,Allison

Holloway, Carl Mauer, David Parter, Erik Paulson,andRavi Rajwar. David Parterhasmy extra

thanks for opening his home to me as my Madison base since I relocated to Chicago last year.

My graduateschoolexperiencewouldhavebeenlessproductiveandmuchlessfun wereit not

for the greatcompany of so many other graduatestudents. Of these,BrandonSchwartz and

Paramjit Oberoi deserve specialmention. Brandonwas my roommatefor most of graduate

school,and,in additionto sitting anddiscussingmicroarchitecturein front of the4-by-8foot dry

eraseboardin our apartment,we engagedin endlesspost-midnightdiscourseson computersci-

ence,physics,philosophy, psychology, sociology, political science,andhockey amongothertop-

ics. Paramand I had many equally wide-rangingdiscussions,especiallyafter he becamemy

officemate.Paramalsoenduredhaving measapartnerfor notoneclassproject,but everyproject

in all four classeswe took together. Both BrandonandParamhelpedmerefinenearlyevery idea

in this work and many more that are not.

A conservativeestimateputsthetotalcomputertimespentobtainingthedatain thisdocument

at over 100,000hours(almost11.4years), althoughit wasgeneratedin only a few monthsof cal-

endartime. TheCondorsystemmadethispossible,andI amgratefulto themembersof theCon-

dor teamfor providing andsupportingthis service. They often went the extra mile to scrounge

additional machines to help me meet various deadlines.

iv

I am also extremely thankful for all of the people, those I know personally and otherwise, who

maintain the amazing research support infrastructure in the computer science department. The

staff of the computer systems lab performs the monumental—and often thankless—task of keep-

ing the computers and the network up and running. It is a testament to their success that I find it

difficult to express the extent of their role: everything just works, allowing people to concentrate

fully on their research.

I still find it remarkable that I was able to get paid to learn for the past six years. For this I am

deeply indebted to the Fannie and John Hertz Foundation and Intel Corporation. In addition to its

generous financial support over five years, the Hertz Foundation has also been a valuable source

of contacts and an advocate for my personal career. For the final year of my graduate career, it

was a fellowship from Intel that allowed me to maintain focus on my research instead of the

source of my next meal.

Finally, I would be remiss if I did not at least mention several others who have helped me

reach this point. Kathy Pfaendler, George Delegans, Nels Doeleman, Richard Green, Ken Houle,

Carl Simonsen, Youssef El-Mansy, Greg Taylor, and Jeff Smith have all had profound effects on

my life and intellectual development.

v

Table of Contents

Abstract .. i

Acknowledgements ... ii

Table of Contents ... v

List of Figures .. x

List of Tables .. xii

Chapter 1. Introduction .. 1

1.1. Inter-Instruction Value Communication ... 2

1.1.1. Inter-instruction communication in sequential architectures 2

1.1.2. Register value communication ... 3

1.1.3. Meeting the demands of parallelism .. 4

1.1.4. The problem ... 5

1.2. Degree of Use ... 6

1.2.1. An example .. 7

1.2.2. Classifying values using degree of use .. 8

1.2.3. The need for prediction .. 9

1.3. Contributions .. 9

1.4. Methodology ... 11

1.4.1. Benchmarks .. 11

1.4.2. Simulators .. 11

1.4.3. Model architecture and microarchitecture ... 12

1.5. Dissertation Outline .. 13

Chapter 2. Characterizing Value Degree of Use .. 14

2.1. Degree of Use Characteristics ... 15

2.1.1. Mean, median, mode, and maximum ... 15

2.1.2. Degree of use of input values ... 19

2.2. Classifying Values .. 20

2.2.1. Classification by instruction type ... 20

2.2.2. Classification by register type .. 22

2.3. Temporal Characteristics .. 24

vi

2.4. Working Set Behavior ... 25

2.4.1. Number of possible degrees of use .. 27

2.4.2. Relative likelihood of possible degrees of use ... 30

2.4.3. Temporal locality in per-instruction degrees of use .. 34

2.5. Mathematical Models .. 34

2.5.1. Degree of use distribution .. 34

2.5.2. Independent derivation of the mean degree of use .. 38

2.6. Summary ... 39

Chapter 3. Degree of Use Prediction ... 41

3.1. Predictor Evaluation .. 43

3.2. Encoding Degree of Use Information ... 45

3.2.1. Maximum predictable degree of use .. 45

3.2.2. Biasing ... 46

3.2.3. Default predictions ... 47

3.2.4. Grouping .. 47

3.3. Static Degree of Use Prediction .. 48

3.3.1. Formulating degree of use determination as a dataflow problem 49

3.3.2. Solving the degree of use dataflow problem .. 52

3.3.3. Results .. 53

3.3.4. Applying profile information ... 54

3.3.5. Communicating static predictions to the hardware .. 58

3.4. Dynamic Degree of Use Prediction .. 58

3.4.1. Simple predictor: last observed degree of use ... 60

3.4.2. Adding confidence ... 62

3.4.3. Using control-flow information ... 65

3.4.4. Aliasing in degree of use predictors ... 71

3.4.5. Comparative evaluation ... 74

3.4.6. Training .. 82

3.4.7. Verifying degree of use predictions ... 85

3.4.8. Predictor bandwidth ... 86

vii

3.5. Hybrid Prediction Schemes ... 88

3.6. Summary ... 88

Chapter 4. Useless Instruction Elimination ... 90

4.1. Characterizing Useless Instructions .. 92

4.1.1. Origin ... 92

4.1.2. Prevalence .. 94

4.1.3. Role of the compiler ... 98

4.1.4. Useless instruction resources ... 100

4.2. Useless Instruction Elimination .. 103

4.2.1. Elimination candidates ... 105

4.2.2. Normal operation of useless instruction elimination ... 106

4.2.3. Misprediction detection and recovery .. 107

4.2.4. Retirement backup ... 109

4.2.5. Loads .. 109

4.2.6. Instructions with side effects ... 110

4.2.7. Deadlock avoidance ... 112

4.3. Results ... 113

4.3.1. Parameter sensitivity analysis .. 115

4.3.2. Resource utilization ... 117

4.3.3. Resource occupancy ... 119

4.3.4. Performance ... 120

4.4. Related Work .. 122

4.5. Summary ... 123

Chapter 5. Use-Based Register Caching .. 125

5.1. Introduction ... 125

5.2. Register Cache Operation ... 129

5.3. Use-Based Register Cache Management .. 133

5.3.1. Register cache insertion policy .. 134

5.3.2. Register cache replacement policy ... 136

5.3.3. Counting remaining uses .. 137

viii

5.3.4. Incorrect use information ... 139

5.4. Evaluation ... 140

5.4.1. Processor model ... 141

5.4.2. Register cache size ... 142

5.4.3. Misses .. 143

5.4.4. Comparing insertion policies ... 146

5.4.5. Comparing replacement policies .. 150

5.4.6. Miss breakdown ... 152

5.4.7. Sensitivity studies .. 154

5.5. Related Work .. 156

5.6. Summary ... 158

Chapter 6. Conclusions .. 160

6.1. Contributions and Key Results ... 161

6.1.1. Degree of use characterization ... 161

6.1.2. Degree of use prediction .. 162

6.1.3. Useless instruction elimination .. 163

6.1.4. Use-based register caching .. 163

6.2. Additional Applications of Degree of Use Knowledge .. 164

6.2.1. Early register reclamation .. 164

6.2.2. Registerless communication .. 165

6.2.3. Collapsing dependent operations ... 165

6.2.4. Direct consumer scheduling ... 166

6.2.5. Widely-used values .. 166

6.3. Costs and Benefits of Use-Based Communication Optimizations 167

References .. 169

Appendix. Methodology .. 179

A.1. Benchmarks .. 179

A.1.1. Input data ... 179

A.1.2. Multiple-input benchmarks ... 180

A.1.3. perl test input ... 180

ix

A.2. Benchmark Compilation .. 181

A.2.1. Compilers .. 181

A.2.2. Optimization levels ... 182

A.3. Binary Dataflow Analyzer ... 183

A.3.1. Precision considerations .. 184

A.3.2. Operation of binary analyzer ... 184

A.4. Simulation .. 185

A.4.1. Execution-driven simulation ... 186

A.4.2. Functional versus timing simulation ... 186

A.4.3. System call emulation ... 187

A.4.4. Static linking ... 188

A.5. Timing Simulator Microarchitectural Model ... 189

A.5.1. Fetch pipeline (front end) .. 190

A.5.2. Decode pipeline ... 192

A.5.3. Instruction window and scheduler .. 193

A.5.4. Register file and execution .. 194

A.5.5. Commit ... 195

A.5.6. Memory system ... 196

x

List of Figures

Figure 1.1. Degree of use illustrated... 7

Figure 2.1. Observed degree of use.. 16

Figure 2.2. Correlation between number of potential static consumers and degree of use........ 18

Figure 2.3. Degree of use of instruction input values... 20

Figure 2.4. Distance between a value’s generation and its first use, last use, and overwrite..... 26

Figure 2.5. Unique degrees of use.. 28

Figure 2.6. Possible unique degrees of use... 29

Figure 2.7. Unique degrees of use weighted by execution count... 31

Figure 2.8. Likelihood of possible degrees of use from static instructions................................ 32

Figure 2.9. Likelihood of possible degrees of use from static instructions................................ 33

Figure 2.10. Temporal locality in per-instruction degrees of use... 35

Figure 2.11. Analytical models of degree of use distribution... 38

Figure 3.1. Accuracy and coverage in degree of use prediction... 44

Figure 3.2. Control flow graph annotated with degree of use dataflow facts............................. 52

Figure 3.3. Static prediction using dataflow analysis... 54

Figure 3.4. Static predictions derived from degree of use profiling... 56

Figure 3.5. Optimum threshold value versus misprediction penalty.. 57

Figure 3.6. A dynamic degree of use predictor in a processor pipeline...................................... 59

Figure 3.7. Performance of predicting last-observed degree of use... 61

Figure 3.8. Performance vs. non-prediction threshold for predictor with confidence counters. 64

Figure 3.9. Performance vs. initial confidence for predictor with confidence counters............. 65

Figure 3.10. Control-flow signatures.. 67

Figure 3.11. Degree of use predictor performance as a function of signature length................. 69

Figure 3.12. Easy-bit enhancement to control-flow signature.. 71

Figure 3.13. Effect of tag length on predictor accuracy... 73

Figure 3.14. Predictor coverage vs. organization... 75

Figure 3.15. Prediction accuracy vs. coverage... 76

Figure 3.16. Comparison of replacement policies.. 77

Figure 3.17. Degree of use predictor contents.. 79

xi

Figure 3.18. Benefit of different prediction algorithms vs. capacity .. 80

Figure 3.19. Tuned predictor performance on all benchmarks ... 81

Figure 3.20. Predictor performance by predicted degree .. 82

Figure 3.21. Predictor training with rename vs. retirement instruction streams 84

Figure 3.22. Structure and operation of a degree training table .. 85

Figure 4.1. Instruction taxonomy .. 91

Figure 4.2. Assembly code examples illustrating sources of useless instructions 93

Figure 4.3. Prevalence of useless instructions .. 95

Figure 4.4. Prevalence of static instructions contributing useless instances 97

Figure 4.5. Pitfalls of eliminating partially-dead instructions statically 99

Figure 4.6. Processor pipeline with useless instruction elimination ... 105

Figure 4.7. Operation of useless instruction elimination .. 107

Figure 4.8. ROB fill threshold sensitivity ... 116

Figure 4.9. PUT size sensitivity .. 117

Figure 4.10. Retired useless instructions .. 119

Figure 4.11. Resource occupancy ... 120

Figure 4.12. Performance .. 121

Figure 5.1. Contents of physical register file .. 127

Figure 5.2. Role of the bypass network .. 127

Figure 5.3. Use-based register cache management ... 129

Figure 5.4. Flow of values between instructions in the pipeline .. 131

Figure 5.5. Effect of miss rate on performance .. 144

Figure 5.6. Insertion policies .. 146

Figure 5.7. Replacement policies .. 150

Figure 5.8. Hybrid replacement policies ... 151

Figure 5.9. Register cache misses ... 153

Figure 5.10. Cache capacity .. 154

Figure 5.11. Register cache performance in a four-wide machine ... 156

Figure A.1. Microarchitecture modeled by the timing simulator ... 190

xii

List of Tables

Table 2.1: Degree of Use Characteristics ... 17

Table 2.2: Degree of Use Properties of Instruction Groups .. 22

Table 2.3: Average Degree of Use by Register Class ... 23

Table 2.4: Analytical Model Parameters .. 37

Table 3.1: Aliasing Rates .. 72

Table 4.1: Types of Useless Instructions .. 102

Table 4.2: Number of Inputs of Useless Instructions ... 104

Table 4.3: Simulated Processor Parameters .. 114

Table 4.4: Functional Unit and Issue Port Configurations ... 114

Table 4.5: Utilization Impact of Useless Instruction Elimination .. 118

Table 5.1: Simulated Processor Parameters .. 141

Table 5.2: Evaluating Use-Based Filtering ... 148

Table A.1: Compiler Suites ... 181

Table A.2: Tuned-Benchmark Compilation Options .. 183

Table A.3: Fetch Pipeline Parameters ... 191

Table A.4: Decode Pipeline Parameters ... 193

Table A.5: Instruction Window and Scheduler Parameters .. 194

Table A.6: Register File and Execution Parameters ... 195

Table A.7: Commit Parameters ... 196

Table A.8: Memory System Parameters ... 197

1

Chapter 1

Introduction

At a very high level, the operationof a general-purposecomputercanbe broken into two tasks:

themanipulationof databy individual instructionsandthecommunicationof datavaluesamong

theappropriateinstructioninstantiations.Of thesetwo tasks,inter-instructionvaluecommunica-

tion is vastlymoredifficult andis theorigin of muchof thecomplexity foundin high-performance

processors today.

This dissertationexplorestherelationshipof a value’s degreeof useto thenatureof its com-

munication.A value’sdegreeof useis simply thenumberof timesthevalueis usedasaninputby

thesuccessive instructionsof theprogram,andit is anindicatorof theresourcesneededto distrib-

utethatvalueto its consumers.Mostvaluesexhibit verysimplecommunicationpatterns,yetcur-

rent implementationshandleall valuesuniformly. The resulting communicationinefficiency

manifests as inflated complexity, communication latency, and power dissipation.

Theapplicationof speculativedegreeof useinformationallows for thehandlingof eachvalue

to betunedto its particularcharacteristics.Two suchoptimizationsarepresented:onecompletely

avoids the creationof a valuewhenit will not be communicatedto any subsequentinstructions,

while theotherappliesdegreeof useknowledgeto managethesetof valueskept in a small,low-

latency register cache.

2

1.1 Inter-Instruction Value Communication

Inter-instruction value communication is a need common to all general-purpose processing archi-

tectures. All such architectures provide primitives—instructions—for the manipulation of certain

data representations. The operation of a computer entails the execution of instructions on a set of

data according to a program. The actions specified by the individual instructions are generally

simple and have changed little since the introduction of the first programmable computers. The

versatility of a computer results from the ability to describe arbitrarily-complicated operations in

terms of these simple instructions. Regardless of the variety and richness of the available instruc-

tions, however, nearly all tasks of interest will require the sequential application of multiple prim-

itives. Thus, the communication of data values between the instructions constituting a program is

a fundamental aspect of computing.

The primary motivation for this work is that this task of inter-instruction value communication

is difficult. While part of this difficulty is inherent to the actual communication of values, much

of it results from how communication mechanisms are implemented in current architectures. The

sequential, register-based architecture is the basis for the majority of modern general-purpose pro-

cessor implementations. Most value communication in this architecture occurs through a limited

number of storage locations called registers, and it is this class of communication that is the focus

of this dissertation. Achieving high performance under this model requires complex value com-

munication mechanisms. Technology trends will render current methods of register value com-

munication inadequate for future high-performance implementations.

1.1.1 Inter-instruction communication in sequential architectures

In a sequential architecture, inter-instruction communication is specified in a program via named

storage locations. Each instruction addresses (i.e., specifies) storage locations where its inputs

may be found and where its output should be placed. Thus, value communication is specified

indirectly: instructions do not name the consumers of their result, nor do the consumers name the

producers of their inputs. Instead, a value may be communicated between two instructions if they

name a common storage location. This condition is necessary but not sufficient. The two instruc-

tions must occur in the proper temporal sequence, with the producer of the value occurring prior

to the consumer. Additionally, no intervening instruction can place its result in the storage loca-

3

tion or it would becometheproducer. Thesequenceof instructionswithin theprogram,descrip-

tively calledprogram order, is thereforefundamentalto thespecificationof valuecommunication,

and this is what gives the sequential processing model its name.

It is importanthere,andthroughoutthe remainderof this document,to distinguishbetween

two differenttypesof instructions.A static instruction is anatomof aprogram;it specifiesasin-

glekind of supportedoperation(e.g.,addition),andthelocationsof its input(s)andoutput(s).As

its nameimplies,it doesnot changeduringtheexecutionof theprogram.† A givenstaticinstruc-

tion may executemany timeson differentvaluesby virtue of the storagelocation(s)it specifies

containingdifferentvalueseachtime. Onesuchinstanceof astaticinstructionis calledadynamic

instruction. A dynamicinstructiononly occursonce;its inputsarefixed to the contentsof the

named storage locations at the time of its instantiation.

1.1.2 Register value communication

Two differentclassesof storagelocationsmaybenamedby thestaticinstructionsof theprogram:

registersandmemory. Registerscomprisea small number—architecturedependent,but on the

orderof a few tens—ofstoragelocationsthat arenameddirectly. In otherwords,given a static

instructionthatnamesa particularregisterasaninput, every dynamicinstanceof that instruction

will alsoreceive its input from thesameregister. Thecapacityof memoryis vastlylarger(ideally

infinite). Thenumberof individually-addressablememorylocationshindersthedirectaddressing

of particularmemorylocation(althoughsomearchitecturessupportit); generally, amemoryloca-

tion is named with the aid of a value stored in a register.

Thisdissertationfocusesonthevaluecommunicationoccurringthroughregistersbecauseit is

the dominantmode of inter-instruction communication,in spite of the much smaller register

namespace.Register-basedarchitecturesareaptly named:nearlyevery usefulinstructionspeci-

fiesat leastoneregisterasa sourceor destination.Load-store architectures area subclassof reg-

ister-basedarchitecturesin which only two specificclassesof instructionscanaddressmemory.

A load movesavaluefrom memoryto a register, while a store performsthereverseoperation.In

eachcase,anotherregistercontainsa valueusedin addressingthe memorylocation. While all

† Stored-program computers do not distinguish between instructions and other kinds of program data. A
few architecturesallow runningprogramsto modify theirprogramcode;theoccurrenceof suchself-mod-
ifying code is rare even where supported.

4

other types of operations may communicate only via registers, these memory operations still use

two registers each, illustrating the importance of register value communication. Architectures

such as the IA-32 allow instructions to specify a memory location as a source or destination; how-

ever, most implementations convert these instructions into a sequence of simpler ones communi-

cating via registers and using loads or stores as needed [44].

1.1.3 Meeting the demands of parallelism

Achieving high-performance in a sequential architecture necessitates overcoming an inherent dis-

advantage of the programming model. While a sequential program imposes a total ordering

among all instructions, a given instruction frequently does not depend on the execution of all prior

instructions. The useful consequence of this fact is that the execution of instructions that are inde-

pendent of one another can take place simultaneously, reducing the total time required to execute

all of the operations specified by the program. The existence of independent instructions within a

program is referred to as instruction-level parallelism.

Exploiting parallelism for high-performance using register-based communication demands:

(1) many register storage locations, (2) high register access bandwidth, (3) many communication

endpoints, and (4) low access latency. Each simultaneously-executing instruction requires input

values from storage (some of which may be shared) and storage for its result, requiring more total

register storage than if execution occurred one-instruction-at-a-time. Even if few unique register

names are available, register renaming enables more physical storage locations to be in use con-

currently than the number of register names would otherwise support.† The adoption of simulta-

neous multi-threading [85], which increases available parallelism by offering multiple execution

contexts with their own register namespaces, requires even more register storage [13]. While the

quantity of register storage grows with the degree of parallelism, so too does the access bandwidth

required of that storage. Each instruction must access the register storage to retrieve its input

operands and store its result value; simultaneously-executing instructions must perform these

† Where parallelism exists, it can be obscured by false dependences introduced as a result of a limited reg-
ister namespace. Sequences of instructions belonging to otherwise independent computations are serial-
ized merely by virtue of specifying the same register at some point. Register renaming maps the limited
number of names for register locations (the architectural registers) to a much larger—and implementation
dependent—number of storage locations for actual values (the physical registers). Physical register iden-
tifiers are substituted for architectural register names such that real data-dependences are preserved.

5

accesses concurrently. Furthermore, the instructions will occupy different execution resources,

each of which needs its own connections to the register storage. Finally, the latency of the access

to register values must not suffer unduly: the benefit of executing many instructions at a time is

diminished if the instructions take much longer to obtain their input values.

Much of the complex circuitry in current processors exists to support these demands of regis-

ter value communication. Besides the register file itself, this circuitry includes the bypass net-

work and the instruction scheduling hardware (in dynamically-scheduled processors, which are

the focus of this work) [66]. The bypass network provides direct interconnection among different

execution units so that latency-critical value communication may occur without traversing the

register storage. The instruction scheduler enforces program data-dependences by allowing

instructions to execute only after their input values are available; thus, its design is heavily

impacted by the nature of inter-instruction communication. In some instances, the instruction

scheduling apparatus even stores register values [11, 67, 83]. The resources spent supporting

inter-instruction value communication dwarf those spent to actually execute instructions. Sup-

porting high-performance value communication with these structures represents a significant

challenge facing future designs.

1.1.4 The problem

Value communication mechanisms benefit less from technology scaling than other types of cir-

cuitry because they are large, centralized, and wire-dominated [66]. First, the quantity of storage

accessible in a fixed period of time relative to the latency of a fixed computational operation (e.g.,

addition) is decreasing [1]. Thus, the relative latency of the access to a fixed amount of register

storage will increase. If the amount of register storage must also increase, the effect will be corre-

spondingly larger. Supporting more simultaneous accesses to the register storage has a penalty

similar to that of increasing its capacity. A second—and not unrelated—trend is the smaller rela-

tive improvement in the speed of wires versus transistors as semiconductor technology moves

forward [10].† Slow interconnection imposes a cost for increasing the number of execution units

that must access the value storage structures. In addition, it reduces the effectiveness of bypass-

† Physical limitations to scaling, while of increasing importance, should not prevent the continuous
improvement of CMOS semiconductor technology through at least the end of the decade. Further scaling
depends on the development of and transition to non-classical CMOS technologies [45].

6

ing, which attemptsto reducethe impact of register accesslatency by passingresult values

directly amongexecutionunits. Finally, theemergenceof staticanddynamicpower dissipation

asarchitecturalconstraintsdemandsefficient implementationof the largeamountof value-com-

munication circuitry[16, 65].

The complexity of value communicationstructuresarisesfrom their generality. They are

designedto support arbitrary data-dependencerelationshipsamong all in-flight instructions.

Thus, their complexity dependsprimarily on details of the implementation (e.g., the pipeline

width anddepth),even asthe valuecommunicationcalledfor by a given programremainscon-

stant. As a result,the overheadof currentvaluecommunicationmechanismsincreasesaspipe-

lines grow to exploit parallelism.

Moving forward,novel valuecommunicationmechanismsmustbedevisedto exploit parallel-

ism moreefficiently. Specializedmechanisms,optimizedfor specificvaluecommunicationpat-

terns,canfill this role. Renderedindependentof the scalingof the pipeline,they will be more

resistantto thenegative effectsof technologytrends. A prerequisitefor theapplicationof these

alternativemechanisms,however, is awayof classifyingthecommunicationrequirementsof each

value.

1.2 Degree of Use

The thesisof this work is that a value’s degree of use provides the most pertinentinformation

regardingthatvalue’s communicationrequirements.Degreeof useis simply thenumberof con-

sumersof a particularregistervalue. It is a dynamicproperty—thatis, successive instantiations

of the sameinstructionin the programmay leadto valueswith differentdegreesof use. Values

thathave a high degreeof use(i.e., many consumers)mustbewidely available(e.g.,to multiple

functionalunits) at low latenciesfor long periodsof time. In contrast,valuesthat areusedbut

oncedo not requiresucha powerful (andexpensive) communicationmechanism.Thebestcom-

municationmechanismfor a valuedependson theneedsof thatvaluerelative to thecapabilities

of thevariousavailablecommunicationmechanisms.Therelative proportionsof theseclassesof

values will determine the forms of and relative needs for these different mechanisms.

To avoid unwieldy sentences,the degreeof use“of an instruction” or “of a register” will be

usedoccasionallythroughoutthisdissertation.Of course,degreeof useis apropertyof aspecific

7

dynamic value. These phrases are shorthand for the degree of use of the value generated by a par-

ticular instruction or the degree of use of the value in a particular register, respectively.

1.2.1 An example

Figure 1.1 illustrates some of the interesting properties of degree of use using a short example

function that returns the first occupied bucket in a hash table. The C source code example

appears on the left and the corresponding Alpha [5] assembly code on the right. A portion of the

dynamic dataflow graph corresponding to a particular execution of the function appears at the bot-

tom of the figure.

Alpha assembly code will appear throughout this dissertation, so a brief explanation is pro-

vided here. Most instructions with a register destination (e.g., arithmetic and logical operations)

name that register on the right. The sole exceptions are load instructions, which name the destina-

tion register on the left. All load instruction mnemonics begin with ld (the lda and ldah

instructions perform address computations and do not access memory, although their destination

registers still appear on the left). Memory addresses for loads and stores appear on the right and

consist of a fixed offset to be added to the contents of a base register appearing within parenthe-

ses. Control instructions can be identified by the presence of a label, except for the indirect jumps

jmp, jsr, and ret, which branch to an address stored in a given register (appearing within

parentheses).

loop: s8addq t1, a0, t2
 ldq v0, (t2)
 addl t1, 0x1, t1
 subl t1, a1, t3
 bge t3, exit
 beq v0, loop
 ldq v0, 24(v0)
 ret zero, (ra), 1
exit: bis zero, zero, v0
 ret zero, (ra), 1

Figure 1.1. Degree of use illustrated

addl subl

s8addq ldq

bge

beq

addl subl

s8addq ldq

bge

beq

addl subl

s8addq ldq

bge

beq

addl subl

s8addq ldq

bge

beq

addl subl

s8addq ldq

bge

beq

ldq

a1

t1

a0

t2 t2 t2 t2t2 v0 v0v0v0 v0

t1 t1 t1t1t3 t3 t3t3 t1 t3

do {
 bucket_ptr = hash_table[idx];
 idx++;
 if (idx >= num_buckets) {
 return 0;
 }
} while (bucket_ptr == NULL);

return bucket_ptr->list_head;

idx

hash_table

num_buckets

8

The figure illustrates several interesting aspects of degree of use. First, many values are used

only once. Values assigned to t2 and t3, for example, will always exhibit a degree of use of one.

Of the 23 values represented in the dataflow graph, 14 of them are used only once. Second, some

static instructions always generate values with the same degree of use (e.g., the s8addq and

subl instructions). Instructions whose results are live across one or more conditional branches

can have different degrees of use depending on the particular path taken through the program. For

example, the value in t1 has a degree of use of one in the final loop iteration, but a degree of use

of three in all prior iterations. Finally, note that it is possible for a value to have a degree of use of

zero (i.e., never be used). Had the loop terminated due to the bge being taken (rather than the ter-

mination of the while loop as shown), the two shaded nodes in the dataflow graph would not be

executed and the value generated by the ldq instruction would not be used.†

1.2.2 Classifying values using degree of use

The example clearly demonstrates how degree of use provides information about the communica-

tion of a dynamic value lost as a consequence of the programming model. The level of indirection

inherent to register-based architectures obscures this information for the sake of compact instruc-

tion encoding. Thus, the ultimate fate of an instruction’s result is hidden when that result is gen-

erated: it may be read from the destination register once or many million times or any number in

between. Without additional information, all value-producing instructions have no choice but to

place their results into the specified registers. Also, the microarchitecture must ensure that all reg-

isters can support being read any number of times. These consequences are at the root of the inef-

ficiencies in current inter-instruction communication mechanisms.

Degree of use information restores knowledge about the fates of individual dynamic values.

Using this knowledge, it is possible to identify values that have different communication needs

and handle them in an optimized manner. In fact, degree of use offers the most direct measure of

communication, as it quantifies the actual flow of a value to its consumers. Therefore, it is a prop-

erty solely of the value’s dataflow (and, by extension, the value’s role in the program). Possible

† Because of the focus on register value communication, values are not tracked through memory. Store
instructions are terminal: from the perspective of register values, a store represents one use of each of two
register values (one containing an address and another the data to be written to memory). Subsequent
loads of this stored value would each be considered to create a new value.

9

alternative measures are influenced by other factors than the communication structure of the pro-

gram, such as dynamic events. For example, consider classifying a value’s communication by its

lifetime: values generated by the same instruction and communicated in the same manner may

have significantly different lifetimes in consecutive executions due to an unrelated L2 cache miss.

1.2.3 The need for prediction

Using a value’s degree of use to optimize its communication requires knowledge of the future.

The degree of use of a particular value is calculated by counting its uses; thus, it is not certain

until the last use has been observed. Prediction is a well-understood technique for obtaining

information that would not normally be available (e.g., the direction of a conditional branch prior

to its execution). Based on the predicted information, actions can be taken speculatively, and the

prediction verified later. Given high enough prediction accuracy, the effect is the same as having

future knowledge.

This work describes degree of use prediction, which supplies high-accuracy speculative

degree of use information for values early in the processing of their producer instructions. Degree

of use prediction is successful because the dataflow patterns in programs are predictable. As dem-

onstrated by the example, many instructions generate values that always have the same number of

uses. Determining the degrees of use for values from these instructions is trivial. Even where

control flow can affect the degree of use of values from a particular instruction, the predictability

of control flow (demonstrated by the success of branch prediction) leads to similar predictability

in the degree of use. As with branch prediction, past behavior is a very good predictor of the

future.

1.3 Contributions

The initial work on degree of use arose in connection with the Multiscalar project [78]. In this

work, Franklin and Sohi presented the distribution of degree of use (coining that term in the pro-

cess) of dynamic values [32]; they observed the dominance of single-use values and used their

observations to propose an alternative value-communication mechanism—namely, a distributed

register file. These observations (low average number of uses, many single-use values) have since

been used to justify certain design decisions or motivate complete optimizations (e.g., [8, 24, 43,

10

50]), but none has yet exploited knowledge of number of uses of a particular value because of the

unavailability of this information. This dissertation addresses how to obtain that information, its

relationship to the role of a value within the program, and how it can be exploited.

The first major contribution of this work is a thorough exploration of the degree of use proper-

ties of register values. The observations of Franklin and Sohi are confirmed and expanded upon;

the use of a different architecture as well as different benchmarks and compilers broaden the

scope of their initial study. Correlations between the role of a value within a program and its

degree of use help to explain some of the consistency that is observed with respect to the distribu-

tion of different degrees of use. An in-depth characterization of the stability of the degree of use

of individual instructions demonstrates the feasibility of history-based dynamic prediction

schemes. Finally, the distribution of values with different degrees of use is examined analytically.

A previously-proposed analytical model is extended, and the mean degree of use is derived from

considerations of the instruction mix.

The demonstration of accurate static and dynamic degree of use prediction is the second con-

tribution of this work. The degree of use of a value is determined by its role in the program; since

the role of a given instruction of the program is fixed, the possible degrees of use of values pro-

duced by that instruction are pre-determined. A formulation of the degree of use dataflow prob-

lem is presented, which, when solved with standard interprocedural dataflow analysis techniques,

allows assignment of the set of possible degrees of use to each static instruction of the program.

This assignment is the basis for static degree of use prediction. Dynamic degree of use prediction,

on the other hand, is based on run-time profiling of degree of use. Here, the novel concept of for-

ward control flow is introduced, which offers short-range path look-ahead as a direct consequence

of pipelining. In more advanced dynamic predictors, this information can be used to distinguish

among different previously observed degrees of use for the same instruction.

The third significant contribution of this work is useless instruction elimination (UIE). This

technique avoids the execution of instructions that produce values that will not be used (i.e.,

degree of use zero values). UIE is representative of the class of optimizations that uses degree of

use information to affect the handling of the producer instruction. The performance benefit of

UIE is limited by the frequency of occurrence of useless values and the importance of resource

contention. Nonetheless, resource utilization is reduced, which can lead to lower power dissipa-

11

tion. A minor contribution associated with this optimization is an in-depth study of the existence

and properties of the useless instructions, which implicates compiler optimizations in increasing

the incidence of useless instructions.

Finally, use-based register caching applies degree of use information more broadly. The

large, slow register file is replaced by the combination of the bypass network and a small, fast reg-

ister cache. Degree of use information is used to determine the expiration of a value’s usefulness

by comparing the number of actual uses with the prediction. Only those values that are useful

after bypassing are placed in the register cache, enabling its size advantage over the register file.

The register file is relegated to the task of recovery, supplying values that were mistakenly

dropped from or never placed in the cache.

1.4 Methodology

This section summarizes aspects of the methodology common to the different experiments con-

ducted. The issues presented here are general in nature; details specific to a given experiment are

provided in the associated chapter where necessary. Many additional details too cumbersome or

arcane to present within a chapter (or here) are described within the appendix.

1.4.1 Benchmarks

The benchmarks used in all experiments are from the SPEC CPU 2000 suite [80]. Depending on

the experiment, data is provided for all benchmarks (26 total) or only the integer benchmarks (12

total). Except where noted, the training inputs provided with the benchmark suite were used.

Benchmark binaries generated with different compilers and compiler options were used in some

experiments. Descriptions of the compilers and the flags used in each configuration may be found

in section A.2 of the appendix. If unspecified for a particular experiment, the binaries used were

those compiled with the Compaq/Digital C, C++, and Fortran-90 compilers (cc, cxx, and f90

under Digital UNIX 4.0, respectively) with the flags that yielded the best performance on an

aggressive (8-wide, deeply-pipelined) simulated machine. All binaries were statically-linked.

1.4.2 Simulators

The majority of the results in this dissertation come from execution-driven simulation of user-

level code (system calls are executed on the host machine). Two different simulators were used—

12

a functional simulator and a timing simulator. All characterization data were gathered using func-

tional simulation of benchmarks executing to completion. Performance data (and other associated

results) were obtained using a detailed, parameterized microarchitectural timing model. The

parameters varied among experiments; important features of the microarchitecture common to all

of the experiments are discussed in the next section. The significant slowdown of the timing sim-

ulator versus native execution prohibited simulation of the benchmarks to their completion under

the timing simulator (a complete timing simulation of apsi, for example, runs for more than a

month). Instead, the first four billion instructions of each benchmark were simulated.

1.4.3 Model architecture and microarchitecture

The benchmarks are compiled to an Alpha instruction-set architecture (ISA) target [5]. The

Alpha ISA is a sequential, register-based, load-store ISA. Thirty-two each integer and floating-

point registers are defined; one of each kind always contains zero. Excepting loads and stores, all

instructions operate exclusively on register values. Most instructions have one or two inputs,

although conditional move instructions are provided, which effectively have three inputs. Instruc-

tions have a maximum of one output.

Where timing simulation is required, a pipelined, out-of-order superscalar microarchitecture

with MIPS R10K-style register renaming is assumed [89]. Instructions are scheduled dynami-

cally—subject to resource constraints—from an instruction window as soon as their input oper-

ands are available. Multi-cycle execution resources are assumed to be fully-pipelined, and the

execution of a dependent operation may begin in the cycle immediately following the completion

of its parent.

Loads may issue before older store addresses are completely known and assume both a cache

hit and no unknown memory dependence to an older store [72]. A cache miss results in the need

to re-issue all operations issued after the load through the signalling of the miss. Loads may

bypass their data from older executed, unretired stores with the same latency as a cache hit. A

conflicting older store executing after a load results in a pipeline squash and refetch of all opera-

tions beginning with the load. A load-dependence predictor is used to delay the issuing of loads

that have previously caused such squashes [90].

13

Instruction sequencing uses separate conditional and indirect branch predictors and a return

address stack. Execution proceeds down a wrong-path until the mispredicted control instruction

is executed; fetch begins along the correct path in the cycle immediately following the execution

of a misprediction; more generally, any pipeline squash completes in a single cycle and fetch

resumes the following cycle. There is no limit to the number of outstanding, unresolved branches.

The performance of most Alpha implementations are sensitive to code layout with respect to

branches and their targets [6]. For this reason, the compilers insert many NOPs. These NOPs are

eliminated during instruction fetch—they have no effect other than occupying cache space.

The memory hierarchy consists of three caches and a fixed-latency, infinite memory. Separate

L1 instruction caches and data caches are backed by a unified L2 cache. The L1 data cache and

the L2 cache are writeback caches. The memory system supports multiple outstanding misses at

each level; each level also contains an opportunistic stride-based prefetcher. Data and instruction

TLBs are perfect (i.e., not modeled).

1.5 Dissertation Outline

The next four chapters of the dissertation each present a primary contribution in the order

described in Section 1.3. Chapter 2 presents an in-depth characterization of degree of use proper-

ties. Degree of use prediction is described in Chapter 3. Both static and dynamic prediction

methods are presented; the formulation of the degree of use dataflow problem appears in connec-

tion with the static prediction. Chapter 4 presents useless instruction elimination. The incidence

and causes of useless instructions are investigated, followed by a description and experimental

evaluation of the UIE technique. Use-based register caching is the topic of Chapter 5. The pro-

posed register cache organization is motivated by considering the bypass network the primary

value communication mechanism in lieu of the register file. Managing the register cache contents

using degree of use information is demonstrated to be superior to previously proposed techniques.

Chapter 6 summarizes the contributions detailed in the prior chapters of the dissertation; it also

discusses possible additional applications of degree of use information and issues with such opti-

mizations in general. References and the appendix make up the remainder of the document.

14

Chapter 2

Characterizing Value Degree of Use

This chapter presents a detailed characterization of inter-instruction communication through reg-

isters in terms of degree of use. The data presented here serve three functions: (1) to illuminate

the inter-instruction communication patterns that occur in programs, (2) to suggest opportunities

for communication optimizations, and (3) to demonstrate the feasibility of degree of use predic-

tion.

First, aggregate degree of use properties are presented. Values generated during a program’s

execution are classified by their degree of use, and the types of communication that are revealed

are discussed. In some cases, the role of a value in the operation of the program can be identified

by the type of instruction that generates the value or the architectural register to which the value is

assigned. With this additional data, values with specific roles in a program are shown to have

degree of use characteristics significantly different than the overall average. Next, the stability of

the communication is explored on a per-instruction basis. Stable inter-instruction communication

suggests that degree of use prediction, the topic of the next chapter, will be successful. Finally,

mathematical models for degree of use characteristics are developed, extending some prior work

in this area. The results of this analysis allow for both the calculation of the probability of occur-

rence of a particular degree of use and the estimation of the mean degree of use from the expected

instruction mix.

15

2.1 Degree of Use Characteristics

Figure 2.1 shows data on the observed degree of use distribution for each of the benchmarks com-

piled under two different compiler suites: the vendor suite (offered by the same company respon-

sible for the instruction set architecture) and the third-party suite. Details on the specific

compilers in each suite and the compilation methodology can be found in section A.2 of the

appendix.

It is readily apparent that most of the communication occurring during program execution is

direct communication to one consumer: an average of over 67% of dynamic values have a degree

of use of one. The frequency of degree of use two values show the most absolute variation,

accounting for anywhere between 4% and 33% of all values. No higher degree of use accounts

for more than 11% of the values in any of the benchmarks. 4-5% of the values generated by most

of the integer benchmarks are not used at all.

Comparing Figure 2.1(a) and Figure 2.1(b), it is apparent that the degree of use behavior of a

given program is quite similar even when different compilers are used, especially for the C and

C++ benchmarks. This should not be surprising since the overall value communication structure

is a function of the ISA and the program itself. The only immediately obvious difference is a

trade-off between one- and two-use values: the vendor compilers tend to generate more of the

former and less of the latter while the third-party compilers do the opposite. The third-party com-

pilers also generate fewer degree of use zero instructions. These minute differences arise from

how each compiler performs register allocation, code scheduling, and other optimizations that

affect how registers are mapped onto the inherent dataflow specified by the program.

2.1.1 Mean, median, mode, and maximum

The median and mode degrees of use are easily observed on each distribution of Figure 2.1 (the

bin crossed by the 50% level and the largest bin, respectively). Without exception, the median

and mode degree of use are one. The mean degree of use for each benchmark appears in Table 2.1

along with the maximum degree of use and the percentage of non-nop instructions that produce a

register result. An average of about 76% of dynamic instructions produce a value; the remainder

are almost entirely stores and branches, although a few rare instructions (e.g., certain system

16

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

dy
na

m
ic

 v
al

ue
s 7+

6

5

4

3

2

1

0

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

dy
na

m
ic

 v
al

ue
s 7+

6

5

4

3

2

1

0

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 2.1. Observed degree of use

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

17

Table 2.1: Degree of Use Characteristics

Vendor Compiler Suite Third-party Compiler Suite

Benchmark Mean Maximum % Dynamic Mean Maximum % Dynamic

eon 1.94 8.46 K 63.7% 2.06 8.49 K 62.4%

bzip2 1.76 336 M 76.6% 1.74 67.5 M 81.1%

crafty 1.53 5.40 M 82.8% 1.54 2.34 M 76.5%

gap 1.53 3.21 M 76.0% 1.59 11.6 M 72.7%

gcc 1.70 2.68 M 69.7% 1.73 421 K 62.5%

gzip 1.58 828 K 76.2% 1.52 4.19 M 78.0%

mcf 1.51 34.0 M 67.5% 1.71 33.8 M 70.4%

parser 1.76 13.8 M 74.2% 1.73 3.26 M 71.4%

perl 1.68 579 K 71.0% 1.67 122 K 67.4%

twolf 1.68 69.3 K 70.8% 1.78 44.1 K 72.9%

vortex 1.54 6.98 M 71.4% 1.61 86.7 K 66.1%

vpr 1.72 28.5 M 71.7% 1.63 864 K 77.9%

ammp 1.88 205 M 81.8% 1.78 86.6 M 82.9%

art 1.96 250 K 67.3% 1.69 57.1 M 81.5%

equake 1.56 7.66 M 92.1% 1.58 3.57 M 86.6%

mesa 1.72 1.31 M 74.9% 1.66 1.31 M 74.2%

applu 1.91 1.67 M 86.1% 1.78 2.08 M 65.7%

apsi 1.92 6.25 M 80.9% 1.85 2.50 M 78.2%

mgrid 1.74 344 K 91.9% 1.59 3.44 M 80.8%

sixtrack 1.91 16.3 M 88.3% 1.99 5.64 M 73.9%

swim 1.85 863 K 82.8% 1.63 967 K 74.2%

wupwise 1.73 2.89 M 79.1% 1.78 9.22 M 67.3%

facerec 1.85 11.3 M 82.2% 1.79 2.96 M 78.4%

fma3d 1.90 80.3 K 77.9% 1.80 41.8 K 79.9%

galgel 1.85 2.99 M 75.9% 1.75 6.73 M 78.8%

lucas 1.83 51.5 K 90.4% 1.80 24.9 M 75.9%

Integer 1.66 336 M 72.6% 1.69 67.5 M 71.6%

Floating Pt. 1.83 205 M 82.3% 1.75 86.6 M 77.0%

C/C++ 1.69 336 M 74.2% 1.69 86.6 M 74.0%

Fortran 1.85 16.3 M 83.6% 1.78 24.9 M 75.3%

All 1.75 336 M 77.8% 1.72 67.5 M 74.5%

18

calls) do not produce results either. Note that the average degree of use differs very little between

the different compiler suites.

