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Motivation

ROCESSORS ACHIEVE ONLY A FRACTION OF PEAK

ERFORMANCE ON MANY PROGRAMS

• Performance Degrading Events (PDE)
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O branch mispredictions
O cache misses

RGER CACHES AND PREDICTORS

• handle easy cases

• concentrates PDE’s to a fraction of
“problem” static instructions

O UNCORRELATED (DATA-DEPENDENT) BRANCHES

O HASH TABLE LOOKUPS AND POINTER CHASING
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Motivation, cont.

R R IS DETERMINISTIC →
d predictors which use the program!
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Pre-executed sub-program feeds
prediction for branch fetched by the
main thread

Pre-fetch memory similarly

Only pre-execute instructions which
defy normal predictors
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• Sub-program must enable faster
execution of the problem instruction

• Sub-program size determines “overhead”

M n, cont.

HE NESS OF PRE-EXECUTION IS DETERMINED BY THE SUB-PROGRAM
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Overview
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• MOTIVATION

• PROGRAM SLICING

• EXPERIMENT OVERVIEW

• METHODOLOGY

• CONSERVATIVE SLICES

• EXAMPLE SPECULATIVE OPTIMIZATIONS

• ADDITIONAL OBSERVATIONS

• CONCLUSIONS
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ld r8,-8432(r29)
c r18,r1,r0
ld r1,-19952(r29)
s r16,r8,r8
s r31,0(r8)
a r4,r5,r5
s r5,4,r5
ld r23,-19408(r29)
ld r27,-19944(r29)
a r1,1,r1
a r0,r5,r5
b r31,r31,r0
s r1,-19952(r29)
ld r7,8(r5)

H OGRAM INCLUDES ONLY THE SUBSET OF INSTRUCTIONS WHICH

A NCE THE PROBLEM INSTRUCTION.

Program Slicing

cmoveq r18,r1,r0
and r4,r5,r5
sll r5,4,r5
addq r0,r5,r5
ldq r7,8(r5)

Criterion Instruction

follow dependences backward
from criterion instruction

both data and control
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Experiment Overview
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ITIAL CHARACTERIZATION OF SLICES

tegorization of instructions in the slice

• largest contributors:
O control and memory dependence resolu
O NOT dataflow

ploiting well-known phenomena to reduce slic

• highly-biased branches

• stability of memory dependences
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Methodology
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L slices
ic instructions leading to the criterion
computation dependences

cumulative slice size
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• Profiled to identified “pro
O Frequently caused mispre

• Generated ASSEMBLY-LEVE
O Looked at the 512 dynam
O Removed NOPS, and SP/GP 
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Conservative Slices

R COMPLEX

ES CAN BE LARGE

tore addresses
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OGRAMS HAVE AMBIGUOUS MEMORY DEPENDENCES AND

CONTROL FLOW→ CONSERVATIVELY CONSTRUCTED SLIC

• 50% of program necessary to compute all s

• 80% of program necessary to resolve all bra

LUTION: EXPLOIT THE FACT THAT SLICES ONLY PROVIDE HIN

• construct speculative slices
• assume common-case behavior

O profiling is required to detect the common-case

O EXAMPLE OPTIMIZATIONS:
• both targeting ambiguous memory dependences
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Speculative Optimizations

MPUTE THE ADDRESS FOR EVERY STORE WHICH

E SLICE

ES ACTUALLY REALIZED IS A SUB-SET OF THOSE

 sets
esses for these stores

ets approximate size of oracle slices
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• Profile to identify the store
• Only compute store addr

Slices built using store s

all instructions
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Speculative Optimizations, cont.

IST, OFTEN THE LOAD COMMUNICATES WITH

ITS STORE SET.
 through registers

X
. pattern (imprecise transformation)
.  the slice

STORE R9 -> 0(R17)
ADD R10, R11 -> R12
STORE R12 -> 0(R18)
LOAD 0(R19) -> R13
ADD R12, R14 -> R15
....
W

E
1
2
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HEN MEMORY DEPENDENCES EX

THE MOST RECENT STORE FROM

• much like communication

PLOIT TO REDUCE SLICE SIZE:
Assume a communication 
Remove load and store from

STORE R9 -> 0(R17)
ADD R10, R11 -> R12
STORE R12 -> 0(R18)
LOAD 0(R19) -> R13
ADD R13, R14 -> R15
....
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Speculative Optimizations, cont.

T ARE HIGHLY BIASED WITH RESPECT TO THIS BEHAVIOR

culation can be avoided
rofiled to classify the dependences

g such load-store pairs can further reduce slice size
with little affect on accuracy

ced address sub-slice to 1/4 of conservative size
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Additional Observations
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FTEN DATA DEPENDENCES ARE CLUSTERED NEAR CRITERION

• possibly influences pre-execution mechanisms

T UNCOMMON FOR SLICES TO OVERLAP

• create a single “multi-slice”

ICES ARE BURSTY

• due to program structure
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Additional Observations

A DENCES:

nt regions are part of slice, but all paths from
ch contribute to the slice equivalently.

