A Programmable Co-processor for Profiling

Craig Zilles and Guri Sohi

University of Wisconsin - Madison

International Symposium on
High Performance Computer Architecture

January 2001

Overview

Profiling is increasingly important
e necessitates efficient collection of profile information

Intelligent Instruction Sampling

e directed sampling
 on-line summarizing

Programmable Profiling Co-processor

e flexible — can implement many profiling applications
e primitives in hardware , policies in software
e small and simple ; ~1/2 million transistors (10KB SRAM)

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Outline

e Motivation

o Profiling Overview
o Future Trends
o Support for Future Trends

e Intelligent Instruction Sampling
 Profiling Co-processor Overview
* Results

e Related Work

e Conclusion

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Feedback Directed Optimization (FDO)

Performance is dictated by a program’s dynamic behavior
e e.g. branch- and memory-behavior

Modern hardware reacts to dynamic behavior

« dynamic branch prediction
e out-of-order execution

Feedback-directed optimizations complement hardware

e Larger scope
* Non-speculative

CODE LAYOUT S UPERBLOCKSCHEDULING | NLINING, S HRINK WRAPPING H OT-
CoLD OPTIMIZATIONS, | F-CONVERSION REGISTER ALLOCATION T RACE
SCHEDULING A DVANCED LOADS P RE FETCHING MEMOIZATION, S ELECTIVE
VALUE PREDICTION, S PECIALIZATION, B RANCHALIGNMENT P RE EXECUTION.

Significantly improve performance

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi 4
HPCA-7, January 2001

Example Profiling System

ProfileMe [Micro ‘97]: sample instructions in hardware

e instruction tagged at fetch
* pipeline collects information
e interrupt at retirement; processed data in software

FETCH DECODE EXECUTE RETIRE

TAG COLLECT INTERRUPT
(PC, events, values, addresses, times)

Digital Continuous Profiling Infrastructure (DCPI) [SOSP ‘97]

e attributes execution time to static instructions
 low overhead (1-3%) through low sampling rate
* requires long runs

o good for compile-profile-recompile methodology

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Future Trends

More complicated optimizations
e value profiles, dependence profiles, etc.

Dynamic Optimization
 perform FDO online
o can't rely on software vendors; support legacy code

e collect data quickly
e minimize overhead

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Future Trends

More complicated optimizations
* value profiles, dependence profiles, etc. — more samples

Dynamic Optimization
 perform FDO online
o can't rely on software vendors, support legacy code

e collect data quickly — less time
* minimize overhead

SAMPLES T _ SAMPLING RATET
TIME
!
OVERHEAD | = SAMPLING RATE |

Conflicting desires

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Supporting Profiling Future Trends

Goal: Improve Sampling

e collect the right samples
 reduce the cost of collecting those samples

Solution: Additional Hardware
 general enough to support many profiles

FETCH DECODE EXECUTE RETIRE

CO-PROCESSOR

FILTER COLLECT local storage

(PC, events, values, addresses, times)

INTERRUPT

e hardware filters to guide instruction sampling
* pOSt-processing co-processor summarizes samples

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi 8
HPCA-7, January 2001

Outline

e Motivation

e Intelligent Instruction Sampling

o Example: Value Profiling
o Algorithms

 Profiling Co-processor Overview
e Results

» Related Work

e Conclusion

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Example Application: Load Value Profiling

PROGRAMEXECUTION
S LOAD A
A LOAD — 34 » 34 INVARIANCE:
B LOAD — 12 v 11 |:> 34: 75%
/ / 34 11: 25%
L 34
A LOAD — 11 7 A
é ”I:OAD — 16 Enables
A LOAD — 347 « Specialization
A LOAD — 34 « Memoization
e Selective Value Prediction

Most interested In

e frequently executed instructions
e values with high invariances

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

10

Directed Sampling

Which are the right instructions to sample?

Loads
o filter which selects by opcode group

Instructions not yet characterized

 mark characterized static instructions in a table by PC
 do not profile marked instructions
 a la Convergent Profiling [Micro ‘97], but in hardware

Opcode 4| Opcode Filter |7
PC PC Filter I*

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi 11
HPCA-7, January 2001

AND sample?

Reducing Per-sample Overhead

Overhead: Processing performed during profile interrupts

Summarize Samples with Co-processor
e Constraint: Limited Local Storage

Only care about most frequent values

A 34 /track only one value at a time
A 11 _ _ _
A 34 |:>‘A 34 (HIT:3, MIss:1)
A: 34
Hit _ 3 _ 7504

Hit + Miss 3+1

|dentify frequent values by

o statistically likely to select frequent values
* re-select if measured invariance is low

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

Reducing Per-sample Overhead (2)

Constraint: Limited Local Storage
* local storage << program size

Sample instructions in groups

 most frequent — least frequent
o most important
o easiest to profile

We don’t know a priori which are most frequent
 replacement decisions based on # samples collected

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

13

Characterization Prediction

How do we know when an instruction has been characterized?