While the relative fraction of values with a high degree of use is very small, the data in

Table 2.1 show that degrees of use themselves can be large. Maximum degrees of use range over

five orders of magnitude from a few thousand to over three hundred million (a global pointer

value in bzip2) across the different benchmarks. Instructions exhibiting the largest degrees of

use fall into two overlapping categories: (1) address-generating instructions (often stack and glo-

bal pointer updates), and (2) instructions generating loop-invariants. In the first case, the number

of unique static consumer instructions tends to be high, while in the second case the high degree

of use frequently results from repeated communication to a set of static consumers.

This relationship between the number of unique consumer instructions and the average degree

of use appears in Figure 2.2 for static instructions generating a significant number of values.† The

diagonal line corresponds to an average degree of use equal to the number of static consumers.

Points above this line represent instructions that generate values used within loops: the average

† Only static instructions generating more than 1000 values are represented. The data in the figure corre-
sponds to benchmarks compiled with the vendor compilers; data from the benchmarks compiled with the
other compilers appears nearly identical.

0 50 100 150 200

Number of unique consumer instructions

0

50

100

150

200

A
ve

ra
ge

 d
eg

re
e

of
 u

se

Figure 2.2. Correlation between number of potential static consumers and degree of use

19

number of uses of such a value exceeds the number of unique consumer instructions. A typical

example of such an instruction is one that generates the base address of an array accessed in the

loop body. Conversely, points below the line represent instructions generating values with a

smaller average degree of use than the number of potential consumer instructions. For these

instructions, variation in the subsequent control flow results in different consumers receiving the

result of the instructions on different executions. Note that some of these consumers may still

receive one of these values multiple times due to looping. A representative example of an instruc-

tion in this region is an indirect subroutine call, which has as its result the return address: many

return instructions in different subroutines will use the result of the call, but the average degree of

use will be only one.

2.1.2 Degree of use of input values

The average degree of use of instruction inputs is higher than the average degree of use of instruc-

tion results. To understand this phenomenon, consider a single value used ten times. The degree

of use of the value is ten and that value would be counted once in the distributions of Figure 2.1.

However, that value accounts for ten instruction inputs: while only one instruction generates a

result with a degree of use of ten, ten instructions use a degree-of-use-ten value as an input. In

other words, the frequency of occurrence of a particular degree of use as an input is its frequency

as a result weighted by the degree of use itself.

Therefore, the distribution of the degree of use of instruction inputs may be obtained from the

distribution in Figure 2.1(a) by doubling the height of the degree of use two bar, tripling the height

of the degree of use three bar, and so on, and then renormalizing. The resulting distribution is por-

trayed in Figure 2.3 (for benchmarks compiled with the vendor compilers). Note that while an

instruction is most likely to generate a value that is used once, an instruction will most likely use

a value that is used more than once. Values with seven or more uses account for nearly a quarter

of all values used even though they comprise less than 3% of all values (see Figure 2.1(a)). As

would be expected, degree of use zero values account for no inputs.

Another way to think about distributions of Figure 2.3 is as the relative contribution that val-

ues with a particular degree of use make to the average degree of use. Consider how the mean

degree of use is calculated: each degree of use is multiplied by its frequency of occurrence to

20

obtain its contribution to the mean (an exercise that will be demonstrated more explicitly in

Section 2.5). This procedure is exactly that used to generate the distribution of input degrees of

use (except for the final renormalization). Figure 2.3 shows that while single-use values comprise

the majority (just over two-thirds) of all values generated, they contribute less than 40% to the

overall mean degree of use.

2.2 Classifying Values

The degree of use of a value is intimately tied to the role of that value in the execution of a pro-

gram. Therefore, one expects to see different degree of use properties for different classes of val-

ues. In this section, two proxies for the role of a value in a program are considered: the type of

instruction that generates the value and the architectural register to which the value is assigned.

2.2.1 Classification by instruction type

Table 2.2 shows degree of use data for six classes of instructions. In addition to the average

degree of use, the table shows the average number of unique static consumers for that class of

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

dy
na

m
ic

 v
al

ue
s

7+

6

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 2.3. Degree of use of instruction input values

21

instruction. The categories in the table represent about 80% of dynamic instructions, including

the largest five (control instructions were among the smallest classes of value-generating instruc-

tions). The categories listed were chosen based on whether the degree of use data were notewor-

thy or could be explained by considering the role of those types of instructions within a program.

Load instructions exhibit a larger than average number of static consumers although their

degree of use is about equal to the overall average. Further partitioning the loads by the size of the

memory access reveals that 64-bit integer loads average over six distinct consumers, while the

remaining loads average less than two. In spite of this distinction, the average degree of use of

64-bit loads is only 13% higher than that of other types. Due to the variety of roles for loads in a

program, it is difficult to draw any conclusions from these characteristics, although one might

speculate that the behavior of the 64-bit loads is correlated with the fact that addresses are 64 bits.

The data in the table indicate a significant difference in the behavior of the results of integer

and floating-point math operations. These categories include add, subtract, multiply, divide, and

square root instructions of all data sizes but exclude scaled adds, shifts, conversions, and other

logical operations, which showed somewhat different behavior. The data show that integer values

are used more often than floating-point values; besides their role in computation, integer values

perform other functions that are likely to result in many uses of the same value. For example,

some integer variables are loop induction variables or containers of multiple smaller-sized data

items (e.g., packed bytes or bitmasks). Variation in control flow causes the number of potential

consumers to exceed the average number of uses for integer results; floating-point operations typ-

ically communicate to a fixed set of consumers.

The lda or load address instruction exhibited the highest average degree of use of any com-

mon instruction. lda places the result of an effective address calculation into a register where it

often is used as a base address for many loads or stores, accounting for both the high average

degree of use and number of unique consumer instructions. Those lda instructions that did not

take a register input were classified instead as load immediates, which exhibit very different

behavior.

The results of compare instructions have a very well-defined role—determining the direction

of a subsequent conditional branch. These values are almost always used just once by a subse-

quent branch. Occasionally, a branch condition will be computed by a compare instruction prior

22

to one or more different branches, resulting in more than one possible consumer for the computed

condition. This phenomenon accounts for the number of potential consumers exceeding one.

Finally, control instructions (those that generate values) supply many different consumers, but

their average degree of use is much lower than that of the load address instructions. This category

is almost entirely composed of subroutine call instructions, each of which generates a return

address used by one of many potential consumers. Indirect calls (jsr), comprising about 10% of

this category, have an average of 75 consumers, while the more common direct calls (bsr) supply

an average of only 1.3 consumers.

2.2.2 Classification by register type

Guessing the role of a value using only the nature of its source instruction is difficult. Loads, for

example, perform too many different functions in a program to hint at the purpose of the loaded

value. A better clue to the role of a value is the identity of the architectural register containing

that value. Many registers or groups of registers have functions designated by convention to allow

different software components (e.g., compilers, assemblers, and libraries) to cooperate. The func-

tions of these registers should correlate with the degree of use properties of the values assigned to

them. The stack pointer is perhaps the most obvious example: within a function body, accesses to

local variables stored in the stack frame use the stack pointer as a base register. Thus, one expects

values in this register to exhibit a high average degree of use, which is the case.

Table 2.2: Degree of Use Properties of Instruction Groups

Vendor Compiler Suite Third-party Compiler Suite

Group
% dynamic
instructions

Average
consumers

Average
DOU

% dynamic
instructions

Average
consumers

Average
DOU

Load 30.3% 3.73 1.71 31.0% 3.71 1.67

FP math 22.1% 1.46 1.34 18.3% 2.00 1.70

Integer math 11.0% 2.61 1.74 13.2% 2.84 1.77

Load address 9.6% 11.42 4.90 8.6% 16.47 6.00

Compare 5.0% 1.14 1.04 6.2% 1.15 1.01

Control 1.1% 3.12 1.18 1.0% 2.93 1.08

23

Table 2.3 shows the average degree of use for several classes of registers (as defined by the

Alpha Assembly Language Programmers Guide [6]). Data are shown for benchmarks compiled

with the vendor compilers only; the other compiler suite exhibits comparable behavior.

Of all registers or groups of registers, the stack pointer has the highest average degree of use.

Within Fortran programs, which frequently pass large arrays on the stack, stack pointer values are

used almost three times as often as in the C or C++ programs. The global pointer, used as a base

address for the access of global data objects, also shows a significantly higher average degree of

use than other register categories, although the behavior is much more consistent across the differ-

ent benchmark groups.

Callee-saved integer and floating-point registers are those integer registers defined by the

assembly language programming conventions to be preserved across subroutine calls. If a sub-

routine uses one of these registers, it must save the register first and restore it before returning.

The higher degree of use of these registers may be ascribed to two factors. First, a smart compiler

will preferentially assign values with long live ranges to these registers to avoid having to spill

them before subroutine calls. These long-lived values are more likely to have a high degree of use

(see Section 2.3). Second, the save operation (a store into the stack frame) results in a use of the

value not demanded by the underlying communication structure of the program. Thus, a save

results in an additional use being credited to the a callee-saved register value. If the value happens

to be dead at the time of a call, the restore at the end of the subroutine will create a value that will

Table 2.3: Average Degree of Use by Register Class

Bench-
marks

Stack
pointer

Global
pointer

Callee-
saveda

a. s0-5

Tempo-
rariesb

b. v0, a0-5, t0-11

Special
integerc

c. t12, at, ra

FP callee-
savedd

d. f2-9

All other
FP

C/C++ 7.65 5.09 1.77 1.44 1.15 2.00 1.24

Fortran 30.11 14.09 3.62 2.13 1.69 1.63 1.47

Integer 8.13 5.05 1.94 1.48 1.18 1.45 1.39

FP 18.48 9.59 3.32 1.99 1.55 1.61 1.46

All 11.63 6.05 2.53 1.71 1.38 1.61 1.46

24

not be used. In Chapter 4, such restore instructions are shown to account for a significant fraction

of the degree of use zero values observed.

Values in integer registers have a higher average degree of use than those in the floating-point

registers, matching the behavior observed in the results of integer and floating-point math opera-

tions (see Table 2.2). Interestingly, this is true for both integer and floating-point programs. In

fact, the higher average degree of use of floating-point programs (see Table 2.1) is due to a greater

average degree of use among the integer register values in those programs. This effect can be

attributed to the existence of many high-use loop induction and array base address variables in the

numerical codes.

Temporaries are those registers frequently used by the compiler during general register alloca-

tion and expression evaluation (i.e., as intermediates in the evaluation of a complicated source

expression). In the integer programs, the average degree of use of values in these registers is

under the overall average (from Table 2.1) because many of them are involved in the aforemen-

tioned expression evaluation, which tends to result in single-use values. Floating-point bench-

marks use many integer temporaries for addresses, which inflates their average degree of use.

2.3 Temporal Characteristics

While degree of use of a value is not a temporal property (i.e., it is not specifically a timing related

parameter), it does have a temporal aspect. In particular, it is interesting to correlate a value’s

degree of use with the intervals between the value’s generation and its first use, last use, and over-

write. Each of these intervals has a particular importance. The first use of a value begins the com-

munication process; knowing the distance between the value’s creation and its first use defines a

window in which communication can be detected. Similarly, the distance to the last use defines a

window that contains the entire communication of a value. It also indicates the lifetime of the

value from the perspective of the program. Finally, the distance between consecutive definitions

of the same register indicates the lifetime of the value from the perspective of the hardware.

Absent some additional information, observing the definition of a register is the only signal that

there will be no more uses of the value previously occupying that register.

Figure 2.4 illustrates how these intervals are correlated with a value’s degree of use. To avoid

making these measurements dependent on the configuration of a particular machine, the results

25

are expressed in terms of the number of instructions rather than a number of cycles. The very

long-tailed nature of the distance distributions renders the mean distance an inappropriate

measure [28]. Therefore, the data plotted in Figure 2.4 are the median distances with all bench-

marks in each group weighted equally.

The first use of a value occurs soon after the value’s definition, independent of the degree of

use. This behavior is expected since one goal of the compiler is to minimize values’ live ranges.

Programs compiled by the vendor Fortran compiler tend to have more instructions between the

generation of a value and its first use than the C/C++ codes. This difference may be attributed to

instruction scheduling of multi-cycle latency floating-point operations by this particular compiler,

especially within unrolled loops; the scheduler attempts to insert independent instructions

between the generation of a value by a long-latency operation and its subsequent use.

The interval between the generation and its final use is correlated with the degree of use of a

value—higher degrees of use require more instructions to reach the final use. The correlation

breaks down in some groups of benchmarks for degrees of use greater than four. Further investi-

gation indicates that this is not systematic; rather, the number of static instructions generating val-

ues with high numbers of uses is relatively small and is therefore more subject to influence by a

small set of frequently-executed instructions with unrepresentative behavior.

The distance between consecutive definitions of a register tracks degree of use in a manner

similar to the distance between the definition and the final use. Note that degree of use zero val-

ues exhibit a relatively long interval between the definition of the value and its overwrite, espe-

cially for codes compiled with the vendor compilers. It is to be expected that for such values the

defining and overwriting instructions are in different basic blocks; otherwise, the definitions could

have been trivially optimized away. Values with uses, especially those with just one use, may be

overwritten within a single basic block.

2.4 Working Set Behavior

Of particular interest in characterizing inter-instruction communication is the stability of that

communication during the execution of a program. Stability of communication is tied to the num-

ber of possible degrees of use for values generated by a given static instruction, the relative fre-

26

0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+

Degree of use

0

10

20

30

40

50

60

D
is

ta
nc

e
(i

ns
tr

uc
ti

on
s)

Def-Overwrite
Def-Last Use
Def-First Use

Integer Floating-point C/C++ Fortran Average
82 65119

95
82 62181

132
77
67

0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+

Degree of use

0

10

20

30

40

50

60

D
is

ta
nc

e
(i

ns
tr

uc
ti

on
s)

Def-Overwrite
Def-Last Use
Def-First Use

Integer Floating-point C/C++ Fortran Average
62 71 93

78
80 75133

108
72

Figure 2.4. Distance between a value’s generation and its first use, last use, and overwrite

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

27

quencies with which those different degrees of use occur, and the temporal locality in the degrees

of use of consecutive values from that instruction.

2.4.1 Number of possible degrees of use

Figure 2.5 classifies static instructions based on the number of different degrees of use of values

generated by the instructions of the class. The vast majority of static instructions (87% on aver-

age) generate the same degree of use every execution. Due to their richer control-flow, integer

programs have a slightly larger fraction of instructions that generate multiple degrees of use.

Static instructions having more than two unique degrees of use comprise less than 3.5%, and in no

case more than 8.5%, of all static instructions.

The data of Figure 2.5 pertain to a particular execution of each benchmark. Thus, while a sig-

nificant number of instructions only generate values with a particular degree of use, it does not

mean that these instructions cannot possibly generate values with other degrees of use in other

runs of the same benchmark (e.g., given other inputs). The determination of the possible degrees

of use for an instruction may be formulated as a dataflow problem. This dataflow problem was

solved for these benchmarks to estimate the impact of variations in control flow on the stability of

inter-instruction communication. For details on the dataflow formulation of the degree of use

problem, see Section 3.3.1.

The results of the analysis appear in Figure 2.6. Static instructions not represented in the data

of Figure 2.5 were filtered to allow a more direct comparison between the two figures.† The static

analysis data indicate that much more variability in the degree of use is possible than is observed.

However, an indeterminate amount of this increased variability results from limitations of the

analysis itself. The dataflow analysis is formulated in such a way that it is guaranteed to be safe—

no degree of use can occur that is not identified by the analysis. However, it may assign degrees

of use to certain instructions that only occur along infeasible paths through the program (e.g., an

impossible path through two branches that are correlated). Therefore, the data in Figure 2.6 must

be considered to be an upper bound on the variability of the degree of use; the real results will be

† One small difference between the two figures is that the static analysis cannot distinguish multiple
degrees of use above six uses. Regardless of how many unique degrees of use greater than six can occur
for a particular static instruction, they count for only one unique degree in Figure 2.6. Figure 2.5 does
count each degree of use separately, but, due to the multiplicative effects of few high-use values and few
many-degree instructions, the difference between the two methods is negligible.

28

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

st
at

ic
 in

st
ru

ct
io

ns

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

st
at

ic
 in

st
ru

ct
io

ns

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 2.5. Unique degrees of use

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

29

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

st
at

ic
 in

st
ru

ct
io

ns

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

st
at

ic
 in

st
ru

ct
io

ns

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 2.6. Possible unique degrees of use

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

30

in between those in Figure 2.5 and Figure 2.6. Even this conservative analysis indicates that some

58% of static instructions are constrained to generate only a single degree of use; less than 10% of

them generate more than four.

Figure 2.7 presents the distributions of Figure 2.5 weighted by the execution counts of the

static instructions. In other words, these distributions show the probability that a random dynamic

value originated from a static instruction capable of generating the indicated number of different

degrees of use. On average, 14% of the value-producing static instructions in these benchmarks

are executed only once, resulting in an underestimation of the importance of instructions with

more variable behavior in Figure 2.6. The data in Figure 2.7 indicate that while instructions with

multiple possible degrees of use can generate as many as 43% of all values generated by a pro-

gram, they account for only 21% on average. Less than 4% of values are produced by instructions

with more than three different degrees of use.

2.4.2 Relative likelihood of possible degrees of use

Just because an instruction generates values with many different degrees of use does not imply

that each of the possible degrees of use is equally likely. A static instruction executed one million

times might generate values with the same degree of use 99% of those times or it might generate

values alternating between two different degrees of use. These behaviors are obviously very dif-

ferent, but that difference is not captured in the data of Figure 2.5 or Figure 2.7. Figure 2.8 pre-

sents a distribution of dynamic values based on the frequency of occurrence of values with the

same degree of use from the same static instruction. In other words, the distribution bin N repre-

sents the frequency that a given value has the Nth most common degree of use of its originating

instruction. Over 96% of values exhibit whatever degree of use is most common for their pro-

ducer instructions. The two most common degrees of use possible from each static instruction

account for more than 98% of values for even the worst-case benchmark and for 99.5% of values

overall.

Figure 2.9 presents another slice of the same data depicted in Figure 2.8. In Figure 2.9, the

data from groups of benchmarks are combined and then broken down by the number of unique

degrees of use possible. Obviously, all values from instructions generating only one unique

degree of use have the most common degree of use possible from that instruction. About 90% of

31

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

dy
na

m
ic

 v
al

ue
s

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

dy
na

m
ic

 v
al

ue
s

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 2.7. Unique degrees of use weighted by execution count

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

32

90

91

92

93

94

95

96

97

98

99

100

P
er

ce
nt

 o
f

st
at

ic
 in

st
ru

ct
io

ns

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

90

91

92

93

94

95

96

97

98

99

100

P
er

ce
nt

 o
f

st
at

ic
 in

st
ru

ct
io

ns

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 2.8. Likelihood of possible degrees of use from static instructions

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

33

1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+

Unique degrees of use

40

50

60

70

80

90

100

C
um

ul
at

iv
e

fr
eq

ue
nc

y

6+
5
4
3
2
1

Integer Floating-point C/C++ Fortran Average

Figure 2.9. Likelihood of possible degrees of use from static instructions

1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+ 1 2 3 4 5 6 7+

Unique degrees of use

40

50

60

70

80

90

100

C
um

ul
at

iv
e

fr
eq

ue
nc

y

6+
5
4
3
2
1

Integer Floating-point C/C++ Fortran Average

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

34

values from instructions with two potential degrees of use end up with the most common of the

two. The figure illustrates that even among those instructions that can generate values with many

different degrees of use, one particular degree of use is dominant.

2.4.3 Temporal locality in per-instruction degrees of use

Finally, it is important to ascertain whether there is any temporal locality to the degrees of use

generated by a particular static instruction. Consider an instruction that generates two different

degrees of use with equal frequency over the execution of a program. If these different degrees of

use are distributed randomly, this makes prediction more difficult than if all instances with one

degree of use occur sequentially before those generating the other possible degree of use.

Figure 2.10 presents data on the temporal locality of the degrees of use arising from particular

static instructions. The distribution shows how recently a value of the same degree of use came

from the parent static instruction. In other words, if the last N unique degrees of use for each

static instruction could be remembered, Figure 2.10 shows where the degree of use for the next

value would occur in this set. The data indicate significant temporal locality: a value has the same

as the degree of use as the last value from the same parent instruction 95% of the time; one of the

last two observed degrees of use match the next one to occur over 99% of the time.

2.5 Mathematical Models

To this point, the properties of degree of use have been considered purely by experimental obser-

vation. Considering the properties of degree of use analytically can also be useful. One way in

which an independent analytical model can be useful is to lend confidence to the correctness of

experimental results. Another application is in answering questions for which experimental data

is unavailable or difficult to obtain. This section presents mathematical descriptions of degree of

use properties, improving a previously existing model and offering an independent confirmation

of the observed mean degree of use.

2.5.1 Degree of use distribution

Eeckhout and Bosschere observed that the relative frequencies of values with different degrees of

use (greater than zero) were well-fit by a power law model [28]. Mathematically, the probability

that the degree of use D of a value is equal to x is given by:

35

80

82

84

86

88

90

92

94

96

98

100

P
er

ce
nt

 o
f

dy
na

m
ic

 v
al

ue
s

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

80

82

84

86

88

90

92

94

96

98

100

P
er

ce
nt

 o
f

dy
na

m
ic

 v
al

ue
s

6+

5

4

3

2

1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 2.10. Temporal locality in per-instruction degrees of use

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

36

, for (Eq. 1)

where α and β were determined using linear regression. Taking the log of Equation 1 yields:

(Eq. 2)

which is linear in x. Note that by letting , it is easily shown that α is the frequency of sin-

gle-use values.

Equation 1 cannot be a proper probability distribution function (PDF) for two reasons. First,

it cannot account for the occurrence of values with a degree of use of zero, being undefined at that

point. Second, a PDF must have the property that the probabilities of all possible values of the

random variable sum to one:

(Eq. 3)

There is no such guarantee when α and β are empirically determined. However, it is possible to

fix this model, simultaneously accounting for zero-use values and ensuring that the result is a true

PDF.

Assuming that Equation 1 accurately describes the probabilities of all non-zero degrees of

use, the fraction of values with degree of use zero is exactly the “leftover” probability when all

non-zero degrees are summed:

(Eq. 4)

where ζ(β) denotes the Riemann Zeta function.

Combining Equation 1 with Equation 4, a proper PDF is obtained:

(Eq. 5)

Note that this formula still has only two independent parameters, α and β, newly constrained by

the requirement that P[D = 0] ≥ 0. As a result, the distribution can be completely defined by the

frequencies of zero-use and single-use values, although it remains to be seen whether the resulting

distribution will match the empirical data as well as if the parameters were determined by fitting.

P D x=[] α x⋅ β–
= x Z

+∈

P D x=[]log αlog β xlog⋅–=

x 1=

P D x=[]
x 0=

∞

∑ 1=

P D 0=[] 1 P D x=[]
x 1=

∞

∑– 1 α x⋅ β–

x 1=

∞

∑– 1 α 1

x
β-----

x 1=

∞

∑⋅– 1 α ζ β()⋅–= = = =

P D x=[]
1 α ζ β()⋅–

α x⋅ β–

=
x = 0

x 1≥

37

One nice side effect of having a PDF is that it allows for the analytical determination of the

mean. The mean degree of use or expectation value is simply the sum of all possible degrees

of use weighted by their frequency of occurrence:

(Eq. 6)

The above formula also offers additional methods for determining α and β without linear regres-

sion. Any two of (1) the probability of zero-use values, (2) the probability of single-use values, or

(3) the mean can be manipulated to find the two PDF parameters without fitting. Table 2.4 shows

the values of α and β derived by these methods and linear regression; the resulting mean and fre-

quencies of zero- and single-use values are shown along with those from the actual data for com-

parison purposes. The bold values in each row were those used to determine α and β.

The requirement that the model be a proper PDF forces the selection of one of the methods

that explicitly uses the frequency of zero-use values. Equation 5 ensures that when α and β are

chosen to match the observed zero-use frequency, the aggregate probability will sum to one. Of

the two possibilities, the one that also fits to the observed mean gives much better agreement to

the free parameter. Note that linear regression results in quite poor agreement with both the mean

degree of use and the frequency of single-use values. Also, justifying the initial criticism, linear

regression does not yield a true PDF since the aggregate probability of all degrees of use greater

than zero is 104% (witness the –4% leftover for zero-use values)! Neither of these problems exist

with the improved model of Equation 6 with α and β derived from the observed mean degree of

use and zero-use frequency.

D〈 〉

D〈 〉 x P D x=[]⋅
x 0=

∞

∑ x α x
β–⋅ ⋅

x 1=

∞

∑ α x
β– 1+

x 1=

∞

∑⋅= = α ζ β 1–()⋅= =

Table 2.4: Analytical Model Parameters

Method α β <D> P[D = 0] P[D = 1]

Linear regression 0.832 2.79 1.58 –3.96% 83.2%

Mean and single-use 0.674 2.50 1.75 9.65% 67.4%

Mean and zero-use 0.717 2.55 1.75 5.05% 71.7%

Zero-use and single-use 0.674 2.35 2.34 5.05% 67.4%

Actual data N/A N/A 1.75 5.05% 67.4%

38

The fit of this model is shown graphically in Figure 2.11 along with the original linear-regres-

sion-based model. On this log-log plot, the degree of use-zero data cannot be included—the left-

most datapoints are the frequencies of single-use values. Linear regression gives relatively more

weight to the frequencies of high use values; Table 2.4 shows that as a result, it does not fit the

data as well for either the most frequent degree of use (or the mean). The improved model does a

much better job in this regard. Where the two models do deviate significantly (the frequencies of

the highest-use values), the actual data shows far more variability, validating the improved model

in this region.

2.5.2 Independent derivation of the mean degree of use

The preceding section provided probabilities for any possible degree of use and related them to

the mean given a couple of parameters derived from observation. It is also possible to arrive at the

mean degree of use by considering the properties of groups of instructions comprising a program.

The average degree of use is just the total number of uses divided by the total number of

values:

0 1 2

ln(degree of use)

0

-2

-4

-6

-8

-10

ln
(f

re
qu

en
cy

)

Linear regression
<D> and P[D = 0]

Figure 2.11. Analytical models of degree of use distribution

D〈 〉

39

(Eq. 7)

where Nuses is the total number of uses, Nvalues is the total number of values, Ninsns is the number

of instructions, is the average number of inputs per instruction, and fvpi is the fraction of

instructions that produce result values.

and fvpi are not independent, but may be estimated separately by considering a typical

mix of dynamic instructions. Alpha machine instructions have between zero and three (inclusive)

inputs. Zero input instructions are primarily used to load registers with constants; conditional

moves are the only three input instructions (the Alpha architecture does not include fused multi-

ply-adds). Neither category contributes more than 2% to the dynamic instruction count. Thus,

is essentially determined by the relative proportions of one- and two-input operations with

loads and branches being the most important class of single-input instructions. Finally, an adjust-

ment must be made for operations that take an immediate value as an input. Estimating fvpi is

more straightforward: as mentioned in Section 2.1, stores and branches comprise nearly all of the

instructions that do not generate result values.

Starting with Equation 7 and applying these approximations,

(Eq. 8)

where ftype is the fraction of instructions of the given type. Using a mix of 17% branches, 9%

stores, 26% loads, and 35% immediate mode operations (observed on DLX, an archetypical RISC

architecture [38]), yields an average degree of use of 1.65, close to the observed means listed in

Table 2.1. This result adds confidence to the notion that the mean degree of use will be consistent

across different programs compiled to the same instruction set.

2.6 Summary

This chapter presented an exploration of inter-instruction value communication patterns via regis-

ter degree of use. Several noteworthy properties were found to hold across a range of bench-

marks, even when compiled with different compilers. Most importantly, single-use values

D〈 〉
Nuses

Nvalues

u〈 〉 N insns×
f vpi N insns×
------------------------------- u〈 〉

f vpi
---------= = =

u〈 〉

u〈 〉

u〈 〉

D〈 〉 u〈 〉
f vpi

2 f 2-input f 1-input f immed–+

1 f stores f branches––

2 1 f 1-input–() f 1-input f immed–+

1 f stores f branches––
---≈ ≈=

2 f 1-input– f immed–

1 f stores f branches––
--

2 f loads– f branches– f immed–

1 f stores f branches––
--≈=

40

dominate all values produced during a program’s execution, accounting for over 60% of values in

most benchmarks; values with more than three uses account for under 10%. The high incidence

of values with a small number of uses leads to an average degree of use of around 1.7, although

this varies anywhere from 1.5 to 2.1 among the individual benchmarks. Together, these properties

indicate that much of the value communication occurring during the execution of a program is

simple in nature and thus should not require complicated mechanisms.

Two other interesting properties that could be exploited in the design of alternative communi-

cation mechanisms are the occurrence of zero-use values and the frequent use of high-use values

as instruction inputs. The occurrence of zero-use values is highly-dependent on the specific

benchmark and compiler, but can exceed 10%. These will be investigated in more detail in

Chapter 4. While values with a high degree of use account for a small portion of all values pro-

duced, they supply a much larger fraction of all values used. Roughly one-third of instruction

inputs come from values with more than seven uses (with another third from values with two to

six uses and the remainder from single-use values). These widely-used values are precisely those

that are well-suited to the register communication model in which a value is assigned dedicated

long-term storage from where it can supply many consumers.

Examining degree of use behavior by architectural register and instruction type shows that a

value’s degree of use behavior is tied to its role within a program. For example, instructions that

generate temporaries have a low average degree of use, while those that manipulate the stack

pointer or other registers containing addresses generate more frequently-used values.

Because the purpose of each static instruction is fixed in a program, the per-instruction degree

of use behavior shows little variation over the execution of a benchmark. More than 75% of all

values come from static instructions that generate values with the same degree of use every time

they are executed. Even among those instructions that can generate values with different degrees

of use, the observed degrees of use are biased towards those generated most commonly and most

recently. The per-instruction locality of degree of use is crucial to the success of degree of use

prediction, which is presented next.

41

Chapter 3

Degree of Use Prediction

To guide the communication of a value, its degree of use must be known as soon as it is known

that the value will exist, even prior to the computation of that value. However, degree of use

information on a particular value cannot be obtained until the value is overwritten, after its com-

munication has completed. The disparity between when degree of use information is needed and

when it is known may be resolved through prediction and speculation.

High-performance microarchitecture speculate on many different kinds of information before

the information may be observed or calculated. In each case, the speculation is enabled by the

existence of a predictor for the information that is needed. For example, predicted outcomes of

conditional branches are used by high-bandwidth fetch mechanisms before the branches have

been executed. This chapter develops the concept of degree of use prediction, which will enable

optimizations presented in subsequent chapters.

A feature common to all of the degree of use predictors described is the association of degree

of use knowledge with the static instructions comprising the program. The structure of a program

necessarily encodes the dataflow possible during any execution: the consumers of an instruction’s

result are only those instructions that use the result register and can be reached by that definition.

Depending on the actual flow of execution, the same static instruction may give rise to instances

that differ in the number (and identity) of consumers, but all of these possibilities are evident

within the original program. This fact gives rise to the central role of the static instruction identity

42

in degree of use prediction and underlies the difference between static and dynamic degree of use

prediction.

Static degree of use prediction involves analysis of a program to enumerate all possible

degrees of use that can arise from each individual instruction. Perfect accuracy is attained for pre-

dictions on instances of instructions that only generate a single unique degree of use. Where the

analysis finds that multiple degrees of use are possible, profile information or a predetermined

policy can be applied to select the most likely or desirable prediction. In all cases, however, the

prediction is associated with identity of the static instruction.

Dynamic degree of use prediction uses the observed behavior of the program during execution

to predict its future behavior. Even in the dynamic scheme, the identity of the static instruction is

of paramount importance. The use of dynamic prediction does not change the fact that the range

of possible communication behaviors of each static instruction is fixed by the program. There-

fore, a static instruction’s identity is the best possible key with which to associate dynamic knowl-

edge about instances of that instruction. Also, the raisond’être of a degree of use predictor is to

supply information about a value before it is generated. As the processing of an instruction begins

with a fetch operation on the instruction’s address, that address (equivalent to the identity of the

static instruction) is the first piece of information enabling the generation of a prediction.† The

real potential of dynamic prediction schemes lies in their ability to leverage other information

besides the identity of the executed instructions to differentiate among instances of a static

instruction that behave differently.

This chapter begins with an explanation of how specific predictor implementations are evalu-

ated. Next, the nature of the information provided by the degree of use predictor is discussed—in

many cases, the exact degree of use may not be representable or even desired. A discussion of

static degree of use prediction follows, including a complete description of how degree of use

information for individual static instructions may be found through dataflow analysis. Most of the

remainder of the chapter focuses on dynamic degree of use prediction, which uses past observa-

tions of the degree of use to generate subsequent predictions. Three different prediction algo-

† This statement is a simplification. In superscalar machines, for example, that fetch multiple instructions
per cycle, only the starting address of a block of consecutive instructions may be explicitly generated for
the fetch process. However, the argument is unchanged as the individual instruction addresses are trivi-
ally derivable from the block address.

43

rithms are presented, offering different trade-offs among performance, capacity, and complexity.

Finally, the potential for hybrid prediction schemes, which combine elements of static and

dynamic prediction schemes are addressed.

3.1 Predictor Evaluation

The prediction strategies in this chapter are presented without reference to any particular optimi-

zation. Not knowing how degree of use predictions are to be used, performance (or execution

time) cannot be used to evaluate the efficacy of a predictor. Instead, indirect measures such as

accuracy, that are independent of the application of the predictions, are used in this chapter.

Unlike for a branch predictor, however, accuracy alone is insufficient to describe the complex

behavior of a degree of use predictor. While a branch predictor supplies binary predictions for

every branch, a general degree of use predictor supplies multi-valued predictions for a subset of

value-producing instructions.

A degree of use predictor can be characterized by the relative numbers of overpredictions,

underpredictions, non-predictions, and correct predictions (only three of which are independent).

Overpredictions and underpredictions quantify predicted degrees of use greater than or less than

the actual degree of use, respectively. The consequences of overpredictions and underpredictions

may be vastly different depending on the application and the extent to which the prediction is

incorrect. Absent an application, however, all mispredictions will be considered equivalent. Non-

predictions count the number of values for which the predictor did not supply a prediction.

It is also useful to establish the notions of accuracy and coverage. Accuracy is defined in the

typical fashion—the percentage of all predictions that are correct. Non-predictions do not influ-

ence accuracy but are instead reflected in coverage, which is defined as the percentage of all val-

ues for which a prediction (right or wrong) is generated. Figure 3.1 defines these relationships

graphically. Note that increasing coverage alone increases correct predictions and mispredictions,

while increasing accuracy alone changes mispredictions into correct predictions. Provided the

accuracy is above a minimum threshold (established by the benefit of correct predictions versus

the cost of mispredictions), increasing either accuracy or coverage in isolation results in a net ben-

efit.

44

Many predictor parameters offer a trade-off between accuracy and coverage. The optimal

value of any such parameter ultimately depends on the application, but it is possible to make some

observations using a simple model. Assume that any performance benefit made possible by

degree of use prediction occurs in proportion to the number of correct predictions. This benefit is

offset by a performance cost in proportion to the number of mispredictions (a simplification, since

mispredictions occur in different magnitudes and directions). By expressing the average cost of a

misprediction as a multiple (the cost factor) of the average benefit of a correct prediction, an

effective performance benefit can be calculated:

(Eq. 9)

where B is the effective benefit, nc is the number of correct predictions, nm is the number of

mispredictions, N is the total number of instructions, c is the coverage, a is the accuracy, and f is

the cost factor. Note that the magnitude of the benefit is directly proportional to the coverage,

which is good as long as the benefit is positive.

Achieving a positive effective benefit requires the factor in brackets to be positive, which

establishes a constraint on the minimum accuracy:

(Eq. 10)

Figure 3.1. Accuracy and coverage in degree of use prediction

>6

0

1

2

3

4

5

N

90 1 2 3 4 5 6 7 8

Correct

No prediction

Underprediction

Overprediction

Actual degree of use

P
re

di
ct

ed
 d

eg
re

e
of

 u
se

100% 100%

0%0%

All values Predictions

Coverage Accuracy

mis-non-
predictions predictions

(a) (b)

B nc f nm⋅– N c a f N c 1 a–()⋅ ⋅ ⋅–⋅ ⋅ N c a f 1 a–()⋅–[]⋅ ⋅= = =

a
f

f 1+
------------>

45

High cost factors (i.e., more costly mispredictions) demand a more accurate predictor, and make it

more difficult to justify sacrificing accuracy for coverage. For example, given 80% coverage and

90% accuracy, a decrease in accuracy to just 89% must be met by a coverage increase to better

than 94% to achieve a net performance improvement at a cost factor of five. Even at a cost factor

of one, the 1% accuracy decrease is only offset by a 2% coverage increase. Thus, within the con-

straints of complexity and hardware cost, it will nearly always be better to choose policies that

lead to more selective predictors (i.e., those that increase accuracy at the expense of coverage).

3.2 Encoding Degree of Use Information

Before exploring how degree of use prediction may be accomplished, the form of the prediction

itself will be considered. This discussion is meant to provide an overview of the possibilities as

the specifics will depend on how the predictions are to be used. As applications are discussed in

the following chapters, this topic will be revisited with the specific needs of the applications in

mind.

Figure 3.1 implies certain characteristics about the information available from the predictor.

Specifically, there is a limit (six uses in the example) beyond which all degrees of use are consid-

ered equivalent from the predictor’s point of view. Below this limit, the predictor differentiates

each possible degree of use. Finally, the degree of use predictor may abstain from generating a

prediction at all. This section discusses the issues surrounding predictor policies regarding the

maximum degree of use, the preference for certain outcomes, the grouping together of different

degrees of use, and the choice of a default behavior.

3.2.1 Maximum predictable degree of use

The huge range of potential degrees of use of dynamic values (see Section 2.1) must be consid-

ered in the design of a degree of use predictor. Values with very high degrees of use occur infre-

quently relative to other values. While it may be important to identify high-use values, it almost

certainly does not matter whether such a value has a degree of use of one hundred thousand or one

hundred million—in both cases, the live time of the value is very large compared to the lifetime of

a typical instruction within the processor, and the value will be needed by many consumers long

after the generating instruction retires. Also, there is the practical issue of physically representing

46

degree of use information. Allocating tens of bits to a degree of use prediction when three bits

suffices over 99% of the time is clearly wasteful.

These considerations lead to the selection of a degree of use limit. Thus, all degree of use pre-

dictors are saturating: degrees of use greater than the limit are treated as equivalent to the limiting

degree of use. The precise limit is dictated by the representation and storage overhead, the dimin-

ishing ability of a predictor to distinguish among high degrees of use (see Figure 3.20), and the

particular application. Beneficial side effects of reducing the maximum predictable degree of use

include increased accuracy and a potential decrease in predictor overhead (if the degree of use can

be represented with fewer bits).

The choice of encoding of the degree of use information leads to a spectrum of different pos-

sibilities. An example two-bit encoding might differentiate instructions that: (1) generate single-

use values, (2) generate values with some other single degree of use, (3) generate values with

many uses, (4) have variable/indeterminate behavior. The final choice of encoding necessarily

would depend on the number of available bits and the expected application of the information.

Considering that a majority of values have one of a small number of degrees of use (Figure 2.1),

most interesting applications could probably be handled with two or three bits of degree of use

information per instruction. For the predictors studied in this chapter, a three-bit encoding is

assumed, allowing degrees of use less than seven to be fully differentiated.

3.2.2 Biasing

Biasing refers to the practice of preferentially selecting certain possible degrees of use based on

the application. It is frequently possible for instructions that are indistinguishable to the predictor

to have different degrees of use. For a static predictor, this manifests as more than one degree of

use being possible for a given instruction with no additional information favoring a particular out-

come. The same situation applies to a dynamic predictor when identical input information corre-

sponds to different possible degree of use outcomes. The application of the degree of use

prediction may indicate that, for example, the highest possible or observed degree of use be deliv-

ered under these circumstances. In this case, the predictor would be biased towards the maximum

degree of use. Other biases that might be reasonably expected to be useful are biasing towards the

minimum degree of use, the most likely degree of use (exactly the same as minimum with the

47

exception of degree of use zero), and (for dynamic predictors only) the most recently observed

degree of use. Biasing is not employed by any of the predictors that will be presented.

3.2.3 Default predictions

Any application of degree of use prediction must be able to handle the unavailability of a predic-

tion for certain instructions. This situation applies to both dynamic and static prediction methods.

Dynamic schemes may lack information on instructions before they are first executed or if a long

time has elapsed since their last execution; static degree of use information may not be available

within certain dynamically-linked libraries or may be deliberately omitted for instructions that

have statically-indeterminate behavior. In such cases, a default degree of use prediction can be

supplied by the predictor in place of a non-prediction.

The use of such an implicit default prediction can reduce predictor overhead. In order to han-

dle non-predictions, any application of degree of use information will have an implicit behavior in

the absence of information, which may match that corresponding to a specific degree of use pre-

diction. In this case, explicit demarcation or storage within the predictor of the degree(s) of use

leading to that default behavior is unnecessary as predictions of this degree are correctly sub-

sumed by the default prediction. The savings correspond to the frequency of occurrence of the

default degree of use; the cost of using a default prediction is the loss of information about the

confidence of a particular default prediction.

Because different applications of degree of use prediction will be studied and the default is an

application-dependent policy, implicit default predictions are not considered for the evaluation of

the predictor in isolation. Instead, the predictor is allowed to deliver a non-prediction as a distinct

outcome from any particular degree of use.

3.2.4 Grouping

Grouping multiple degrees of use into classes (e.g., many-use or few-use) is another potentially

beneficial predictor policy. For certain applications, knowing that the degree of use of a value lies

within a certain range is more important than knowledge of the exact degree of use. Predicting

that the degree of use of a value will be in a specific range is easier than attempting to predict the

exact degree of use because the latter can exhibit mispredictions due to confusion between

degrees of use belonging to a single group. Thus, a predictor that employs grouping will always

48

have higher accuracy. Note that the saturating maximum degree of use (Section 3.2.1) is equiva-

lent to a grouping of all predictions greater than or equal to that limit. In this chapter, absent a

particular application, it will be assumed that it is important to differentiate among all the degree

of use outcomes below the limit.

3.3 Static Degree of Use Prediction

This section develops static degree of use prediction. The defining characteristic of static degree

of use prediction is the generation of predictions through off-line analysis. Such schemes rely

upon the compiler or a profiler to annotate each value-generating static instruction with degree of

use information. This information can then be conveyed to the hardware to generate degree of use

predictions.

The capabilities of a static prediction scheme depend on the sophistication of the analysis per-

formed and the expressiveness of the interface used to communicate analysis results to the hard-

ware. For example, it may be possible to communicate multiple possible degrees of use per

instruction along with the dynamic conditions that lead to one particular outcome. In this section,

however, it is assumed that the goal of the static analysis is the assignment of a single degree of

use to each static instruction.