O DITIONAL FUNCTION CALL

....;

CTION();

FUNCTION() {
SAVE A;
....
RESTORE A;

}

T PLICATION
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Summary

R EM” INSTRUCTIONS

P

hile maintaining

12 instructions
an 95% accuracy
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E-EXECUTION: GENERAL TECHNIQUE FOR HANDLING “PROBL

• Use the program to predict the program
• Requires small, accurate slices

ECULATIVE SLICES:
• Exploit common-case behavior to reduce slice size w

accuracy
• Some slices can be reduced to less than 10% of the 5

preceding the criterion while maintaining greater th
O Much future work to be done

• Requires sophisticated profile information


	lda r8,-8432(r29)
	cmoveq r18,r1,r0
	ldl r1,-19952(r29)
	s4addq r16,r8,r8
	stl r31,0(r8)
	and r4,r5,r5
	sll r5,4,r5
	ldq r23,-19408(r29)
	ldl r27,-19944(r29)
	addl r1,1,r1
	addq r0,r5,r5
	bis r31,r31,r0
	stl r1,-19952(r29)
	ldq r7,8(r5)
	cmoveq r18,r1,r0
	and r4,r5,r5
	sll r5,4,r5
	addq r0,r5,r5
	ldq r7,8(r5)
	follow dependences backward from criterion instruction
	both data and control
	Experiment Overview
	Initial characterization of slices
	Categorization of instructions in the slice
	• largest contributors:
	O control and memory dependence resolution
	O NOT dataflow

	Exploiting well-known phenomena to reduce slice size
	• highly-biased branches
	• stability of memory dependences


	Motivation
	Processors achieve only a fraction of peak performance on many programs
	• Performance Degrading Events (PDE)
	O branch mispredictions
	O cache misses

	larger caches and predictors
	• handle easy cases
	• concentrates PDE’s to a fraction of “problem” static instructions
	O uncorrelated (data-dependent) branches
	O hash table lookups and pointer chasing


	Motivation, cont.
	Program behavior is deterministic Æ
	build predictors which use the program!

	Motivation, cont.
	The effectiveness of pre-execution is determined by the sub-program

	Overview
	• Motivation
	• Program Slicing
	• Experiment Overview
	• Methodology
	• Conservative Slices
	• Example Speculative Optimizations
	• Additional observations
	• Conclusions

	Program Slicing
	The sub-program includes only the subset of instructions which can influence the problem instruct...

	Methodology
	• Spec95 integer benchmarks
	O Alpha architecture, optimized -O4
	• Profiled to identified “problem” static instructions
	O Frequently caused mispredictions or cache misses
	• Generated assembly-level slices
	O Looked at the 512 dynamic instructions leading to the criterion
	O Removed nops, and sp/gp computation dependences

	Conservative Slices
	Programs have ambiguous memory dependences and complex control flow Æ conservatively constructed ...
	• 50% of program necessary to compute all store addresses
	• 80% of program necessary to resolve all branches

	Solution: exploit the fact that slices only provide hints
	• construct speculative slices
	• assume common-case behavior
	O profiling is required to detect the common-case

	Two example optimizations:
	• both targeting ambiguous memory dependences


	Speculative Optimizations
	A conservative slice must compute the address for every store which could alias with a load in th...
	The set of memory dependences actually realized is a sub-set of those which are possible
	• Profile to identify the store sets
	• Only compute store addresses for these stores


	Speculative Optimizations, cont.
	When memory dependences exist, often the load communicates with the most recent store from its st...
	• much like communication through registers

	Exploit to reduce slice size:
	1. Assume a communication pattern (imprecise transformation)
	2. Remove load and store from the slice

	Speculative Optimizations, cont.
	Static loads are highly biased with respect to this behavior
	• Mis-speculation can be avoided
	• Easily profiled to classify the dependences


	Additional Observations
	Often data dependences are clustered near criterion
	• possibly influences pre-execution mechanisms

	Not uncommon for slices to overlap
	• create a single “multi-slice”

	Slices are bursty
	• due to program structure


	Additional Observations
	False control dependences:
	control dependent regions are part of slice, but all paths from the branch contribute to the slic...
	common case: conditional function call


	Summary
	Pre-execution: general technique for handling “problem” instructions
	• Use the program to predict the program
	• Requires small, accurate slices

	Speculative slices:
	• Exploit common-case behavior to reduce slice size while maintaining accuracy
	• Some slices can be reduced to less than 10% of the 512 instructions preceding the criterion whi...
	O Much future work to be done
	• Requires sophisticated profile information

	int A = ....;
	if (B) {
	Function();
	}
	if (A)
	Function() {
	save A;
	....
	restore A;
	}
	other case: code replication
	Currently refining infrastructure to handle these cases
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	store r9 -> 0(r17)
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	Removing such load-store pairs can further reduce slice size with little affect on accuracy
	Reduced address sub-slice to 1/4 of conservative size
	Pre-executed sub-program feeds prediction for branch fetched by the main thread
	Pre-fetch memory similarly
	Only pre-execute instructions which defy normal predictors
	• Sub-program must enable faster execution of the problem instruction
	• Sub-program size determines “overhead”


	How can we build sub-programs to minimize their size while maintaining accuracy