No way to know for sure
* because of phase changes

Predict convergence with a simple test

|jnvariance continuum

fow

single value few values many values
(hits >> miss) (many re-selects)

The ends of the continuum

 can be characterized with “small” number of samples
e capture many instructions

Periodically re-sample to detect phase changes

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

14

Outline

* Motivation

e Intelligent Instruction Sampling
 Profiling Co-processor Overview
e Results

e Related Work

e Conclusion

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

15

Generic Hardware

Filter/Summarize methodology is widely applicable

e problem instruction profiling
 edge/path profiling

 memory dependence profiling
 cache conflict profiling

e stall profiling

These algorithms require

 similar storage structures and operations
o different algorithms and policies

Use Programmable/Configurable hardware
e summarizing/replacement done in software

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

16

Programmable Profiling Co-processor

Goal: High throughput with few resources
» tailor co-processor specifically for profiling

Structure processor for profiling

« sample stream processed by implicit loop
* microcoded to exploit available parallelism efficiently

Provide profiling primitives in hardware

e instruction field extraction
e associative array for table lookups and matching

estimated size: one-half million transistors (~10KB SRAM)

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

17

Evaluation Methodology

Timing simulator-based evaluation

e profiling co-processor timing simulator

» simplescalar-based

e value profiling co-processor microcode

e interrupt handlers that assemble complete profile

Compared

e Naive

o random sampling, buffers samples to amortize interrupt
* Intelligent

o directed sampling, summarizes samples in co-processor

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

18

'\ _ Much faster convergence

o) \\\ ----Nave - .
= e Intelligent e Start optimization sooner

time
= Self-tuning
g """""" e StOPS upon convergence
o

time

Better accuracy for overhead
% » for all benchmarks
over head

Sensitivity analysis of co-processor hardware (in paper)

e storage: less storage reduces collection rate
o clock frequency: largely insensitive — easy to design

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

19

Related Work

Hardware Summarizing of Profile Data:

 Profile Buffer: Conte, et al., Micro 1994
e Hot Spot Detector: Merten, et al., ISCA 1999

Co-processor Observation of Retirement Stream:
 |-COP: Chou, et al., ISCA 2000

Profiling Architecture:
 Relational Profiling Architecture: Heil and Smith, Micro 2000

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

20

Conclusion

Future microprocessors will

e monitor application behavior
* react accordingly

Algorithms and policies for a self-tuning profiling system

e directed sampling
 on-line summarizing

Efficient, flexible hardware implementation of these techniques
 programmable profiling co-processor

A Programmable Co-processor for Profiling - Craig Zilles and Guri Sohi
HPCA-7, January 2001

21

	A Programmable Co-processor for Profiling
	Craig Zilles and Guri Sohi
	University of Wisconsin - Madison
	International Symposium on
	High Performance Computer Architecture
	January 2001

	Overview
	Profiling is increasingly important
	• necessitates efficient collection of profile information

	Intelligent Instruction Sampling
	• directed sampling
	• on-line summarizing

	Programmable Profiling Co-processor
	• flexible – can implement many profiling applications
	• primitives in hardware, policies in software
	• small and simple; ~1/2 million transistors (10KB SRAM)

	Outline
	• Motivation
	O Profiling Overview
	O Future Trends
	O Support for Future Trends

	• Intelligent Instruction Sampling
	• Profiling Co-processor Overview
	• Results
	• Related Work
	• Conclusion

	Feedback Directed Optimization (FDO)
	Performance is dictated by a program’s dynamic behavior
	• e.g. branch- and memory-behavior

	Modern hardware reacts to dynamic behavior
	• dynamic branch prediction
	• out-of-order execution

	Feedback-directed optimizations complement hardware
	• Larger scope
	• Non-speculative
	Code Layout, Superblock Scheduling, Inlining, Shrink Wrapping, Hot- Cold Optimizations, If-Conver...

	Significantly improve performance

	Example Profiling System
	ProfileMe [Micro ‘97]: sample instructions in hardware
	• instruction tagged at fetch
	• pipeline collects information
	• interrupt at retirement; processed data in software

	Digital Continuous Profiling Infrastructure (DCPI) [SOSP ‘97]
	• attributes execution time to static instructions
	• low overhead (1-3%) through low sampling rate
	• requires long runs
	O good for compile-profile-recompile methodology

	Future Trends
	More complicated optimizations
	• value profiles, dependence profiles, etc.