The characterization data presented in Section 2.4 illustrates the potential for obtaining rea-

sonable performance from such a static prediction scheme. Specifically, the majority of static

instructions generate values that have only a single unique degree of use during a program’s exe-

cution; even among those generating values with different degrees of use, one particular degree of

use dominates. However, this data applies to one specific execution. Since Figure 2.6 shows that

an average of 40% of static instructions have more than one statically-possible degree of use, one

must ask the question of how well a single, statically-selected degree of use for such an instruc-

tion would suffice across executions.

Executions differ only as a result of input data—the program itself does not change. There-

fore, any variability in the degrees of use must result from differences in the input data. Since the

degree of use of a particular dynamic instruction is completely determined by the program (fixed)

and the subsequent dynamic control flow (variable), this issue is equivalent to a more familiar

one—the effect of input data on dynamic control flow.

49

Others have observed that the control flow of a program is relatively constant with respect to

the input data [33, 86]. Also, consider the categorization of static instructions into those with:

(1) a single static degree of use; (2) a single degree of use where the analysis derives multiple pos-

sible degrees of use (e.g., because certain paths are impossible due to the logic of the program);

(3) two possible degrees of use where one only occurs in the presence of a rare error condition;

(4) multiple possible degrees of use where many inputs lead to the same single degree of use; and,

(5) highly-input dependent multiple degrees of use. Only those static instructions in the final cat-

egory will contribute significantly to variability in degree of use characteristics across different

executions. Therefore, it can be expected that the performance of a static prediction scheme with

a fixed, single degree of use per static instruction will be robust with respect to varying input data.

The actual process of static determination of degree of use information involves dataflow anal-

ysis similar to that already performed by optimizing compilers. The efficacy of this technique

alone is limited because it computes for each instruction every possible degree of use, including

those that result from impossible or unlikely paths through the program. Without additional infor-

mation, no prediction may be safely selected where the analysis indicates multiple possible

degrees of use, resulting in limited coverage (but 100% accuracy!). The coverage can be

improved with varying accuracy degradation using profiling: data from branch or path profiles

used during the dataflow analysis can identify the most likely prediction among the set of possible

predictions. The direct application of degree of use profiles to improve the results of the data-

flow analysis is considered in Section 3.3.4. Augmenting the analysis itself with control-flow pro-

filing information is also possible [7, 21, 62, 70], but is outside the scope of this work.

3.3.1 Formulating degree of use determination as a dataflow problem

A dataflow problem is simply a system of equations associated with a control-flow graph whose

solution yields information about the data in the program represented by the graph. The variables

within the system of equations are the dataflow facts, one at each node. The directionof the prob-

lem—forward or backward—determines whether dataflow information propagates in the same or

opposite direction as the flow of execution, respectively. A meetoperator specifies how multiple

facts are combined into a single fact. Finally, each node in the graph has an associated dataflow

function, which summarizes the dataflow effect of that node, or how that node changes a dataflow

50

fact. Thus, to define the degree of use dataflow problem, each of (1) the kind of dataflow facts,

(2) the direction of the problem, (3) the meet operator, and (4) the possible dataflow equations

must be specified.

At each point in the program, the dataflow fact for a register R is the set of all possible num-

bers of uses of R between that point and the end of the program. When the point under consider-

ation is the instruction that writes R, the dataflow fact for R is exactly the set of possible degrees

of use for that instruction, which is precisely the information required by a static prediction

scheme. A maximum representable degree of use Dmax must be defined to avoid infinite-sized

facts.† Thus, for any given register, the facts are represented by a set S, where ∀ u ∈ S,

0 ≤ u ≤ Dmax.

Note that the dataflow problems for the architectural registers are completely independent: the

dataflow facts (i.e., possible degrees of use) for one register never affect the facts about another

register. Thus, without loss of generality, the discussion of the dataflow problem can be simplified

by limiting it to a single architectural register. The overall solution consists of the set of indepen-

dent solutions for all architectural registers, which may be determined in parallel.

The determination of degree of use is a backward dataflow problem since the facts at each

point pertain to paths from that point to the exit. Each instruction that writes a register defines a

new value. For uses of that value to be attributed to the instruction, information must flow from

the uses and be collected at the definition (i.e., backwards with respect to execution). Thus, each

definition (1) assumes the dataflow facts true immediately after the definition as the possible

degrees of use for its values, and (2) creates a new fact {0} for the overwritten register (true

immediately prior to the instruction) that indicates that once the flow of control reaches this defi-

nition, no more uses of the prior contents of the register can occur.

Consider next the meet operation to combine dataflow facts along two potential paths. If dif-

ferent sets of degrees of use are possible along two different paths from a certain point, then the

set of possible degrees of use prior to that point includes the elements of both sets. Given facts U

and V (representing sets of possible degrees of use for a particular register), true for two different

† For example, consider a value used within a loop body. Since loop iteration counts are opaque to the
analysis, the fact for the register containing that value must account for all possible iteration counts
[1, ∞). Without an upper bound, the size of the dataflow fact would be infinite. A further discussion of
the maximum degree of use may be found in Section 3.2.1.

51

potential paths from a point, the facts true at that point are U ∪ V. Thus, the meet operator for this

dataflow problem is set union.

Finally, consider the dataflow functions for an instruction, which modify the facts to account

for the inclusion of that instruction on the path. Any instruction may be decomposed into uses of

some registers (occurring first) and (sometimes) the definition of a register. Because degree of use

determination is a backward dataflow problem, the dataflow function must convert the facts true

after the instruction is executed to those that are true beforehand. Therefore, the register defini-

tion modifies the facts first: if the instruction writes the register R, the set of possible degrees of

use corresponding to that register is made to contain only the zero element (not the empty set: it is

known immediately prior to the definition that R will be used exactly zero times prior to it being

overwritten). Subsequently, the facts are modified by the input registers of the instruction. For

each input register, every element in the set of possible uses corresponding to that register is incre-

mented. For example, if the set of possible uses of a register after an instruction is {2, 5, 6}, then

a single use of that register by the instruction leads to the set {3, 6, 7} applying prior to the

instruction. The dataflow functions are as follows:

(Eq. 11)

where S is the set of dataflow facts corresponding to the register R.

An example instance of the dataflow problem and its solution appears in Figure 3.2. The code

describes a simple function that finds the first node within a linked list that contains the specified

data. The control-flow graph for the find() function appears along with the dataflow facts that

true at the entry and exit of each basic block. The derivation of facts true at points within a basic

block is trivial given the correct facts at the exit of the block.

In order to proceed with the dataflow analysis, initial facts true at the procedure exit (return

instruction) must be provided from which the dataflow information for the rest of the find()

procedure may be derived. Because architectural registers do not observe procedural boundaries,

the uses of values past the end of a procedure are actually determined during analysis of the call-

ing procedure. The need to initialize the facts at a procedure’s exit based on subsequent uses in

the caller illustrates the need for interprocedural dataflow analysis, wherein dataflow facts can be

propagated among the procedures of the program. The general approach used for the interproce-

Definition of R:

Use of R:

λS. 0{ }
λS. min u 1 Dmax,+()u S∈{ }

52

dural analysis was described by Sharir and Pneuli [75] and is detailed in Section A.3 of the appen-

dix. In Figure 3.2, it is assumed that only the return value is used by the calling function (and

only once).

3.3.2 Solving the degree of use dataflow problem

Now that the dataflow problem has been completely specified, consider the following method of

solving it. Enumerate all paths through the program. For each such path, solve the dataflow prob-

lem assuming the execution traverses only that path. Finally, combine the resulting solutions

using the meet operator (since the solutions are sets of facts). The resulting solution is called the

meet-over-all-paths solution and is the most precise possible solution assuming that all paths

through the program are actually feasible. Obviously, this method of solution is intractable for

anything but the most trivial programs.

Figure 3.2. Control flow graph annotated with degree of use dataflow facts

node_t *find(int val, node_t *list) {
 node_t *node = list;

while (node && (node->data != val))
 node = node->next;
 return node;
}

bis zero,a1,v0
beq a1,D

ldl t0,0(v0)
xor t0,a0,t0
beq t0,C

ldq v0,8(v0)
bne v0,B

ret zero,(ra),1

A

B

C

D

v0
(node)

a0
(val)

a1
(list)

ra

A.enter {0} {0,1,2,3,...} {2} {1}

A.exit {1,2} {0,1,2,3,...} {0} {1}

B.enter {2} {1,2,3,...} {0} {1}

B.exit {1} {0,1,2,3,...} {0} {1}

C.enter {1} {0,1,2,3,...} {0} {1}

C.exit {1,2} {0,1,2,3,...} {0} {1}

D.enter {1} {0} {0} {1}

D.exit {1} {0} {0} {0}

53

Instead,thedataflow problemmaybesolved iteratively asfollows. First, all of thenodesin

thecontrol-flow graphareplacedin a queue.In eachstep,a nodeis removedfrom thequeueand

the factstrueafter thatnodearecomputedby combining(usingthemeetoperator)the factstrue

beforeeachof that node’s successors.Then,the node’s dataflow function is appliedto find the

beforefact for thenode. If thebeforefact is changed,thenode’s predecessorsareplacedin the

queue. Assumingthat the processterminates(i.e., the factsconverge), the resultingsolution is

calledthegreatestfixed-pointsolution. Thenatureof theparticulardataflow factsandfunctions

of thedegreeof useproblemmake it possibleto provideguaranteesabouttheexistenceandpreci-

sion of a solution arrived at by this method[49].

First, the domainof the dataflow factsis a completelattice—thatis, it is a finite, partially-

ordered set (ordered by ⊇) with a least upper bound ∅ and a greatest lower bound

{ u u ∈ Z, 0 ≤ u ≤ Dmax}. Second, the dataflow functions of Equation11 are monotonic:

P ⊇ Q ⇒ f(P) ⊇ f(Q).† Together, thesepropertiesguaranteetheexistenceof agreatestfixed-point

solutionto thesetof dataflow equations.Additionally, becausethedataflow functionsaredistrib-

utive underthemeetoperator:f(P ∪ Q) ≡ f(P) ∪ f(Q),‡ this solutionis guaranteedto bethesame

as the meet-over-all-paths solution.

3.3.3 Results

The dataflow analysisdescribedin the previous sectionwasperformedusinga binary analyzer.

Normally, this type of analysiswould be performedby a compiler, but modifying the compilers

usedin generatingtheevaluationbenchmarkswasnot anoption. Theconsequencesof perform-

ing theanalysisdirectlyonabinaryandtheoperationof theanalyzeraredescribedin SectionA.3

of the appendix.

Dataflow analysisyields the setof possibledegreesof usefor eachstatic instructionof the

program. Becausetheanalysisis safe,it will never bethecasethata degreeof useoccursthat is

not identifiedby the analysisprocess. Therefore,a single,static,perfectly-accurateprediction

maybeassignedto eachstaticinstructionfor which theanalysisfindsonly onepossibledegreeof

† For the definition dataflow function, {0} ⊇ {0} regardless of P and Q. For the use dataflow function,
P ⊇ Q ⇒ P ≡ P ∪ Q∴ f(P) ≡ f(P ∪ Q) ≡ f(P) ∪ f(Q) ⊇ f(Q). This proof assumes distributivity under set
union f(P∪ Q) ≡ f(P) ∪ f(Q), which is proved below.

‡ The proof is trivial for the definition dataflow function which always yields {0}. For the use dataflow
function, f(P∪ Q) ≡ {f(u) u ∈ (P ∪ Q)} ≡ {f(u) u ∈ P} ∪ {f(u) u ∈ Q} ≡ f(P) ∪ f(Q).

54

use. If these are the only predictions made, the aggregate accuracy will be 100% and the coverage

will equal the percentage of dynamic instructions receiving a correct prediction; these results

appear in Figure 3.3. The coverage spans a large range from 37% to just over 96%, but averages

an impressive 62%. The floating-point benchmarks, which in general exhibit less complicated

control-flow, have a higher average portion of static instructions with a single, statically-identifi-

able degree of use.

3.3.4 Applying profile information

Improving the capability of static degree of use prediction any further requires handling instruc-

tions for which the analysis identifies multiple possible degrees of use. While some of these

instructions certainly generate dynamic instances with different degrees of use, the difference

between Figure 2.5 and Figure 2.6 shows that some static instructions generating single degrees

of use are simply not identified by the static analysis. Such instructions are of one of two types:

(1) instructions constrained by the program to always generate a single degree of use but not rec-

ognized as such due to the limitations of the analysis, and (2) instructions for which multiple

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

dy
na

m
ic

 in
st

ru
ct

io
ns

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language

Integer Floating-point Type

Figure 3.3. Static prediction using dataflow analysis

55

degrees of use are actually possible, but do not occur in some executions. Regardless of the type,

additional information is required to select a suitable prediction from those identified by the static

analysis, and this task requires profile information. Control-flow (e.g., branch or path) profiles

used in combination with a more sophisticated dataflow analysis algorithm could provide this

information, but degree of use profiles (generated by execution-driven simulation) supply this

information directly.

Comparing Figure 3.3 with Figure 2.7, there is clearly room to improve the static coverage

while maintaining perfect accuracy. Consider first using the same program inputs during profiling

and evaluation. Making additional predictions (beyond where the analysis indicates a single

degree of use) only for those instructions with a unique degree of use in the profile gives the high-

est possible coverage attainable at perfect accuracy (equal to the size of the lowermost bars in

Figure 2.7). The profile also reflects single-degree-of-use-instructions that were identified as such

by the static analysis, begging the question of why the static analysis is performed at all. The

answer is that in reality, the predictions will be applied to a program run with different inputs than

used to generate the profile. Therefore, priority must be given to any information determined stat-

ically; how the (more or less) accurate profile data is applied involves a trade-off between accu-

racy and coverage.

After annotating those instructions that yield to the dataflow analysis (i.e., can be proven to

always generate the same degree of use), one is left with a set of static instructions without a pre-

diction. The application of the profiling data involves choosing, for each such instruction, what, if

any, prediction to assign. The selection of a prediction for a given instruction is trivial: choosing

whatever degree of use occurred most frequently for that instruction must (modulo the accuracy

of the profile) result in the highest predictor accuracy.† Choosing which instructions receive pre-

dictions is more difficult (excluding the trivial case in which the profile does not include the

instruction—any prediction made in this case would be no better than a guess made without the

benefit of a profile). Each additional instruction assigned a prediction increases the coverage, but

some will reduce the accuracy substantially.

† The final measure is, as always, performance. Some policies that give lower accuracy as defined here
may afford better performance in certain applications. Biasing, discussed in Section 3.2.2, is one exam-
ple of such a policy.

56

The most conservative policy will attempt to identify those instructions that only generate a

single degree of use, but that were not identified by the static analysis. All such instructions will

exhibit a single degree of use in the profile itself (with 100% frequency of occurrence). The least

conservative policy assigns a prediction for every instruction for which a single outcome occurs

more often than all others combined (i.e., has greater than 50% frequency of occurrence of the

highest degree of use). In between these two extremes is a continuous spectrum of policies char-

acterized by a frequency threshold. The threshold is the minimum frequency of occurrence of the

dominant degree of use required for that degree of use to be assigned as a prediction for an

instruction. Lowering the threshold increases coverage at the expense of accuracy.

Figure 3.4 shows how accuracy and coverage vary with this threshold. Each gray line repre-

sents a single benchmark while the darker line indicates the average. The profile data were gener-

ated using the test inputs while the prediction was performed using the usual train inputs (see

Section A.1.1 of the appendix for details on the benchmark inputs).

The values of the accuracy and coverage indicate the quality of the profile data. For example,

three benchmarks exhibit relatively low coverage that is constant with threshold. In these cases,

many instructions left after the static analysis (i.e., those that have multiple possible degrees of

use) were absent from the profile data also, limiting the coverage attainable regardless of thresh-

50 55 60 65 70 75 80 85 90 95 100

(a) Threshold (%)

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

50 55 60 65 70 75 80 85 90 95 100

(b) Threshold (%)

50

60

70

80

90

100

C
ov

er
ag

e
(%

)

Figure 3.4. Static predictions derived from degree of use profiling

57

old. In one of these cases, the accuracy was also low, indicating that even those instructions that

were in the profile behaved much differently between the two runs. Another interesting feature of

the data is the relatively large jump in coverage when reducing the threshold from 100% to 95%,

implying that many values originate from instructions that can generate more than one degree of

use, but are highly biased. That the accuracy does not show the same behavior indicates that the

dominant degree of use for many of these instructions is the same for both inputs (the profile and

the evaluation).

Figure 3.5 portrays benefit (see Section 3.1) as gradations in shading (with darker shades indi-

cating more benefit) versus threshold and cost factor. The shading range is normalized at each

cost factor (i.e., the same shade at different cost factors does not represent the same absolute ben-

efit). A contour line illustrates the threshold for each cost factor where maximum benefit is

obtained. As the cost factor rises, accuracy becomes relatively more important and the optimal

threshold value increases. Even for very high cost factors (>15), however, it is still beneficial to

have a threshold less than 100%. The vertical extent of the shaded area at each cost factor indi-

cates the sensitivity of the performance to the threshold. At low cost factors, the performance is

relatively insensitive to the threshold, but as misprediction costs become more dominant, perfor-

0 5 10 15 20

Cost factor (relative cost of mispredictions)

50

60

70

80

90

100

T
hr

es
ho

ld
 (

%
)

Figure 3.5. Optimum threshold value versus misprediction penalty

58

mance decreases more rapidly as threshold deviates from the optimal value. Therefore, this

model indicates that a threshold of around 95% is a reasonable choice for a range of applications.

3.3.5 Communicating static predictions to the hardware

However obtained, to be useful in runtime communication optimization, statically-derived degree

of use information must be somehow passed to the hardware. Details on the various techniques

for communicating information to the runtime are outside the scope of this thesis, although some

possibilities that assume the ability to modify the instruction set are presented here.

Given complete freedom in the design of the instruction set, degree of use information can be

included directly in the instruction encodings. As degree of use information applies only to

instructions that produce a result, instructions with a destination register field are simply aug-

mented with an additional field for degree of use information. Alternatively, certain architectural

registers could be dedicated to different degree of use classes (e.g., single-use or few-use tempo-

raries or long-lived many-consumer). Such methods could only be used in a new design where

the architectural interface is not yet fixed. One might also imagine more evolutionary changes,

involving, for example, new instruction prefixes or unused instruction encodings.

One important issue with architecting the encoding of degree of use information is its immuta-

bility. Applications will generally need different kinds of degree of use information: some may

only need to know about single-use values while others may require more information. The two

applications presented in this dissertation illustrate this quite well: useless instruction elimination

(Chapter 4) only requires the identification of a certain class of values, while use-based register

caching (Chapter 5) depends upon knowing the exact degree of use for every value. If the archi-

tected interface is not sufficiently generic, some optimizations may not benefit from a particular

static encoding.

3.4 Dynamic Degree of Use Prediction

A dynamic degree of use predictor uses the observed run-time behavior of a program to generate

its predictions. While static degree of use prediction can offer superb accuracy, it has three nota-

ble shortcomings. First, the coverage is limited by the precision of the analysis and the availabil-

ity of good profile information. Second, the availability of static predictions for a program of

59

interest depends on a priori analysis.† Finally, as just discussed in Section 3.3.5, an interface

must exist to communicate the predictions to the hardware, which may constrain the amount and

format of information that can be communicated to the implementation. Dynamic prediction suf-

fers none of these problems as it profiles the actual program of interest at run time from within the

implementation.

An overview of how a degree of use predictor might interface with a prototypical processor

pipeline is shown in Figure 3.6. A storage structure maintains per-instruction state used to gener-

ate predictions. It is accessed with instruction addresses from the front end in parallel with the

fetch of the instructions from the instruction cache. Additional information (e.g., control flow

predictions) may be used in generating the final prediction, which is available by the time the

instruction’s registers are renamed. Components for training the predictor and verifying the pre-

dictions are also needed. These structures observe the uses and definitions in the instruction

stream to calculate actual degrees of use. The observations may be performed anywhere within

the processor pipeline, although different locations offer different trade-offs among complexity

and performance. Although both training and misprediction detection require observation of the

instruction stream, there is no requirement that the same instruction stream be used in both cases.

All of the dynamic predictor designs presented in this section operate in two separate steps.

First, all or part of the address of an instruction is used to access some per-instruction information.

† A run-time system could conceivably be used to perform on-line dataflow analysis, but its effort would be
spent much more profitably generating predictions based on direct degree of use profiling—in which case
system is really performing dynamic prediction.

Figure 3.6. A dynamic degree of use predictor in a processor pipeline

BTB/
BPred Rename Queue Sched. Exec.

Write-
back RetireI-cache

Degree of Use
Predictor

Degree
Training

Table

predictions

mispredict

instruction
instruction stream

predicted

Verification
Table

instruction stream

control flow

addresses

observed behavior

Register
Read

60

Second, the state information is used (perhaps with other external information) to generate the

final prediction. The first step determines only the potential availability of a prediction for a par-

ticular instruction (i.e., the predictor’s maximum coverage). The predictor’s accuracy, however, is

determined entirely by the algorithm used to turn the per-instruction state into a prediction. A

prediction may not be generated even in cases where an entry exists for an instruction. Thus, the

prediction algorithm can cause the coverage to be lower than the simple availability of per-

instruction state, but it cannot increase it beyond this level. This division of the task of degree of

use prediction simplifies the exploration of the large predictor design space.

The next sections present the various predictor algorithms beginning with the simple strategy

of returning the last observed degree of use for a each static instruction. Then, a confidence

mechanism is added, significantly improving the accuracy. Finally, the use of control-flow infor-

mation enables predictors that distinguish among multiple possible degrees of use for a single

instruction. The performance of each algorithm is first presented for a large predictor of fixed

organization (8K-entry, eight-way set-associative) and complete tags (i.e., the entire instruction

address is split between the set index and a per-entry tag). Smaller tags introduce the possibility

of aliasing, the topic of Section 3.4.4, but the impact varies among the prediction algorithms, lead-

ing to different tagging requirements. With a suitable tag size chosen for each algorithm, the pre-

dictors can be compared in terms of capacity. Section 3.4.5 presents this comparison,

demonstrating the conditions which favor particular predictor algorithms. The mechanisms of

training and misprediction detection are revisited in Section 3.4.6 and Section 3.4.7, respectively.

The issue of predictor bandwidth is addressed in Section 3.4.8.

3.4.1 Simple predictor: last observed degree of use

The data in Figure 2.10 demonstrate temporal locality in the per-instruction degree of use: 95%

of all dynamic values have the same degree of use as the last value originating from the same

static instruction. Therefore, a predictor maintaining only the last degree of use generated by each

static instruction should be capable of 95% prediction accuracy. Coverage in such a predictor

would be determined solely by the existence of an entry matching the address of the instruction.

The performance of this simple algorithm is shown in Figure 3.7. Similar presentations of

predictor performance will appear throughout this chapter. From bottom to top, the stacked bars

61

in the graph represent correct predictions (light gray), mispredictions (dark gray), and non-predic-

tions (black) as a percentage of all dynamic values (in this particular figure, only a small number

of non-predictions are visible, mostly in gcc and vortex). Coverage includes correct predic-

tions and mispredictions and therefore may be read directly at the top of the dark gray bar. Accu-

racy is the height of the light gray bar (correct predictions) divided by the coverage. To enable

easy visual comparison of accuracies across benchmarks, the accuracy has been superimposed on

each bar as a small black-bordered, white hash mark. While the accuracy is read on the same ver-

tical scale, it should be noted that accuracy is a percentage of predictions, not a percentage of all

dynamic values. All predictor evaluations in this chapter were performed using timing simulation

of the first four billion instructions of each benchmark. Details on the methodology may be found

in Section A.4 of the appendix.

Returning to the results of Figure 3.7, at this predictor size, non-predictions are only detect-

able in a few benchmarks, and represent less than 1% of values in those cases. With coverage

near 100%, accuracy is approximately the percentage of correct predictions, which averages

94.9%, matching expectations. The floating-point benchmarks exhibit an average accuracy better

than 95%. Even the worst among them (i.e., sixtrack and wupwise) exceed the average pre-

diction accuracy on the integer benchmarks. This behavior may be attributed directly to the

smaller variability in degree of use behavior in the floating-point benchmarks noted in Chapter 2

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language
Integer Floating-point Type

Figure 3.7. Performance of predicting last-observed degree of use

62

and is due to their less complicated control-flow, both static and dynamic. Near perfect coverage

is also achieved for all of the floating-point benchmarks, indicating small instruction working sets.

This is true even for those benchmarks with static code footprints comparable to gcc, the largest

of the integer benchmarks. Because this simplest instance of a degree of use predictor yields good

results on the floating-point benchmarks, these benchmarks are omitted when developing the

more sophisticated prediction algorithms of the next sections. The floating-point benchmarks will

be revisited during the comparative evaluation in Section 3.4.5.

The average prediction accuracy on the more fickle integer benchmarks is only 92.2%. In par-

ticular, parser and vpr have accuracies less than 90%. Since aliasing is not a factor and a pre-

diction is only made when a prior observation is stored for a static instruction, these benchmarks

must be executing static instructions that exhibit poor temporal locality in their degree of use pat-

terns. To improve the prediction accuracy, either predictions must be avoided on such instructions

or additional information used to make the predictions.

3.4.2 Adding confidence

Always predicting the last observed degree of use suffers from the problem of being sensitive to

temporary deviations from a dominant behavior. Consider an instruction with two different

degrees of use, one of which occurs very infrequently. Obviously, when the rare degree of use

occurs, a misprediction will result. However, upon the next execution, the predictor provides the

infrequent degree of use, which most likely causes a second misprediction. Higher accuracy

could be attained by retaining the more common degree of use rather than the most recently gen-

erated one. The potential for improvement can be seen by comparing Figure 2.10 with Figure 2.8.

The data in the latter figure show that the most common degree of use could reduce the number of

mispredictions by 24% (96.5% vs. 95.4% average accuracy).

The problem of retaining a more prevalent outcome—even when it is not the most recent

one—exists for branch predictors. Just as for branch predictors, it can be solved by adding hyster-

esis in the form of saturating counters [77]. A saturating counter is associated with each predictor

entry. The value of the counter is increased when the corresponding entry yields a correct predic-

tion; otherwise, it is decreased. In this manner, the predictor can retain a dominant degree of use

for an instruction even after the occasional misprediction. If the count reaches zero, however, the

63

stored degree of use will be replaced with a newly observed value. The value of the counter, then,

indicates the confidence in the stored prediction.

Unlike the simpler last-observed-degree algorithm, this algorithm can choose not to supply a

prediction based on a confidence threshold. The choice of this threshold in relation to the

counter’s maximum value (i.e., its range) provides another means to make the ubiquitous cover-

age-accuracy trade-off. In this manner, the predictor can exceed even the accuracy of one that

always returns the single most likely degree of use by avoiding predictions for certain instruc-

tions. Thus, versus the last-observed-degree algorithm, this algorithm should convert some

mispredictions into correct predictions (by virtue of returning more likely outcomes) while con-

verting others into non-predictions. Both effects increase accuracy, although the second lowers

coverage. The parameters of the confidence scheme will determine the magnitudes of these

effects.

The parameters that define a confidence scheme are: (1) the range of the counter, (2) the

adjustments made to a counter on correct and incorrect predictions, (3) the initial confidence of a

new entry, and (4) the threshold below which no prediction is made. A counter value of zero

always results in a replacement if it causes (or would have caused) a misprediction. To limit the

number of designs considered, all schemes presented here use the full range of a two-bit counter

and increase or decrease the counter value by one. The remaining free parameters are the initial

confidence value and the non-prediction threshold.

Figure 3.8 shows the performance of the predictor versus the non-prediction threshold with

the initial confidence fixed at 1. The S bar shows the performance of the simple predictor without

confidence counters (i.e., the results from Figure 3.7) for comparison. The numbered bars repre-

sent a non-prediction confidence threshold of the indicated value. The presentation of each bar is

the same as that of Figure 3.7 (i.e., correct predictions in white, mispredictions in gray, non-pre-

dictions in black, and accuracy as a white hash mark).

At all threshold values, accuracy is improved substantially over the simple predictor. The

effect of the added hysteresis is clearly evident at low threshold values by the increased number of

correct predictions versus the simple predictor. As the threshold is increased, the predictor

becomes more selective, making fewer predictions to increase accuracy.

64

When the threshold equals the maximum confidence, the benefit of the confidence scheme is

due entirely to its enhanced selectivity—at this point the hysteresis cannot result in a prediction

that would not have been made by the simple predictor, reducing the number of correct predic-

tions substantially. To explain this phenomenon, consider a particular static instruction that yields

degrees of use 1-2-1-1 during consecutive executions and simple and confidence-enhanced pre-

dictors both pre-trained to a degree of use of 1 (at maximum confidence) for the instruction in

question. The simple predictor will predict 1-1-2-1, for a total of two mispredictions and two cor-

rect predictions. The enhanced predictor with a threshold equal to the maximum confidence will

return 1-1-N-1, while lowering the threshold by one will result in the sequence 1-1-1-1. In both

cases, only one misprediction occurs, but only with the lower threshold is the number of correct

predictions increased over the simple scheme.

The effect of the initial confidence, portrayed in Figure 3.9, is weaker than that of the non-pre-

diction threshold and operates in the opposite direction (i.e., higher values of this parameter

decrease accuracy and increase coverage). In this figure, the numbered bars indicate the initial

confidence values. As before, the S bar shows the performance prediction of the last-observed

degree of use. A non-prediction threshold of 2 was selected for this experiment to avoid sacrific-

ing the hysteresis benefit. In the steady state, most instructions will be present in the predictor.

Assuming adequate capacity, replacements only occur when the instruction working set changes

significantly. The initial confidence assigned to these new observations determines how quickly

the predictor will react to the new conditions. The lower the initial confidence, the more closely

75

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3

Figure 3.8. Performance vs. non-prediction threshold for predictor with confidence counters

65

the predictor state will track rapidly changing conditions, such as might be expected during a

phase change.

For the remainder of this chapter, an initial confidence of 0 and a non-prediction threshold of 2

are assumed. These values correspond to the 0 bar in Figure 3.9. The confidence-enhanced pre-

dictor makes 6.1% fewer predictions than the last-observed-degree predictor. As many of these

non-predictions were mispredicted by the simpler predictor, the average accuracy is increased

from 92.2% to 96.8%.

3.4.3 Using control-flow information

Consider the nature of the mispredictions produced by the previous two prediction algorithms.

Neither of the previous algorithms has the option of issuing a different prediction than the single

stored degree of use. Thus, the mispredictions must occur on instances of static instructions that

can generate multiple degrees of use. The confidence scheme can avoid making predictions for

these instructions where their dynamic behavior is irregular, but it can never generate correct pre-

dictions for consecutive instances of an instruction that have different degrees of use, limiting the

best-case rate of correct predictions.

A prediction algorithm capable of exceeding this limit requires a means to distinguish among

multiple degrees of use for a single static instruction. Making this distinction necessitates addi-

tional information for the generation of a prediction. Such information must be available to the

predictor before the prediction is needed and must also differentiate among various dynamic cir-

75

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3 S 0 1 2 3

Figure 3.9. Performance vs. initial confidence for predictor with confidence counters

66

cumstances that lead to different behaviors from a single static instruction. An obvious candidate

that meets both of these requirements is the history information maintained by the instruction

sequencer for branch prediction.

The branch history provides information about the dynamic flow of execution leading up to

the instantiation of a particular instruction. This information provides a context within the frame-

work of the program that can imply that a particular dynamic instruction will behave in a certain

manner. Applied to branch prediction, this control-flow context is used to decide the direction of

an instance of a static branch. In a similar fashion, this information can be used to decide the

number of uses likely for a certain instance of a static instruction.

Branch history information works in this role precisely because it is correlated with upcoming

branch outcomes. The degree of use of a value is completely determined by the instructions that

are encountered after the value is generated. These instructions are in turn determined by the

future control flow. Therefore, branch history information, which can help predict the expected

path of execution, can also discriminate among different potential degrees of use for a value.

Rather than using the branch history, it is also possible to directly use the branch future due to

pipelining. Instructions in the middle of a pipeline have available to them the predicted outcomes

of control instructions occurring later in the dynamic instruction stream (i.e., earlier in the pipe-

line). So long as the branch predictions are used in a later pipeline stage than where they were

generated, they represent the future. Given a high branch prediction accuracy, these predictions

are equivalent to path look-ahead, providing nearly perfect knowledge about the uses occurring in

the immediate future. The future control-flow information need not be restricted to conditional

branch outcomes. If an indirect branch (e.g., a procedure return) occurs on the future path, its pre-

dicted target address may also be used.

A reasonable question to ask is why using future control flow would provide any better perfor-

mance than a scheme that directly takes in the branch history. After all, the branch predictor itself

turns branch history information into the branch predictions that such a scheme would subse-

quently use. Recall that values with low degrees of use (i.e., most values) are completely used

within a short distance of when they are generated (see Figure 2.4). Thus, most of the time, only

a few upcoming branch directions are required to uniquely determine the number of uses a value

will see. Prior studies have shown that a given branch’s outcome may be correlated to one very

67

far in the past [30]. Thus, a long branch history may be needed to have the same information

about the immediate forward path. Using more input bits (in the form of a long branch history)

implies more variation and a larger predictor in order to correlate this input information with a

particular degree of use. Also, the branch predictor is specialized: its very structure encodes

knowledge about the ways branches behave. Since the branch predictor already an accurate distil-

lation of long histories into expected outcomes, it is not necessary to have a large degree of use

predictor perform the same task less efficiently.

Exploiting control-flow information involves modifying the predictor to allow multiple entries

per static instruction. The generation of a prediction for an instruction (the target) commences by

using a portion of the instruction address to access a set within the predictor as in the previously

presented algorithms. However, by extending the tag to include the control-flow information,

multiple predictor entries—possibly with different degrees of use—can coexist for a single static

instruction. The portion of the tag containing the encoded control-flow information is referred to

as the control-flow signature. In order to select a particular entry within the set, the entire tag

must be matched, corresponding to a match of both the static instruction and its associated

dynamic control-flow context. Using the control-flow information late in the prediction process

facilitates signatures based on future control flow. Note that this algorithm requires a set-associa-

tive predictor in order to be able to store multiple predictions per static instruction.

Figure 3.10 illustrates the three different types of signatures that are evaluated here. The

history method uses the most recent bits of the global branch history at the time of the fetch of the

target instruction as the signature. The future signature consists of the predicted directions of

conditional branches between the front end of the machine and the target instruction. indirect is

Figure 3.10. Control-flow signatures

predictions
for upcoming
conditional

Future
mull
addl
stq
blt

bis
stl
xor
beq

cmoveq
ldq
jmp
s8addq

addq
ldl
stl
bne

History
Pipeline

a b c d e f g h

Branch History

oldest

youngest

Indirect

instruction

instruction

d e f g h c b a 0 0 Y Y Y Y Y

indirect
jump to
WXYZ

Signatures

d e f g h c b a 0 0 c b a 0 0

recent branch
history at time
of instruction’s

future OR part
of upcoming
predicted
indirect branch
target address

branchesfetch

68

identical to future except when the first control instruction after the target is an indirect jump

(including a procedure return); in this case the signature is the low order bits of the instruction

cache index of the jump’s target.

Figure 3.11 shows the performance of the predictor as a function of signature length for each

signature type. The left-most configuration for each benchmark (the 0 bars in the figure) shows

the performance of a predictor without a control-flow signature for comparison. The higher num-

bered bars reflect a signature with the indicated number of bits. All of the predictors use the con-

fidence mechanism described in Section 3.4.2.

For all of the algorithms, longer signatures improve the average accuracy. In the case of the

history signature, the accuracy increases steadily over the range of signature lengths considered.

In the case of the future and indirect signatures, most of the accuracy benefit is obtained with only

two signature bits. Adding signature bits increases the possible number of entries for a single

static instruction exponentially. This increases capacity pressure on the predictor, reducing the

coverage significantly for most benchmarks at long signature lengths.

Interestingly, for up to two signature bits (one in the case of the history signature), the average

correct prediction rate is improved over the baseline predictor without any control-flow. For cer-

tain benchmarks (e.g., gap and parser), this improvement continues to longer signature

lengths. These additional correct predictions come from instances of instructions with different

degrees of use. In the baseline predictor, which can maintain only one degree of use, the variable

behavior lowers the prediction confidence for these instruction below the non-prediction thresh-

old.

Comparing the history signature versus the forward control-flow based signatures reveals the

advantage of these latter schemes. For shorter signatures, the future branches are more likely than

the past branches to select the correct degree of use resulting in higher accuracy. As the signature

length increases, the accuracy of the history scheme improves becoming comparable at a signa-

ture length of four bits. At this point, however, the coverage is substantially lower. Again, this

may be attributed to a better correlation between the future branch directions and the degree of use

of a given instruction. In cases where the long history signature is still unable to differentiate

instances of an instruction having different degrees of use, the confidence mechanism will come

69

(a) History

75

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

(b) Future

75

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

(c) Indirect

75

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Figure 3.11. Degree of use predictor performance as a function of signature length

70

into play, reducing the number of predictions made. Of the two forward control-flow based signa-

tures, the indirect signature performs just slightly better on average.

The biggest disadvantage of the control-flow based predictors described is the reduction in

coverage due to signature variability. Each different signature encountered for an instruction

requires its own predictor entry, resulting in significant capacity pressure. Coverage is impacted

the most for those benchmarks with highly variable control flow (e.g., crafty and gcc). Since

most instructions only exhibit a single degree of use, these multiple entries are wasteful. A simple

optimization to take this common-case behavior into account reduces this pressure substantially,

allowing a longer signature to be used without unduly affecting the coverage.

The modification involves selectively ignoring the signature altogether and matching only on

the address portion of a tag. To each entry, a single bit, the easy bit, is added to the signature.

When set, the signature portion of the stored entry is ignored, allowing a match with a specific

static instruction regardless of the control flow. On a write miss (i.e., an insertion), the easy bit is

set only if there is no other entry in the set with the same address portion of the tag. If a write hit

occurs to an entry with the easy bit set and the stored degree of use differs from the one being

trained, the stored entry is immediately replaced and the easy bit is cleared. Normally in this

event, the confidence would be decreased instead and the replacement would only occur when it

reached zero. The modified policy ensures that a control-flow signature is associated with a par-

ticular degree of use outcome as soon as multiple outcomes are known to occur.

The performance of the enhanced predictor versus signature length is shown in Figure 3.12.

The I bar (I not 1) within each group is the baseline predictor using a two-bit indirect signature,

which was among the best performing predictors from Figure 3.11; an indirect signature is also

used along with the easy bit enhancement in the other configurations. The digits below the other

bars indicate the number of bits used in the indirect control flow signature. Thus, the 2 bar is the

same as the I bar in every respect except for use of the easy-bit modification.

As expected, adding the easy bit increases the coverage, providing a higher number of correct

predictions. This increase is achieved without sacrificing accuracy because only those instruc-

tions that have a fixed degree of use avoid the requirement for a control-flow signature match.

With this enhancement, a control-flow signature of three or four bits is preferred over the two-bit

signature selected previously. For the remainder of the chapter, an indirect signature of three bits

71

plus an easy bit will be assumed as the configuration of the control-flow enhanced predictor (rep-

resented by the 3 bars in Figure 3.12).

Comparing Figure 3.12 with Figure 3.7 shows that versus the simple last-observed-degree

predictor, the control-flow enhanced predictor reduces the number of mispredictions by 72%

while simultaneously increasing the number of correct predictions. This benefit comes at the cost

of adding six bits (two confidence bits, three signature bits, and the easy bit) to each three-bit

degree of use entry in the predictor. Adding the additional storage to the simple predictor as pre-

sented in Section 3.4.1 would not have helped since it already had nearly perfect coverage and the

accuracy would not have changed. In Section 3.4.5, the effect of smaller capacity limits are con-

sidered. First, however, the size of the address portion of the tag must be determined.

3.4.4 Aliasing in degree of use predictors

Aliasing occurs when a predictor is unable to distinguish among multiple, distinct static instruc-

tions. Since each static instruction is uniquely identified by its address, aliasing can result when

predictions are associated with anything less than the full instruction address.† Destructive alias-

ing results when the behavior of two or more indistinguishable instructions differs. In this situa-

tion, predictor accuracy can be reduced if the predictor supplies the wrong prediction for one

instruction based on the stored information about another instruction. Destructive aliasing is a

† In a multi-programmed environment, of course, static instructions belonging to different programs in dif-
ferent address spaces may share the same virtual address and, at times, physical address.

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5 I 2 3 4 5

Figure 3.12. Easy-bit enhancement to control-flow signature

72

well-studied phenomenon in the area of branch prediction because it is the primary cause of

reduced predictor accuracy. There is a greater potential for destructive aliasing in degree of use

prediction because of the multi-valued nature of the predictions.

While the solution to destructive aliasing is simple—using enough instruction address bits to

differentiate stored predictions, as has been assumed to this point—it has an associated hardware

cost due to the large tags required in the predictor. The tag sizes may be reduced provided the

incidence of destructive aliasing is low. Note that the frequency of aliasing depends on the total

number of address bits used to select a prediction, including both the tag and the set index. Thus,

between two predictors with the same capacity and tag size, the more associative predictor will

suffer more from aliasing (since it has fewer set bits).

Once aliasing becomes significant, the coverage increases (as predictions are generated for

instructions that are not actually present) while the accuracy drops. The coverage increase due to

aliasing is not really beneficial, however, since it will contain a much higher percentage of mispre-

dictions than the overall rate (aliasing is more likely to be destructive). The accuracy decrease can

be reduced or delayed given a predictor that can use additional information besides the address to

differentiate aliased instructions.

Table 3.1 provides data on the occurrence of aliasing versus the number of address bits for the

prediction algorithms of the preceding sections. The table presents the average alias rate (over the

integer benchmarks) in terms of the number of predictions generated based on stored data for a

different instruction. The incidence of destructive aliasing is presented as a percentage of the

Table 3.1: Aliasing Rates

Tag
bits

Total
bits

Alias rate (% predictions) Destructive alias rate (% aliased preds)

simple confidence control-flow simple confidence control-flow

3 11 89.54 89.49 18.19 14.16 7.41 4.50

4 12 35.19 35.33 11.35 14.16 7.98 3.80

5 13 13.20 12.75 4.83 15.72 8.94 4.04

6 14 5.36 5.29 2.18 13.33 7.84 4.00

7 15 2.76 2.77 1.15 10.61 5.43 3.42

8 16 0.87 0.84 0.37 8.88 5.58 3.62

9 17 0.33 0.31 0.19 4.77 2.73 1.64

73

aliased predictions that are incorrect. A smaller predictor (256-entry, eight-way set-associative)

has been used to increase the possibility of aliasing. Thus, the total number of address bits avail-

able to distinguish any two instructions is the indicated number of tag bits plus the eight bits used

to select a particular set. A minimum of three tag bits are required in this configuration because

there are eight entries per set.

The alias rate for the simple and confidence predictors is nearly identical and drops by roughly

a factor of 2.5 per extra tag bit. The advantage of the confidence predictor with respect to aliasing

is evident in its lower destructive aliasing rate, however, which is just over half of the simple pre-

dictor’s. Employing a control-flow signature significantly reduces the occurrence aliasing due to

the availability of the signature to help distinguish instructions. The frequency of destructive

aliasing is also reduced, providing additional benefit.

