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Overview

Profiling is increasingly important
e necessitates efficient collection of profile information

Intelligent Instruction Sampling

e directed sampling
 on-line summarizing

Programmable Profiling Co-processor

e flexible — can implement many profiling applications
e primitives in hardware , policies in software
e small and simple ; ~1/2 million transistors (10KB SRAM)
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Feedback Directed Optimization (FDO)

Performance is dictated by a program’s dynamic behavior
e e.g. branch- and memory-behavior

Modern hardware reacts to dynamic behavior

« dynamic branch prediction
e out-of-order execution

Feedback-directed optimizations complement hardware

e Larger scope
* Non-speculative

CODE LAYOUT S UPERBLOCKSCHEDULING | NLINING, S HRINK WRAPPING H OT-
CoLD OPTIMIZATIONS, | F-CONVERSION REGISTER ALLOCATION T RACE
SCHEDULING A DVANCED LOADS P RE FETCHING MEMOIZATION, S ELECTIVE
VALUE PREDICTION, S PECIALIZATION, B RANCHALIGNMENT P RE EXECUTION.

Significantly improve performance
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Example Profiling System

ProfileMe [Micro ‘97]: sample instructions in hardware

e instruction tagged at fetch
* pipeline collects information
e interrupt at retirement; processed data in software

FETCH DECODE EXECUTE RETIRE

TAG COLLECT INTERRUPT
(PC, events, values, addresses, times)

Digital Continuous Profiling Infrastructure (DCPI) [SOSP ‘97]

e attributes execution time to static instructions
 low overhead (1-3%) through low sampling rate
* requires long runs

o good for compile-profile-recompile  methodology
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Future Trends

More complicated optimizations
e value profiles, dependence profiles, etc.

Dynamic Optimization
 perform FDO online
o can't rely on software vendors; support legacy code

e collect data quickly
e minimize overhead
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Future Trends

More complicated optimizations
* value profiles, dependence profiles, etc. — more samples

Dynamic Optimization
 perform FDO online
o can't rely on software vendors, support legacy code

e collect data quickly — less time
* minimize overhead

# SAMPLES T _ SAMPLING RATET
TIME
!
OVERHEAD | = SAMPLING RATE |

Conflicting desires
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Supporting Profiling Future Trends

Goal: Improve Sampling

e collect the right samples
 reduce the cost of collecting those samples

Solution: Additional Hardware
 general enough to support many profiles

FETCH DECODE EXECUTE RETIRE

CO-PROCESSOR

FILTER COLLECT local storage

(PC, events, values, addresses, times)

INTERRUPT

e hardware filters to guide instruction sampling
* pOSt-processing co-processor summarizes samples
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Example Application: Load Value Profiling

PROGRAMEXECUTION
S LOAD A
A LOAD — 34 » 34 INVARIANCE:
B LOAD — 12 v 11 |:> 34: 75%
/ / 34 11: 25%
L 34
A LOAD — 11 7 A
é ”I:OAD — 16 Enables
A LOAD — 347 « Specialization
A LOAD — 34 « Memoization
e Selective Value Prediction

Most interested In

e frequently executed instructions
e values with high invariances
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Directed Sampling

Which are the right instructions to sample?

Loads
o filter which selects by opcode group

Instructions not yet characterized

 mark characterized static instructions in a table by PC
 do not profile marked instructions
 a la Convergent Profiling [Micro ‘97], but in hardware

Opcode 4| Opcode Filter |7
PC PC Filter I*
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Reducing Per-sample Overhead

Overhead: Processing performed during profile interrupts

Summarize Samples with Co-processor
e Constraint: Limited Local Storage

Only care about most frequent values

A 34 /track only one value at a time
A 11 _ _ _
A 34 |:>‘A 34 ( HIT:3, MIss:1)
A: 34
Hit _ 3 _ 7504

Hit + Miss 3+1

|dentify frequent values by

o statistically likely to select frequent values
* re-select if measured invariance is low
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Reducing Per-sample Overhead (2)

Constraint: Limited Local Storage
* local storage << program size

Sample instructions in groups

 most frequent — least frequent
o most important
o easiest to profile

We don’t know a priori which are most frequent
 replacement decisions based on # samples collected
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Characterization Prediction

How do we know when an instruction has been characterized?

No way to know for sure
* because of phase changes

Predict convergence with a simple test

|jnvariance continuum

fow

single value few values many values
(hits >> miss) (many re-selects)

The ends of the continuum

 can be characterized with “small” number of samples
e capture many instructions

Periodically re-sample to detect phase changes
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Generic Hardware

Filter/Summarize methodology is widely applicable

e problem instruction profiling
 edge/path profiling

 memory dependence profiling
 cache conflict profiling

e stall profiling

These algorithms require

 similar storage structures and operations
o different algorithms and policies

Use Programmable/Configurable hardware
e summarizing/replacement done in software

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

16



Programmable Profiling Co-processor

Goal: High throughput with few resources
» tailor co-processor specifically for profiling

Structure processor for profiling

« sample stream processed by implicit loop
* microcoded to exploit available parallelism efficiently

Provide profiling primitives in hardware

e instruction field extraction
e associative array for table lookups and matching

estimated size: one-half million transistors (~10KB SRAM)
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Evaluation Methodology

Timing simulator-based evaluation

e profiling co-processor timing simulator

» simplescalar-based

e value profiling co-processor microcode

e interrupt handlers that assemble complete profile

Compared

e Naive

o random sampling, buffers samples to amortize interrupt
* Intelligent

o directed sampling, summarizes samples in co-processor
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'\ _ Much faster convergence

o) \\\ ----Nave - .
= e Intelligent e Start optimization sooner

time
= Self-tuning
g """""" e StOPS upon convergence
o

time

Better accuracy for overhead
% ....... » for all benchmarks
over head

Sensitivity analysis of co-processor hardware (in paper)

e storage: less storage reduces collection rate
o clock frequency: largely insensitive — easy to design

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

19



Related Work

Hardware Summarizing of Profile Data:

 Profile Buffer: Conte, et al., Micro 1994
e Hot Spot Detector: Merten, et al., ISCA 1999

Co-processor Observation of Retirement Stream:
 |-COP: Chou, et al., ISCA 2000

Profiling Architecture:
 Relational Profiling Architecture: Heil and Smith, Micro 2000
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Conclusion

Future microprocessors will

e monitor application behavior
* react accordingly

Algorithms and policies for a self-tuning profiling system

e directed sampling
 on-line summarizing

Efficient, flexible hardware implementation of these techniques
 programmable profiling co-processor
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