	Dynamic Optimization
	• perform FDO online
	O can’t rely on software vendors; support legacy code

	• collect data quickly
	• minimize overhead

	Future Trends
	More complicated optimizations
	• value profiles, dependence profiles, etc. Æ more samples

	Dynamic Optimization
	• perform FDO online
	O can’t rely on software vendors, support legacy code

	• collect data quickly Æ less time
	• minimize overhead

	Conflicting desires

	Supporting Profiling Future Trends
	Goal: Improve Sampling
	• collect the right samples
	• reduce the cost of collecting those samples

	Solution: Additional Hardware
	• general enough to support many profiles
	• hardware filters to guide instruction sampling
	• post-processing co-processor summarizes samples

	Outline
	• Motivation
	• Intelligent Instruction Sampling
	O Example: Value Profiling
	O Algorithms

	• Profiling Co-processor Overview
	• Results
	• Related Work
	• Conclusion

	Example Application: Load Value Profiling

	a load Æ 34
	b load Æ 12

	a load Æ 11

	c load Æ 16
	a load Æ 34

	a load Æ 34

	Directed Sampling
	Which are the right instructions to sample?
	Loads
	• filter which selects by opcode group

	Instructions not yet characterized
	• mark characterized static instructions in a table by PC
	• do not profile marked instructions
	• à la Convergent Profiling [Micro ‘97], but in hardware

	Reducing Per-sample Overhead
	Overhead: Processing performed during profile interrupts
	Summarize Samples with Co-processor
	• Constraint: Limited Local Storage

	Only care about most frequent values
	A: 34
	A: 11
	A: 34
	A: 34
	Identify frequent values by
	• statistically likely to select frequent values
	• re-select if measured invariance is low

	Reducing Per-sample Overhead (2)
	Constraint: Limited Local Storage
	• local storage << program size

	Sample instructions in groups
	• most frequent Æ least frequent
	O most important
	O easiest to profile

	We don’t know a priori which are most frequent
	• replacement decisions based on # samples collected

	Characterization Prediction
	How do we know when an instruction has been characterized?
	No way to know for sure
	• because of phase changes

	Predict convergence with a simple test
	The ends of the continuum
	• can be characterized with “small” number of samples
	• capture many instructions

	Periodically re-sample to detect phase changes

	Outline
	• Motivation
	• Intelligent Instruction Sampling
	• Profiling Co-processor Overview
	• Results
	• Related Work
	• Conclusion

	Generic Hardware
	Filter/Summarize methodology is widely applicable
	• problem instruction profiling
	• edge/path profiling
	• memory dependence profiling
	• cache conflict profiling
	• stall profiling

	These algorithms require
	• similar storage structures and operations
	• different algorithms and policies

	Use Programmable/Configurable hardware
	• summarizing/replacement done in software

	Programmable Profiling Co-processor
	Goal: High throughput with few resources
	• tailor co-processor specifically for profiling

	Structure processor for profiling
	• sample stream processed by implicit loop
	• microcoded to exploit available parallelism efficiently

	Provide profiling primitives in hardware
	• instruction field extraction
	• associative array for table lookups and matching

	estimated size: one-half million transistors (~10KB SRAM)

	Evaluation Methodology
	Timing simulator-based evaluation
	• profiling co-processor timing simulator
	• simplescalar-based
	• value profiling co-processor microcode
	• interrupt handlers that assemble complete profile

	Compared
	• Naive
	O random sampling, buffers samples to amortize interrupt

	• Intelligent
	O directed sampling, summarizes samples in co-processor

	Results
	Much faster convergence
	• start optimization sooner

	Self-tuning
	• stops upon convergence

	Better accuracy for overhead
	• for all benchmarks

	Sensitivity analysis of co-processor hardware (in paper)
	• storage: less storage reduces collection rate
	• clock frequency: largely insensitive Æ easy to design

	Related Work
	Hardware Summarizing of Profile Data:
	• Profile Buffer: Conte, et al., Micro 1994
	• Hot Spot Detector: Merten, et al., ISCA 1999

	Co-processor Observation of Retirement Stream:
	• I-COP: Chou, et al., ISCA 2000

	Profiling Architecture:
	• Relational Profiling Architecture: Heil and Smith, Micro 2000

	Conclusion
	Future microprocessors will
	• monitor application behavior
	• react accordingly

	Algorithms and policies for a self-tuning profiling system
	• directed sampling
	• on-line summarizing

	Efficient, flexible hardware implementation of these techniques
	• programmable profiling co-processor