The overall effect of aliasing on the prediction accuracy is shown in Figure 3.13 (for the orig-

inal 1K-entry, eight-way set-associative predictors). The accuracy of the control-flow predictor

never drops below even the unaliased accuracy of the confidence-only configuration. Similarly,

the confidence predictor always provides better accuracy than the simple predictor. Therefore,

part of the storage cost of the more complicated algorithms can be offset by the need for fewer tag

2 4 6 8 10 12

Tag bits

85

90

95

100

%
 A

cc
ur

ac
y

Simple
Confidence
Control-flow

Figure 3.13. Effect of tag length on predictor accuracy

74

bits. For example, the simple predictor with a nine-bit tag has the same number of bits per entry

(12) as the confidence-based predictor with a seven-bit tag and the control-flow predictor with a

three-bit tag. In spite of the additional aliasing suffered by the more sophisticated algorithms, the

relative ordering of their performance is unchanged. Since the cost of the added storage is less

likely to be a factor than the question of how to effectively increase the prediction accuracy with

any amount of storage, the tag length is instead chosen for each algorithm based on when aliasing

begins to noticeably affect accuracy. Based on the curves in Figure 3.13, this occurs at six tag bits

for the control-flow enhanced predictor and seven tag bits for the other two predictors. Tag

lengths that (with the set index) yield the same total number of address bits (16 or 17) are assumed

for the remainder of the chapter.

3.4.5 Comparative evaluation

To this point, the performance of each prediction algorithm has been studied using an 8K-entry

predictor, which is large enough that capacity limitations did not significantly impact the results.

In this section, the performance of the prediction algorithms will be compared at different capaci-

ties and the conditions that favor the different algorithms revealed.

Figure 3.14 shows how coverage depends on predictor size and associativity. Not surpris-

ingly, higher capacity yields higher coverage. At the largest predictor size shown, the simple pre-

dictor delivers nearly 100% coverage (also shown in Figure 3.7). Increasing the coverage for the

other two algorithms even slightly requires significant extra capacity.

The importance of associativity is clearly evident in the figure. For the simple and confidence

algorithms, which do not employ control-flow information, there is a one-to-one correspondence

between instructions and predictor entries. Thus, the only purpose of increased associativity in

these predictors is to reduce conflicts; as a result, the benefit of higher associativity declines with

predictor capacity. Adding control-flow signatures causes some instructions to occupy many

entries within the same set, greatly increasing the importance of associativity. Evidence of this

detail is visible in the distance between the curves corresponding to the control-flow enhanced

predictor. Longer signatures exacerbate this dependence by increasing the number of entries that

can be associated with a single static instruction. Another effect of allowing multiple entries per

75

instruction is increased capacity pressure, which is evident in the steeper slope of the curves for

the control-flow predictor.

Figure 3.15 shows the interaction of accuracy and coverage for the predictor configurations of

Figure 3.14. The shape of each mark indicates the prediction algorithm, while the mark’s color

indicates the associativity. Capacity is not indicated explicitly, although groups of marks corre-

sponding to different associativities at a given capacity (1K, 2K, 4K, or 8K entries) are visually-

separable except for the simple predictor.

To first order, accuracy is independent of a predictor’s size since the prediction made depends

only on the contents and not on the availability of an entry. In other words, accuracy is primarily

dependent on the prediction algorithm while the coverage depends on the predictor’s capacity.

This property motivated the definition of coverage to include all predictions made instead of just

including correct predictions.

The control-flow enhanced predictor exhibits the largest variation in accuracy with capacity

decreasing from 98.5% for the 1K-entry, two-way predictor to 97.7% for the 8K-entry, eight-way

predictor. To explain this variation, first note that similar variation is seen at constant capacity as

the associativity changes. Lowering the associativity reduces the ability of this predictor to main-

1K 2K 4K 8K

Capacity (entries)

20

40

60

80

100

%
 C

ov
er

ag
e Simple

Confidence
Control-flow
8-way set-associative
4-way set-associative
2-way set-associative

Figure 3.14. Predictor coverage vs. organization

76

tain all possible signature variants for those static instructions with multiple degrees of use. This

lowers the coverage but increases the accuracy since these are the instructions that are hard to pre-

dict. Reducing the capacity has the effect of increasing the competition for entries within a set,

which causes the same accuracy increase (and coverage decrease) as directly reducing associativ-

ity.

Superimposed on Figure 3.15 are dotted-line contours representing constant benefit (using the

simple model described by Equation 9 of Section 3.1). The near-vertical contours correspond to a

cost factor of one while the curved ones represent a cost factor of ten. At low cost factors, benefit

is more strongly dependent on coverage. Thus, even the simple predictor delivers benefit compa-

rable to that of the larger, more complex predictors. At low capacities, the simple predictor is sig-

nificantly better. As the cost of mispredictions increases, accuracy plays a more important role

and the more complex predictors are favored. At a cost factor of ten, 2K-entry control-flow

enhanced predictors deliver benefit on par with confidence-only predictors four times larger.

Though the coverage is around 20% lower, the 1.5% increase in accuracy is more important.

When mispredictions are this costly, the simple predictor cannot compete with any of the other

predictors regardless of its capacity.

20 30 40 50 60 70 80 90 100

% Coverage

90

91

92

93

94

95

96

97

98

99

100

%
 A

cc
ur

ac
y

20 30 40 50 60 70 80 90 100

% Coverage

90

91

92

93

94

95

96

97

98

99

100

%
 A

cc
ur

ac
y Simple

Confidence
Control-flow
2-way
4-way
8-way

20 30 40 50 60 70 80 90 100

% Coverage

90

91

92

93

94

95

96

97

98

99

100

%
 A

cc
ur

ac
y

30 40 50 60 70 80 90

Figure 3.15. Prediction accuracy vs. coverage

77

Heretofore, capacity has been expressed in terms of entries, which unfairly handicaps the sim-

pler predictors with their smaller entries. In order to perform a true comparison based on capac-

ity, all bits within the predictor storage must be accounted for. The prediction algorithm specifies

the number of bits in each entry, and the choice of tag length was already addressed in

Section 3.4.4. However, the use of set-associative storage requires a replacement policy, which

may require additional state. In the preceding sections of this chapter, perfect LRU replacement

was assumed. Implementation of this strategy for an eight-way set-associative predictor requires

a minimum of ceil(log2 8!) = 16 state bits per set to maintain ordering among the entries; a more

reasonable encoding (with respect to the update logic) requires 8 × (8 – 1) ÷ 2 = 28 bits. Even for

the control-flow enhanced predictor, this represents a 23% storage overhead just to implement the

replacement policy.

A sub-optimal replacement policy manifests as lower predictor coverage (since more worth-

while entries will occasionally get evicted over ones less so). As the associativity increases (and

LRU becomes more expensive), the importance of the replacement policy diminishes and rougher

approximations of LRU suffice without a significant impact. Other possible replacement policies

for an n-way set-associative predictor include tree-based pseudo-LRU (n – 1 bits/set), not-MRU

(log2 n bits/set), and random (free).

Figure 3.16 compares these policies on an 8K-entry, eight-way set-associative predictor. The

control-flow prediction algorithm is used since its performance is most sensitive to associativity.

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
L P N R L P N R L P N R L P N R L P N R L P N R L P N R L P N R L P N R L P N R L P N R L P N R L P N R

Figure 3.16. Comparison of replacement policies

78

From left to right, the bars represent LRU, Pseudo-LRU, not-MRU, and Random replacement.

Pseudo-LRU performs similarly to true LRU, while not-MRU and random show noticeably lower

coverage. Interestingly, due to the slight increase in accuracy accompanying the loss in coverage,

the not-MRU scheme is preferred to pseudo-LRU for cost factors greater than four. Given that it

also has less than half of the space overhead (three vs. seven bits/set), not-MRU replacement will

be used for eight-way predictors. At four-way set-associativity, pseudo-LRU replacement offers

the best average performance through cost factors exceeding 11 with only one bit/set more than

not-MRU. Finally, true LRU is feasible at two-way associativity. These replacement policy

choices are reflected in the data of Figure 3.14 and Figure 3.15.

With a replacement policy decided, the capacity of a given predictor organization can be com-

puted. Figure 3.17 illustrates the contents of a representative predictor of each type, demonstrat-

ing the differing capacity requirements of each. All predictors must store observed degrees of

use. Beyond that minimum requirement, algorithm-specific storage consists of a confidence

counter, control-flow state, and the easy bit (labeled E in the figure). As discussed in

Section 3.4.4, the number of tag bits depends on number of sets in the predictor such that a certain

total number of address bits are used in generating a prediction. Finally, the choice of associativ-

ity dictates the storage overhead of the replacement algorithm.

Figure 3.18 plots the benefit of degree of use prediction versus the capacity of the predictor.

Each of the predictor configurations from Figure 3.15 is represented. Again, cost factors of one

(solid lines) and ten (dotted lines) are illustrated. The best design for a fixed amount of storage

depends on the cost factor: low cost factors will favor simple designs with higher coverage while

high cost factors will favor fewer predictions of higher accuracy. With a large enough hardware

budget, the coverage of the complex predictors is raised to the point that they become competitive

even at a low cost factor. These trade-offs are clearly illustrated in figure. For example, at a cost

factor of one, the simple predictor is preferred until the hardware budget exceeds 4K-bytes. The

confidence-based predictor then reigns until control-flow predictors of around 12K-bytes are pos-

sible. As the cost factor increases, the complex predictors are preferred even at low capacities.

For a cost factor of 10, the control-flow predictor delivers the best performance down to less than

3.5K-bytes.

79

Several circumstances favor the selection of the control-flow enhanced prediction algorithm.

First, hardware budget is not likely to be a constraint. The largest predictor represented in

Figure 3.18 has a capacity less than 16K-bytes, which is small compared to many contemporary

proposals for branch predictors. While the utility of branch predictors is most certainly larger, a

degree of use predictor is only likely to be used when extra transistors do not add much marginal

benefit in more traditional roles (e.g., cache capacity). Second, the latency of the predictor’s stor-

age is not critical, removing another constraint on its size. Predictions cannot possibly be used

until the corresponding instructions are available. Since the actual storage access requires only an

instruction address (the control flow information being used later), it may proceed in parallel with

Figure 3.17. Degree of use predictor contents

lru

pseudolru

degreeE confsignaturetag

tag degreeconf

notmru

tag degree

(c) 1K-entry (512×2-way) control-flow-based

(b) 2K-entry (512×4-way) confidence-enhanced

(a) 4K-entry (512×8-way) simple

512×(8×(6+3)+3) = 38,400 bits

512×(4×(6+2+3)+3) = 24,064 bits

512×(2×(5+3+1+2+3)+1) = 14,848 bits

80

the fetch of the corresponding instruction. Finally, given adequate storage, the control-flow

enhanced prediction algorithm is robust with respect to the cost factor—whether mispredictions

are relatively cheap or expensive, it offers the most benefit.

Based on these considerations, the large control-flow enhanced predictor represented in

Figure 3.18 (and also Figure 3.14 and Figure 3.15) will be used as the degree of use predictor in

the remainder of the dissertation (unless otherwise noted). To reiterate the parameters of this par-

ticular predictor, it is an 8K-entry, eight-way set-associative control-flow enhanced predictor.

Each entry consists of a five-bit tag, a three-bit indirect future control-flow signature, an easy bit,

a two-bit confidence counter, and a three-bit degree of use. The non-prediction threshold is two

and the initial confidence of a new entry is zero. The replacement policy is not-MRU, yielding a

total capacity of 13.4K-bytes.

Figure 3.19 presents the performance of this predictor on all 26 of the SPEC benchmarks.

Comparing with Figure 3.7 demonstrates the magnitude of the improvement achieved over the

simple predictor. Average accuracy on all benchmarks has improved to nearly 99%, correspond-

ing to a 77% drop in misprediction rate. In spite of an increase in non-predictions, the average

correct prediction rate has actually increased slightly. Optimization of the predictor on the more

1K 2K 4K 8K 16K

Capacity (bytes)

0

20

40

60

80

100

B
en

ef
it

Simple
Confidence
Control-flow
Cost factor = 1
Cost factor = 10

Figure 3.18. Benefit of different prediction algorithms vs. capacity

81

difficult integer benchmarks does not appear to have negatively impacted its performance on the

floating-point benchmarks, none of which shows an accuracy less than 99%. With respect to the

integer benchmarks, all prediction accuracies have been brought above 95% with coverages

greater than 87%.

Prediction accuracies presented so far have been aggregate accuracies over all degrees of use.

Figure 3.20 breaks down predictor performance by predicted degree. Above each bar is the per-

centage of all predictions accounted for by that degree of use (the usual caveat about rounded per-

centages not summing to 100% applies). Degree of use one values are predicted with very high

accuracy—over 99% on average and nearly that for even the integer benchmarks. Although

degree of use one predictions are the most accurate, they contribute more total mispredictions

than any other degree of use due to the large number of predictions involved (68% of all predic-

tions). The prediction coverage of single-use values is also higher than for any other category.

This behavior may be attributed to the fact that most single-use values—most values overall, in

fact—tend to be dedicated temporaries used in direct communication between a pair of static

instructions, which is trivial to predict with perfect accuracy.

Accuracy degrades with increasing degree of use in the C/C++ benchmarks. Values with

higher degrees of use are more likely to exhibit variable behavior, rendering them more difficult to

predict. Also, their longer lifetimes increases the possibility that branches beyond the look-ahead

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language
Integer Floating-point Type

Figure 3.19. Tuned predictor performance on all benchmarks

82

ability of the control-flow signature contribute to the determination of their final degree of use.

The coverage decrease that accompanies the drop in accuracy is a result of the confidence policy

reacting to these more difficult-to-predict instructions. Coverage and accuracy bottom out at a

predicted degree of use of five. The higher accuracy of the limiting degree category (7+) may be

explained by its inclusion of multiple degrees of use and the absence of underpredictions. There

is no apparent reason for the increased coverage and accuracy of predicted degrees of use of six

versus five, but a similar anomaly at six uses was observed in Section 2.3.

3.4.6 Training

Any dynamic prediction technique depends on a means of observing the run-time behavior of the

predicted property. These observations modify the stored state, training the predictor to recognize

and predict subsequent occurrences of the same behavior. The dynamic observation of degree of

use requires the ability to see and count all uses and definitions of values performed by the pro-

gram, which involves tracking the source and destination registers of all executed instructions.

It is important to emphasize that degree of use applies to dynamic values—registers are only a

means of naming particular dynamic values. An instruction that generates a value specifies a des-

tination register, binding that register to the value and giving the value a name. The degree of use

of the bound value increases as subsequent instructions name that value (via the register) as an

input. Eventually, all uses of the value will occur, and, because registers are a limited resource,

the associated register will be reclaimed by binding it to a new value. Once a new value is bound

75

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

Integer Floating-point C/C++ Fortran All
0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+ 0 1 2 3 4 5 6 7+

8 66 15 4 3 1 1 2 2 70 17 5 2 1 1 2 7 68 15 4 3 1 1 2 1 68 18 5 2 1 1 3 5 68 16 5 2 1 1 2

Figure 3.20. Predictor performance by predicted degree

83

to a register, the old value with which it was associated can no longer be named or used. Thus, the

only way to dynamically detect that no more uses will occur is to observe the reclamation of its

associated name.

In most superscalar processors, there are two register namespaces—architectural and physical.

Degree of use may be computed using either, but there are two reasons to prefer using the archi-

tectural namespace. First, the architectural namespace is smaller. Therefore, the number of val-

ues that must be simultaneously tracked is smaller. Second, architectural registers have more

convenient semantics with respect to their reuse. The creation of a new value in an architectural

register implies the destruction of the prior value named by that register. The freeing of a physical

register, however, is a separate event from its old value becoming un-nameable. Both of these

events must be handled separately or the latency of the degree of use computation would be

higher.

One other point must be made regarding computing degree of use for values in architectural

registers. Because registers are reused, the value being named by a particular architectural regis-

ter depends on when the name appears within the instruction stream of the program. A given

physical register refers to only one value for all in-flight instructions, but many values may be

simultaneously associated with a single architectural register. Therefore, the determination of

degree of use must take place on an in-order instruction stream when tracking uses via architec-

tural registers.

In an out-of-order processor, there are two possible in-order streams of instructions that may

be considered: the fetch stream and the retirement stream. The fetch stream has the disadvantage

of containing wrong-path instructions. Using this stream for training implies higher training

bandwidth and the possibility of training the predictor with spurious use information. Also, the

training state must be recovered upon branch mispredictions and other mis-speculations to avoid

attributing uses to the wrong values. Training the predictor with the retirement instruction stream

suffers none of these problems, but exhibits higher training latency. Because predictions are made

early in the pipeline, waiting for the instructions to retire before adjusting the behavior of the pre-

dictor results in much lower responsiveness. Also, the control-flow information must still be cap-

tured early in the pipeline (where it is used for making predictions) and kept with the instruction

until it reaches the training structure at retirement.

84

Figure 3.21 contrasts the two different training algorithms. The R bars represent the perfor-

mance of a predictor trained using the retirement instruction stream, as has been assumed until

now. The F bars show the performance when the predictor is trained from the fetch stream (actu-

ally the instruction stream just before renaming where the predictions are consumed). Training on

the fetch stream carries a substantial accuracy penalty relative to the coverage benefit. Only for

very low cost factors (less than 1.25 here) is the gain in coverage worthwhile. Therefore, use of

the retirement instruction stream is preferred for training.

The actual mechanism for calculating the degree of use for training is straightforward. For

each architectural register, one maintains a counter that is incremented when a use of the corre-

sponding register is observed. The counters saturate at the maximum predictable degree of use, a

limit discussed in Section 3.2.1. When a register is overwritten, the counter value equals the

degree of use of the value previously in the register (subject to the limit). The counter is reset and

the process resumes.

This set of counters is referred to as the degree training table (DTT). In addition to the

counter, each entry contains information about the dynamic instruction that produced the value

currently in the corresponding register (e.g., the static instruction address and control-flow signa-

ture). This information is used with the final degree of use in training the predictor. If the degree

of use predictor is to be trained on the rename instruction stream, the DTT can be merged with the

80

85

90

95

100

%
 d

yn
am

ic
 v

al
ue

s

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
R F R F R F R F R F R F R F R F R F R F R F R F R F

Figure 3.21. Predictor training with rename vs. retirement instruction streams

85

rename instruction map, which also is indexed by architectural register and is recovered on mis-

speculations.

The operation of the DTT is illustrated in Figure 3.22. As the instruction at PCm is observed,

it increments the use counters corresponding to its source registers. Because this instruction pro-

duces a value, it also updates the entry for the destination register (shaded). The new contents are

created by resetting the use counter and setting the instruction identifying fields and the predicted

degree of use appropriately. The prior contents of the written entry are forwarded to the predictor

for training.

Once at the degree of use predictor, a write access is performed. A write miss always results

in a replacement (refer to the discussion of replacement policies in Section 3.4.5). Write hits may

be subdivided into conflicts and confirmations. Conflicts occur when the training and stored

degrees of use differ while confirmations occur when they match. The actions taken in these two

cases depend on the prediction algorithm. In the simple predictor, the training degree is written in

both cases (i.e., the stored state does not actually change on a confirmation). In the predictors

with confidence counters, the confidence is adjusted upwards on a confirmation and downwards

on a conflict. A conflict when the confidence counter is zero results in a replacement. As

described in Section 3.4.3, if the easy bit is set in a predictor using this optimization, the conflict

causes replacement of the stored degree of use regardless of the value of the confidence counter.

3.4.7 Verifying degree of use predictions

The detection of degree of use mispredictions is closely related to the training of the predictor. In

both cases, an instruction stream is observed and the degree of use for all live values determined.

Figure 3.22. Structure and operation of a degree training table

sig address uses

y r

x q 0

1

Observed instruction PCm: addl r4,r5->r6

s 1z

r4:

r5:

r6:

sig address uses

y r

x q 1

2

m 0a

DTT AfterDTT Before

 Train degree predictor with: (PCs , sig z, degree 1)

86

Underpredictions are detected as soon as the first use beyond the expected number is observed.

The detection of an overprediction must wait until the final degree of use is known to be less than

that predicted. As for the training process, there is a choice of which instruction stream is used to

detect mispredictions. Detecting mispredictions on the fetch stream gives lower misprediction

detection latency at the cost of some false misprediction signals due to wrong-path execution.

The verification latency ultimately determines the amount of state that must be maintained in

speculative applications of degree of use prediction. Also, long verification latencies imply long

misprediction recovery times, increasing the cost of mispredictions.

The exact verification latency depends on characteristics of both the program and the proces-

sor. The number of intervening instructions between consecutive definitions of the same register

is a property of the workload (see Figure 2.4); the time taken to process these instructions, how-

ever, depends on the details of the microarchitecture, as does the rate of spurious mispredictions.

Any measurement of these properties would be specific to the workload and pipeline configura-

tion (e.g., in the original work on degree of use prediction [14]), not to the method of degree of

use verification, so these data are omitted here.

The structure performing misprediction detection is called the verification table or VT, and it

is conceptually similar to the DTT. Where the DTT keeps an address and other information to

associate with the dynamically-observed degree of use, the VT keeps the predicted degree of use

for comparison purposes. The VT must also keep information to identify each instruction with a

pending prediction. When a misprediction is detected, this information is forwarded to the users

of the predictions to initiate any necessary recovery actions. Thus, the nature of the identifying

information stored in the VT depends on how the degree of use predictions are being used. If both

training and misprediction detection occur at the same point within the pipeline, these two struc-

tures can be merged.

3.4.8 Predictor bandwidth

Another consideration in the design of the predictor storage structure is the required access band-

width. The predictor must be read for each instruction renamed and written for each instruction

renamed or retired (depending on the training method). Normally, each separate simultaneous

access to a storage structure requires a dedicated port. As both area and access time of a storage

87

structure scale up with the number of ports, the cost of supplying the predictor’s read and write

bandwidth could be prohibitive for a wide superscalar machine. Fortunately, blocking and/or

banking can be used to supply the necessary bandwidth with fewer access ports.

Blocking leverages the spatial locality inherent in consecutive read accesses to the degree of

use predictor. Because the degree of use predictor supplies predictions to instructions in the fetch

order, accesses to the degree of use predictor have the same spatial locality as do the instructions

in the execution stream itself. Rather than supplying access ports to the predictor that match the

peak fetch bandwidth of the machine, the state for multiple consecutive instructions can be

fetched with a single predictor access. An additional advantage is that the tag and control-flow

signature can be shared among all of the degrees of use in a block (confidence information and

must still be maintained per-instruction).

Blocking does have some significant disadvantages, however. Balancing the decrease in stor-

age due to sharing tags and control-flow state is an increase in predictor storage from wasted

entries. As not all instructions produce a value, providing predictor state to multiple consecutive

instructions introduces the likelihood of allocating predictor entries to instructions for which

degree of use is meaningless. Also, the determination of the degrees of use of values generated by

consecutive instructions are likely to occur across many different cycles. Thus, blocking does not

really help reduce the write bandwidth requirement.

Another means to deal with the access bandwidth requirements of the predictor storage is

banking. Again, the spatial locality of predictor read accesses comes into play, suggesting that

bank conflicts will not be a significant problem. In the absence of taken control instructions, read

accesses in a given cycle are to consecutive instruction addresses, which will reside in different

banks. Therefore, banking the predictor to the same degree as the fetch width (i.e., eight banks in

an eight-wide machine) is sufficient.

The lack of locality in write accesses does not pose as much problem for a banked predictor as

for one with a larger block size. Although bank conflicts will be more likely for write operations,

the average write bandwidth can be sustained. Assuming write accesses are evenly distributed

across n single-ported banks and a full complement of n writes is attempted, the expected average

write bandwidth attained will be at least 0.64n for n ≤ 23. Since the average fetch bandwidth is

less than the fetch width and training is only required for the 80% of instructions that produce val-

88

ues (see Table 2.1), banking can provide adequate average write bandwidth. Queuing write oper-

ations between the DTT and the predictor can reduce the incidence of dropped writes due to bank

conflicts.

3.5 Hybrid Prediction Schemes

Hybrid degree of use prediction schemes combine elements of static and dynamic predictors to

exceed the performance of either in isolation. A static predictor can offer perfect accuracy, but

only on some instructions. Dynamic predictors offer much better coverage, even handling

instructions with variable behaviors, but at the cost of hardware resources and lower accuracy.

Strategies for hybrid prediction differ based on what static information is available and how that

information is used. Given the high accuracy and coverage demonstrated by reasonably-sized

dynamic predictors, there is likely to be little need for complex hybrid schemes. Also, there is a

tremendous design space of hybrid predictors, the exploration of which is outside of the scope of

this work.

However, one very simple hybrid prediction model may be worth considering where static

degree of use information is available. This scheme uses static predictions where analysis identi-

fies a single unique degree of use for a static instruction and employs dynamic prediction for the

remaining instructions. Such a combination would yield improved coverage over a dynamic pre-

dictor (or equivalent coverage with less hardware) since the hybrid predictor would not need to

maintain state for those instructions with available static predictions (the same instructions that

motivated the introduction of the easy-bit optimization in Section 3.4.3). Also, static predictions

can be supplied immediately without a delay for the training of the dynamic predictor. Accuracy

improves due to the reduction in aliasing within the dynamic predictor and the perfect accuracy

offered by static analysis.

3.6 Summary

Degree of use prediction offers a practical method for exploiting the knowledge that degree of use

provides about values. The degree of use of a value cannot be known until all of the uses of the

value have occurred and the register holding the value has been reclaimed. At this point, the

applicability of degree of use knowledge is questionable since the associated value may already

89

have been created and distributed to its consumers. Degree of use prediction affords knowledge

about a value before the value even exists. This knowledge can therefore be used to guide the

allocation of microarchitectural resources, the value communication method, and the handling of

the instructions generating and consuming that value.

Degree of use is a property of the program’s dataflow structure making it amenable to static

dataflow analysis. Although interprocedural analysis is required, the necessary dataflow equa-

tions are straightforward and can be solved with well-understood techniques. Applying this anal-

ysis on the SPEC CPU 2000 benchmarks reveals that over 60% of the static instructions always

generate values with a unique, statically-identifiable degree of use. Applying profiling informa-

tion enables static prediction accuracies approaching 99% on over 85% of dynamic instruction

instances.

Accurate dynamic degree of use prediction is also possible. Degree of use exhibits consider-

able locality with respect to individual static instructions. Most static instructions generate values

with the same degree of use during every execution. When instructions can produce values with

multiple degrees of use, values produced consecutively are still likely to have the same degree of

use. Therefore, history-based prediction methods that predict future behavior based on on-line

observation are very successful. Simply predicting the last-observed degree of use for each static

instruction is good for 95% accuracy with perfect coverage. By employing confidence counters

and control-flow information, more sophisticated dynamic prediction algorithms can deliver

higher accuracies at the cost of lower coverage.

The best dynamic predictor presented in this chapter offers 98.8% average accuracy at 96.6%

coverage with 13.4K-bytes of storage. This level of performance is enabled through the use of

future control-flow information to distinguish instances of the same static instruction with differ-

ent degrees of use. Future control-flow information is available because of pipelining: control-

flow predictions for instructions in a pipeline indicate the future path of execution with respect to

instructions later in the pipeline. Originally put forth in the work on useless instruction

elimination [15], the description and exploitation of future control-flow represents a novel contri-

bution of this work with applications beyond degree of use prediction (e.g., its recent application

to branch prediction [31]).

90

Chapter 4

Useless Instruction Elimination

The data of Section 2.1 indicate the existence of a non-negligible number of instructions with a

degree of use of zero, especially among the integer benchmarks. These correspond to dynamic

instances of value-generating instructions whose results are not required by the program. In terms

of value communication, these instructions represent the degenerate case of non-communication.

In the absence of other side-effects resulting from these instructions, the behavior of the program

is completely unaffected by the execution (or non-execution) of these instructions. The perfor-

mance, however, can be negatively impacted when these instructions cause contention for proces-

sor resources. Even when they do not delay more useful work, such instructions represent wasted

effort, reducing a processor’s efficiency.

Zero-use dynamic values frequently arise from static instructions that can produce non-zero

degrees of use as well. Thus, it is important to differentiate between static and dynamic instruc-

tions when referring to instructions throughout this chapter. The term useless instruction is intro-

duced to refer to a dynamic instruction that has no consumers (i.e., a result with degree of use

zero); conversely, dynamic instructions having consumers are useful instructions. All dynamic

instructions fall into one of these two categories. The taxonomy of static instructions is more

complex. Static instructions incapable of having useful instances are dead instructions; ideally,

these are detected and eliminated by the compiler during dataflow analysis and optimization.

Static instructions that are capable of generating useful instances, even when no such instances

91

occur in a particular execution, are called partially-dead instructions [53]. That subset of par-

tially-dead instructions that generate only useless instances in a given execution are referred to as

dynamically-dead instructions.† Live instructions, which always generate useful instances, com-

prise the remaining static instructions. The taxonomy of static and dynamic instructions

described by these definitions is illustrated in Figure 4.1 The first part of this chapter investigates

the prevalence and properties of useless instructions from these different sources.

This chapter then develops useless instruction elimination, which is a mechanism to avoid the

register allocation, scheduling, and execution of useless instructions identified through degree of

use prediction. Eliminated instructions are kept in a dedicated structure until their status can be

verified by the retirement of the instruction that renders them useless (i.e., the instruction that

overwrites the same architectural register defined by the useless instruction). The retirement of

instructions following the elimination candidate is prevented until verification occurs. Success-

fully-eliminated instructions can lead to reductions in resource utilization covering physical regis-

ter management (allocation and freeing), register file read and write traffic, register file and load

queue occupancy, and data cache read bandwidth. Small performance improvements are also pos-

sible in resource-constrained architectures.

The next section characterizes useless instructions in detail, looking at their origins, preva-

lence, and relationship to compilation. Section 4.2 describes a mechanism for useless instruction

† The terminology used here is different from that used in the original work on this topic [15]. In that
work, “statically-dead instructions” included both dead and dynamically-dead instructions, while “use-
less instruction” and “dynamically-dead instruction” were used interchangeably.

Figure 4.1. Instruction taxonomy

Static instructions

Dynamic instructions

Live DeadPartially-dead Dynamically-

Useful Useless

dead

92

elimination, which is subsequently evaluated in Section 4.3. Related work is presented in

Section 4.4, and Section 4.5 summarizes the chapter.

4.1 Characterizing Useless Instructions

The potential benefit of useless instruction elimination depends on the prevalence of these instruc-

tions during actual execution. Zero-use values exhibit more variability in the frequency of their

occurrence among the different benchmarks and compilation environments versus values with

other degrees of use (as shown in Figure 2.1). In this section, the sources of useless instructions

are identified and investigated in order to understand why they exist and what factors contribute to

their prevalence.

4.1.1 Origin

Figure 4.2 presents four examples of assembly code responsible for useless instructions. Each

code fragment was extracted from an optimized version of the indicated benchmark (the tuned

configuration used for the studies in Chapter 2 and described in Section A.2.2 of the appendix).

The dead or partially-dead instructions that generate useless instances are highlighted with the

destination register in boldface. Subsequent references to the register are also in boldface, and

overwrites are circled. Possible paths of control flow are indicated with arrows. Ellipsis points

indicate the omission of unrelated code.

Figure 4.2(a) shows two dead instructions of the simplest possible kind—there are no control

instructions between the creation of the dead values and their subsequent destruction shortly

thereafter. Very few actual useless instructions result from such constructs because this situation

can easily be identified by dead code elimination. Even peephole optimization can detect this pat-

tern when the uses and definitions belong to the same basic block (as is the case with the second

dead instruction and its overwrite; the first dead instruction belongs to a different basic block

since the second is a branch target).

Useless instructions arise more frequently from code like that in Figure 4.2(b), which shows a

partially-dead instruction. In this case, a value is placed into a register t0 immediately prior to a

conditional branch. On the fall-through path of the branch, the value is overwritten; if the branch

is taken, however, the value is useful. The partially-dead instruction in this example also happens

93

to be dynamically-dead (i.e., the branch was never taken during the execution of the benchmark

with this particular set of inputs). Dynamically-dead instructions, including this one, are often

associated with code for the detection of run-time errors.

Interprocedural control-flow can also be responsible for dead and partially-dead instructions.

The first ldq of Figure 4.2(c) restores the value of the callee-saved register s3 prior to returning

to the calling procedure. However, the value in s3 was dead prior to the procedure call as evi-

denced by its immediate overwrite afterwards. Since Perl_save_ary() is only called from

this single call site, the highlighted instruction is a dead instruction. Note that the corresponding

register save at the beginning of Perl_save_ary() (not shown) is also unnecessary, but not

Perl_save_ary():
 ...
 ldq s3, 32(sp)
 ldq s2, 24(sp)
 lda sp, 48(sp)
 ret zero, (ra), 1

Perl_pp_rv2av():
 ...
 bsr ra, Perl_save_ary
 bis zero, v0, s3
 ...

schedule_block():
 ...
 ldq at, 0(t3)
X: ldq at, 0(t12)
 lda t12, -8128(t12)
 cmpule t12, t3, at
 ...

Figure 4.2. Assembly code examples illustrating sources of useless instructions

EvElmList():
 ...
 bis zero, 0x1, t0
 bne s1, X
 ldbu t0, 19(s0)
X: ldah a0, -8193(gp)
 xor t0, 0x11, t0
 ...

(a) Dead instructions (gcc) (b) Partially-dead instruction (gap)

(c) Dead instruction (perl) (d) Partially-dead instruction (gzip)

send_bits():
 ...
 ldq s0, 8(sp)
 ldq s1, 16(sp)
 ldq s2, 24(sp)
 ldq s3, 32(sp)
 lda sp, 48(sp)
 ret zero, (ra), 1

flush_block():
 ...
 bsr ra, send_bits
 ldq s4, -32(s1)
 ldah gp, 8192(ra)
 addl zero, s0, a1
 ...
 bsr ra, send_bits
 ldl v0, -44(s4)
 ldl s0, -84(s4)
 ...

94

useless (since it modifies memory). Figure 4.2(d) shows a more typical case where the restored

value is live at some call sites and dead at others (only one of each is shown).

The code examples of Figure 4.2 demonstrate the extent to which the compiler affects the

incidence of useless instructions. Ideally, compiler optimization should leave no dead instruc-

tions. The situation with respect to partially-dead instructions is more complicated. Just because

the compiler creates or allows partially-dead instructions to exist does not imply that there are not

good reasons for doing so. Section 4.1.3 discusses some of the reasons why partially-dead

instructions are likely to continue to exist regardless of the sophistication of the compiler.

4.1.2 Prevalence

The characterization data in Chapter 2 demonstrated that different compilers generate code with

different amounts of useless instructions. The influence a compiler could have was also evident in

examples presented in Figure 4.2. However, the compiler does not generate useless instructions

per se; rather, the compiler creates the dead and partially-dead instructions that lead to useless

instructions during execution. Examining the prevalence of the useless instructions themselves

tells of the potential and properties of useless instruction elimination, which operates dynami-

cally. The incidence of the static instructions that lead to these useless instances, however, illumi-

nates the role of the compiler in their occurrence. Therefore, in this section, both the static and

dynamic aspects of useless instructions will be considered.

Figure 4.3 shows the incidence of useless instructions for three different compilations of each

benchmark on each of two different compilers. The floating-point benchmarks are omitted here

and throughout this chapter due to the almost negligible quantity of useless instructions that they

exhibit. The bars show the contributions of useless instructions by dead, partially-dead, and

dynamically-dead instructions as percentages of all dynamic instructions. The U bars represent

the unoptimized benchmarks (-O0), the O bars the lightly-optimized benchmarks (-O1), and the

T bars the tuned (i.e., highly-optimized) benchmarks. Details on the compilers and the full com-

mand line options for each configuration can be found in Section A.2 of the appendix.

The increased incidence of useless instructions among the optimized benchmarks is striking.

An average of 2% of the dynamic instructions in the unoptimized benchmarks are useless; in the

optimized benchmarks, the figure is nearly 9% (vendor compiler suite). Each benchmark exe-

95

cutes a different number of instructions under different compilation options. As a result, a higher

fraction of useless instructions does not necessarily imply that the absolute number of them has

increased. However, the number of useless instruction instances is also increased by an average

factor of 3.1–3.9 in the optimized and tuned configurations for both compilers.

Only eon exhibits a reduction in the absolute number of useless instructions when compiled

with optimization (again, under both compilers). This benchmark is also the only one that exhib-

its a significant fraction of dead instructions in the unoptimized binaries. Examining the ten static

instructions responsible for the most useless instances (32% altogether) in the unoptimized ver-

sion (from the vendor compiler) explains these phenomena. Of these ten instructions, eight are

0

5

10

15

%
 d

yn
am

ic
 v

al
ue

s

Dead
Partially-dead
Dynamically-dead

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T

0

5

10

15

%
 d

yn
am

ic
 v

al
ue

s

Dead
Partially-dead
Dynamically-dead

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T

Figure 4.3. Prevalence of useless instructions

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

96

dead (a ninth is dynamically-dead). All ten of them occur soon before (i.e., with no intervening

control instructions) a procedure return. Nine of them generate the return value of a simple class

member function, and in all but one of these, the return value is the implicit return value of a class

constructor (i.e., &this). None of the objects involved are base classes, so all calls to these sim-

ple member functions are easily identified and replaced with inlined versions of the functions.

Inlining exposes the “deadness” of the return values to intraprocedural dead code elimination. As

a result, the absolute number of dead instructions drops some 73% when the lowest level of com-

piler optimization is applied. Since dead instructions cause such a large portion of the total use-

less instructions, the absolute number of useless instructions is reduced. However, the

accompanying reduction in overall instruction count ensures that eon, like every other bench-

mark, generates a higher fraction of useless instructions when compiled using optimization.

In every benchmark, partially-dead instructions are almost entirely responsible for the

increase in useless instructions with optimization. The compiler does not, in general, influence

the broad execution characteristics of the program. For example, the nature of accesses to a data

structure will be invariant with respect to compilation, irrespective of such optimizations as loop

unrolling or function inlining. Therefore, the increased incidence of useless instructions from

partially-dead sources after optimization should result from an increase in the number of these

static instructions and not from a sudden increase in the frequencies of their execution.

Figure 4.4, which provides a breakdown of the number of static instructions, confirms that this is

the case. However, comparing Figure 4.4 with Figure 4.3 shows that the relative increase (with

optimization) in the amount of dead and partially-dead static instructions is less than the relative

increase in the number of useless instructions from these sources. Thus, the new partially-dead

instructions generate comparatively more useless instances than the ones that existed prior to opti-

mization. This effect is related to why partially-dead instructions arise from compiler optimiza-

tion and is explored in Section 4.1.3.

The difference in incidence of useless instructions between the two compilers is small relative

to the change seen with the enabling of optimization. The types of analyses that the compilers

perform are similar as are the end results in terms of the kinds of dead and partially-dead instruc-

tions left after compilation. The main difference between the two different compiler suites is that

the benchmarks compiled with the vendor compilers universally exhibit more useless instructions.

97

At the same time, these benchmarks perform better than those compiled with the third-party com-

pilers at similar levels of optimization. For the remainder of the chapter, only the tuned bench-

marks compiled with the vendor compilers will be used.

Transitively-useless instructions generate results used only by useless instructions or other

transitively-useless instructions. The incidence of transitively-useless instructions is about 33%

that of useless instructions [15]. Their relatively small occurrence is due to the short average

length of register dependence chains [50] and the likelihood that a useless instruction has no data-

flow predecessors (e.g., due to a higher fraction of load-immediates among useless instructions

0

5

10

15

20

%
 s

ta
ti

c
in

st
ru

ct
io

ns

Dead
Partially-dead
Dynamically-dead

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T

0

5

10

15

20

%
 s

ta
ti

c
in

st
ru

ct
io

ns

Dead
Partially-dead
Dynamically-dead

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T U O T

Figure 4.4. Prevalence of static instructions contributing useless instances

(a) Vendor Compiler Suite

(b) Third-party Compiler Suite

98

than among all instructions). Following dependence chains through memory allows yet more

instructions to be established as transitively-useless [71], but register degree of use prediction can-

not help to identify any of them. Also, it is significantly more difficult to verify dynamically that

an instruction is transitively useless: all values derived from any dependent instruction must be

overwritten prior to their use by any instructions that are not themselves dependent. Because of

the increased complexity of detecting and verifying transitively-useless instructions and their lim-

ited number, they are not considered further.

4.1.3 Role of the compiler

To delve further into the role of compiler optimization, note that compilation occurs in two stages:

translation of the source program followed by optimization. An unoptimized binary corresponds

roughly to a simple translation of the source code into machine language. A dead or partially-

dead instruction then can be said to be pre-existing with respect to the original program if it exists

in the unoptimized binary. For example, a variable set before an if statement and used only if the

associated condition were true would result in a partially-dead instruction in the unoptimized

binary. Alternatively, a dead or partially-dead instruction created by the optimization process

itself is generated.

Dead instructions of either class should never remain in a program after optimization. Those

that survive optimization do so by evading detection—usually by virtue of generating values that

cross procedure boundaries. Some of these are pre-existing; others are generated by compiler

optimizations, many of which produce dead instructions as a normal side effect. The vast major-

ity of these are eliminated during a later optimization phase, but some can slip through. In mcf,

for example, two particular instructions in the unoptimized code have their only consumers

removed during optimization, but cannot be eliminated because their results are thought (incor-

rectly) to be used in a procedure called several instructions later. These two instructions are

responsible for 90% of the post-optimization useless instructions attributed to dead instructions.

Just as was the case for dead instructions, pre-existing partially-dead instructions may evade

detection. The interprocedural partially-dead instruction of Figure 4.2(d) is likely such a case.

Assuming they can be detected, however, a specific compiler optimization—partial dead code

99

elimination—exists to remove them [13]. This algorithm attempts to move partially-dead code

down into the specific paths where it is live.

Unfortunately, the elimination of some partially-dead instructions carries a cost that makes

this operation undesirable. Figure 4.5 illustrates two such cases as portions of simplified control-

flow graphs. The partially-dead instructions (def) generate values that are used (use) or overwrit-

ten first (kill) depending on the flow of control. In the example of Figure 4.5(a), the partially-dead

instruction generates a value possibly used within a subsequent loop body. Moving the definition

to just before its consumer can result in a significant execution time penalty if the loop is executed

many times. Elimination of the partially-dead instruction of Figure 4.5(b) increases code size due

to the degree of duplication required to ensure it ends up on each path where it is live. Procedure

cloning [23], which generates specialized copies of entire procedures, may be required to elimi-

nate all of the partially-dead instructions in similar cases.

While difficulties with detection and costs of removal explain why pre-existing partially dead

instructions may not be significantly reduced by optimization (assuming that the compiler is even

capable of these optimizations), it does not account for the new partially-dead instructions intro-

Figure 4.5. Pitfalls of eliminating partially-dead instructions statically

def r1

use r1

kill r1

def r1

kill r1

return

use r1

use r1

use r1

use r1

use r1

kill r1

use r1

(a) Increased execution time (b) Increased code size

100

duced by optimization. One can surmise that the partially-dead instructions that are introduced

with optimizations involve intraprocedural control flow. Other than inlining, compilers will not

generally move instructions across procedure boundaries, especially at the lowest level of optimi-

zation represented in Figure 4.3. Therefore, the predominant cause of new partially-dead instruc-

tions must be the movement of instructions above one or more branches that determine their

liveness, and the new partially-dead instructions will resemble the one in Figure 4.2(b) rather than

Figure 4.2(d).

Compiler optimizations that can move instructions across basic block boundaries include

loop-invariant code motion and code scheduling. Loop-invariant code motion moves instructions

that compute a loop-invariant value outside of the body of the loop. Essentially, it is the reverse of

the partial dead code elimination transform. During code scheduling, the compilers move compu-

tations across branches to facilitate better performance on the expected target

architecture [20, 22]. For example, initiating a long-latency operation earlier than when it is guar-

anteed to be used may reduce execution time along the path(s) on which it is used. Compilers for

statically-scheduled processors must move instructions to account for resource constraints and

execution latency. For example, a compare that computes the condition for a branch may need to

be moved to an earlier basic block if enough instructions cannot be found to cover its latency in

the block containing the branch.

The creation of partially-dead instructions by genuinely beneficial compiler optimizations

suggests that optimization will always generate new partially-dead instructions. In addition, the

inability to detect pre-existing dead and partially-dead instructions and the high cost of eliminat-

ing some partially-dead instructions ensures that these will continue to remain in optimized code

as well. Therefore, it is expected that useless instructions will continue to exist in significant

quantities in future optimized programs, especially where the control-flow (both intra- and inter-

procedurally) is complex. To the extent that these instructions consume scarce resources, they

will negatively impact performance.

4.1.4 Useless instruction resources

The resource reduction potential of useless instruction elimination depends not only on the inci-

dence of these instructions but on the types of resources that they normally require. Every useless

101

instruction eliminated saves a physical register—for the unneeded result value—and reduces reg-

ister file write bandwidth. However, the elimination of a useless load can also reduce cache band-

width and load queue occupancy.

Table 4.1 presents data on the nature of the useless instructions with respect to their resource

requirements. For each class of instructions listed across the top of the table, the top number

reflects the percentage of useless instructions in the class, while the bottom number (shaded) rep-

resents the percentage of overall value-generating instructions in the class. Integer register

moves, load-immediates, and load-addresses are separated from other integer operations because

of the large differences in their representation in useless instructions versus other instructions.

However, all four of these classes (load-address, load-immediate, move, and integer ALU opera-

tions) of instructions require an integer ALU for execution. Some instructions may belong to dif-

ferent classes depending on the inputs. For example, a bis (logical OR) instruction can be a

move (zero register, other register), a load-immediate (zero register, immediate or two

zeros), or an ALU operation (all other cases). Control instructions, which cannot be eliminated

due to their side effect of setting the program counter, are not represented among useless instruc-

tions.

The occurrence of useless loads is of great interest because of the extra resources required by

these instructions. In addition to the resources consumed by any ALU instruction (e.g., a destina-

tion register), loads also require load queue entries and cache bandwidth. Loads are well-repre-

sented among useless instructions, accounting for an average of 30% of them, which is nearly

equal to their average incidence among all value-generating instructions. In spite of this overall

parity, individual benchmarks exhibit significantly different ratios of loads to other operations

among useless instructions than among all value-generating instructions. In some cases (most

notably twolf), the useless instructions are “enriched” in loads, while in others (e.g., mcf), rela-

tively few loads are useless. Benchmarks in the former category are likely to see larger relative

reductions in cache bandwidth under useless instruction elimination.

Nearly all useless operations that are not loads are integer ALU operations (excepting a small

fraction of useless floating-point operations, especially in eon and vpr). However, the kinds of

integer ALU operations among useless instructions is significantly different than in value-generat-

ing instructions overall. A useless instruction is more than twice as likely to be a load-immediate,

102

a load-address, or a register move. More typical integer computations—adds and shifts, for exam-

ple—occur less often among useless instructions. Recalling the origins of partially-dead instruc-

tions discussed in Section 4.1.3 helps to explain this phenomenon. Load-immediate and

(frequently) load-address instructions create loop-invariant values. Thus, these instructions are

Table 4.1: Types of Useless Instructions

Benchmark
Load

(memory)
Load

immed.
Load

address
Integer

reg. move
Integer

ALU op.
Floating-
point op.

Control

bzip2
34.82 13.77 25.86 12.68 12.86 0.00 0.00

30.02 0.66 5.79 3.97 59.21 0.00 0.35

crafty
34.43 8.93 29.93 2.73 23.98 0.00 0.00

28.31 3.09 20.25 2.16 44.59 0.00 1.59

eon
42.31 5.42 30.05 7.24 4.63 10.36 0.00

36.90 3.45 18.06 4.73 13.56 20.03 3.19

gap
19.32 31.36 31.28 10.20 7.66 0.17 0.00

31.89 5.90 26.25 6.40 26.98 0.21 2.37

gcc
31.45 23.64 12.29 13.57 19.02 0.02 0.00

32.90 4.53 13.67 5.84 41.59 0.02 1.43

gzip
22.92 10.62 39.12 2.70 24.64 0.00 0.00

24.20 5.82 10.57 0.47 58.15 0.00 0.79

mcf
16.81 2.46 33.66 37.84 9.21 0.02 0.00

35.19 2.96 13.76 16.38 27.80 0.00 3.91

parser
27.65 9.71 10.10 33.24 18.99 0.31 0.00

30.21 2.94 8.90 8.58 46.76 0.03 2.57

perl
28.96 21.52 17.38 17.24 13.93 0.96 0.00

38.80 5.34 19.18 6.66 27.22 0.32 2.47

twolf
42.48 9.40 16.70 9.43 21.25 0.75 0.00

30.94 2.38 8.92 3.53 45.96 7.28 0.99

vortex
26.35 36.33 13.09 12.88 11.20 0.13 0.00

36.20 13.54 14.05 8.54 24.16 0.65 2.77

vpr
34.50 15.63 7.52 11.57 26.36 4.42 0.00

37.19 1.92 7.20 3.93 39.00 9.58 1.18

Average
30.17 15.73 22.25 14.28 16.14 1.43 0.00

32.73 4.38 13.88 5.93 37.92 3.18 1.97

103

often candidates for hoisting outside of a loop body to reduce the loop’s overhead. Sometimes

this code motion will result in a new source of useless instructions. Register moves are most fre-

quently needed to put a value into a specific architectural register before a procedure call or

return. Values in the return-value and argument registers are often unused by the subsequent exe-

cution context, rendering the register move instructions useless.

In addition to the type of a useless instruction, the number of register inputs it requires is also

important because it determines the demand placed on register file read bandwidth. Table 4.2 cat-

egorizes useless instructions by the number of register inputs. The actual number of non-zero

register inputs is used; thus, an addq instruction with inputs consisting of an immediate and the

zero register is counted as a zero-input instruction. The format of the table is identical to that of

Table 4.1 except that the average number of inputs is presented in addition to the percentages for

each category. Useless instructions exhibit an average of 23% fewer register inputs than value-

generating instructions in general. Two-input instructions are significantly under-represented

among the useless instructions while zero-input instructions tend to occur more often. These

characteristics can be attributed to the higher incidence of operations such as load-immediates and

load-addresses, which have zero and one input, respectively.

4.2 Useless Instruction Elimination

Exploiting the existence of useless instructions entails recovering the resources consumed by han-

dling them. Obviously, these resources include the functional units used for execution, but they

also include storage space for useless results (i.e., physical registers), cache bandwidth (in the

case of useless loads), and issue bandwidth. Useless instruction elimination is a mechanism to fil-

ter useless instructions from the instruction stream early enough to avoid many of the overheads

associated with them.

A high-level view of the integration of useless instruction elimination with a typical out-of-

order pipeline is diagrammed in Figure 4.6. A degree of use predictor identifies candidates for

elimination. After renaming their source operands, the candidate instructions are kept in a new

structure (the predicted-useless table or PUT) until the speculation is verified. Renaming the

source operands at elimination time significantly simplifies mis-speculation recovery; the only

cost is the lost opportunity for reducing utilization of the rename structures. No destination phys-

104

ical register is allocated (although one may be reserved; see Section 4.2.7). After the instruction’s

degree of use is confirmed to be zero, the PUT entry may be reclaimed and the instruction

dropped without any effect on the correctness of the program’s execution. After describing this

mechanism in more detail, specific issues surrounding retirement back-pressure, misprediction

recovery, the handling of loads and instructions with side effects, and deadlock avoidance will be

Table 4.2: Number of Inputs of Useless Instructions

Benchmark 0-input 1-input 2-input 3-input Average

bzip2
13.77 78.35 7.88 0.00 0.94

1.01 57.51 39.74 1.73 1.42

crafty
8.93 76.59 13.00 1.47 1.07

4.68 67.46 25.73 2.13 1.25

eon
6.16 84.32 9.52 0.00 1.03

5.94 70.03 23.25 0.78 1.19

gap
31.37 63.30 5.28 0.05 0.74

6.55 76.71 16.53 0.22 1.10

gcc
23.65 66.18 10.11 0.05 0.87

5.95 74.34 19.13 0.59 1.14

gzip
10.62 83.74 5.64 0.01 0.95

6.62 57.27 35.69 0.41 1.30

mcf
2.46 96.79 0.74 0.01 0.98

6.86 72.94 19.95 0.25 1.14

parser
9.73 80.31 9.95 0.00 1.00

5.52 63.61 25.67 5.20 1.31

perl
21.52 72.70 5.65 0.12 0.84

6.97 77.68 14.50 0.84 1.09

twolf
9.40 78.35 7.88 0.00 1.03

1.01 57.51 39.74 1.73 1.31

vortex
36.34 57.55 1.60 4.51 0.74

16.39 72.10 10.77 0.74 0.96

vpr
15.63 67.52 16.83 0.02 1.01

3.10 64.15 30.91 1.84 1.31

Average
15.80 75.49 8.19 0.52 0.93

6.08 68.31 24.04 1.57 1.21

105

addressed. First, however, some additional restrictions on the types of instructions eligible for

elimination must be discussed.

4.2.1 Elimination candidates

To be a candidate for elimination, an instruction must be one that (1) generates a degree of use

zero register value and (2) has no other side effects. Degree of use is only meaningful for those

instructions that generate register results; therefore, a useless instruction must be one that com-

putes a value. This requirement excludes nops and prefetches from the set of potentially useless

instructions. Although most stores and control instructions do not generate a result value, the

remainder are subject to degree of use prediction just like any other value-generating instruction.

However, because of their side effects (modifying memory or the program counter, respectively),

such instructions may be said to generate a useful result even when the destination register is not

used. For example, while store instructions that generate a zero-use result may be truly useless if

the stored data is never again referenced (or if the store is silent [55]), the detection of such

instances (particularly in a multiprocessor machine) is more complicated, and outside the scope of

register degree of use prediction.

Figure 4.6. Processor pipeline with useless instruction elimination

BTB/
BPred Rename Queue Sched. Exec.

Write-
back RetireI-cache

Degree
of Use

Degree
Training

Table

predictions

mispredict

instruction
renamed

predicted

Verification
Table

instruction stream

control flow

addresses

observed behavior

Predicted
Useless

Table

elimination
candidates

aborted
elimination
attempts

confirm elimination

Predictor

instruction stream

Register
Read

106

4.2.2 Normal operation of useless instruction elimination

Useless instruction elimination begins with the identification of an eligible candidate instruction

by the degree of use predictor (via a degree of use prediction of zero). The candidate instruction’s

source registers are renamed, and then it enters the PUT, which stores all eliminated instructions

awaiting verification. Conceptually, each PUT entry consists of a valid bit, a decoded and

renamed instruction, and a pointer to the reorder buffer (ROB) entry that would otherwise have

contained the instruction. Eliminated instructions receive no physical register and they do not

proceed to either the instruction window or reorder buffer; instead, a pointer to their PUT entry is

placed in the reorder buffer as a placeholder. A new field added to each VT entry also contains a

pointer into the PUT (recall that the VT structure is the part of the degree of use predictor used to

verify predictions; see Section 3.4.7).†

The destination architectural registers of all instructions entering the rename stage are checked

by the VT as part of its normal operation. When an overwrite of a predicted-useless value occurs

and that value has a valid PUT pointer, the instruction being renamed is called the verifying

instruction. The PUT pointer is copied into a field in the verifying instruction’s reorder buffer

entry. Before a placeholder instruction can retire, it must match its PUT pointer to that of a

younger instruction in the reorder buffer (the verifying instruction). This matching operation is

gated by the ready-to-retire status of each intervening instruction. When the verifying instruction

and all older instructions are ready to retire, the placeholder retires and the corresponding PUT

entry is freed. At that point, the instruction has been successfully eliminated.

Note that useless instruction elimination cannot rely on the degree of use predictor to verify a

zero-use prediction. The VT must reside in the rename stage of the pipeline for misprediction

detection (described in Section 4.2.3). Therefore, any verification of a zero-use prediction by the

VT would be tentative because of the potential for wrong-path execution. Even if the VT (or a

duplicate of it) were present in the retirement stage, the verifying instruction would have to retire

to validate the zero-use prediction. This requirement conflicts with the need to avoid the retire-

ment of the predicted-useless instruction until the prediction has been verified. The reorder buffer

† There is no specific requirement to use the PUT entry number—any means of uniquely identifying an in-
flight instruction will serve. The ROB entry number, which must be assigned to elimination candidates,
is one alternative. The PUT entry number will be slightly more efficient since there will be fewer PUT
entries than ROB entries.

107

matching operation solves the problem of prediction verification without the need to retire the

predicted-useless instruction.

Figure 4.7 illustrates this entire process from prediction to verification. In this example, the

value generated by the addl instruction at PCj receives a degree of use prediction of zero. After

renaming the instruction’s source registers, it is placed into a free PUT entry (❶). A pointer to

this PUT entry is placed into both the VT and the ROB (❷). The destination architectural register

of the eliminated instruction determines the VT entry, while the ROB entry is the normal one for

the candidate instruction. When the verifying instruction at PCx is renamed, it is annotated with

the PUT field from the VT entry (❸) prior to installing its own data in the VT (❹). Note that mul-

tiple instructions may receive this annotation due to wrong-path execution. When the verifying

instruction and all intervening instructions are ready to retire, the speculation is verified and the

PUT entry is freed (❺).

4.2.3 Misprediction detection and recovery

Misprediction recovery is straightforward. If the VT observes a use of a predicted-useless value,

the incorrectly-eliminated instruction is fetched from the PUT (via the pointer in the VT), allo-

cated a physical register, and inserted into the instruction window and the reorder buffer. Because

a predicted-useless instruction is not allowed to retire before verification, the availability of its

inputs is guaranteed. The physical registers containing the inputs must be freed by the retirement

of an instruction later in program order than the predicted-useless instruction. While the physical

Figure 4.7. Operation of useless instruction elimination

PCj:

pred PUT

0 4r6:

r5: 3 —

PCi:

V instruction ROB

1 addl r1, r5, r6 74:

PCx:

instruction PUT

— 4
—

bis r0,r3,r6 4

7:

PCk:

stq r2, 0(r8)

Predicted Useless T ableVerification T able Reorder Buff er

1 —

8:

21:

❶

❷

❸

❹

...

=

&
rdy

release

ldq r5, 8(sp)

addl r1, r5, r6

stq r2, 0(r8)

bis r0, r3, r6

❺

108

registers containing the inputs are guaranteed to be valid, it is quite likely that the architectural

registers corresponding to the input values point to different physical registers (according to the

rename map). The ephemeral nature of the rename map explains why the source registers of an

elimination candidate are renamed normally.

An instruction naming a predicted-useless value as an input will not get a valid physical regis-

ter until one has been assigned by the recovery process. Therefore, register renaming must be

repeated when a misprediction is detected. The resultant pipeline bubble (potentially multiple

cycles) conveniently provides a place to insert the mispredicted-useless instruction back into the

pipeline. Ensuring that consumers of a mispredicted-useless value receive valid physical registers

after renaming is why misprediction detection must occur at rename.

The number of instructions between a value’s production and its first use can be used to esti-

mate the misprediction detection latency. The median distance between the a value’s definition

and its first use is only four to six instructions (refer to Figure 2.4). Thus, most incorrect predic-

tions can be detected very quickly. Note, however, that the misprediction penalty is independent

of how long it takes to detect. Whether the misprediction is detected in ten cycles or a hundred,

the cost is determined only by the time required to insert the mispredicted-useless instruction back

into the pipeline. No instruction can have needed the value earlier than when the misprediction

was detected.

Besides true mispredictions, exceptions can also be cause for misprediction recovery to be ini-

tiated. Synchronous exceptions such as a trap instruction require the retirement of all older

instructions before the trap can be taken. These introduce a circular dependency: the predicted-

useless instructions cannot be verified until the trap retires (and a subsequent verifying instruction

is reached), and the trap cannot occur until the predicted-useless instructions retire. Therefore,

upon encountering such an exception condition, the PUT must be completely emptied into the

instruction window (i.e., a misprediction is signalled for each instruction in the PUT). The han-

dling of asynchronous exceptions (e.g., external interrupts) can be handled in the same fashion.

Alternatively, new additional eliminations can be halted and the exception handled after all pend-

ing eliminations have been verified or aborted (see Section 4.2.4). Still another alternative is to

flush the entire pipeline, including the PUT, which would leave the processor in a consistent state.

109

4.2.4 Retirement backup

The verification process involves stalling the retirement of predicted-useless instructions until

they can be verified. Therefore, the distance between consecutive writes to an architectural regis-

ter (with no intervening reads) indicates the amount of speculative state that must be maintained

in order to successfully eliminate a useless instruction. According to Figure 2.4, the median inter-

definition instruction count is 21 instructions for zero-use values. Given a reorder buffer with

more than 100 entries, one can expect that most useless instructions will not cause a problem.

While the median def-overwrite distance is low, the tail of the distribution extends out to very

long distances. Thus, there will be some small number of useless instructions that cannot be veri-

fied within the limits of any reasonable reorder buffer size.

Given the possibility of such unverifiable instructions, some additional mechanism must be in

place to ensure forward progress. The simplest such mechanism simply detects the occurrence of

this situation and initiates a recovery procedure as if a use of the unverifiable instruction had been

encountered. Thus, the instruction will execute and retire normally, allowing the reorder buffer to

drain and normal operation to proceed. These missed opportunities are called aborted predic-

tions. Predictions may also need to be aborted to avoid deadlock conditions, which is discussed in

Section 4.2.7.

Actually waiting until the reorder buffer is full before allowing the instruction to proceed car-

ries an unreasonable performance penalty due to the resulting front end stall. A strategy that has

been found to work well empirically initiates recovery (i.e., aborts the prediction) if the ROB

capacity exceeds a threshold when the predicted-useless instruction becomes the oldest unretired

instruction. The selection of this threshold involves a trade-off between the number of instruc-

tions eliminated and the performance cost of waiting for verification and is addressed in

Section 4.3.1.

4.2.5 Loads

When an eliminated load is reinserted into the pipeline during recovery, it is delayed with respect

to other loads and stores, which has implications for the memory consistency model. Out-of-

order processors already solve this problem using mechanisms such as unified or separate load

and store queues (LSQ) to maintain program order among memory operations to the same

110

address [39, 89]. To ensure that an eliminated load executes properly during misprediction recov-

ery, the load must be placed into the load queue. Furthermore, the ordering and operation of a

load queue frequently depends on the in-order allocation of entries to loads. Therefore, elimi-

nated loads must, like all other loads, reserve entries to guard against the possibility of needing

the services of the LSQ on a misprediction, reducing the benefit of eliminating useless loads.

One potential solution to this problem has been offered recently by Cain and Lipasti [19].

They eliminate the load queue altogether and re-execute selected loads at retirement to ensure that

memory coherence and consistency are maintained. Such an underlying model is well-matched to

the requirements of useless instruction elimination. Any mispredicted-useless load inserted back

into the processor pipeline can be flagged to re-execute at retirement to ensure correctness without

requiring the load to enter a load queue or check the store queue. Under certain circumstances,

such as when the load is the oldest instruction (e.g., due to an aborted prediction) and no external

memory references have occurred, the check may be safely skipped. Even when the underlying

implementation uses a load queue, re-execution can be applied specifically in the case of mispre-

dicted-useless loads. Such a scheme extends the resource reduction benefit of useless instruction

elimination to the load queue, but may reduce performance if load replays are frequent among the

reinserted loads (a load replay being the action taken to recover from a load that got the incorrect

data—often a squash and refetch of all instructions younger than the load). While this technique

may be beneficial, the simple solution of requiring loads to reserve an LSQ entry is assumed in

this chapter.

4.2.6 Instructions with side effects

Another subtle problem with the elimination of loads arises when loads with side effects are con-

sidered. Device drivers, for example, may depend on loads to certain memory-mapped hardware

addresses. In this case, the action of the load on the hardware state (rather than the use of the

loaded value) may be the purpose of the load. Loads causing page faults or loads to intentionally

out-of-bounds addresses raise exceptions, which are architecturally-visible side effects of their

execution. Instructions other than loads may also raise exceptions. Arithmetic instructions use

exceptions to signal divide-by-zero, overflow, and underflow conditions. Instructions with poten-

tial side effects cannot be unconditionally eliminated without breaking architectural compatibility.

111

There are two broad solutions to the issue of eliminating instructions with side effects. First,

the potential for the occurrence of an exception or other side effect can be ruled out before an

instruction is eliminated. The usefulness of this method depends on the check for side effects

requiring less effort than the complete execution; otherwise, the subsequent elimination would not

offer any benefit. The other possibility is to define instructions that cannot raise exceptions or

execution modes in which the exceptions are ignored. This solution allows for the elimination of

instructions without the burden of verifying that an exception (or other side effect) will not occur,

but requires support in the architecture.

Checking for side effects before useless instruction elimination is probably best-suited to load

instructions. Note that any load that could potentially be satisfied from the cache cannot have a

side effect. By accessesing the TLB for each eliminated load, it is possible to ensure that the load

address belongs to a cacheable page. A TLB miss would result in a page fault and the scheduling

of the load for execution. This solution unfortunately requires address computation to be per-

formed on eliminated loads. However, it is guaranteed to be safe, it does not require any architec-

tural support, and it still eliminates the need to perform the cache access.

In the case of arithmetic operations, checking that an instruction is exception-free can be of

comparable complexity to the execution itself. Overflow detection for an integer addition, for

example, requires the computation of the most significant carry bits, which is almost as difficult as

the complete addition. Checking for division by zero is simpler, but still requires that one of the

useless instruction’s operands be read.

Avoiding the expense of verifying that an elimination candidate is free from potential side

effects is possible with some architectural support. Different flavors of instructions can be pro-

vided that communicate the importance (or irrelevance) of an instruction’s exception behavior to

the hardware (i.e., the elimination mechanism). Instructions for which the exception behavior is

unimportant may be safely eliminated without any further checking. The Alpha ISA, for exam-

ple, already provides arithmetic instructions that differ in their ability to signal overflow and other

exception conditions.

Where the instruction encodings cannot be changed or backward compatibility must be main-

tained, it is possible to define a new execution mode in which side effects are not guaranteed to

occur for eliminated instructions. Programs making use of this mode communicate to the hard-

112

ware that their operation does not depend on the exception behavior (or other side effects), allow-

ing for the elimination of arbitrary instructions. Since the SPEC benchmarks do not depend on

any exception behaviors or other instruction side effects, operation in such a mode is assumed in

this chapter to demonstrate the overall potential of the technique.

4.2.7 Deadlock avoidance

The conservation of resources, execution and otherwise, and the accompanying reduction in con-

tention are the benefits of useless instruction elimination. When a predicted-useless instruction

needs to re-enter the normal execution pipeline (e.g., due to a misprediction or aborted predic-

tion), however, it will require the resources not initially allocated it. If freeing one or more of

these resources depends upon the execution of the lately-inserted instruction, deadlock can result.

Deadlock can also occur when a predicted-useless instruction awaiting verification is blocking

retirement while the front end is stalled due to resource exhaustion (e.g., lack of physical registers,

load-store queue entries, reservation stations, etc.). These types of deadlocks are easily detected;

by aborting the elimination of the instruction blocking retirement, the situation frequently reverts

to the other type of deadlock wherein the aborted prediction requires additional resource alloca-

tion. Therefore, the existence of an automatic abort mechanism is assumed, which detects and

aborts an unverified elimination blocking retirement (i.e., at the head of the reorder buffer) when

any resource is exhausted.

The only resources that can lead to deadlock are those that are held by a younger instruction

through its retirement—execution resources, for example, cannot cause a problem. In the imple-

mentation of useless instruction elimination described in this chapter, only physical registers meet

this condition (recall that load-store queue entries are assigned to eliminated loads; see

Section 4.2.5). Furthermore, the deadlock situation requires an unverified useless instruction at

the head of the reorder buffer (i.e., as the oldest in-flight instruction); otherwise, retirement will

not be blocked and physical registers will eventually be freed.

Since the deadlock case will be rare, one solution simply detects the situation and forces a

squash as if the most recent branch had been mispredicted (additional recent branches or even the

entire pipeline can be squashed if no physical registers are freed by the first attempt). If a dead-

113

lock occurs, the particular sequence of instructions will always result in the same situation, so an

additional mechanism would be required to prevent recurrences.

An alternative solution to the deadlock problem simply provides enough physical registers to

guarantee that each predicted-useless instruction can always get a physical register. It is not

required that a physical register actually be allocated (implying modification of the freelist, etc.),

just that at least one physical register per in-flight elimination candidate is kept free. While allo-

cation and freelist management overhead and register file write bandwidth are reduced, no savings

on physical register file occupancy is observed because the useless values still, in effect, occupy

an entry. Because of its simplicity, however, this method is assumed in the evaluation of

Section 4.3.

A slight modification (not evaluated) reduces the number of “reserved” physical registers to

one for the oldest predicted-useless instruction. Any time an abort or misprediction of any other

predicted-useless instruction would require this last reserved register, the oldest pending elimina-

tion is aborted instead (consuming the final physical register). As that instruction completes, it

will likely lead to the retirement of multiple instructions, freeing many additional physical regis-

ters; at a minimum, however, one physical register would be freed, allowing the process to con-

tinue. This optimization is subsumed by the aforementioned automatic abort mechanism if the

reserved physical register is excluded when determining resource exhaustion.

4.3 Results

This section presents an evaluation of useless instruction elimination via full timing simulation.

Parameters of the simulated processor appear in Table 4.3. Additional details on the simulator

may be found in Section A.4 of the appendix. Note the relatively large reorder buffer and physi-

cal register file sizes, which support deep speculation (execution proceeding far ahead of retire-

ment). While most of the benefit of useless instruction elimination can be obtained with more

reasonably-sized structures, these sizes allow for the study of a larger range of behaviors.

Useless instruction elimination can only improve performance when there is resource conten-

tion to begin with. For this reason, three different sets of execution resources were evaluated with

the other microarchitectural parameters fixed. Table 4.4 summarizes the functional unit

resources and issue port bindings for each case. Ready instructions are issued oldest-first to the

114

Table 4.3: Simulated Processor Parameters

Pipeline 4-wide superscalar; 3-stage fetch (next address + I-cache access + fetch queue),
1-stage each decode, rename, dispatch (write into window), issue, register file
read, register file write, and commit. Variable execution latency, delay between
issue and execute, and delay between register file write and commit. 10-cycle
minimum fetch redirection on branch mis-speculation.

Front end Up to four non-nop instructions per cycle; taken branch (including uncondi-
tional) or cache line boundary terminates fetch. 16-entry instruction queue
between L1 I-cache and decode.

Issue 64-entry scheduling window, oldest ready first. 256-entry reorder buffer, 256
physical registers. Issue port bindings as described in Table 4.4.

Execute 4-cycle latency integer multiply, 2-cycle store latency (to detection of ordering
violations and ability to supply subsequent loads), 3-cycle load to use latency on
L1 hit, 2-cycle branch, 4-cycle FP multiply, 16-cycle FP divide, 33-cycle FP
sqrt; all other integer operations 1 cycle, FP operations 2 cycles. Execution
resources as in Table 4.4.

Memory 64KB, 2-way set-associative L1 inst. and data caches with 64-byte blocks.
2MB, 4-way set-associative unified L2 cache with 128-byte blocks, 8-cycle
latency. 100-cycle memory. 64-entry load queue and 64-entry store queue.

Degreeof Use
Predictor

8K-entry, 8-way set-associative, 13.4KB predictor described on page 80.

Table 4.4: Functional Unit and Issue Port Configurations

Issue port Rich Medium Scarce

1 Simple integer ALU op.
(not ld/st/branch/mult)

Simple integer ALU op. Any integer ALU op.

2 Any integer ALU op. Any integer ALU op. Any FP operation

3 Simple integer ALU op,
load, or store

Any FP operation Load or store

4 Load or store Load Integer branch

5 Integer branch Integer branch or store

6 FP except mult/div/sqrt

7 Any FP operation

115

first (lowest-numbered) issue port with an appropriate ALU. The maximum issue bandwidth

equals the number of issue ports (i.e., 7, 5, and 4 instructions per cycle for the rich, medium, and

scarce configurations, respectively). The rich configuration was obtained by considering combi-

nations of operations likely to be found in a group of four instructions without regard to the issue

width. The scarce configuration matches that of the Transmeta Crusoe [51], which is quite

resource-constrained for a four-issue machine, while the medium configuration represents an

intermediate design point.

4.3.1 Parameter sensitivity analysis

The most important parameter of the useless instruction elimination mechanism is the ROB fill

threshold for aborting predictions. Figure 4.8(a) shows how this parameter affects the percentage

of useless instructions eliminated for each of the three resource configurations. The PUT size is

fixed at 64 entries for this experiment. Note that a threshold of zero still results in 50–65% of all

possible eliminations. At a threshold of zero, verification must be possible immediately when the

predicted-useless instruction reaches the head of the ROB or the elimination will be aborted.

Increasing the ROB threshold results in more eliminated instructions up to a threshold of about

192 (out of a ROB size of 256), where approximately 80% of useless instructions are eliminated.

While the portion of useless instructions eliminated rises monotonically with the threshold,

the performance reacts quite differently, as shown in Figure 4.8(b). The threshold offering the

highest performance for each configuration is indicated with an arrow. First, note the relative

positions of the curves, which indicate how the benefit (or cost) of useless instruction elimination

depends on underlying contention. The scarce configuration benefits over the range of thresh-

olds; in contrast, the rich model exhibits a performance loss everywhere. Where contention is not

a performance limiter, there is no gain to offset losses due to misidentified useless instructions or

the backup of retirement; therefore, the minimum threshold (leading to the fewest elimination

attempts) offers the minimum performance loss. This loss was primarily a result of two poorly-

performing benchmarks—eight of the other ten showed a very small speedup at a threshold of

zero. These problem benchmarks will be discussed further in Section 4.3.4.

For the other two configurations, modest performance improvements are achievable in a man-

ner that depends on the threshold. At very low thresholds, the primary cost of useless instruction

116

elimination is the delay of useful instructions mistakenly identified as useless. To first order, this

cost is independent of the threshold. As the threshold increases, the probability of resource

exhaustion increases along with the attendant front end stalls. At some threshold value, the

increasing costs of the retirement backup and front end stalls exceed the benefit of the additional

eliminations. Resource contention shifts the optimal threshold to higher values as the marginal

benefit of each elimination is higher. The figure shows that the overall peak performance occurs

at a threshold of 48 and 192 for the medium and scarce configurations, respectively. Note that

the best threshold for a given benchmark may deviate significantly from the overall optimum,

making the elimination threshold an ideal candidate for dynamic tuning [25].

Figure 4.9 is similar to Figure 4.8, but shows the effect of the PUT size at a fixed threshold of

128. The behavior here is much more straightforward. The size of the PUT determines the maxi-

mum number of pending eliminations in flight. Therefore, limiting the size of the PUT will

reduce the fraction of useless instructions eliminated. Unlike the similar effect when the ROB

threshold is reduced, however, elimination opportunities are lost indiscriminately—the missed

opportunity may be an easy to verify useless instruction or a difficult one. Therefore, in those

configurations where useless instruction elimination is beneficial at all, increasing the size of the

PUT always yields more benefit. The reverse is true for baseline configurations where useless

instruction elimination is detrimental.

0 32 64 96 128 160 192 224 256

(a) Threshold

0

10

20

30

40

50

60

70

80

90

100

U
se

le
ss

 in
st

ru
ct

io
ns

 e
lim

in
at

ed
 (

%
)

Rich
Medium
Scarce

0 32 64 96 128 160 192 224 256

(b) Threshold

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

Sp
ee

du
p

Figure 4.8. ROB fill threshold sensitivity

117

The choice of PUT size should therefore be dictated by hardware cost considerations. The

maximum number of instructions in flight (i.e., the ROB size) and the incidence of useless

instructions bound the maximum possible PUT occupancy; increasing the PUT size beyond this

point has no effect. For the pipeline studied here, this occurs at a capacity of around 32 entries.

The remainder of the experiments in this chapter assume a PUT size of 64 entries (which gives

nearly identical results to a 32-entry PUT) and a ROB threshold of 192.

4.3.2 Resource utilization

Table 4.5 shows the percentage of useless instructions eliminated and the resulting percentage

reductions in resource utilization. The medium execution resource configuration was used in this

experiment. Similar results are seen with the other execution configurations although the savings

increase slightly as the available execution resources are increased (also visible in Figure 4.8(a)).

About 80% of the useless instructions accounting for over 5% of all dynamic instructions are

eliminated successfully. Resource utilization is decreased by approximately the same magnitude.

Four of the twelve benchmarks realize reductions of over 10% in either register writes or cache

accesses.

Differences in the relative reductions of executions, register reads and writes, and cache

accesses depend on the specific instruction mix of the benchmark. Benchmarks in which useless

0 8 16 24 32

(a) PUT Entries

0

10

20

30

40

50

60

70

80

90

100

U
se

le
ss

 in
st

ru
ct

io
ns

 e
lim

in
at

ed
 (

%
)

Rich
Medium
Scarce

0 8 16 24 32

(b) PUT Entries

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

Sp
ee

du
p

Figure 4.9. PUT size sensitivity

118

instructions have proportionally more loads than the overall instruction mix (see Table 4.1)

exhibit an amplified reduction in the number of cache accesses relative to the number of execu-

tions eliminated (e.g., crafty). The mix of zero, one, and two input instructions (see Table 4.2)

affects the relative decrease in register reads. Because useless instructions have fewer register

inputs than the average for all instructions, the reduction in register reads is always less than the

reduction in executions. Register writes, on the other hand, are always decreased relatively more

than executions since not all instructions generate values (e.g., branches and stores), but all elimi-

nated instructions do.

Figure 4.10 shows the disposition of the retired useless instructions. While nearly 90% of

useless instructions are identified by the predictor (i.e., the predictor’s coverage on degree of use

zero values), only 81% of them are successfully eliminated. Three events prevent a predicted-use-

less instruction from being eliminated: (1) the ROB fill threshold was exceeded before the predic-

tion could be verified (aborted predictions), (2) a prediction was aborted due to resource

exhaustion (physical registers or LSQ entries), or (3) an apparent use of the value produced by the

instruction was observed on a wrong path. Of these causes, the first two are the most important,

Table 4.5: Utilization Impact of Useless Instruction Elimination

Benchmark
Uselessinst’s
eliminated

Executed
instructions

Register file
reads

Register file
writes

Data cache
reads

bzip2 87.35 –1.38 –0.73 –1.64 –2.30

crafty 84.71 –7.60 –6.56 –8.79 –11.28

eon 68.29 –5.57 –4.32 –7.38 –6.05

gap 91.47 –8.76 –5.46 –11.09 –6.40

gcc 78.90 –6.60 –4.53 –9.09 –7.26

gzip 89.80 –7.16 –5.40 –8.88 –10.04

mcf 84.08 –6.49 –4.89 –8.22 –3.99

parser 74.87 –3.60 –2.54 –5.02 –4.13

perl 83.27 –6.05 –4.23 –7.86 –5.97

twolf 75.17 –1.62 –1.14 –2.02 –2.92

vortex 84.76 –9.25 –5.79 –12.86 –8.52

vpr 65.16 –3.30 –2.54 –4.05 –5.44

Average 80.65 –5.61 –4.01 –7.24 –6.19

119

accounting for 90% of the non-eliminated correct predictions. Increasing the ROB threshold

reduces the number of aborted predictions, but increases the incidence of resource exhaustion.

The sum of the two effects results in a net decrease of aborted predictions, however, as reflected in

the increased number of successful eliminations. The non-prediction rate and the rate of elimina-

tions aborted due to false uses are approximately constant with threshold.

4.3.3 Resource occupancy

The need to stall retirement pending the verification of eliminations increases the occupancy

structures required to track in-flight instructions, which include the ROB, the load and store

queues, and the register file. Figure 4.11 shows how the average occupancy of these structures

depends on the threshold. The data are normalized to that seen without useless instruction elimi-

nation.

Employing useless instruction elimination increases the occupancy of the ROB and the load

and store queues by a minimum of 40%. Even when unverified eliminations are aborted immedi-

ately upon reaching the head of the ROB (i.e., becoming the oldest instruction), retirement is

stalled until the aborted instruction can be scheduled and executed. Thus, occupancy is increased

even for a the ROB threshold of zero. The relative increases depend primarily on the pipeline

depth: deeper pipelines increase the abort delay, allowing more instructions to claim resources

during the retirement stall. In this pipeline configuration, occupancy increases of 80% were

50

60

70

80

90

100

%
 U

se
le

ss
 in

st
ru

ct
io

ns
Not predicted

RF/LSQ full

ROB full

False use

Eliminated
bz

ip
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

A
ve

ra
g

e

Figure 4.10. Retired useless instructions

120

observed at higher values of the ROB abort threshold. The smaller increases in register file occu-

pancy result from the fact that a fixed number of physical registers (62) are always allocated to

contain the architected register state even when there are no in-flight instructions.

4.3.4 Performance

Figure 4.12 delves further into the performance effects of useless instruction elimination on a per-

benchmark basis. For each benchmark, a stacked bar represents the speedup for the Rich,

Medium, and Scarce resource configurations over a machine without useless instruction elimina-

tion. The dark gray bar indicates the actual performance with the real degree of use predictor

described in Table 4.3. The lighter gray bar corresponds to the performance of useless instruction

elimination with a perfect degree of use predictor, but where each prediction must still be verified

normally (i.e., within the constraints of the ROB threshold and with the associated retirement

backup). Finally, the black bar indicates the performance with a perfect predictor where elimina-

tion candidates retire immediately. Where the dark gray bar appears completely absent (e.g., in

the R configuration of gzip), the performance of the real predictor is actually higher than the

performance with a perfect predictor, but the difference is so small that the bar is not discernible.

The analogous case where the light gray bar appears missing (e.g., in the R configuration of gap)

indicates that the performance of a perfect predictor barely edges out the performance of the real

0 32 64 96 128 160 192 224

Threshold

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
or

m
al

iz
ed

 M
ea

n
O

cc
up

an
cy

ROB
Register file
Load queue
Store queue

Figure 4.11. Resource occupancy

121

predictor. In all cases, the lowest performing configuration is indicated by the bar extending to the

bottom of the figure.

Broken down in this manner, the performance data clearly illustrate the interplay between the

two possible performance penalties of eliminating useless instructions. In nearly every case, the

performance with a real predictor is very close to that of the performance with a perfect predictor,

indicating that the cost of degree of use mispredictions is generally negligible, especially since the

perfect predictor also detects additional useless instructions. The main cost of useless instruction

elimination is clearly the need to verify the predictions and the associated consequences. The ver-

ification cost is almost entirely responsible for the performance loss experienced by the resource-

rich model. The high cost of verification also explains why a perfect predictor can perform worse

than a real predictor—the costs of verifying the additional useless instructions identified exceed

the miniscule savings from the extra eliminations.

The two benchmarks contributing most to the slowdown of the rich configuration are eon and

vortex. Examining the behavior of these two benchmarks further reveals that predictions are

aborted more frequently due to a full load or store queue than due to the ROB threshold. This

behavior is confirmed in Figure 4.10 for the medium configuration. As discussed in

Section 4.2.7, resource exhaustion requires an abort to avoid deadlock. The entire front end is

stalled until the aborted instruction can execute and retire and free up the necessary resource.

Lower thresholds help these benchmarks immensely because it reduces the probability that a

0.85

0.90

0.95

1.00

1.05

1.10

1.15
Sp

ee
du

p

Immediate retire
Perfect predictor
Real predictor

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr H.Mean
R M S R M S R M S R M S R M S R M S R M S R M S R M S R M S R M S R M S R M S

Figure 4.12. Performance

122

resource will run out prior to the threshold being exceeded. The mechanism of useless instruction

elimination could be improved by setting abort thresholds analogous to the ROB fill threshold on

the register file and load and store queue occupancies.

4.4 Related Work

There is an extensive body of work on the compile-time detection and elimination of dead and

partially-dead instructions. Partial dead-code elimination [53] is a compiler algorithm that trans-

forms code to reduce or eliminate instances of instructions that produce dead values. In essence,

the algorithm detects code that generates values used on only some subsequent control flow paths

and attempts to move that code down into those paths. Improvements to the algorithm have been

offered to widen its applicability while ensuring that the number of instructions on a given path is

never increased [9]. As noted in Section 4.1.3, however, the applicability of static schemes is lim-

ited as many partially-dead instructions arise from beneficial optimizations that are, in effect, the

reverse of partial dead-code elimination.

Martin et al. proposed a cooperative software/hardware scheme to track registers containing

dead values [60]. Their scheme involves annotating the executable with information from the

compiler about the last use of register values (i.e., noting that specific registers are dead). This

information is subsequently used by the hardware to enable early physical register reclamation

and elimination of needless saves and restores across procedure calls and context switches. Use-

less instruction elimination cannot eliminate the saves of dead values (since stores have side

effects), but it is able to eliminate useless instructions within procedures, which are not handled

by this scheme.

Yoaz et al. [91] noted the occurrence of useless instructions, focusing on the subclass of them

called silent stores [55]. They mentioned the possibility of squashing or de-prioritizing dead

instructions, but did not present any specific schemes to identify or handle them. Rotenberg also

observed the occurrence of sequences of instructions with no externally visible effects [71]. A

much broader category than useless instructions, his ineffectual instructions include dead instruc-

tions, silent instructions (stores and otherwise), correctly predicted branches, and instructions

transitively connected only to other ineffectual instructions. He proposed skipping these instruc-

tions to allow a speculative thread to get ahead of a slower verification thread.

123

4.5 Summary

Useless instructions generate result values that are not subsequently used during a program’s exe-

cution. These instructions can account for as many as 15% of the dynamic instructions in an opti-

mized program. The execution of useless instructions wastes processor resources, increasing

utilization with no effect on the final computation. Resources used include physical registers,

load queue entries, execution units, issue bandwidth, register file read and write bandwidth, and

data cache bandwidth. A direct consequence of this increased resource utilization is higher-than-

necessary power consumption. Under resource contention, performance suffers as well.

The compiler is directly or indirectly involved in the existence of all useless instructions. A

small portion of useless instructions are the result of dead instructions undetected by the compiler;

these instances could be eliminated given more powerful compiler analysis. Most useless instruc-

tions, however, arise from partially-dead static instructions introduced by the compiler as a side

effect of optimizations that involve code motion. As these optimizations generally improve per-

formance, useless instructions are likely to remain in optimized programs regardless of advances

in compiler technology.

Useless instruction elimination is a scheme to avoid the execution of these instructions, reduc-

ing the utilization of several key resources. The mechanism of useless instruction elimination is

straightforward. Candidates for elimination are identified by degree of use prediction prior to

consuming most resources. These instructions are shunted into a special structure to await confir-

mation of their status by the execution of instructions that overwrite their results. When a candi-

date instruction’s value is overwritten (prior to being used) and that overwrite is known to be on

the correct execution path, the predicted-useless instruction may be discarded. Recovery from a

misprediction simply requires executing the incorrectly-eliminated instruction.

Up to about 80% of the useless instructions in the benchmarks—accounting for 5.6% of all

dynamic instructions—can be eliminated using this technique. Attendant reductions in register

reads, register writes, and L1 cache accesses of 4%, 7%, and 6%, respectively, were also

observed. One in four of the benchmarks realized a reduction of more than 10% in either register

file writes or cache accesses.

The performance impact of useless instruction elimination is heavily dependent on the conten-

tion for execution resources. An average speedup of 3.9% was obtained (with four benchmarks

124

exceeding 7% speedup) on an implementation suffering from resource contention. On an execu-

tion-resource-rich implementation, however, an average performance loss of about 0.4% was

observed.

Performance losses are primarily a result of front end stalls resulting from resource exhaus-

tion. Useless instruction elimination is a deeply-speculative operation: execution can proceed far

ahead of retirement while an unverified elimination is pending. The large number of in-flight

instructions this implies require physical registers and load and store queue entries. If one of

these resources is consumed before the oldest useless instruction is verified, the entire processor

stalls while the elimination is aborted and retired, allowing resources to be reclaimed.

There are several ways in which the mechanism of useless instruction could be improved.

One optimization already alluded to in Section 4.3.4 is the use of thresholds on other consumable

resources to avoid the aforementioned resource stalls. Addition of state to the degree of use pre-

dictor could identify difficult-to-verify instructions so elimination would not be attempted. The

use of a checkpointing mechanism [3] would allow for deep speculation without a retirement

backup. Useless instructions could be discarded immediately, and the PUT and retirement verifi-

cation logic would be completely eliminated. Such an implementation would make eliminations

very cheap at the cost of much a more expensive recovery operation on mispredictions, favoring

predictor accuracy over coverage. Each of these improvements attempts to address the costs asso-

ciated with useless instruction elimination. One possible change to improve the benefit would be

to avoid the assignment of load queue entries and physical registers to elimination candidates as

suggested in Section 4.2.5 and Section 4.2.7. The pursuit of these ideas is left to future work.

125

Chapter 5

Use-Based Register Caching

This chapter presents the application of degree of use prediction to register cache management. A

register cache is a small structure that maintains a selected subset of the values generated by exe-

cution. By virtue of its selective nature, it can be made small, allowing lower access latency than

a full-sized register file. Together with a standard bypass network, the register cache comprises an

alternative inter-instruction communication mechanism that is more efficient than a monolithic

register file.

Degree of use prediction provides the information to determine which values should occupy

the limited storage available in the cache. By comparing the degree of use of each value with the

number of uses that have actually occurred, the occurrence of future uses can be predicted. This

chapter describes insertion and replacement policies that use this knowledge to keep the most per-

tinent values in the register cache—namely, those with outstanding consumers.

5.1 Introduction

The register file, by definition, is the predominant value communication mechanism in a sequen-

tial, register-based architecture. However, it is becoming increasingly difficult to support a large,

low-latency, monolithic physical register files in high-performance superscalar implementations.

These processors are likely to have deep pipelines [37, 41, 79] and be multiple issue, resulting in a

large number of instructions in flight, most of which require a register for their result. Simulta-

126

neously, enabled by technology improvements and a deeper pipeline, clock frequency is increas-

ing, decreasing the amount of state that can be addressed in a fixed number of cycles [1]. The

result is increased register file read and write latencies. The read latency is particularly problem-

atic since it appears in both the branch misprediction and load-hit speculation loops [11]. Further-

more, to allow unrestricted issue of dependent operations, the total number of stages in the bypass

network must increase with the register file latency. Bypass networks are dominated by long

wires and wide multiplexors, which do not scale well to high frequencies. A limited bypass

network [2] adds to the performance impact of a multi-cycle register file access.

The key to solving the register file problem is to recognize that the register file is performing

two other functions besides supplying instruction input values. First, the register file participates

indirectly in maintaining inter-instruction dependencies by supplying a namespace of physical

register tags. Architectural registers are renamed to physical registers early in the pipeline, requir-

ing the physical registers to be allocated at that time. As a side effect, many entries in the register

file are empty, being allocated to instructions that have not yet produced a result. Second, in order

to support recovery from mis-speculation, the physical register file maintains instruction result

values long after the final consumers have obtained that result. These dead values, together with

the empty registers, vastly inflate the capacity of the register file beyond what is required for its

most important role—value communication.

Figure 5.1 illustrates the combined impact of empty registers and dead values (the simulated

machine is described in Section 5.4.1; basically it is an aggressive, deeply-pipelined, eight-wide

superscalar machine). From bottom to top, the bar for each benchmark indicates the number of

registers associated with live values, no value (i.e., empty registers), and dead values; the total

height of the bar equals the average total number of allocated registers.† Clearly, the register file

could be made much smaller—and faster—if its contents were limited to the live values.

However, one can do even better by recognizing that most processors already employ an alter-

nate communication mechanism—the bypass network. Values that communicate to a small num-

ber of consumers shortly after being generated can be handled completely within the bypass

network, avoiding the need to store even some live values. To illustrate the potential savings,

† Register file write latency is ignored here when classifying registers. A register is considered live as soon
as the instruction generating its contents executes.

127

Figure 5.2 indicates the fraction of all register file reads satisfied by each stage of the bypass net-

work. The simulated processor is identical to that of Figure 5.1, which has a three-cycle register

file (read and write) that is fully-bypassed (requiring six total bypass stages). The components of

each bar indicate the fraction of input values obtained from the bypass network from the first

stage (i.e., bypasses from instructions executing in the immediately preceding cycle) at the bottom

to sixth stage on the top. The remainder of the values come from the register file.

0

40

80

120

160

200

240

280

320

R
eg

is
te

rs

Dead

Empty

Live

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language
Integer Floating-point Type

Figure 5.1. Contents of physical register file

0

20

40

60

80

100

%
 in

pu
t

va
lu

es

Stage 6
Stage 5
Stage 4
Stage 3
Stage 2
Stage 1

eo
n

bz
ip

2

cr
af

ty

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

am
m

p

ar
t

eq
ua

ke

m
es

a

ap
pl

u

ap
si

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

In
te

g
er F
P

C
/C

++

F
o

rt
ra

n

A
ll

C++ C Fortran-77 Fortran-90 Language
Integer Floating-point Type

Figure 5.2. Role of the bypass network

128

In all but three benchmarks, over half of input values are bypassed. The first bypass stage is

the most important, accounting for the majority of bypassed values in all cases. Later stages

bypass successively fewer values in general. Floating-point benchmarks bypass fewer values than

integer ones because floating-point values tend to be longer-lived (see Figure 2.4), supplying

many consumers beyond the reach of the bypass network. The low average degree of use com-

bined with the large number of reads occurring before the register file is able to supply values sug-

gest that many of the live values counted in Figure 5.1 are effectively dead within the register file.

These observations motivate the replacement of the register file by a small register cache [92].

The register cache assumes the responsibility for handling register read requests by the execution

core. While the register cache still needs a bypass network, the network can be much smaller than

needed for a multi-cycle register file because of the register cache’s lower latency. Also, the regis-

ter cache can work cooperatively with the bypass network, accounting for bypassed values in

managing the cache contents. The reduced latency to obtain most values shortens the execution

pipeline providing higher performance.

Degree of use prediction is fundamental to the operation of this register cache, improving its

performance over prior register cache proposals [11, 24, 92]. A value’s degree of use is exactly

the number of reads that are expected for that value. This information is used to manage both the

insertion and replacement of values within the cache. The insertion policy identifies values that

have bypassed to all of their expected consumers, and avoids placing them into the cache. The

remaining-use count is kept for each cached register value and updated as uses are satisfied by the

cache. When a replacement is necessary, the cached value with the fewest remaining uses (ideally

zero) is selected as a victim, minimizing the potential for misses resulting from the replacement.

An overview of the operation of these policies appears in Figure 5.3. Each box represents a

register value; the corresponding physical register tag is indicated by p and the number of remain-

ing uses follows in parentheses. The value itself is immaterial and is not shown. On the left hand

side are values generated by the execution core, which each bypass to a consumer prior to arriving

at the register cache. The topmost value corresponding to p5 has no remaining uses after bypass-

ing, and it is therefore not written into the cache. The other value (in p8) is placed into the cache

along with the number of expected remaining uses (one). This insertion requires the replacement

of another entry and the one with the minimum number of uses (zero in this case, corresponding

129

to p2) is selected as the victim. The updating of a stored use count by a read of p3 is also illus-

trated. The shaded entries indicate changed entries in the register cache after the insertion and

read.

The next section details the operation of a generic register cache without reference to its con-

tent management policies. Section 5.3 details register cache management via novel use-based

insertion and replacement policies. The new register cache is evaluated and compared to previous

register caching proposals in Section 5.4. Related work on register file optimizations is presented

in Section 5.5, and Section 5.6 concludes.

5.2 Register Cache Operation

Figure 5.4 depicts pipeline diagrams illustrating the relationships among dependent instructions

from issue through writeback. Each row represents the steps in the processing of a single

dynamic instruction. Time is indicated by the cycle number above each column of the diagram.

Therefore, a column does not correspond to a single hardware pipeline stage, but to all of the

operations occurring in different stages at the same time. Inter-instruction value communication

is indicated using arrows: operands are communicated through either the bypass network (dotted

arrows) or storage (solid arrows), whether the register file or a register cache.

Figure 5.4(a) shows the operation of a processor with a three-cycle (read and write) register

file and no register cache. I2-I6 are all data-dependent on I1 (only). I2-I5 receive their input via a

four-stage bypass network. This bypass network is insufficient to completely hide the register file

latency; thus, instructions dependent on I1 may not issue in cycles 6 or 7 (indicated by an ×). I6,

which issues in cycle 8, can finally obtain I1’s result value from the register file. In this example,

Figure 5.3. Use-based register cache management

p12 (3)p6 (1)

p1 (2)p3 (5)

p2 (0)p10 (2)

p9 (1)

u2 s2:p8

bypass

bypass

p8 (2)

p5 (1) p5 (0)

p8 (1)

read p3

register
cache

(before)

register
cache
(after)

p17 (1)
p12 (3)p6 (1)

p1 (2)p3 (4)

p8 (1)p10 (2)

p9 (1)p17 (1)

130

a full bypass network would require six stages. In an eight-way superscalar machine, this means

each ALU input (as many as 16 in an eight-way machine) must choose among 49 input sources

(6 × 8 = 48 possible bypassed values + 1 from the register file). Even the four-stage network

shown requires a 1-of-33 selection.

The operation of a register cache in a similar pipeline appears in Figure 5.4(b). In this dia-

gram, I2-I4 are data-dependent on I1. I4 appears twice (I4a and I4b) to illustrate the cases in

which a needed input is present in or absent from the cache. I5 is data-dependent on I4b. Adding

a register cache allows for a smaller bypass network (covering only the cache itself) and reduces

the read latency for most instructions (I1-I4a). In effect, the register cache takes the place of the

register file, providing the access bandwidth required by the execution core. Each instruction

implicitly assumes that its inputs reside in the register cache, which is accessed in the cycle after

an instruction is issued (e.g., cycle 3 for I2). Instructions issuing with and after I4 cannot obtain

I1’s result value through the bypass network and must obtain it from the register cache. I4a shows

the normal case—a register cache hit—in which the value is present in the cache. If the value

from I1 were not present in the cache, a registercachemisswould result. I4b illustrates this case,

with the detection of the miss indicated by a star.

In the event of a register cache miss, the input value must be obtained from a storage structure

other than the cache. This structure is called the backing file (BK file or BK in the pipeline dia-

gram), and it is basically the original full-sized register file in a recovery role. To ensure that no

values are lost, all values must be written to the backing file. Therefore, it must be able to support

the full write bandwidth of executing instructions. The writing of the backing file commences in

parallel with the (optional) writing of the value to the register cache. Because the register cache

and bypass network filter the vast majority of reads, however, in those rare instances in which a

value must be obtained from the backing file, a single read port (which can be shared with one of

the write ports) suffices.

The pipeline diagram assumes backing file read and write latencies of only two cycles, com-

pared with the three-cycle latency for the register file of Figure 5.4(a). By virtue of the signifi-

cantly lower number of ports compared to a register file—as little as one-third of the original

number—a backing file will be smaller and faster than a register file even though they must have

131

the same capacity. Unlike a register file, the latency of a backing file is not critical, being exposed

only during a register cache miss.

Referring again to Figure 5.4(b), note that by the time a miss is detected, subsequent depen-

dent operations (e.g., I5) may have already issued, speculatively assuming their parent would find

its own inputs in the register cache. When this assumption fails, these instructions must either

stall until their parent completes or replay (i.e., reissue at a later time). This situation is exactly

analogous to the effect of a data cache miss under load-hit speculation [72, 90]. Stalling the

dependent instructions is difficult because the issue pipelines must buffer them while allowing

other, independent instructions to pass them. Replay-based solutions are also complicated

Figure 5.4. Flow of values between instructions in the pipeline

execute

I2

I3

read
regfile

write
regfile

write
regfile

read
regfile

issue execute
read

regfile
write

regfile
write

regfile
read

regfile

issue execute
read

regfile
write

regfile
write

regfile
read

regfile

issue execute
read

regfile
write

regfile
write

regfile
read

regfile

issue execute
read

regfile
write

regfile
write

regfile
read

regfile

issue
read

regfile
read

regfile

issueI1

I4

I5

I6

execute

I2

I3

write BK,
RCache

write
BK file

read
RCache

issue execute
write BK,
RCache

write
BK file

read
RCache

issue execute
write BK,
RCache

write
BK file

read
RCache

issue execute
write BK,
RCache

write
BK file

read
RCache

issue execute
read

BK file
write BK,
RCache

write
BK file

read
RCache

issue execute
write

RCachesquash

issueI1

I4a

I4b

I5

read
BK file

reissue

✰

Cycle: 1 2 3 4 5 6 7 8 9 10 11

read
RCache

(b) Register cache and two-cycle backing file

(a) Three-cycle register file only

write
regfile

write
regfile

write
regfile

write
regfile

read
regfile

read
regfile

read
regfile

read
regfile

read
regfile

read
regfile

miss!
RF arb.

write RC,

Cycle: 1 2 3 4 5 6 7 8 9 10 11

132

although several different processors have already implemented them to support load-hit specula-

tion (e.g., the Alpha 21264 [48] and the Intel Pentium 4 [40]).

A register cache miss results in the replay of all instructions—dependent or not—issuing in

the cycle after the missing instruction issues (equivalent to the model implemented by the Alpha

21264). Instructions independent of the missing instruction may then reissue, while the depen-

dent instructions are delayed. In the example of the figure, when the miss is detected at the begin-

ning of cycle 6, all of the instructions issued in the prior cycle (e.g., I5) are squashed. The miss

signal also blocks the issue of any instructions dependent on the miss (or any of the squashed

instructions) occurring at the end of cycle 6. Independent instructions that were squashed may

reissue during cycle 7. Instructions dependent on I4b become eligible for reissue as the backing

file read finishes (cycle 8), and they obtain their input value from the bypass network at the begin-

ning of cycle 10.

The delay experienced by an instruction that misses in the register cache can vary if there is

contention for the lone backing file read port. The handling of a register cache miss includes a

cycle to arbitrate for this shared resource. If multiple register cache misses occur in the same

cycle, the arbiter will delay the resolution of the misses such that only one backing file read occurs

per cycle. For long backing file latencies and small bypass networks, a register cache miss can

require a value that has not yet finished writing to the backing file, requiring an additional bypass

network on the backing file read port to bypass incomplete writes.†

The issue port used for the cache-missing instruction is also blocked until the miss is resolved

in order to prevent contention at the functional unit between the resolving miss and subsequently-

issued instructions. Otherwise, complicated mechanisms would be required to handle potential

reordering of instructions between issue and completion. Blocking the issue port also has the side

effect of guaranteeing that the register cache write port will be free by the time the missed value is

† The conditions under which a backing file bypass is needed can be illustrated by considering adding addi-
tional backing file write stages to I1 in Figure 5.4(b) until the write no longer completes before the back-
ing file read by instruction I4b. Changing the number of overall bypass stages affects the earliest
instruction that can experience a register cache miss. For example, adding a third bypass stage would
mean that I4b could not miss, delaying the first possible backing file read for I1’s result to cycle 8. The
number of backing file bypass stages that are needed equals Lbf,write – Nbypass – 2, where Lbf,write is the
write latency of the backing file and Nbypass is the number of bypass stages. Where this quantity is less
than or equal to zero, no bypassing of the backing file is required.

133

retrieved from the backing file. In parallel with the resumed execution of the instruction experi-

encing the miss (e.g., during cycle 9 for instruction I4b in the figure), the value is placed into the

register cache using this write port to avoid subsequent misses on that value. This operation is

referred to as a register cache fill.

5.3 Use-Based Register Cache Management

The high cost of register cache misses means that minimizing their occurrence is crucial to realiz-

ing the performance benefit of a register cache. For a given cache capacity and organization, the

miss rate will be a function of the insertion and replacement policies. In defining such policies,

the main consideration will be ensuring that the limited cache space contains the proper values—

namely, those values yet to be read by unexecuted consumer instructions.

Use-based register caching differs from previous register caching proposals by using the infor-

mation provided by degree of use prediction to identify these values. Degree of use prediction

provides the number of times that a result value will be needed; by monitoring the uses of that

value as they occur, the number of remainingusescan be determined. The use-based insertion

and replacement policies exploit the availability of remaining use information to keep the proper

values in the cache.

The role of the insertion policy is to filter values that have no uses left after bypassing.

Figure 5.2 illustrated the substantial role of the bypass network in value communication. By

accounting for these bypasses, values that have reached all of their consumers need never pollute

the cache, avoiding the possibility of evicting a still-live value stored there. Each time a value is

bypassed, its degree of use is decremented. When the value must be written to the register cache,

the write is blocked if the adjusted degree of use is zero; otherwise, the value is written into the

cache along with the number of uses remaining, which enables use-based replacement.

When empty cache entries are not available to handle an insertion, the replacement policy is

invoked to select a victim.† The replacement of a valid cache entry does not necessarily imply the

eviction of a live value (which would lead to a subsequent register cache miss). Once a live value

† Empty cache entries arise because cache entries must be invalidated when their associated physical regis-
ter tag is freed. Otherwise, the cached value could be supplied incorrectly to a subsequent instruction
assigned the reclaimed tag.

134

is cached, the cache supplies the subsequent consumers. At some point, all of the consumers of

the cached value are satisfied and the value is dead. As indicated by Figure 5.1, many values in a

register file are in precisely this state. The goal of the replacement policy is to select such a value

for replacement. The remaining use count stored with each cached value facilitates this choice.

Similar to the adjustments of the remaining use count occurring within the bypass network, the

use counts stored within the cache are decremented as their associated values are read. Use-based

replacement simply selects a victim with the fewest remaining uses.

The rest of this section details use-based register cache management. The insertion and

replacement policies are described in more detail in Section 5.3.1 and Section 5.3.2, respectively.

Tracking the number of remaining uses for each value is central to the scheme and is the topic of

Section 5.3.3. Section 5.3.4 covers the implications of incorrect use information.

5.3.1 Register cache insertion policy

The register cache insertion policy seeks to avoid caching values that will never subsequently be

read. A prerequisite (assuming all instructions are useful) is the existence of an alternative value

communication mechanism—in this case, the bypass network. The bypass network is ideally-

suited for the direct communication of a value to consumers issuing within a short window after

the value becomes available. Since the availability of a new value leads to the scheduling of oper-

ations waiting on that value, many of a value’s consumers issue within this window and receive

the value from the bypass network. Values with low degrees of use may reach all of their consum-

ers in this manner. Because the insertion policy prevents such values from entering the cache, it is

best described as use-based filtering.

Use-based filtering is similar to a heuristic proposed by Cruz et al. [24] labeled non-bypass,

which writes a value into the register file cache only if it was not bypassed to any instructions

prior to the write. In effect, this scheme uses bypassing as a rough proxy for the number of

remaining uses. Since most values have a single consumer, the intent is to keep these values from

polluting the register cache when their consumers are satisfied from the bypass network. How-

ever, values with many consumers that bypass to only some of their consumers prior to the write

are also filtered from the cache, resulting in additional misses. The non-bypass heuristic also

leads to the writing of all useless values into the limited register cache since, by definition, they

135

will not bypass to any consumers. Figure 4.3 shows that a substantial number of needless writes

may result. Use-based filtering avoids the caching of useless values detected by the degree of use

predictor.

Filtering values from the register cache based on how they are bypassed requires the ability to

detect bypass communication before the cache write takes place. Communication within the

bypass network occurs via matching of the input physical register tag of an issuing instruction

with the destination physical register tag of a recently-generated value. This dependence detec-

tion operation occurs in parallel with the access of the register cache for the same value. There-

fore, the occurrence of a bypass is known at the end of the register cache read stage of the

instruction receiving the value. In order to influence the writing of that value, then, the write must

occur after that point.

Consider the instruction I1 in the pipeline diagram of Figure 5.4(b). It writes its result into the

register cache during cycle 4. The first consumers of its result, however, issue at the end of cycle

2. Therefore, during cycle 3, bypasses can be detected and used to update the remaining-use

count for the value, initially set by the degree of use predictor. If these bypasses comprise all of

the predicted uses of I1’s result, the cache write during cycle 4 may be avoided. Otherwise, the

value and its remaining uses must be written into the cache. Note that potential consumers of a

value that issue two cycles after the value’s producer (e.g., I3) also obtain their inputs from the

bypass network but cannot affect the writing of the register cache. These instructions will be in

the cache read stage while their parents are in the cache write stage, requiring the bypass network

to forward the communicated values as before. However, the input register tags of these instruc-

tions are not available before they are in the cache read stage, and, by this time, the parent instruc-

tion will have already commenced writing the register cache.

These missing bypasses lead to inflated remaining-use counts being stored in the cache.† The

consequences of these inflated use counts are addressed in Section 5.3.4. Note that by delaying

the writing of the register cache, it is possible to account for more total bypasses. In

Figure 5.4(b), if the register cache write for I1 were delayed one cycle to cycle 5, bypasses to I2

and I3 could gate the writing of I1’s result. However, an additional bypass stage would also be

† In the initial work on use-based caching [17], it was assumed that missing bypasses updated the cache
later, but such a design is probably not realizable.

136

required since I4 would otherwise not be able to obtain I1’s result from either the cache or the

original bypass network. Overall, the final stage of bypassing always accounts for the missing

bypasses. Fortunately, the data of Figure 5.2 indicate that first stage bypasses are the most impor-

tant.†

5.3.2 Register cache replacement policy

Previous register cache proposals have assumed LRU [24, 92] or FIFO [11] replacement, neither

of which are particularly suited to the behavior of register values. Due to the dominance of values

with few uses, any given use of a value is probably its last.‡ The LRU scheme, however, makes

recently-used values the least likely to be replaced. FIFO replacement ignores uses altogether,

always selecting the oldest entry as the victim. While values with a high degree of use are rare,

they have long lifetimes (Figure 2.4) and account for many of the input values likely to remain

after bypassing (Figure 2.3). Each such value can cause multiple misses as it is repeatedly written

and eventually replaced from the cache. The availability of future use knowledge (in the form of

remaining-use counts associated with each cached value), however, allows for more intelligent

victim selection.

To minimize the number of register cache misses, use-based replacement selects the cache

entry with the smallest number of remaining uses as the victim. In the event of a tie, the oldest

entry is selected (i.e., FIFO). Most of the time, victims selected in this manner have zero remain-

ing uses, and the evictions do not result in a future cache miss. This single reason accounts for the

superiority of this method over either LRU or FIFO replacement: known-dead values are replaced

preferentially. For victims with uses remaining, one or more future misses on the replaced value

are likely.

† While the data in the figure pertain to a six-stage bypass network, the dominance of the first stage
bypasses holds across bypass networks of different sizes. For bypass networks of two, four, six, and eight
stages (corresponding to register file latencies from one to four cycles), first stage bypasses account for
82.2%, 68.7%, 63.4%, and 60.4% of all bypassed values, respectively.

‡ The probability that a given use of a value is its last can be calculated using the analytical model from
Section 2.5.1. Given a value with a degree of use x > 0, the probability that a use is the last is 1 / x. Sum-
ming this probability over all degrees of use weighted by their frequencies of occurrence gives:

Using the values α = 0.717 and β = 2.55 from Table 2.4 gives the likelihood of any use being a value’s
last as 80.4%.

P
1
x
---P D x=[]

x 1=
∞∑ α x

β– 1–⋅
x 1=
∞∑ α ζ β 1+()⋅= = =

137

The importance of evicting the value with the fewest remaining uses is partially due to the

delay imposed upon operations that need that value after it has been evicted. A miss on a high-use

value can delay more operations than a miss on a single-use value. In the latter case, there is a

greater likelihood of other independent instructions being able to execute to partially hide the cost

of the miss. If, however, the evicted value is the parent of many instructions (e.g., the base

address of a structure in which many fields are accessed), then it is possible that many or all of the

ready instructions will experience the full latency of the miss.

Another reason that selecting the victim with the fewest uses is preferred is that it helps reduce

the number of future misses possible on the same value. Even though the register cache is filled

on a miss (Section 5.2), a filled value makes a good eviction candidate because its use count is

cleared. Remaining use counts are only kept for values in the register cache (and in the bypass

network prior to their arrival). This avoids the complexity associated with writing this informa-

tion somewhere else when an entry is replaced. Therefore, when a value is brought back into the

register cache after a miss, the use count is lost and assumed to be zero (see the discussion of the

fill default in Section 5.3.3); thus, the greater the number of remaining uses a value has when

evicted, the more misses it can cause.

The identification of the victim under the fewest-use replacement policy is a source of com-

plexity, especially in highly-associative register cache organizations. Fortunately, simpler approx-

imations of this policy are possible. The main shortcoming of FIFO replacement is the potential

for multiple misses on certain high-use values. A slight modification of the FIFO replacement

policy would skip over values with more than a threshold number of uses. Another hybrid is pos-

sible for addressing the main problem with LRU replacement. A modified LRU could be imple-

mented in which any entry with zero remaining uses would take precedence over the nominal

LRU during victim selection. In both of these hybrid schemes, the availability of the use informa-

tion enables improvement of the original replacement algorithm.

5.3.3 Counting remaining uses

The use-based policies just described depend upon the availability of a remaining-use count for

each value, which originates from the degree of use predictor. Once initialized, each count must

be updated by uses of the associated value. Within the bypass logic, matches on each result tag

138

configure the bypass multiplexors. A tag match implies a use by a soon-to-execute instruction.

To implement use-based filtering, additional circuitry accumulates the number of these matches

occurring for each value within the bypass network (matches in the last bypass stage are missing

bypasses and are not counted; see Section 5.3.1). This number is then subtracted from the degree

of use prediction to implement the insertion policy. After the adjusted use count and the value are

present in the cache, the counts are updated by subsequent reads of the value.

Use counts equal to the maximum predictable degree of use (Section 3.2.1) are handled differ-

ently. Recall that a degree of use predictor is saturating: it uses the maximum representable num-

ber of uses to denote that and all higher numbers of uses. This presents an interesting problem

with regard to managing the register cache. If a single value will have millions of uses, the cost of

repeatedly evicting that value will be very large. Therefore, subtracting uses from the saturated

maximum is not the desired behavior. Instead, the remaining-use count is not updated for values

with the maximum predictable degree of use, effectively pinning such values in the cache until the

corresponding physical register is freed; of course, bypasses must not adjust a saturated use count

either.†

The fact that a portion of values are pinned in the cache based on their predicted degree of use

has implications for the choice of the maximum predictable degree of use. It is desirable to pin

the smallest possible number of values in the cache, which favors a higher degree of use limit.

However, higher maximums have a hardware cost in the degree of use predictor, the register

cache, and the associated data paths for tracking and accumulating uses. Of these, the complexity

of the logic for updating use counts is the most critical. Updating remaining use counts of more

than a few bits is likely to be prohibitively difficult. This situation is well-suited for prediction

grouping as described in Section 3.2.4. For example, instead of using two bits to represent

degrees of use of 0, 1, 2, and >= 3, a better encoding in this application would be 0, 1, 2 to 7, and

>= 8, reducing the number of pinned values substantially at the cost of some inaccuracy in the use

counts.

† Note that no values are actually pinned in the cache—their use counts are simply not decreased from the
maximum, making it much less likely that they will be replaced. If, during an insertion, a cache set con-
tains only values having the maximum use count, one will be selected as a victim, independent of the use
count of the incoming value.

139

Less than perfect predictor coverage leads to the inability to initialize some remaining use

counts. For these values, an implicit prediction (see Section 3.2.3) called the unknowndefaultis

assigned. The choice of this default is dictated by the capacity pressure on the cache. A value

with a higher default is more likely to end up in the cache after bypassing to all of its actual con-

sumers—perhaps resulting in the eviction of a more useful value (the consequences of dead val-

ues in the cache is the topic of Section 5.3.4). When space is abundant, it is better to place them

into the cache by default to avoid the possibility of a miss. The data in Section 5.4 indicate that

capacity pressure is extremely important for reasonable register cache sizes, so an unknown

default of one is used. Note that this default leads to behavior identical to the non-bypass inser-

tion policy (see Section 5.3.1) for these values.

A similar situation arises after a register cache fill because the backing file does not contain

use information. As in the case of an unknown initial degree of use, the remaining-use count is

set to an algorithm parameter called the fill default. Again, noting that any use of a value is likely

the last (see Section 5.3.2), it is desirable that those values with known real uses be given priority

in avoiding replacement. Therefore, a fill default of zero is assumed. Note that it is still important

to perform the fill since a cached value will supply consumers regardless of its remaining use

count. So long as there is not any contention that would lead to replacement of the filled value, it

can reside in the cache for some time, even with zero remaining uses.

5.3.4 Incorrect use information

Inaccurate remaining-use counts arise from degree of use mispredictions, the use of unknown and

fill defaults, missing bypasses, and the counting of wrong-path uses resulting from control-flow

speculation (e.g., branch prediction). These events result in disagreements between the number of

remaining uses recorded in the register cache and the number actually outstanding. Incorrect use

counts never lead to incorrect operation: regardless of the contents of the register cache, all values

are available from the backing file. However, they can result in poor performance by affecting the

ability of the use-based policies to keep live values within the register cache.

Incorrect remaining-use counts manifest in one of two ways. First, a value might be present in

the register cache with predicted remaining uses that will never be observed. These are referred to

as stalevaluesand are exactly analogous to those registers in the register file that contain dead

140

values (Figure 5.1). The storage of stale values inflates the number of register cache entries

required and can result in the eviction of genuinely useful values. Alternatively, the cache state

could indicate that a value has no remaining uses even though that value is still live. These

falsely-dead values can lead to a register cache miss if the value is evicted before their outstanding

uses are satisfied.

The impact of stale values is limited by two factors. Most importantly, the invalidation of reg-

ister cache entries when the corresponding physical registers are freed (necessary to ensure cor-

rectness) bounds the lifetime of stale values in the register cache. Also, stale values are not

immune from the fewest-remaining-use replacement policy. Like all other values, stale values are

likely to have a small number of uses, especially once any actual uses have been counted. There-

fore, they are at least as likely to be selected as a victim as a live value with actual uses remaining.

The potential cost of falsely-dead values is also mitigated in practice for two reasons. First,

values remain in the cache—even if their remaining-use count reaches zero—until they are explic-

itly chosen as a victim by the replacement policy. Thus, unless there is actual contention among

live values for entries in same set as the falsely-dead value, the cache will continue to supply the

value to consumers. Second, for many values, all consumer instructions will obtain their inputs

from the bypass network. Therefore, especially for values with few uses, all of those uses may be

satisfied without incurring a register cache miss, even if the predicted number of uses was too low.

5.4 Evaluation

This section presents an evaluation of use-based cache management policies. The processor

model in which the register caches are evaluated is described in Section 5.4.1. Section 5.4.2

addresses the capacity and organization of the register cache. Section 5.4.3 discusses the costs of

register cache misses and their role in determining performance. Next, the different register cache

policies are compared in isolation: Section 5.4.4 looks at the insertion policy while Section 5.4.5

examines the replacement policy. Section 5.4.6 revisits register cache misses, discussing the per-

formance results of the prior sections in terms of different kinds of misses. Finally, Section 5.4.7

illustrates the sensitivity of the register cache to the cache size and machine width.

141

5.4.1 Processor model

The implementations for which a register cache is likely to be beneficial are wide-issue machines

with deep pipelines. The combination of these two attributes creates the need for many physical

registers, while the deep pipeline implies that access to a monolithic register file could extend over

several pipeline stages. Therefore, it is important to evaluate register caching in such a machine.

The modeled processor configuration outlined in Table 5.1 reflects this consideration. It is an

eight-issue superscalar processor with a deep pipeline (16-cycle minimum to redirect fetch after a

branch mis-speculation) supporting up to 320 in-flight instructions. The front end, execution

resources, and cache hierarchy are similarly aggressive. The effect of using a more realizable

superscalar width of four is examined in Section 5.4.7.

Especially relevant for the evaluation of register caching are the size and latency of the physi-

cal register file and backing file and the structure of the bypass network. The physical register file

contains 320 registers (320 in-flight instructions × 80% value-generating instructions + 64 archi-

tectural registers). The register file latency only affects the baseline performance against which

register caching is evaluated. Read and write latencies are each set at three cycles, similar to the

Table 5.1: Simulated Processor Parameters

Pipeline 8-wide superscalar; 5-stage fetch (next address + I-cache access + fetch queue),
2-stage each decode and rename, 1-stage dispatch (write into window), issue,
and commit. 16-cycle minimum fetch redirection on branch mis-speculation.

Front end Up to 8 non-nop instructions per cycle from up to 2 cache lines. Each fetch
block can contain up to one taken branch and any number of untaken branches.
48-entry instruction queue between L1 I-cache and decode.

Issue/Execute 200-entry scheduling window, oldest ready first. 320-entry reorder buffer.
Eight issue ports: (1) simple integer (no mult), (2,3) load or store, (4,5) simple
integer or simple FP (no mult/div/sqrt/branch), (6,7) any integer/FP incl. branch,
(8) simple integer or load or store.

Register/
Bypass

320-entry physical register file, 3-cycle latency OR 1-cycle register cache and
320-entry backing file, 2-cycle latency. 2-stage bypass network.

Memory 32KB, 2-way set-associative L1 instruction and data caches with 64-byte
blocks. 2MB, 4-way set-associative unified L2 cache with 128-byte blocks, 12-
cycle latency. 160-cycle memory latency. 128-entry load queue and 128-entry
store queue.

Degree of Use
Predictor

8K-entry, 8-way set-associative, 13.4KB predictor described on page 80.

142

example of Figure 5.4(a). Performance results in this section are presented as speedups relative to

this baseline multi-cycle register file.

The backing file is the same size as the physical register file it replaces (320 entries here).

The latency of the backing file affects the performance of register caching via the miss penalty.

The backing file does not need to support the read bandwidth of a register file since it is only read

on register cache misses. Therefore, its access latency can be lower than the physical register file;

here a two-cycle latency is assumed.

Any implementation will include the largest bypass network allowed by the design constraints

(until the full register file latency is covered). Because a large bypass network represents a signif-

icant limiter to clock frequency scaling [66], in the eight-wide processor model considered here, a

two-stage bypass network is assumed. Such a bypass network represents full bypassing for the

register cache, but limited bypassing [2] for the three-cycle register file.

5.4.2 Register cache size

Based on the number of live values indicated in Figure 5.1, the register cache should have at least

60 cache entries to have a hope of containing all of the live values. The size of a register cache

will ultimately be determined by the need to maintain single-cycle access. Since the base case for

performance comparison assumes a three-cycle latency for a 320-entry register file, a single cycle

register cache should certainly have no more than about 106 entries (320 ÷ 3). However, while the

register file is direct-mapped, a register cache needs to be associative to offer reasonable

performance [17], which will make it slower for the same number of entries.

Given the three-cycle latency of the original physical register file, a single-cycle cache of up to

80 entries is probably reasonable depending on the associativity. The latency penalty of a fully-

associative design as well as the difficulty of implementing a global replacement policy over so

many entries indicate that a set-associative design is more realistic. In the remainder of this chap-

ter, three specific design points will be evaluated: 64×4, 80×4, and 80×8, where m×n indicates an

m-entry, n-way set-associative design.

Going from fully-associative to set-associative introduces conflict misses, which generally

will prevent the realization of the full performance potential of a given capacity. These can be

mitigated somewhat by using decoupled indexing [17]. Decoupled indexing explicitly assigns a

143

register cache set to each physical register as it is allocated instead of relying on the implicit deri-

vation of the set index from the register tag. Consumers of the register are provided with its cache

set via the standard renaming process; however, instead of receiving only a physical register tag,

they receive a tag and a register cache set index. Set indices are assigned using a policy that

attempts to minimize conflicts within the register cache. A very simple policy that works well

assigns set indices in a round-robin manner, with each newly allocated physical register assigned

to the next set sequentially. Since execution order often resembles rename order (due to data

dependencies), this policy helps to keep values produced within a short period of time in different

cache sets. This indexing policy is used for all of the set-associative designs presented in the

remainder of the chapter.

5.4.3 Misses

The most important determinant of the performance of any register caching scheme is the aggre-

gate cost of the register cache misses. This cost is a combination of the penalty of each miss and

the frequency of their occurrence (i.e., the miss rate). The per-miss penalty is independent of the

policies and organization of the register cache. Instead, it depends on the miss model and the par-

ticular benchmark. The miss model, which includes the backing file access, the issue port stall,

and the replay of operations issuing in the register cache miss shadow, merely defines the costs

associated with each.

A given benchmark may be more or less sensitive to misses due to specific interactions with

components of the miss model. For example, a benchmark with a high average IPC will be more

sensitive to misses because more independent computation will be delayed. Similarly, a bench-

mark with a high proportion of instructions requiring a limited execution resource (e.g., a floating

point divider) may perform especially poorly as misses lead to the temporary unavailability of that

resource. Where a benchmark’s performance is severely limited by other bottlenecks (e.g., L2

misses), the benchmark may be relatively insensitive to register cache misses.

How the miss rate itself affects performance is more straightforward: more misses equals

lower performance. This relationship is illustrated quite clearly in the data of Figure 5.5. Each

point corresponds to a different combination of cache size, associativity, and insertion and

replacement policies. Note that there is no significance to the division of the benchmarks among

144

the different graphs other than clarity of presentation. With few exceptions (e.g., ammp and mcf),

the data show a strong negative correlation between performance and miss rate. The data gener-

ally falls on well-defined curves regardless of the different cache parameters. Where scatter

occurs (e.g., wupwise, and to a lesser extent, mesa and art), the overall correlation is still

readily visible. The slope and position of a curve fitting the data for a given benchmark offer a

wealth of information.

0 10 20 30 40

Miss rate (%)

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

gzip
vpr
gcc

0 10 20 30 40

Miss rate (%)

0.4

0.6

0.8

1.0

1.2 mcf
crafty
parser

0 10 20 30 40

Miss rate (%)

0.4

0.6

0.8

1.0

1.2 eon
perl
gap

0 10 20 30 40

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

vortex
bzip2
twolf

0 10 20 30 40

0.4

0.6

0.8

1.0

1.2 wupwise
swim
mgrid

0 10 20 30 40

0.4

0.6

0.8

1.0

1.2 applu
mesa
galgel

0 10 20 30 40

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

art
equake
facerec

0 10 20 30 40

0.4

0.6

0.8

1.0

1.2 ammp
lucas
fma3d

0 10 20 30 40

0.4

0.6

0.8

1.0

1.2 sixtrack
apsi

Figure 5.5. Effect of miss rate on performance

145

The slope of the curve directly indicates the per-miss penalty. As discussed previously, this

depends on the peculiars of the miss model and the benchmark. Since the miss model is the same

for all of the experiments represented here, variations in the miss penalties (slope) of the different

curves must indicate attributes of the benchmarks themselves. For example, ammp, which spends

most of its time waiting on memory, shows very little sensitivity to the miss rate. Conversely,

among the integer benchmarks, bzip2 shows the largest miss penalty because of a high base

IPC. The curvature seen among many of the benchmarks is related to the interaction of the miss

penalty with the base IPC. At high miss rates, the cost of each miss goes down as they cease to

delay as much independent useful work.

The vertical position of a given plot shows the benefit of using a register cache over a multi-

cycle register file. Consider the intercept of a curve with the y-axis (speedup axis): that point indi-

cates the performance advantage of a perfect register cache. For example, the performance of

wupwise with a perfect register cache is over 20% better than its performance with the three-

cycle register file; art on the other hand, does not show much improvement even for miss rates

near zero.

Clearly, any performance advantage offered by one register caching algorithm over another

will result from a decrease in the miss rate. For a fixed size and associativity, then, the miss rate

must be linked solely to the predictor policies. This observation was offered unsubstantiated at

the beginning of Section 5.3 when considering the attributes of a successful cache management

policy.

In examining the effects of the prediction policies on performance in the following sections, it

will be helpful to define two possible kinds of misses. Filtering misses are the result of an attempt

to access a value that was not put into the cache because of the insertion policy. Eviction misses

result from the replacement of a live value in the register cache. Eviction misses may be due to a

poor choice by the replacement policy or they may simply occur because of capacity constraints

or conflicts. Therefore, while filtering misses are solely attributable to the insertion policy, evic-

tion misses depend on both the replacement and insertion policies since the insertion policy can

mitigate capacity pressure on the cache via write filtering.

146

5.4.4 Comparing insertion policies

Figure 5.6 compares three different cache insertion policies. For each policy, the dark gray bars

show the performance of the 64×4 cache, the light gray bars the 80×4 cache, and the black bars

the 80×8 cache. The A bars correspond to a policy that writes all result values into the register

cache (i.e., no filtering is performed). The N bars show the performance of the non-bypass inser-

tion policy [24] in which values that bypass to any number of consumers are not written into the

cache. Note that the non-bypass policy still suffers from missing bypasses (see Section 5.3.1).

The performance of use-based insertion filtering is indicated by the U bars. LRU is used as the

replacement policy for all three configurations.

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

Sp
ee

du
p

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise
A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Sp
ee

du
p 80x8

80x4
64x4

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U A N U

Figure 5.6. Insertion policies

147

The performance advantage of use-based filtering is substantial, especially where capacity

limitations are important. Use-based filtering reduces the number of values written to the cache,

requiring fewer replacements and relieving capacity pressure. This advantage is best illustrated in

the floating-point benchmarks, where use-based filtering delivers the highest performance on

every benchmark even for the 80×8 organization. Among the integer benchmarks, the policy still

delivers the highest performance overall, although the policy that indiscriminately writes all val-

ues (A bars) can perform slightly better for some benchmarks, especially at large cache sizes. In

these cases, capacity is not a limitation (Figure 5.10 shows that 64-80 entries suffice for the inte-

ger benchmarks); thus, the small advantage of reducing the number of writes is offset by the addi-

tional filtering misses on values that should have been cached.

Note that the non-bypass scheme universally performs worse than filtering based on use infor-

mation. While single-use values account for more values than any other class, the combined num-

ber of all values with higher degrees of use is substantial (nearly 30%). Thus, there will be a

significant number of values that bypass to some consumer yet still have additional consumers

after bypassing. While use-based caching detects that additional uses are outstanding, the non-

bypass scheme will filter these values, leading to additional filtering misses. Still, where capacity

limitations are especially important (e.g., galgel), even low quality filtering is better than none

at all, and the non-bypass scheme outperforms writing all values.

Table 5.2 presents additional data on the efficacy of use-based filtering for the 80×4 register

cache (i.e., corresponding to the light gray bars in Figure 5.6) in terms of the percentage of values

avoiding the cache (initially and completely) and the percentage written to the cache that are not

subsequently read. Only the last of these is meaningful for the policy that writes all values (since

the filtering percentages would be zero). Differences between the initial filtering percentage and

the complete filtering percentage (i.e., the percentage of values never entering the cache) result

from both poor filtering decisions and the difference in the sets of values under consideration.

Poor filtering results in values eventually entering the cache because of a subsequent miss; thus,

poor filtering leads to an initial filtering rate greater than the never-cached percentage (e.g., for

ammp). There is also a slight difference in the two percentages because the initial filtering rate is

a percentage of all values written, while the never-cached percentage considers only values gener-

ated by instructions that retire.

148

Table 5.2: Evaluating Use-Based Filtering

% values filtered initially % values never cached % cached but never read

Benchmark Use-based Non-bypass Use-based Non-bypass Use-based Non-bypass write All

eon 53.50 44.90 54.93 40.01 28.41 46.20 67.92

bzip2 65.88 62.87 66.66 60.27 40.96 47.90 76.82

crafty 59.71 47.14 59.95 44.53 32.17 51.85 74.13

gap 67.18 52.04 68.00 47.00 27.23 57.55 76.55

gcc 62.28 51.55 62.61 48.58 32.74 52.68 74.93

gzip 58.73 42.47 62.16 43.52 35.09 57.58 74.43

mcf 57.51 47.37 57.71 42.90 24.34 49.61 69.39

parser 56.20 54.18 57.96 51.60 39.66 49.97 74.71

perl 61.55 49.38 62.08 44.39 29.99 52.53 73.35

twolf 53.91 51.97 55.12 45.92 30.66 44.99 68.49

vortex 58.56 36.33 60.11 33.85 24.66 59.83 72.82

vpr 50.37 45.69 52.14 42.57 28.17 43.98 65.87

ammp 41.28 38.99 43.42 33.70 37.79 54.68 65.18

art 24.63 27.96 24.62 22.86 24.60 28.73 45.15

equake 37.85 37.05 38.06 31.90 38.84 48.16 63.85

mesa 48.25 37.67 53.51 33.37 31.15 53.51 67.91

applu 21.21 23.68 22.12 21.63 53.89 54.33 61.48

apsi 30.08 27.66 30.43 23.58 42.60 45.87 57.15

mgrid 12.54 14.72 12.76 13.36 61.17 50.07 55.54

sixtrack 35.47 32.24 36.75 28.78 39.90 50.86 63.91

swim 18.99 25.62 19.06 21.59 52.01 45.23 57.05

wupwise 44.03 40.83 45.92 37.97 36.07 45.18 64.62

facerec 30.78 30.04 31.32 24.61 42.87 34.38 53.19

fma3d 36.39 33.85 38.02 31.12 39.53 47.20 62.44

galgel 39.16 36.03 39.32 32.40 30.85 31.24 49.36

lucas 23.21 25.56 23.21 20.46 42.33 45.24 54.17

Integer 58.77 48.82 59.95 45.43 31.17 51.22 72.45

Floating Pt. 31.71 30.85 32.75 26.95 40.97 45.33 58.64

C/C++ 53.58 45.47 54.94 41.69 31.65 49.98 69.47

Fortran 29.19 29.02 29.89 25.55 44.12 44.96 57.89

All 44.19 39.15 45.31 35.48 36.45 48.05 65.02

149

The use-based filtering policy keeps more values from entering the cache than the non-bypass

policy. In the case of the integer benchmarks, the difference is dramatic: over 30% more values

(60% versus 45%) never enter the cache under use-based filtering. Overall, the use-based policy

keeps 44% of retired values from ever entering the cache.

The filtering percentages also underscore the vastly different behavior of integer and floating-

point benchmarks. Nearly twice as many values are filtered from the register cache in the integer

benchmarks, leading to much higher capacity demands by the floating-point benchmarks. The

lower filtering rate in the floating-point benchmarks can be attributed partially to the smaller num-

ber of floating-point execution resources. Floating-point instructions with ready operands fre-

quently wait for execution resources; by the time the instruction can execute, its inputs are no

longer available on the bypass network, leading to a lower bypass rate. With fewer bypasses

occurring, fewer insertions are avoided and capacity pressure on the cache is increased. This con-

clusion is supported by the average number of ready instructions—28 in the floating-point bench-

marks versus 11 in the integer benchmarks—and the percentage of all reads satisfied by the first-

stage of the bypass network—25% floating-point, 46% integer.†

The percentage of cached values that are never read also quantifies the success of the insertion

filtering policy. Ideally, this percentage would be zero, indicating that only values that would

eventually be read would be cached. However, this percentage is also subject to two factors unre-

lated to the insertion filtering. First, capacity pressure can result in the eviction of a useful value

from the register cache (i.e., one that would have been read) prior to any reads occurring. Second,

the fills that occur on a register cache miss can bring values into the cache that may not be read

again. In spite of these effects, the advantage of use-based filtering over the other two insertion

policies is clearly evident by this measure. Use-based filtering decreases the number of values

needlessly placed into the register cache by 24% and 44% versus non-bypass filtering and no fil-

tering, respectively.‡

† These data correspond to use-based insertion filtering and LRU replacement with an 80×4 register cache.

‡ (48.05% – 36.45%) ÷ 48.05% = 24% and (65.02% – 36.45%) ÷ 65.02% = 44%.

150

5.4.5 Comparing replacement policies

The performance of various replacement policies are compared in Figure 5.7. The presentation is

identical to Figure 5.6 with 64×4, 80×4, and 80×8 register caches (dark gray, light gray, and black

bars, respectively) evaluated under each policy. Use-based filtering is used as the insertion policy

in all cases. Within each bar group, the replacement policies are: L(RU), F(IFO), and D(egree of

use-based), which selects for replacement the entry with the fewest remaining uses.

Again, the advantage of employing a use-based policy is evident. As was the case with the

use-based insertion policy, the benefit tends to be more pronounced under capacity constraints.

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

Sp
ee

du
p

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise
L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

Sp
ee

du
p

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Sp
ee

du
p 80x8

80x4
64x4

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D L F D

1.26

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Sp
ee

du
p

Figure 5.7. Replacement policies

151

The fact that the use-based policies work well for relatively small caches indicates that they do a

good job of maintaining the most important set of values within the limited amount of space.

Because the latency of a register cache depends on its size, a use-based cache can deliver equiva-

lent performance to that of previously-proposed policies with a smaller, lower-latency organiza-

tion.

Section 5.3.2 also proposed modifications of the LRU and FIFO policies based on the avail-

ability of use information. These hybrid schemes were meant to address some of the complexity

surrounding the identification of the entry with the minimum degree of use. Figure 5.8 shows the

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

Sp
ee

du
p

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise
D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

Sp
ee

du
p

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Sp
ee

du
p 80x8

80x4
64x4

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z D P Z

1.261.26

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Sp
ee

du
p

Figure 5.8. Hybrid replacement policies

152

performance of these two schemes. As in Figure 5.7, D indicates fewest-use replacement. P cor-

responds to a modification of FIFO in which values with the maximum degree of use are pinned

in the cache; Z shows the performance of a modification of LRU in which entries with zero

remaining uses are given priority. The latter scheme performs competitively with and, in some

cases, better than the pure use-based scheme. The performance of the pinned-FIFO replacement

policy represents a slight improvement over classical FIFO for those benchmarks where capacity

is not at a premium (i.e., mostly the integer benchmarks), but does not perform as well as the other

two policies. Comparing the performance of these hybrid policies with that of the original use-

based replacement policy suggests that the main advantage of the original use-based replacement

policy over LRU or FIFO is its preferential selection of dead victims rather than its ability to keep

high-use values in the cache.

5.4.6 Miss breakdown

Figure 5.9 shows a breakdown of register cache misses for three register cache algorithms. The

configurations are drawn from Figure 5.6 and Figure 5.7: the A configuration inserts all values

and uses LRU replacement, the N configuration performs non-bypass filtering with LRU replace-

ment, and the D configuration uses use-based insertion filtering and use-based replacement. In

this figure, the cache organization is fixed at four-way set-associative with a capacity of 80 entries

(i.e., the 80x4 organization indicated by the light gray bars in the previous figures), and the differ-

ent components of each bar represent the portion of the overall miss rate due to filtering (dark

gray), capacity evictions (light gray), and conflict evictions (black).

Filtering misses are easily counted, but the classification of the eviction misses as conflict or

capacity misses is more involved. For each cache algorithm, the miss rate was also determined

using a fully-associative cache of the same capacity (80 entries), which does not suffer from con-

flict misses. The capacity miss rate of the set-associative cache was assumed to equal to the non-

filtering miss rate from the fully-associative cache.† The remaining portion of the overall miss

rate was attributed to conflicts.

† The validity of this assumption depends on the filtering miss rate being the same in the set-associative and
fully-associative caches for each given algorithm; the data indicate that this is a reasonable approximation
(the median difference in the filtering miss rates is 3.3% of the set-associative cache’s miss rate).

153

The insertion policy in which all values are written to the cache (A bars) cannot cause filtering

misses; in contrast, the filtering of any values by the non-bypass or use-based filtering policies

must result in some such misses. The number of filtering misses introduced by use-based filtering

is less than the decrease in eviction misses from the lower write bandwidth, leading to a lower

overall miss rate and higher performance.† The opposite is true for the non-bypass scheme

† The data in Figure 5.9 do not strictly illustrate that the reduction in eviction misses is due to use-based fil-
tering since the D bars also employ use-based replacement. However, the performance results of
Figure 5.6, in which LRU replacement is used with different insertion policies, clearly show that the use-
based insertion policy must be lowering the overall miss rate.

0

8

16

24

32

M
is

s
ra

te
 (

%
)

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise
A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D

0

5

10

15

20
M

is
s

ra
te

 (
%

)

Conflict
Capacity
Filtering

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D

Figure 5.9. Register cache misses

154

(N bars): here, the misses from filtering exceed the reduction in eviction misses due to that filter-

ing, resulting in a performance loss.

Filtering misses represent a substantial portion of the miss rate of a use-based register cache,

but only for the integer benchmarks. The register cache misses experienced by the floating-point

benchmarks are dominated by capacity and, to a lesser extent, conflict misses. The greater capac-

ity demands of the floating-point benchmarks result from a combination of fewer bypassed values

(Section 5.3.1), a larger number of live values (Figure 5.1), and longer value lifetimes

(Figure 2.4).

5.4.7 Sensitivity studies

Figure 5.10 isolates the effect of the register cache capacity by showing the performance of regis-

ter caching using fully-associative register caches of different sizes. The use-based, non-bypass,

and LRU curves correspond to the D, N, and A configurations of Figure 5.9, respectively. Float-

ing-point and integer benchmarks are separated to illustrate the extreme difference in their behav-

ior.

The use of a register cache as small as 32 entries improves the performance of the integer

benchmarks over a three-cycle register file. For a 96-entry register cache, the performance

32 48 64 80 96

Capacity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Sp
ee

du
p

(H
. M

ea
n)

Use-based
Non-bypass
LRU
Integer
Floating-point

Figure 5.10. Cache capacity

155

improvement is about 15%, although the benefit reaches 12% with only 48 entries. Given the lim-

ited number of capacity misses exhibited by the integer benchmarks (Figure 5.9), the saturation of

the performance with capacity is to be expected.

The floating-point benchmarks suffer terribly under register caching. With the use-based

cache policies, 96 cache entries are required to exceed the performance of the three-cycle register

file on the floating-point benchmarks; the other two caching algorithms still exhibit a slowdown of

more than 20% at this capacity. In contrast with the integer benchmarks, the nearly linear

increase in performance with capacity demonstrates the significant contribution of capacity

misses to the behavior of the floating-point benchmarks.

The performance of register caching in a narrower pipeline is considered in Figure 5.11. The

presentation is similar to that of Figure 5.6 except that the bars in each stack indicate the perfor-

mance of 56×4 (dark gray), 64×4 (light gray), and 64×8 (black) register caches. The simulated

parameters are identical to those presented in Table 5.1 except: (1) the pipeline is four-wide,

(2) the machine can fetch from one cache line per cycle and a single taken branch terminates fetch

for that cycle, (3) the reorder buffer, register file, and backing file have 256 entries, (4) the issue

window has 128 entries, and (5) the core configuration matches the rich resource configuration

from Table 4.4. The register cache capacities have also been reduced from the 64- and 80-entry

sizes to maintain the same relative sizes versus the smaller physical register file.

The behavior of the register cache algorithms in a four-wide machine is similar to that in the

eight-wide machine depicted in Figure 5.6 and Figure 5.7. The performance of use-based register

caching relative to the multi-cycle register file baseline or to the other caching algorithms is

reduced versus the wider machine. This phenomenon may be explained by noting that as the exe-

cution bandwidth is decreased, there are fewer opportunities for bypassing, reducing the potential

of use-based filtering. Simultaneously, value lifetimes increase, leading to a greater window of

vulnerability in which a poor decision can lead to a miss. In spite of the reduced benefit, use-

based caching still delivers the best performance of the three register caching algorithms. Speed-

ups are achieved for all of the integer benchmarks, even with a 56×4 register cache (using the use-

based policies). Of the floating-point benchmarks, only ammp achieves a speedup under any pol-

icy for the range of cache organizations tested.

156

5.5 Related Work

Due to the central role of the register file, a huge body of research has been aimed at optimizing

this structure, particularly its access time. Many of these proposals include some form of banking

or clustering to divide the register file’s bandwidth (and sometimes capacity) requirements among

several smaller structures. This work is largely orthogonal to the use of a register cache: many of

the schemes are as applicable to a register cache as a register file. Here, the discussion is limited

to register hierarchies and proposals that leverage the occurrence of empty and dead values within

the register file (observed in Section 5.1).

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

Sp
ee

du
p

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise
A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
Sp

ee
du

p 64x8
64x4
56x4

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D A N D

Figure 5.11. Register cache performance in a four-wide machine

157

A register cache is a particular implementation of a general class of multi-level register hierar-

chies. Like memory hierarchies, multi-level register hierarchies all provide for different classes of

register storage in an attempt to reduce the average register read latency. The methods differ on

such attributes as the structure of the register hierarchy, whether inclusion is enforced, and, most

importantly, how values are managed within the hierarchy. Some of these schemes depend on

explicit software assignment of values to different levels in the hierarchy [58, 81, 93]. Such

schemes not only necessitate compiler support, but also require exposing the register file imple-

mentation to the ISA.

Previous examples of hardware register caches that operate essentially as described in

Section 5.2 have been proposed. Yung and Wilhelm [92] first suggested a two-level register hier-

archy in which a small, fast register cache that communicates directly with the execution core is

accompanied by a backing store. They evaluated a fully-associative register cache managed using

an LRU policy. Cruz et al. [24] invented the non-bypass heuristic to keep bypassed values from

polluting the small register cache. Their cache was a fully-associative structure, but used pseudo-

LRU replacement. They also proposed two prefetching schemes to bring results into the register

cache before they are needed.

The distributed register algorithm by Borch et al. [11] employs multiple, fully-associative

FIFO register caches in a clustered architecture. Some writes are avoided for values whose

observable consumers: (1) can obtain the result from the forwarding buffer (bypass network),

(2) can obtain the result from the register file prior to issue, or (3) will not execute on a different

cluster.

Postiff et al. described a rather more complicated register caching scheme that amounts to a

small, exclusive, direct-mapped register cache with a special index assignment policy [69].

Because their register cache is exclusive, a cache entry must not be reassigned until prior writer of

that entry commits; at that time, the result value is written to the larger backing store and the

cache entry may be reassigned.

Balasubramonian et al. introduced another exclusive register file hierarchy in which dead reg-

ister values are moved from the physical register file (L1) to a backing structure (L2) with a hid-

den namespace [8]. Dead register values are moved when the number of L1 registers drops below

158

apredeterminedthreshold.Controlmis-speculationsandexceptionsrequireregistersfrom theL2

to be copied back into the L1.

Many otherresearchershavealsotakenaimat theemptyanddeadvaluesoccupying theregis-

ter file. In somecases,softwareannotationsareusedto indicatethat theregistervaluesaredead

earlierthanwould beotherwiseknown [57, 58,60], allowing themto bereleasedearly. Monreal

et al. deviseda schemefor discovering theseearly releaseconditionsdynamically[64]. Some

implementationssimply rely upon the storageof the deadvalues in a checkpoint[3, 61] or

elsewhere[56] if neededfor recovery. Gonzálezetal. [35, 63] andWallaceandBagherzadeh[87]

attacktheemptyphysicalregistersinstead,proposingto delaytheallocationof aphysicalregister

to a result until after the result has been generated.

5.6 Summary

Registercachingis a techniqueto addressthedifficultiesin implementinglarge,low-latency reg-

ister files and their associatedbypassnetworks. Large registerfiles are requiredto supportan

increasingnumberof in-flight instructionsin deeppipelineswith high executionbandwidth. As

clock frequenciesincrease,however, theaccesslatency of theregisterfile extendsacrossmultiple

pipelinestages.Bypassnetworks suffer similar scalingissues,preventingthe increasedregister

latency from beingfully-hidden. A registercacheleveragesthe fact thata large fractionof allo-

catedregistersareeitheremptyor containa valuethathasalreadybeenreadby all of its consum-

ers. By storingthesevaluesonly, theregistercachecanmaintainlow latency, andfull bypassing

can be supported.

Thesuccessfuloperationof aregistercachedependsontheability to keepit filled with thisset

of live values. Controlling the cache’s contentsis the province of its insertionpolicy, which

decideswhat valueswill enterthe cache,and its replacementpolicy, which decideswhat entry

will be replacedduring an insertion. Ideally, insertionswould be restrictedto live valuesand

replacementswould preferentiallyselectvaluesthat hadbecomedeadsinceenteringthe cache.

Thenumberof remainingusesof a value,derivedfrom comparingtheactualuseswith theinfor-

mationfrom a degreeof usepredictor, indicateswhetheror not it is live. This informationcan

then be used by cache management policies to approximate the ideal behavior.

159

This chapter described two such policies for the management of the contents of a register

cache. Use-based filtering exploits the fact that the bypass network performs a significant fraction

of all value communication. Due to the structure of the pipeline, many of these bypasses can be

observed and accounted for before the value must be written to the register cache. If the number

of observable bypasses equals or exceeds the predicted degree of use, the value can avoid entering

the cache and causing a replacement. When a replacement is necessary, use-based replacement

attempts to select those values that are either dead (i.e., have no remaining uses) or will be least

likely to lead to many future misses.

These policies substantially improve the performance of register caching over previous pro-

posals for register cache capacities of interest. Versus a three-cycle 320-entry register file, a 64-

entry, four-way set-associative use-based register cache yields a 9.3% speedup on the integer

benchmarks. Applying the best previously-proposed policy to the same cache results in a speedup

of only 2.7%. Performance on the floating-point benchmarks was significantly lower than when

using a multi-cycle register file, but it was still superior to that offered by previous policies. The

behavior of floating-point benchmarks was attributed to a much higher number of live values,

which led to a large number of capacity misses.

160

Chapter 6

Conclusions

The complexity of current inter-instruction value communication mechanisms represents the most

important barrier to the implementation of future high performance processors. This complexity

arises because every value is treated exactly the same. Identical resources are used for the com-

munication of each instruction’s result, and the value communication structures support the most

general possible communication behavior of each value. Register files assume the need for long-

term storage, bypass networks assume high fan-out, and instruction windows assume that all wait-

ing instructions could use every result. The consequences of these assumptions are reflected in

the difficulty in scaling these structures to exploit more parallelism at ever higher frequencies.

Degree of use offers a method by which the degeneracy among values can be broken. It is a

simple, intuitive indicator of the nature of a value’s participation in inter-instruction communica-

tion. Some values undoubtedly need the general high-powered communication capabilities pro-

vided to every value now—but these are few in number. A far greater portion of values have

modest requirements, being used once or twice within a short time of their generation. Degree of

use information differentiates these behaviors, allowing for the dynamic selection among mecha-

nisms adapted to the needs of specific kinds of values.

This dissertation has presented an in-depth exploration of the characteristics, prediction, and

application of degree of use information. Section 6.1 summarizes these contributions.

Section 6.2 describes other potential optimizations enabled by degree of use knowledge, and

161

Section 6.3 concludes with a discussion of the factors that determine the benefit of use-based

communication optimizations in general.

6.1 Contributions and Key Results

The major contributions of this work were: a characterization of the properties of degree of use

and its relationship to inter-instruction communication (Chapter 2), the description of static and

dynamic methods for high-accuracy degree of use prediction (Chapter 3), a characterization of

and mechanism for exploiting zero-use values (Chapter 4), and the demonstration of a superior

method of register caching based on the exploitation of degree of use information (Chapter 5).

The key results of each of these contributions is summarized below.

6.1.1 Degree of use characterization

The initial definition and exploration of degree of use was presented by Franklin and Sohi [32].

The characterization presented in this work both confirms and significantly expands upon their

results. The dominance of simple communication patterns in programs was demonstrated to hold

across languages, compilers, and individual programs. Single-use values comprise the majority

of all values generated during a program’s execution. Values with greater numbers of uses occur

progressively less frequently. While high-use values are less frequent, they supply proportionally

more consumers, indicating that efficient means for the wide distribution of values are needed.

New insight into the degree of use properties of values was obtained by correlating their

degree of use to individual instructions within the program. Certain kinds of values, identified by

the architectural registers to which they were bound or the type of instructions generating them,

exhibit behaviors quite different than the overall average. Addresses, for example, have a signifi-

cantly higher average degree of use than other values. The examination of degree of use on a per-

instruction basis also revealed the existence of the locality necessary to achieve accurate degree of

use prediction.

Mathematical models of degree of use properties were also considered. Previous researchers

had proposed that the frequency distribution of values with different degrees of use was fit by a

power-law model [28]. This work extended the prior model to account for zero-use values, simul-

taneously providing a useful probability distribution function for the occurrence of values with

162

different degrees of use. A typical application of such a model was demonstrated during the

comparison of different register cache replacement algorithms (Section 5.3.2).

6.1.2 Degree of use prediction

The demonstration of accurate degree of use prediction is the cornerstone of this work, enabling

the implementation of the speculative inter-instruction communication optimizations presented in

the latter chapters. How each instruction fits within the overall communication structure of the

program is fixed when the program is compiled. Therefore, the range of behaviors of values aris-

ing from a particular instruction is predetermined and can be discovered by static dataflow analy-

sis. The definition of the degree of use dataflow problem for performing this analysis represents

an important contribution of this dissertation with an immediate application to static degree of use

prediction.

Static degree of use prediction is the compile-time assignment of a single degree of use to

some or all of the value-generating instructions within a program. Many instructions have a

unique statically-determinable degree of use, making such an assignment straightforward. How-

ever, where dataflow analysis indicates multiple possible outcomes, a decision must be made on

which single degree of use to select, if any. A combination of heuristics and profiling information

may be used to guide such a decision. One such method for merging profile data with static anal-

ysis was presented and demonstrated to yield good results in terms of static prediction accuracy

and coverage.

Dynamic degree of use prediction offers an alternative means of obtaining degree of use infor-

mation. The use of dynamic prediction: (1) removes the requirement that analysis be performed

for each program of interest, (2) avoids the need to communicate the information from the static

analysis tool(s) to the runtime system, and (3) eliminates the constraint of a single degree of use

per static instruction. The success of dynamic degree of use prediction is predicated on the exist-

ence of per-instruction locality in degree of use behavior, which was amply demonstrated in

Chapter 2. Three dynamic prediction mechanisms were described representing a spectrum of

complexity and performance possibilities. The best-performing mechanism relies upon future

control-flow information, a novel contribution of this work with likely applications beyond degree

of use prediction.

163

6.1.3 Useless instruction elimination

Degree of use prediction was first applied to the exploitation of useless instructions. Useless

instructions refer to dynamic instructions that generate zero-use values, which account for more

than 10% of the dynamic instruction count in some optimized benchmarks. This phenomenon

was investigated further, and the dominant cause of useless instructions was found to be the intro-

duction of partially-dead instructions during compiler optimization.

Consideration of the resources wasted in handling useless instructions motivated the develop-

ment of useless instruction elimination, which is a mechanism whereby useless instructions, iden-

tified through degree of use prediction, can be retired without executing. Useless instruction

elimination is representative of a general type of use-based optimization: namely, the special han-

dling of a certain class instructions based on a predicted property of their result values. The

mechanism ensures that a candidate useless instruction can be safely removed by executing spec-

ulatively until: (1) the prediction is verified by the overwrite of the value, (2) a use of the value is

encountered, or (3) further speculation is blocked by resource limitations. In the first case, the

candidate is retired having avoided execution; either of the latter two cases result in the delayed

execution of the candidate.

The performance benefit of useless instruction elimination is generally small and highly-

dependent on contention for issue and execution resources in the microarchitecture. Performance

losses are limited to a fraction of a percent where resources are abundant. In a resource-poor

microarchitecture, average speedups of a few percent were realized. Another benefit is the reduc-

tion in resource utilization. The frequency of L1 data cache accesses, register file writes and

reads, issue bandwidth, and instruction executions are all reduced by about the same percentage as

the incidence of useless instructions.

6.1.4 Use-based register caching

Use-based register caching represents an application of degree of use information in optimizing

actual value communication. The large and slow physical register file is replaced by a small

cache, which ideally contains only those values that will be used (i.e., live values). The contribu-

tion of this work over previous register caching proposals is in the nature of the cache insertion

and replacement policies.

164

Both the insertion and replacement policies rely on determining the usefulness of a particular

value. Degree of use knowledge makes this possible by providing the total number of uses

expected prior to the generation of the value; once generated, the expected number of uses can be

adjusted as actual uses occur, leaving an exact count of the remaining uses. The register cache

insertion policy uses this information to explicitly account for the bypass network as an alterna-

tive means of value communication: values that reach all of their consumers via the bypass net-

work are easily detected (they have zero remaining uses upon reaching the cache) and are kept

from polluting the cache. Provided a live value remains in the cache long enough, it will eventu-

ally reach all of its consumers. At this point the value is no longer needed in the cache and should

yield to incoming live values. Use-based replacement selects victims based on the number of

remaining uses, preferring those with fewer uses left. Modulo the accuracy of the remaining use

counts, this policy will always replace dead values over live ones. In this application, use-based

register caching represents a vast improvement over prior proposals, offering better performance

for all benchmarks and cache sizes of interest.

6.2 Additional Applications of Degree of Use Knowledge

This section suggests other potential applications of the information provided by degree of use

information. Possible improvements to useless instruction elimination and use-based register

caching were addressed in their respective chapters and are not reiterated here. These represent

what I believe to be promising avenues for investigation, but their potential has not been experi-

mentally verified. In many cases, the optimizations offer an alternative to or an improvement of

previously-proposed mechanisms that were motivated by the properties demonstrated in

Chapter 2, but did not have the benefit of explicit per-value use information.

6.2.1 Early register reclamation

Degree of use prediction offers a mechanism for identifying the last use of a value. As was done

in use-based register caching, predictions initialize per-value counts of expected uses, which are

subsequently adjusted as those uses occur. This information can enable the speculative early rec-

lamation of physical registers with appropriate attention to mis-speculation recovery. Previous

proposals for early register release require a delay until the observation of the instruction over-

165

writing the corresponding architectural register to ensure that no further uses will occur [3, 8, 61,

64]. When using the method based on the degree of use prediction, however, this delay is not nec-

essary as the occurrence of the last use is made explicit. This advantage may allow for more

aggressive recycling of physical registers.

6.2.2 Registerless communication

Given the abundance of degree of use one values, mechanisms exploiting their existence should

be widely applicable. Regarding the actual communication of these values, it is obvious that use

of the register file results in unnecessary overhead. The register communication model implicitly

(but incorrectly) suggests that a value bound to a register will be used multiple times. Values with

a predicted degree of use of one need not even use a register.

With proper attention to the scheduling of the producer and consumer operations, the commu-

nication of such values can occur entirely through the bypass network. Use-based register cach-

ing represents a small step towards this end, but all values still consume storage in the backing

file. Given efficient mechanisms for value for mis-speculation recovery (addressed in Section 6.3)

and good heuristics for choosing which values will receive registers, it should be possible to limit

performance loss from mis-speculation to a reasonable level. The benefit would be obtained

through a combination of the reductions in the number of registers required and the number of

register file write ports, which would significantly reduce the size of the register file, allowing it to

be faster and/or lower power.

6.2.3 Collapsing dependent operations

The knowledge that the value communicated between two instructions is private (i.e., has a degree

of use of one) can also be exploited to dynamically collapse dependent operations. Given simple

enough operations (e.g., dependent logical operations), it is quite possible to complete both oper-

ations in a single cycle. The resulting reduction in the dataflow height could result in increased

performance. Interlock collapsing ALUs have been proposed as a means of executing two depen-

dent operations together [59, 68, 73], but the application of this technique is limited by the need to

generate and store the intermediate value or statically ensure that the dependent operation is the

only consumer. A degree of use predictor can increase the applicability of this technique by iden-

tifying such instances dynamically.

166

6.2.4 Direct consumer scheduling

The scheduling of dependent operations themselves could also be simplified with knowledge of

degree of use. Instructions with a predicted degree of use of one can be allocated dedicated reser-

vation stations that are directly addressable by the completing parent instruction. The dependent

instruction can be steered to this reservation station by information available at the rename stage.

Upon completion of the parent instruction, the wakeup operation would not require a tag broad-

cast across a large associative instruction window. Instead, the proper dependent operation could

be woken up directly.

6.2.5 Widely-used values

Figure 2.3 shows that the small number of values with a high degree of use contribute signifi-

cantly to the total number of values read as instruction inputs. This phenomenon suggests that

these values should migrate or be allocated to structures that can deliver them to their consumers

earlier or with less overhead than a register file.

One possibility is to maintain a very small storage structure associated with each ALU to sup-

ply these values. With a very small capacity, such a structure could significantly reduce the band-

width demands on the power-hungry register file. This is similar to the local register files

proposed by Franklin and Sohi [32] but at a finer granularity. Rather than using a per-cluster local

register file to maintain values belonging to that cluster, a high-use value cache would maintain

only values having more than a certain number of uses.

Another potential way to exploit high-use values is to copy or migrate them towards the front

end. Values with many uses are likely to live long enough to reach the front end while they are

still actively mapped. In these cases, it is possible to access them directly using the architectural

register identifier instead of using a physical register tag obtained through renaming. This is sim-

ilar to physical register inlining [56], but it does not depend on the size of the value. The avail-

ability of some values early in the pipeline may enable additional optimizations such as early

execution.

167

6.3 Costs and Benefits of Use-Based Communication Optimizations

The various value communication optimizations enabled by degree of use prediction attack the

complexity of value communication. Performance improvements are achievable only to the extent

that the complexity affects performance. A pipelined, superscalar processor capable of support-

ing single-cycle (or fully-bypassed) register operations for all simultaneously-executing instruc-

tions places an upper bound on performance. Modulo pipeline bubbles and hazards, such a

machine will execute from the available instruction window as fast as data dependences (and exe-

cution resource constraints) allow. The problem is not the peak performance of this machine, but

the inability to implement it. Optimized communication mechanisms may enable higher clock

frequencies or the realization of a feasible design that approaches this limit.

Use-based optimizations enable the use of less complex structures, but they are inherently

speculative. In order to achieve performance as close as possible to that of an ideal machine, then,

two factors must be minimized: (1) the number of mis-speculations, and (2) the cost of mis-spec-

ulation recovery. The predictor designs offered in Chapter 3 deliver very high accuracy with

respect to the degree of use itself. Any optimizations using this information to engage in further

speculation must be careful to maintain similar accuracies. Minimizing the cost of mis-specula-

tion recovery is more complex.

The obvious cost of mis-speculation recovery is incurred upon an actual mis-speculation. The

cost of this recovery will be an important determinant of the success of a speculative optimization.

In the case of speculative communication optimizations, recovery entails obtaining a specific

value that was not communicated correctly (and potentially re-executing instructions that received

an incorrect value). There are basically two approaches: the value may be regenerated (e.g.,

aborting a useless instruction elimination) or the value may be obtained elsewhere (e.g., the back-

ing file for use-based register caching). As was the case for the two optimizations presented in

this dissertation, the choice of recovery mechanism is dependent on the semantics of the particular

optimization.

A more subtle cost of mis-speculation recovery is the overhead required to maintain the ability

to recover from mis-speculations. This cost was particularly egregious for useless instruction

elimination, where retirement had to be stalled to ensure that any unverified eliminated instruction

could be re-executed. In the case of use-based register caching, this cost manifested as the need to

168

write every value to the backing register file. Microarchitectures designed from the beginning to

support aggressive speculation (e.g., those employing checkpointing [3, 61]) are likely to be the

most appropriate substrate for communication optimizations.

Finally, it should be recognized that although use-based communication optimization seeks to

attack complexity, it can also be a source of complexity. The simplification of a complex commu-

nication structure must be balanced against the inclusion of special-case communication struc-

tures with limited marginal utility. Again, it is likely to be the support for mis-speculation

recovery rather than the particular communication mechanism itself that will drive this trade-off.

169

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus IPC: the end of

the road for conventional microarchitectures. In Proceedingsof the 27th AnnualInterna-

tional Symposium on Computer Architecture, June 2000. pp. 248-59.

[2] P. Ahuja, D. Clark, and A. Rogers. The performance impact of incomplete bypassing in

processor pipelines. In Proceedingsof the 28th Annual International Symposiumon

Microarchitecture, December 1995. pp. 36-45.

[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and recovery: towards

scalable large instruction window processors. In Proceedingsof the36thAnnualInterna-

tional Symposium on Microarchitecture, December 2003. pp. 423-34.

[4] Alpha21264/EV67HardwareReferenceManual, Compaq Computer Corporation, March,

2002.

[5] Alpha Architecture Handbook, 4th Ed., Compaq Computer Corporation, January 2002.

[6] Assembly Language Programmer’s Guide, Digital Equipment Corporation, March 1996.

[7] G. Ammons and J. Larus. Improving data-flow analysis with path profiles. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, May 1998. pp. 72-84.

170

[8] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the complexity of the reg-

ister file in dynamic superscalar processors. In Proceedings of the 34th Annual

International Symposium on Microarchitecture, December, 2001. pp. 237-48.

[9] R. Bodik and R. Gupta. Partial dead code elimination using slicing transformations. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, May 1997. pp. 159-70.

[10] M. Bohr. Interconnect scalaing: the real limiter to high performance ULSI. In Proceed-

ings of the IEEE International Electron Devices Meeting, December 1995. pp. 241-4.

[11] E. Borch, E. Tune, S. Manne, and J. Emer. Loose loops sink chips. In Proceedings of the

8th Annual International Symposium on High-Performance Computer Architecture, Febru-

ary 2002. pp. 270-81.

[12] D. Burger and T. Austin. The SimpleScalar tool set, version 2.0. Technical Report CS-

TR-97-1342, University of Wisconsin-Madison, June 1997.

[13] J. Burns, and J.-L. Gaudiot. Quantifying the SMT layout overhead—does SMT pull its

weight? In Proceedings of the 6th Annual International Symposium on High-Performance

Computer Architecture, January 2000. pp. 109-20.

[14] J. Butts and G. Sohi. Characterizing and predicting value degree of use. In Proceedings of

the 35th Annual International Symposium on Microarchitecture, November 2002. pp. 15-

26.

[15] J. Butts and G. Sohi. Dynamic dead-instruction detection and elimination. In Proceed-

ings of the 10th International Symposium on Architectural Support for Programming

Languages and Operating Systems, October 2002. pp. 199-210.

[16] J. Butts and G. Sohi. A static power model for architects. In Proceedings of the 33rd

Annual International Sympoisum on Microarchitecture, December 2000. pp. 191-201.

[17] J. Butts and G. Sohi. Use-based register caching with decoupled indexing. In Proceed-

ings of the 31st Annual International Symposium on Computer Architecture, June 2004.

pp. 302-13.

171

[18] H. Cain, K. Lepak,B. Schwartz,andM. Lipasti. Preciseandaccurateprocessorsimula-

tion. In Proceedings of the 5th Workshop on Computer Architecture Evaluation Using

Commercial Workloads, February 2002. pp.13-22.

[19] H. CainandM. Lipasti. Memoryordering:a value-basedapproach.In Proceedings of the

31st Annual International Symposium on Computer Architecture, June 2004. pp.90-101.

[20] P. Chang,N. Warter,S. Mahlke, W. Chen,andW. Hwu. Threearchitecturalmodelsfor

compiler-controlledspeculativeexecution. IEEE Transactions on Computers, 44(3),

March 1995. pp.481-94.

[21] P.-S.Chen,M.-Y. Hung,Y.-S. Hwang,R. Ju,andJ. Lee. Compilersupportfor specula-

tive multithreadingarchitecturewith probabilisticpoints-toanalysis. In Proceedings of the

9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

October 2003. pp.25-36.

[22] W. Chen,S. Mahlke,N. Warter,S. Anik, andW. Hwu. Profile-assistedinstructionsched-

uling. International Journal for Parallel Programming, 22(2), April 1994. pp.151-81.

[23] K. Cooper,M. Hall, and K. Kennedy. Procedurecloning. In Proceedings of the IEEE

1992 International Conference on Computer Languages, April 1992. pp.96-105.

[24] J.-L. Cruz, A. González,M. Valero, and N. P. Topham. Multiple-bankedregisterfile

architectures.In Proceedings of the 27th Annual International Symposium on Computer

Architecture, June 2000. pp.316-25.

[25] A. DhodapkarandJ. Smith. Managingmulti-configurationhardwarevia dynamicwork-

ing setanalysis. In Proceedings of the 29th Annual International Symposium on Computer

Architecture, May 2002. pp.233-44.

[26] K. DriesenandU. Hoelzle. The cascadedpredictor:economicalandadaptivebranchtar-

get prediction. In Proceedings of the 31st Annual International Symposium on

Microarchitecture, December 1998. pp.249-58.

[27] A. EdenandT. Mudge. TheYAGS branchpredictionscheme.In Proceedings of the 31st

Annual International Symposium on Microarchitecture, December 1998. pp.69-77.

172

[28] L. Eeckhoutand K. Bosschere. Hybrid analytical-statisticalmodeling for efficiently

exploringarchitectureandworkloaddesignspaces. In Proceedings of the 2001 Interna-

tional Conference on Parallel Architectures and Compilation Techniques, September

2001. pp.25-34.

[29] D. Ernst and T. Austin. Efficient dynamicschedulingthroughtag elimination. In Pro-

ceedings of the 29th Annual International Symposium on Computer Architecture, May,

2002. pp.37-46.

[30] M. Evers,S. Patel,R. Chappell,andY. Patt. An analysisof correlationandpredictability:

whatmakestwo-levelbranchpredictorswork. In Proceedings of the 25th Annual Interna-

tional Symposium on Computer Architecture, June 1998. pp.52-61.

[31] A. Falcón,J. Stark,A. Ramirez,K. Lai, andM. Valero. Prophet/critichybrid branchpre-

diction. In Proceedings of the 31st Annual International Symposium on Computer

Architecture, June 2004. pp.250-61.

[32] M. FranklinandG. Sohi. Registertraffic analysisfor streamlininginter-operationcommu-

nicationin fine-grainparallelprocessors.In Proceedings of the 25th Annual International

Symposium on Microarchitecture, December 1992. pp.236-45.

[33] J. Fisherand S. Freudenberger.Predictingconditionalbranchdirectionsfrom previous

runsof a program. In Proceedings of the 5th International Symposium on Architectural

Support for Programming Languages and Operating Systems, September 1992. pp.85-95.

[34] J. Fu, J. Patel,andB. Janssens.Stridedirectedprefetchingin scalarprocessors.In Pro-

ceedings of the 25th Annual International Symposium on Microarchitecture, December

1992. pp.102-110.

[35] A. González,J. González,andM. Valero. Virtual-physicalregisters. In Proceedings of

the 4th Annual International Symposium on High-Performance Computer Architecture,

February 1998. pp.175-84.

173

[36] R. Gupta, D. Berson, and J. Fang. Resource-sensitive profile-directed data flow analysis

for code optimization. In Proceedingsof the 30th Annual International Symposiumon

Microarchitecture, December 1997. pp. 358-68.

[37] A. Hartstein and T. Puzak. The optimum pipeline depth for a microprocessor. In Proceed-

ings of the 29th Annual International Symposiumon ComputerArchitecture, May 2002.

pp. 7-13.

[38] J. Hennessy and D. Patterson. ComputerArchitecture,a QuantitativeApproach,2nd Ed.

Morgan Kaufmann, 1996.

[39] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The

microarchitecture of the Pentium 4 processor. In Intel TechnologyJournal,Q1, Intel Cor-

poration, 2001.

[40] G. Hinton, M. Upton, D. Sager, D. Boggs, D. Carmean, P. Roussel, T. Chappell, T.

Fletcher, M. Milshtein, M. Sprague, S. Samaan, and R. Murray. A 0.18-µm CMOS IA-32

processor with a 4-GHz integer execution unit. In IEEE Journal of Solid-StateCircuits,

36(11), November 2001. pp. 1617-27.

[41] M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and P. Shivakumar. The opti-

mal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In Proceedingsof the29th

Annual International Symposium on Computer Architecture, May 2002. pp. 14-24.

[42] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory system: predicting and

optimizing memory behavior. In Proceedingsof the 29th Annual International Sympo-

sium on Computer Architecture, May 2002. pp. 209-20.

[43] Z. Hu and M. Martonosi. Reducing register file power consumption by exploiting value

lifetime characteristics. Presented at the Workshop on Complexity Effective Designs (held

in conjunction with the 27th Annual International Symposium on Computer Architecture),

June 2000.

[44] IA-32 Intel Architecture Software Developer’s Manual, volume 2, Intel Corporation, 2001.

174

[45] International Technology Roadmap for Semiconductors, Executive Summary. Semicon-

ductor Industry Association, 2003.

[46] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confidence to conditional branch

predictions. In Proceedings of the 29th Annual International Symposium on Microarchi-

tecture, December 1996. pp. 142-52.

[47] N. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, May 1990. pp. 364-73.

[48] R. Kessler. The Alpha 21264 microprocessor. In IEEE Micro, 19(2), April 1999. pp. 24-

36.

[49] G. Kildall. A unified approach to global program optimization. In Proceedings of the 1st

Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

October 1973. pp. 194-206.

[50] H. Kim and J. Smith. An instruction set and microarchitecture for instruction level distrib-

uted processing. In Proceedings of the 29th Annual International Symposium on Computer

Architecture, May 2002. pp. 71-81.

[51] A. Klaiber. The technology behind Crusoe processors. Transmeta Corporation White

Paper, January 2000.

[52] A. KleinOsowski and D. Lilja. MinneSPEC: a new SPEC benchmark workload for simu-

lation-based computer architecture research. In Computer Architecture Letters, June 2002.

[53] J. Knoop, O. Ruthing, and B. Steffen. Partial dead code elimination. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation, June

1994. pp. 147-58.

[54] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the

8th Annual International Symposium on Computer Architecture, May 1981. pp. 81-7.

[55] K. Lepak and M. Lipasti. On the value locality of store instructions. In Proceedings of the

27th Annual International Symposium on Computer Architecture, June 2000. pp. 182-91.

175

[56] M. Lipasti, B. Mestan,andE. Gunadi. Physicalregisterinlining. In Proceedings of the

31st Annual International Symposium on Computer Architecture, June 2004. pp.325-35.

[57] J. Lo, S. Parekh,S. Eggers,H. Levy, andD. Tullsen. Software-directedregisterdealloca-

tion for simultaneousmultithreadedprocessors. In IEEE Transactions on Parallel and

Distributed Systems, 10(9), September 1999. pp.922-33.

[58] L. LozanoC. andG. Gao. Exploiting short-livedvariablesin superscalarprocessors.In

Proceedings of the 28th Annual International Symposium on Microarchitecture, Decem-

ber 1995. pp.292-302.

[59] N. Malik, R. Eickemeyer,and S. Vassiliadis. Interlock collapsingALU for increased

instructionlevel parallelism. In Proceedings of the 25th Annual International Symposium

on Microarchitecture, December 1992. pp.149-57.

[60] M. Martin, A. Roth,andC. Fischer. Exploiting deadvalueinformation. In Proceedings of

the 30th Annual International Symposium on Microarchitecture, December1997. pp.125-

35.

[61] J. Martínez,J. Renau,M. Huang,M. Prvulovic, and J. Torrellas. Cherry: checkpointed

early resourcerecycling in out-of-order microprocessors. In Proceedings of the 35th

Annual International Symposium on Microarchitecture, November 2002. pp.3-14.

[62] E. Mehofer and B. Scholz. Probabilisticdata flow systemwith two-edgeprofiling. In

Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and

Optimization, July 2000. pp.65-72.

[63] T. Monreal,A. González,M. Valero,J.González,andV. Viñals. Delayingphysicalregis-

ter allocation through virtual-physical registers. In Proceedings of the 32nd Annual

International Symposium on Microarchitecture, November, 1999. pp.186-92.

[64] T. Monreal,V. Viñals, A. González,andM. Valero. Hardwareschemesfor early register

release. In Proceedings of the International Conference on Parallel Processing, August

2002. pp.5-13.

176

[65] T. Mudge. Power: a first-class architectural design constraint. In IEEE Computer, 34(4),

April 2001. pp. 52-8.

[66] S. Palacharla, N. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In

Proceedings of the 24th Annual International Symposium on Computer Architecture, June

1997. pp. 206-18.

[67] D. Papworth. Tuning the Pentium-Pro microarchitecture. In IEEE Micro, 16(2), April

1996. pp. 8-15.

[68] J. Philips and S. Vassiliadis. High performance 3-1 interlock collapsing ALUs. In IEEE

Transactions on Computers, 43(3), March 1994. pp. 257-68.

[69] M. Postiff, D. Greene, S. Raasch, and T. Mudge. Integrating superscalar processor compo-

nents to implement register caching. In Proceedings of the 2001 International Conference

on Supercomputing, June 2001. pp. 348-57.

[70] G. Ramalingam. Data flow frequency analysis. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, May 1996. pp. 267-

77.

[71] E. Rotenberg. Exploiting large ineffectual instruction sequences. Technical Report, North

Carolina State University, November 1999.

[72] A. Roth, A. Mendelson, and R. Ronen. Dynamic techniques for load and load-use sched-

uling. In Proceedings of the IEEE, 89(11), November 2001. pp. 1621-37.

[73] Y. Sazeides, S. Vassiliadis, and J. Smith. The performance potential of data dependence

speculation and collapsing. In Proceedings of the 29th Annual International Symposium

on Microarchitecture, December 1996. pp. 238-47.

[74] M. Schlansker and B. Rau. EPIC: explicitly parallel instruction computing. In IEEE Com-

puter, 33(2), February 2000. pp. 37-45.

[75] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.

Muchnick and N. Jones, ed., Program Flow Analysis: Theory and Applications, Prentice-

Hall, 1981. pp. 189-234.

177

[76] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Improving prediction for procedure

returns with return-address-stack repair mechanisms. In Proceedings of the 31st Annual

International Symposium on Microarchitecture, December 1998. pp. 259-71.

[77] J. Smith. A study of branch prediction strategies. In Proceedings of the 8th Annual Inter-

national Symposium on Computer Architecture, May 1981. pp. 135-48.

[78] G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the

22nd Annual International Symposium on Computer Architecture, June 1995. pp. 414-25.

[79] E. Sprangle and D. Carmean. Increasing processor performance by implementing deeper

pipelines. In Proceedings of the 29th Annual International Symposium on Computer

Architecture, May 2002. pp. 25-34.

[80] Standard Performance Evaluation Corporation. http://www.spec.org.

[81] J. Swensen and Y. Patt. Hierarchical registers for scientific computers. In Proceedings of

the 1988 International Conference on Supercomputing, July 1988. pp. 346-53.

[82] R. Tarjan. Depth first search and linear search algorithms. In SIAM Journal of Comput-

ing, 1(2), June 1972. pp. 146-60.

[83] R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. In IBM

Journal of Research and Development, 11(1), January 1967. pp. 25-33.

[84] L. Torvalds et al. arch/alpha/entry.S. In Linux kernel source code, version 2.6.0,

December, 2003.

[85] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: maximizing on-chip

parallelism. In Proceedings of the 22nd Annual International Symposium on Computer

Architecture, May 1995. pp. 392-403.

[86] D. Wall. Predicting program behavior using real or estimated profiles. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Implementation,

May 1991. pp. 59-70.

178

[87] S. Wallace and N. Bagherzadeh. A scalableregister file architecturefor dynamically

scheduledprocessors.In Proceedings of the 1996 Conference on Parallel Architectures

and Compilation Techniques, October 1996. pp.179-84.

[88] C. Webb. Subroutinecall/returnstack. In IBM Technical Disclosure Bulletin, 30(11),

April 1988.

[89] K. C. Yeager. The MIPS R10000superscalarmicroprocessor. In IEEE Micro, 16(2),

April 1996. pp.28-41.

[90] A. Yoaz,M. Erez,R. Ronen,andS. Jourdan. Speculationtechniquesfor improving load

relatedinstructionscheduling. In Proceedings of the 26th Annual International Sympo-

sium on Computer Architecture, May 1999. pp.42-53.

[91] A. Yoaz,R. Ronen,R. Chappell,andY. Almog. Silenceis golden? Presentedat the 7th

Annual International Symposium on High-Performance Computer Architecture, January

2001.

[92] R. Yung and N. Wilhelm. Cachingprocessorgeneralregisters. In Proceedings of the

International Conference on Computer Design, October 1995. pp.307-12.

[93] J.Zalamea,J.Llosa,E. Ayguadé,andM. Valero. Two-levelhierarchicalregisterfile orga-

nization for VLIW processors. In Proceedings of the 33rd Annual International

Symposium on Microarchitecture, December 2000. pp.137-46.

[94] C. Zilles and G. Sohi. Understandingthe backwardslices of performancedegrading

instructions. In Proceedings of the 27th Annual International Symposium on Computer

Architecture, June 2000. pp.172-81.

179

Appendix

Methodology

Details on the experimental methodology are presented in this appendix.

A.1 Benchmarks

Throughout this document, the experimental evaluations make use of the SPEC CPU 2000 bench-

mark suite [80]. The SPEC benchmark suite consists of 26 programs divided into an integer

benchmark set and a floating-point benchmark set based on the dominant type of computation

performed. The integer benchmark set consists of 12 programs, 11 of which are written in C and

one of which (eon) is written in C++. The 14 programs in the floating-point benchmark suite are

written in one of three languages: Fortran-77 (6 programs), Fortran-90 (4 programs), or C

(4 programs).

A.1.1 Input data

The train inputs provided by SPEC were used in all experiments except for the gathering of the

profile data in Section 3.3.3. The number of instructions executed to process the reference inputs

is prohibitive given the slowdown of execution-driven simulation. The train inputs are signifi-

cantly smaller, but still execute on the order of 40 billion instructions per benchmark when run to

completion. While reduced reference inputs such as those made available by the University of

Minnesota [52] are an alternative, reduced inputs were not available for all of the benchmarks at

180

thetime of this writing. Also, giventhebundlingof thestandardinput setswith theSPECdistri-

bution, availability and stability of the training inputs is assured.

A.1.2 Multiple-input benchmarks

Threeof the integerbenchmarks(eon, perl, andvpr) specifymultiple, independentprogram

runsaspartof thetraininginput. For thesebenchmarks,aggregatedata,representingtheconsec-

utive executionof the requiredruns, is presented.Wheresimulationtime constraintsrequired

partialexecutionof a benchmark(seeSectionA.4.2), someof therunsmaynot berepresentedif

theinstructionlimit occurredprior to thebeginningof thatrun. Therefore,theorderof themulti-

ple inputs is important. The orderof the inputsusedfor eon wascook, rushmeier, kajiya; for

perl, diffmail, perfect, scrabbl; for vpr, placement (-place_only), routing

(-route_only). Dueto limitationsof thesimulatorinfrastructure,all microarchitecturalstate

(e.g., cache and branch predictor contents) is re-initialized prior to each run.

A.1.3 perl test input

The evaluationof staticpredictionin Section3.3.3 includedprofiling datagatheredon the test

input set, which is also distributed by SPEC. Except for perl, eachbenchmark’s test run

requiresonly asingleinputandwasexecutedto completion.perl’s testinput is problematicfor

the simulationenvironmentbecauseit forks new processes.The input consistsof a top-level

scripttest.pl thatforks theperl interpretersequentiallyoneachof 59testscripts(which them-

selvesexecutemultiple independenttests).Severalof thesescriptsalsoattemptto fork additional

copies of perl or run a system command as part of their test routines.

This processwas modified for the simulation environment by eliminating the wrapper

test.pl scriptandsimply runningthesimulatorconsecutively on eachof thescripts,similar to

thehandlingof multiple input filesdescribedin SectionA.1.2. Any singletestthatrequiredfork-

ing an external process was not executed. The following individual tests were eliminated:

• Tests 12 and 13 inlex.t

• Test 11 insplit.t

• Test 3 ingoto.t

• All tests inscript.t (i.e., this script was not run at all)

181

A.2 Benchmark Compilation

How the individual benchmarks are compiled can have a significant impact on the final behavior

of the benchmark (e.g., see Figure 4.3). This section describes each of the compilers used in the

generation of benchmarks for this work as well as the flags used for generating benchmarks at dif-

ferent optimization levels.

A.2.1 Compilers

The compilers are divided into two suites such that between the two suites, each benchmark is

compiled with a different compiler. The suites consist of vendor compilers, originally written

specifically to support the Alpha architecture, and retargettable, third-party compilers, which sup-

port many different architectures. As such, the vendor compilers offer better optimization and

yield higher-performing benchmarks. Therefore, binaries generated by the vendor compilers are

used in all experiments where the effect of the compiler is not specifically being investigated.

Table A.1 lists the compilers comprising each suite. The version information for each com-

piler comes directly from the compiler itself when executed with -V or --version as appropri-

ate. Note that the Fortran-77 and Fortran-90 benchmarks were compiled with the same compiler

in each suite.

The flags listed for each compiler were used for all runs of that compiler, independently of

additional flags affecting optimization. Most important is the flag that specifies the binary is to be

statically-linked (-non_shared/-static/-Bstatic), which is required by the simulator

Table A.1: Compiler Suites

Suite Lang. Compiler Flags

V
en

do
r

C Compaq C V6.4-214 (dtk) on Digital UNIX V4.0F (Rev. 1229)
Compiler Driver V6.4-014 (dtk) cc Driver

-std -arch ev6
-non_shared -g3

C++ DIGITAL C++ V6.1-027 on DIGITAL UNIX V4.0 (Rev. 1229) -arch ev6
-non_shared -g3

Fortran DIGITAL Fortran 90 V5.2-705 -arch ev6
-non_shared -g3

T
hi

rd
-p

ar
ty

C GNU gcc 3.3.3 -mcpu=ev6 -static
-g3

C++ GNU g++ 3.3.3 -mcpu=ev6 -static
-g3

Fortran NAGWare Fortran 95 compiler Release 4.2(513) -Bstatic
-target=ev56

182

(see Section A.4.4). A target implementation is specified for each compiler (-arch/-mcpu/

-target), which enables the generation of certain implementation-dependent instructions. In

each case, the latest Alpha implementation supported by each compiler was selected in order to

use the more efficient instructions that these implementations offer. The remaining flags specify

the inclusion of debugging information provided it does not interfere with optimization (-g3) and

the legality of certain source language constructs appearing in the benchmarks (-std).

A.2.2 Optimization levels

Three different optimization levels were used in the studies on useless instructions presented in

Section 4.1.2. On all compilers, the unoptimized benchmarks were generated with the -O0 flag,

and the lightly-optimized benchmarks with -O1. The tuned configuration uses per-benchmark

flags that yielded the highest performance on a simulated eight-wide, deeply-pipelined configura-

tion (see Section A.5). The options used for the tuned configuration appear in Table A.2.

In many cases, the best performance was obtained by allowing deviation from IEEE standard

floating-point behavior (e.g., with such options as -fast, -ffast-math, and

-ieee=nonstd). Changes in floating-point behavior frequently result in slight differences

between the outputs of a benchmark when compiled with different options. SPEC recognizes this

possibility and provides per-benchmark tolerances (absolute and/or relative); any benchmark run

must match the baseline output they provide within these tolerances. This restriction was

observed in the selection of these optimization flags: optimizations that led to differences with the

SPEC-provided benchmark outputs (when executed on a native Alpha machine) were not used.

A bug in the gcc compiler (not the benchmark) required one additional command-line option

to be specified for most of the benchmarks using the -ffast-math option. The implementa-

tion of the -ffast-math option uses a special library, and the bug results in the library being

specified improperly to the linker, resulting in a compile-time error. A modified gcc spec file

(which specifies how the different phases of the compilation are run) was generated with the cor-

rect library ordering; the additional command-line option -specs=specs.math tells gcc to

use a modified spec file specs.math. This option does not affect the optimization of the bench-

mark and is therefore not listed in the tables.

183

A.3 Binary Dataflow Analyzer

Two experiments required the results of the dataflow analysis described in Section 3.3.1. Besides

the generation of static degree of use predictions used for studies of Section 3.3.3, the analysis

Table A.2: Tuned-Benchmark Compilation Options

Benchmark Language Vendor compiler Third-party compiler

ammp C -O4 -fast -om -O3 -funroll-loops -ftracer -ffast-math

art C -fast -inline speed -O2 -funroll-loops -ftracer

bzip2 C -O4 -fast -O2 -funroll-loops -ftracer -ffast-math

crafty C -fast -om -O3 -ftracer -ffast-math

eon C++ -O2 -fp_reorder -inline speed
-assume trusted_short_alignment

-O2 -funroll-loops -ftracer

equake C -O4 -inline speed -om -O2 -ffast-math

gap C -fast -inline speed -om -O3 -ffast-math

gcc C -fast -om -O2 -ffast-math

gzip C -O3 -inline speed -O2 -funroll-loops -ftracer -ffast-math

mcf C -O4 -fast -inline speed -O3 -funroll-loops -ffast-math

mesa C -fast -O2 -ftracer

parser C -fast -inline speed -om -O3 -funroll-loops -ffast-math

perl C -O4 -fast -om -O2 -ftracer

twolf C -fast -O3 -funroll-loops -ftracer

vortex C -O4 -fast -om -O3 -ftracer

vpr C -O4 -fast -O3 -funroll-loops

applu F77 -O5 -fast -O4 -Ounsafe

apsi F77 -O4 -fast -O3 -ieee=nonstd

facerec F90 -O4 -fast -om -O3 -Oassumed -ieee=nonstd

fma3d F90 -O4 -transform_loops -O3 -Oassumed -ieee=nonstd

galgel F90 -O4 -fast -O3 -Ounsafe

lucas F90 -fast -pipeline -O4 -ieee=nonstd

mgrid F77 -O4 -transform_loops -om -O3 -Ounsafe

sixtrack F77 -O4 -pipeline -om -O3 -ieee=nonstd

swim F77 -O5 -fast -O4 -ieee=nonstd

wupwise F77 -O4 -om -O4 -ieee=nonstd

184

was also used in Section 4.1.2 to differentiate dead instructions and dynamically-dead instructions

(both of which only generate useless instances).

For this work, the static dataflow analysis operated on compiled and linked object files.

Because the degree of use dataflow problem pertains to values in architectural registers and would

be performed after both register allocation and code generation, a suitable intermediate represen-

tation can be obtained from an object file. Also, modifying the compilers to perform the degree of

use dataflow analysis during code generation would have been prohibitively time consuming and

limited to the GNU compilers (gcc and g++) for which the compiler source code is available.

A.3.1 Precision considerations

The use of a binary analyzer does have consequences for the precision of the analysis. The possi-

ble targets of indirect branches and calls are not easily attainable from the object code. The ana-

lyzer instead uses the actual targets observed during an execution of the benchmark as the set of

possible static targets of the indirect branch. Paths through indirect branches not actually exer-

cised during the execution are not included in the analysis, leading to a more precise analysis than

would be possible in a compiler.

Offsetting this advantage, the loss or obfuscation of other information within the binary leads

to reduced precision. For example, statically-known loop counts are lost. Thus, the number of

uses of results used within loop bodies cannot be determined, reducing the precision of the analy-

sis. A similar situation exists with respect to dependent conditional statements wherein the ana-

lyzer does not know that certain paths through multiple conditionals are not actually possible.

These effects reduce the precision of the binary analyzer relative to a compiler performing the

same analysis.

A.3.2 Operation of binary analyzer

The binary analyzer operates as follows:

• Generatecontrol-flow graphs. The disassembled object file is parsed and branch targets are

recorded to determine basic block boundaries. Basic blocks are linked into per-procedure con-

trol-flow graphs.

• Mergeproceduresconnectedby branches. Certain procedures directly branch to other proce-

dures when the implementation can be re-used. These procedures occur within the standard lan-

185

guage libraries when the implementation of the different procedures may be shared (e.g., the C

library functions memcpy() and memmove()). Such procedures are merged into a single pro-

cedure to avoid analyzing the same instructions twice under different circumstances.

• Generatean acyclic call graph. The call graph contains one node per procedure and directed

edges correspond to a call from one procedure to another. Strongly-connected components,

which indicate the existence of cycles within the graph resulting from recursion, are detected

using an implementation of Tarjan’s algorithm [82] and collapsed into single nodes.

• Compute φ-functions for eachprocedure. A depth-first sort on the call graph orders the pro-

cedures such that all procedures appear before their callers (i.e., leaf procedures are processed

first). φ-functions [75] are calculated at the basic block granularity. These functions convert

facts true at the end of the procedure to facts true at the end of a basic block. Thus, the φ-func-

tion at the entry block of the procedure summarizes the dataflow effect of the entire procedure.

The order in which procedures are processed ensures that the effects of all called procedures are

known when generating the φ-function for the caller. Procedures belonging to strongly-con-

nected components are iterated until the φ-functions converge.

• Computedataflow factsat eachprocedureexit. In the reverse order that the φ-functions were

generated (i.e., callers first), the facts at the end of the procedure are used to determine the facts

true at each procedure call (with the φ-functions). For a given procedure, the facts true at the

end of that procedure are just the meet (union) of the facts true after every call to that procedure

within all calling procedures.

• Annotate individual instructions. The exit facts of each procedure together with the φ-func-

tion for a basic block within that procedure yield the facts true at the end of each basic block.

This information is propagated backwards through the block to annotate each value-generating

instruction with the possible degrees of use for that instruction, which is the final output of the

analyzer.

A.4 Simulation

This section describes general attributes of the execution-driven simulation methodology used to

obtain most of the results in this work. Details of the microarchitectural performance model will

be presented in Section A.5.

186

A.4.1 Execution-driven simulation

Execution-driven simulation involves the emulation of each instruction executed on a target (sim-

ulated machine of interest) by the host (machine running the simulator). Modulo the accuracy of

the emulation, the simulator is able to reproduce the changes in architectural state that would

occur during an actual execution of a program on the target. In this work, the target is a machine

implementing the Alpha instruction set architecture [5], including the BWX, CIX, and FIX, and

MVI extensions that were introduced in later hardware implementations [4].

The simulators used in this work were built using components from the SimpleScalar v3.0

toolset [12]. SimpleScalar provided the underlying emulation code for the Alpha ISA and Digital

UNIX system calls (see Section A.4.3), the program loader and memory space management (i.e.,

simulator to host address mapping) code, and some auxiliary niceties such as command-line pars-

ing and basic statistics collection.

Significant changes were made to both the ISA and system call emulation code to fix errors

exposed by the use of different compilation methods. Initially, many of the benchmarks did not

run under the simulator or generated results that fell outside tolerances (see Section A.2.2) where

a native run of the same binary yielded outputs within the tolerances. As a result, several new sys-

tem calls and instructions had to be implemented and many existing implementations were cor-

rected or enhanced. Most of these changes pertained to the precision and rounding modes of

emulated floating-point operations.

A.4.2 Functional versus timing simulation

The minimalist execution-driven simulator, a functional simulator, tracks only the architected

state. It models the target machine at the granularity of a single instruction, actually operating

according to the von Neumann one-instruction-at-a-time model of program execution. Such a

simulator is useful for the characterization of programs, such as those appearing in Chapter 2 and

the beginning of Chapter 4, where neither timing information nor the effects of pipelining are of

interest.

A timing or performance simulator models a specific implementation of the target at a much

lower level. It adds a detailed, parameterized microarchitectural model, which simulates not only

the results of executing an instruction, but how the instruction is executed in the modeled microar-

187

chitecture on a cycle granularity. Therefore, a timing simulator provides performance data (in

terms of cycle count) as well as information about the behavior of the various components of the

modeled microarchitecture during the execution of a benchmark. All performance evaluations in

this work (and accompanying analyses) were performed using a timing simulator. In addition, the

evaluation of the dynamic degree of use predictors of Section 3.4 was performed using timing

simulation; while performance was not relevant to these experiments, the training of the dynamic

predictor is affected by pipelining (see Section 3.4.6). The microarchitectural model assumed by

the timing simulator is described in detail in Section A.5.

Because of the complexity of the timing simulator, it is about ten times slower than the func-

tional simulator. Therefore, while benchmarks were executed to completion when functional sim-

ulation was used, only the first four billion instructions of each benchmark were executed in

timing simulations. This particular sample of the benchmark is almost certainly not representa-

tive of the behavior of the entire benchmark in many cases. However, in no case was the true per-

formance of a particular benchmark important—the goal was not to design a machine that

delivered some level of performance on a workload based on the programs comprising the SPEC

suite. Rather, the concern was that the benchmarks offer a wide variety of different behaviors

under which the effects of particular microarchitectural adjustments can be evaluated. The data

presented throughout this work indicate that this goal has been achieved.

A.4.3 System call emulation

The execution-driven simulation environment provided by the SimpleScalar toolkit handles a sin-

gle user-level process only. In a real machine, system calls (to perform such tasks as I/O and sys-

tem memory allocation) involve a transfer of control to the operating system and the execution of

potentially privileged instructions (i.e., only available to the system software). In the single-pro-

cess model of SimpleScalar, system calls are emulated by transferring parameters and (if neces-

sary) data from simulated memory to host memory, executing the equivalent system call on the

host, and transferring the results back to the simulated machine.

Emulating system calls in this manner influences the accuracy of the simulation in several

ways. The entire operation of the system call, which may involve the execution of thousands of

instructions, is condensed into a single atomic operation. From the perspective of the functional

188

simulator, these missing system instructions are the only real effect of system call emulation. For

the types of studies performed with the functional simulator (benchmark characterization), the

omission of system code is not important.

The effect of system call emulation on timing simulation is more profound. Scheduling and

execution of other processes, hardware-generated interrupts, paging, and I/O accesses all affect

microarchitectural state, which in turn impacts the performance of the benchmark. There is some

evidence that the performance effect can be significant, even for the SPEC benchmarks, which

spend relatively little time in system code [18]. Versus the results presented in this work, a real

system would realize lower degree of use prediction accuracy (due to predictor interference by

other processes) and lower overall performance (due to interference in other performance-enhanc-

ing structures, such as the caches and branch predictor). The relative performance impact of the

optimizations presented would be correspondingly reduced as the benchmark performance was

more influenced by memory stall time and branch mispredictions. The magnitudes of these vari-

ous effects are difficult to estimate.

The actual handling of the system call by the simulator requires additional explanation. In the

functional simulator, the system call is treated as a single instruction which executes to comple-

tion in isolation, like all other instructions. In the timing simulator, the detection of a system call

(at decode) squashes all subsequent instructions and halts fetch. The machine completes all older

in-flight instructions until the system call is the oldest (and only) instruction in the machine. At

this point, the system call is emulated, which may involve the read and/or update of architected

state. From the point of view of use tracking, a system call is treated as a single use followed by a

new definition of every architected register.†

A.4.4 Static linking

Another consequence of the simulator’s restriction to a single user-level program image is that it

is incapable of calling upon the system’s dynamic linker. As a result, programs are not able to

make use of dynamically-linked shared libraries, such as the ubiquitous language standard librar-

† This accounting for system calls is not as arbitrary as it may seem. The Linux kernel [84], for example,
adjusts the stack pointer prior to saving all integer registers to the stack, in effect using each register once
(argument registers may see additional uses). The reverse process occurs on the completion of the system
call resulting in a new definition for each register as its former value is loaded from the stack.

189

ies (e.g., libc and libm for C programs). Instead, all libraries must be statically-linked into a

simulator executable.

The main consequence of static linking is that the compilers gain some additional visibility

into the libraries and are able to perform inlining of library calls, code re-layout, and a few other

post-link optimizations precluded by normal dynamic linking. More extensive optimizations are

blocked because the libraries have already been compiled (when most optimization occurs) and

their source code is not available during the benchmark compilation.

A.5 Timing Simulator Microarchitectural Model

The timing model used in this work was originally written by Craig Zilles of the University of Illi-

nois while he was a graduate student at University of Wisconsin. His goal was the implementa-

tion of a highly-idealized microarchitectural model with which to investigate performance

limitations inherent to programs executing on a superscalar machine (e.g., his work on perfor-

mance-degrading instructions [94]). Over the past few years, most of the core microarchitectural

model has been rewritten to reproduce limitations inherent to real hardware.

A block diagram of the microarchitecture modeled by the timing simulator appears in

Figure A.1. The microarchitecture is representative of a modern out-of-order superscalar proces-

sor. The block diagram is divided into six modules for purposes of discussion. Each of the mod-

ules is shaded in the figure and labeled with the section in which that module is discussed.

The specifics of the microarchitecture are controlled by a large number of simulator parame-

ters. Four different configurations of the timing simulator were used in the following evaluations:

(1) dynamic degree of use prediction (Chapter 3), (2) useless instruction elimination (Chapter 4),

(3) use-based register caching in an eight-wide machine (Chapter 5 except for Figure 5.11),

(4) use-based register caching in a four-wide machine (Figure 5.11). The first of these was also

used in the determination of the compiler flags yielding the highest performance (see

Section A.2.2). The values of the simulator parameters are provided for each of these four config-

urations (tagged Ch. 3, Ch. 4, Ch. 5W, and Ch. 5N, respectively) in a table corresponding to each

simulator module.

190

A.5.1 Fetch pipeline (front end)

The fetch pipeline is responsible for instruction delivery. Each cycle that fetch is not stalled (e.g.,

due to a pipeline back-up, an instruction cache miss, or a bad fetch address), the front end injects

a fetch block of instructions into the fetch pipeline, which models the latencies of generating the

fetch address, accessing the instruction cache, and aligning the fetched instructions. A fetch

queue decouples the fetch pipeline from the remainder of the machine, smoothing out variations

in fetch block size.

The fetch width limits the maximum number of instructions in a fetch block. NOPs are elimi-

nated from the instruction stream here and do not count against the fetch block size (although they

increase the probability that a fetch block will reach a cache line boundary). As in the Alpha

21264, conditional move instructions—the only three-input instructions—are cracked into two

data-dependent, two-input instructions [4]. These are treated independently from fetch through

Figure A.1. Microarchitecture modeled by the timing simulator

Fetch Fetch Decode
Reorder buffer (ROB) Commit

S
ch

ed
ul

er Store

L1 D-cache

Load, store

Unified L2 cache

L1 I-cache
In

st
ru

ct
io

n
w

in
do

w

buffer

queues

Branch

preds
register

file

Physical

pipeline queue pipeline

Main memory

Rename
map

A.5.6

A.5.3

A.5.2 A.5.5A.5.1

A.5.4

191

retirement (e.g., each one consumes an instruction slot in the fetch block). Only those statistics

based on retired instruction count (e.g., IPC), count the pair as a single instruction.

The fetch block may contain fewer instructions than the fetch width. The total number of

taken control instructions (of any kind) is limited; fetch blocks may include any number of non-

taken conditional branches. Instruction cache access ports are modeled by limiting the number of

cache lines spanned by the fetch block. If the flow of control leaves and returns to a particular

cache line, the block is treated as a new line.

Conditional branches are predicted serially using a YAGS [27] branch predictor. The global

branch history register is modified speculatively with each branch prediction; it is recovered and

corrected (if necessary) on exceptions. The target addresses of taken conditional branches are

assumed to be available (i.e., a perfect BTB). The target addresses of indirect jumps and calls

(except for returns) are predicted using a cascaded indirect branch predictor [26] with leaky filter-

ing.† The target of a procedure return is obtained by popping a return address stack [88] on which

each direct and indirect call pushes the address of its subsequent instruction. The top-of-stack

pointer is recovered on exceptions [76].

Table A.3: Fetch Pipeline Parameters

Parameter Ch. 3 Ch. 4 Ch. 5W Ch. 5N

Non-NOP instructions fetched/cycle (fetch block size) 8 4 8 4

Instruction cache read ports 2 1 2 1

Stages in fetch pipeline (includes I-cache latency) 6 3 5 5

Maximum taken control instructions per fetch block 2 1 2 1

Entries in fetch queue 56 16 48 24

YAGS branch predictor: history bits (log2 PHT entries) 14

YAGS: T/NT exception table entries (each) 4096

YAGS: exception table tag bits (branch_PC[7:2]) 6

Cascaded indirect branch predictor: simple table entries 256

Indirect: exception table entries 1024

Indirect: history path length (see footnote on page 192). 3

Return address stack (RAS) entries 64

192

A.5.2 Decode pipeline

Instructions from the fetch queue are renamed and allocated resources in the decode pipeline.

The depth of this pipeline models the latency of these operations, although, as in the front end,

they occur logically in the first stage. Entry into the decode pipeline is gated by the availability of

the allocated resources, which include instruction window and reorder buffer entries, physical reg-

isters, and load or store queue (LSQ) entries. Except for LSQ entries, the lack of enough of each

resource to handle one cycle of full-width decoding will block any instructions from entering the

decode pipeline; a full load or store queue stalls the decode pipe at the first instruction needing it.

Instructions are renamed by mapping their source architectural registers to physical registers

via a RAM lookup as in the MIPS R10K [89]. Those instructions that write a register are allo-

cated a free physical register from a stack. The state of the rename map is speculative and is

recovered on a branch misprediction or other exception condition. The microarchitectural model

assumes that the map state prior to the rename of any unretired instruction can be recovered (i.e.,

no limit on the number of in-flight speculative branches). These events are always associated with

a re-fetch of instructions from the recovery point, and the map is assumed to be corrected by the

time the first re-fetched instruction reaches the renamer (i.e., no extra recovery latency).

In the simulator model, the dynamic degree of use predictor logically exists completely within

the first decode stage of the pipeline (together with the rest of the decode pipeline operations),

unlike in the depiction in Figure 3.6. Thus, the predictor is only accessed for instructions reach-

ing the renamer instead of all fetched instructions, and the resulting predictions are available

immediately. This does not affect the accuracy results presented in Chapter 3, since prediction

coverage and accuracy are calculated only on instructions that retire. It does, however, mask a

mismatch between the fetch bandwidth (which corresponds to the predictor access bandwidth)

and the rename bandwidth (which corresponds to the prediction consumption bandwidth) due to

the presence of the fetch queue. An actual implementation could handle this problem

† The simple table is indexed with PC[9:2] ⊕ PC[17:10] ⊕ PC[25:18], where PC is the indirect branch PC.
The exception table is indexed with PC[11:2] ⊕ PC[21:12] ⊕ PC[31:22] ⊕ compressed_history[9:0].
The compressed history is 0.0.targhist[7:0] ⊕ 0.targhist[15:8].0 ⊕ targhist[23:16].0.0. Each byte of the
(global) target history corresponds to a prior indirect branch target. Thus, three prior indirect branch tar-
gets are used in generating the exception table index. The target history is updated by shifting left one
byte and placing target_PC[9:2] ⊕ target_PC[17:10] in the least significant byte. For details on the roles
of the different tables, refer to the paper describing the cascaded indirect predictor [26].

193

by: (1) adding a separate FIFO queue for the degree of use predictions, (2) adding a write port

into the fetch queue for the predictions, or (3) ensuring that the predictions were generated prior

to writing the corresponding instruction into the fetch queue.

A.5.3 Instruction window and scheduler

Instructions pass from the decode pipeline into the instruction window. Each cycle the instruction

scheduler selects instructions from the window for issue to the execution pipelines. An instruc-

tion is eligible for issue when its input operands are ready, there is an unused issue port available

with the appropriate execution resource, and the issue port’s writeback bus is free in the cycle that

the instruction will complete. Memory instructions have additional requirements: a load or store

requires a free L1 MSHR (in case of a data cache miss), and a load may be delayed until certain

older stores that could bypass to that load have computed their addresses (see Section A.5.6). The

instruction window selects the oldest eligible instruction until no more instructions are eligible for

issue or the peak issue bandwidth (equal to the number of issue ports) is reached.

The partitioning of the execution resources among issue ports is an important determinant of

the issue behavior. During any given cycle, only one instruction may be issued on a particular

port, which blocks not only the corresponding resource, but all other execution resources bound to

the same port. Each execution resource is assumed to be fully-pipelined (i.e., it can accept a new

operation each cycle).

An instruction’s input operand is ready if that operand will be available from either the bypass

network or the register file by the time the instruction would need it for execution. If the register

file is not fully-bypassed, a register result may become ready on the bypass network upon instruc-

tion completion, then become unready again prior to the completion of the register file write (refer

Figure 5.4(a) and the accompanying discussion).

Table A.4: Decode Pipeline Parameters

Parameter Ch. 3 Ch. 4 Ch. 5W Ch. 5N

Instruction decode bandwidth (decode IPC) 8 4 8 4

Stages in decode pipeline 5 3 5 5

Reorder buffer (ROB) entries 512 256 320 256

194

Operand readiness is speculative: loads are assumed to hit in the L1 data cache and, where a

register cache is used, input operands are assumed to be present in the register cache. A data

cache or register cache miss on an issued instruction implies that the speculative readiness infor-

mation is incorrect and results in the reissue (replay) of all instructions issued after the instruction

causing the replay. Instructions continue to occupy the instruction window after issue until they

are known to be replay-safe. Instructions become replay-safe a fixed latency after issue when the

register or data cache hit-miss status has been determined. This speculative scheduling model is

similar to that implemented by the Alpha 21264 [4, 48].

A.5.4 Register file and execution

Issued instructions read their input operands from the register file beginning in the cycle after they

are issued. The register file read may span multiple cycles (see Figure 5.4(a)) and occurs regard-

less of whether an operand is eventually obtained from the bypass network. A register cache is

simply treated as a single cycle register file for purposes of the execution pipeline. When a miss is

detected, subsequently issued instructions are replayed, and the appropriate penalties are added to

the execution latency of the instruction incurring the miss (see Section 5.2).

Table A.5: Instruction Window and Scheduler Parameters

Parameter Ch. 3 Ch. 4 Ch. 5W Ch. 5N

Instruction window entries 128 64 200 128

Issue port 1a

a. Simple (I)nteger, integer (M)ultiply, integer (B)ranch, simple (F)loating-point, FP multipl(Y), FP
(D)ivide and square root, FP b(R)anch, (L)oad, (S)tore.

N/Ab

b. An earlier issue model was used that did not model the binding of execution resources to specific issue
ports. For these studies, any combination of eight instructions could issue each cycle to the following
resources: 6×I, 2×M, 2×B, 3×F/R, 3×Y/D, 3×L, 3×S.

Ic

c. This issue configuration represents the medium resource model from Chapter 4. See Table 4.4 for
details on other issue configurations used in that chapter.

I I

Issue port 2 IM LS IM

Issue port 3 FYDR LS ILS

Issue port 4 L IF LS

Issue port 5 SB IF B

Issue port 6 – IMBFYR F

Issue port 7 – IMBFYR FYDR

Issue port 8 – ILS –

195

After completion of the register read, a number of cycles equal to the execution latency is

counted. In the final cycle, the ISA implementation code (shared with the functional simulator)

performs the required operation on the actual input data (which is speculative and may be incor-

rect). Memory operations check the LSQ and data cache as described in Section A.5.6.

A.5.5 Commit

The commit logic operates as an in-order pipeline decoupled from the rest of the machine. The

oldest in-flight instruction (at the head of the reorder buffer) is checked for retirement eligibility.

An instruction becomes eligible for retirement after it has executed and the writeback of the

instruction’s result into the register file (where necessary) has completed (i.e., the write latency of

the register file affects the earliest commit time). Eligible instructions are retired in program order

up to a maximum retirement bandwidth.

Store retirement is also gated by the availability of a cache write port and a free store buffer

entry. Thus, the maximum number of stores retired per cycle equals the cache write bandwidth.

The use of a store buffer implies that stores need not complete the cache write operation to retire

Table A.6: Register File and Execution Parameters

Parameter Ch. 3 Ch. 4 Ch. 5W Ch. 5N

Physical register file entries (shared integer & FP) 512 256 320 256

Register file read latency (cycles) 1 1 3 3

Register file write latency (cycles) 1 1 3 3

Bypass network stages 2 2 2 2

Simple integer operation latency (cycles) 1

Integer multiply latency (cycles) 4

Branch execution latency (cycles) 2

Simple floating-point operation latency (cycles) 2

Floating-point multiply latency (cycles) 4

Floating-point divide latency (cycles) 16

Floating-point square root latency (cycles) 33

Load-to-use (L1 hit) and L1 miss detect latency 4 3 3 3

Store latency (to detect collisions and bypass to loads) 3 2 2 2

196

and allows retirement to proceed past store misses. Stores are drained from the store buffer in

program order as the cache write operations complete.

A.5.6 Memory system

Independent load and store queues are responsible for maintaining memory dependences defined

by program order and for communicating memory values among speculative, in-flight instruc-

tions. Entries are allocated to loads and stores in program order in the decode pipeline (see

Section A.5.2). Load entries are freed when the corresponding instruction commits while store

entries are freed after the store data is written to the cache. When a load or store executes, its

physical address is known (a perfect TLB is assumed) and used to probe the opposite queue by

address.

A load searches the store queue for the youngest older store to the same address. If such a

store is found, the load result is bypassed from the store data; otherwise, the data is obtained from

the cache. Address matching is performed at a 64-bit granularity. If a matching store supplies

only part of the load data (a partial overlap), older stores may also be included. In the extreme

case, a 64-bit load may bypass from eight 8-bit stores. The ability to perform partial bypassing

was not present in earlier versions of the simulator, which could only handle loads bypassing from

a single store or the cache. In this case, partial overlaps resulted in a load replays (see below).

Store address and store data operations are not distinguished (i.e., store address operations do not

issue independently of store data operations); therefore, a store’s data is always available once its

address is known and a load will never have to wait for the data of a known-matching store.

Each store probes the load queue for a younger load that should have bypassed from the store

but obtained its result from the cache or from an older store than the store under consideration.

This results in a load-dependence replay wherein the load and all younger instructions are

squashed and fetch resumes with the load.

Table A.7: Commit Parameters

Parameter Ch. 3 Ch. 4 Ch. 5W Ch. 5N

Instruction commit bandwidth (commit IPC) 8 4 8 4

Maximum stores retired per cycle 3 1-2a

a. Equal to the store execution bandwidth for the issue model used. See Table 4.4 for details.

3 2

197

A load dependence predictor minimizes the occurrence of expensive load replays by delaying

the issue of loads with a history of causing these events. The predictor relies upon a table of col-

lision distances [90], which is written in the event of a load-dependence replay. The table is

indexed and tagged by the PC of the load instruction and contains the number of consecutive older

stores (beginning with the youngest older store) that did not collide with the load. This distance is

used to determine when subsequent instances of the load should issue. Since stores within this

distance are not expected to bypass to the load, their addresses do not need to be known prior to

issuing the load. Any store further away (older) than the collision distance must have issued and

computed its address before the load can issue.

Table A.8: Memory System Parameters

Parameter Ch. 3 Ch. 4 Ch. 5W Ch. 5N

Load queue entries 128 64 128 128

Store queue entries 128 64 128 128

Partial bypassing no yes yes yes

Load dependence predictor entries (direct-mapped) 64

L1 cachea capacity (2-way set assoc.; KB)

a. L1 instruction and data caches are identical and independent.

32 64 32 32

L1 block size (bytes) 64

L1 MSHRs 64

L1 stream buffers 8

L1 stream buffer size (blocks) 4

L1-L2 bus bandwidth (bytes/cycle) 16

L2 cache capacity (unified; 4-way set assoc.; KB) 1024 2048 2048 2048

L2 block size (bytes) 128

L2 MSHRs 64

L2 stream buffers 16

L2 stream buffer size (blocks) 4

L2-memory bus bandwidth (bytes/cycle) 8

L2 latency (cycles) 12 8 12 12

Memory latency (cycles) 180 100 160 160

Store buffer entries 16

198

A store buffer queues committed stores until their cache write is complete. The store buffer is

emptied into the L1 data cache in program order. A store miss stalls the processing of stores in

the buffer until the appropriate line is fetched into the L1 data cache. Data is bypassed from the

store buffer on a cache read access such that loads retrieve the most-recently-written data.

The memory hierarchy consists of separate, identical L1 instruction and data caches and a uni-

fied L2 cache over an infinite, fixed-latency main memory. The cache hierarchy is writeback and

inclusive. Each cache has MSHRs that track outstanding misses and prefetches, allowing

accesses to occur in parallel with resolving misses (i.e., the caches are non-blocking [54]). Each

cache also employs an opportunistic stride-based prefetcher [34] that generates hardware

prefetches for multiple, potentially interleaved streams into associated stream buffers [47]. Buses

connecting different levels of the cache hierarchy with each other and memory are modeled and

bandwidth-limited. Writebacks and fills schedule the bus and block its use for an appropriate

number of cycles to transfer the necessary data. Data transfer occurs critical-word-first (e.g., for a

fill, the requested word within the line is transferred across the bus first, regardless of its offset

within the line).

