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Abstract

Transmission of cache lines in cache-coherent shared
memory machines is necessary for communication but
can cause significant latencies across the system. The on-
going growth in cache capacities shifts the distribution
of cache misses from capacity and conflict misses to co-
herence misses, which consist of misses caused by both
true and false sharing. In this paper we propose coher-
ence decoupling and coherent value speculation to im-
prove multiprocessor performance. Coherence decou-
pling splits the caching operation from the coherence
operation, allowing processors to speculate on the load
value or the data access permission, despite not hav-
ing both for that operation. Coherent value speculation
provides speculatively-coherent values for a coherence-
decoupled system. In this paper we focus on using shared
value prediction for coherent value speculation. We de-
scribe and profile the potential of three value predic-
tion schemes: address-cache-based, PC-table-based, and
PC+address-table-based. The first scheme simply uses the
stale values existing in the cache, while the other two pre-
dict using recent value tables. We present early results
that suggest excellent potential for coherent value specu-
lation.

1 Introduction
Communication due to coherence operations is becoming
increasingly expensive in cache-coherent shared-memory
machines. As system caches grow in size and/or associa-
tivity, coherence misses (read accesses to invalid data and
write accesses to shared or invalid data) become an in-
creasingly large problem as capacity and conflict misses
diminish.

16B 32B 64B 128B 256B 1M 2M 4M 8M 16M
0

20

40

60

80

100

L2
 m

is
se

s 
br

ea
kd

ow
n 

(in
 p

er
ce

nt
ag

e) 11.47 6.86 4.88 3.95 3.05 5.33 5.19 4.88 4.88 4.59

Cold
Other
W−miss
R−miss

Figure 1: L2 misses breakdown for an OLTP benchmark (On
top of each bar shows the number of L2 misses per thousand
instructions. On the left-hand side, the cache line size is varied
from 16 bytes to 256 bytes, while the number of sets is fixed; on
the right, the cache line size is fixed to 64 bytes, while the cache
size is increased from 1MB to 16MB.)

To demonstrate that trend, we collected traces from an
on-line transaction processing (OLTP) benchmark, and
partition the L2 cache misses into (1) Cold-start misses,
(2) Read misses on shared data that have previously
been invalidated (or R-misses, for “Read” misses on
shared data), (3) Write misses causing invalidations (or
W-misses, for “Write” misses on shared data), and (4)
Other misses (capacity/conflict misses). Both R-misses
and W-misses are coherence misses. Figure 1 shows that
coherence misses account for half of the total L2 misses
with 64-byte lines for large caches. As the line size is
increased, the number of total misses decreases, but the
number of R-misses increases due to false sharing. In
the 256-byte line system, which displays the smallest total
number of misses, W-misses diminish much more slowly
than non-coherence misses, making the coherence misses
account for over two-thirds of the total L2 misses. Coher-
ence misses thus have the potential to be a major limiter
of performance in future systems.



The essence of data communication in a shared mem-
ory machine is to observe the right value at the right time,
where correctness is defined by given memory consis-
tency model [1]. Previous research has focused on relax-
ing the orders among memory operations to allow over-
lapping among them, while keeping the programming in-
terface simple and intuitive. The approach described in
this paper is somewhat different: we break each coher-
ence operation into distinct steps and allow some of those
steps to proceed independently. This coherence decou-
pling permits the execution of a memory operation to pro-
ceed speculatively, in parallel with the coherence request
for permission to complete the operation.

Such a decoupled approach, combined with speculative
operations on shared data, exposes a new set of strategies
to attack the problem of coherence misses, some of which
we explore in the rest of this paper. In Section 2 we first
discuss what steps are needed to serve a miss to shared
data, and how they can be speculatively decoupled and
executed in parallel. We also study three schemes for co-
herent value speculation: address-cache-based, PC-table-
based, and PC+address-table-based. Preliminary results
on the potential of these techniques are presented in Sec-
tions 3. Section 4 briefly describes related work, and Sec-
tion 5 concludes with our planned future work.

2 Coherent Value Speculation
To service a shared miss, both the data value and proper
access permission to the data must be obtained. Conven-
tional cache-coherent implementations provide both the
value and the (implicit) permission in a single reply. Re-
questing a remote coherence permission for a load or store
takes tens or hundreds of cycles to finish, typically caus-
ing the requesting processor to stall.

However, the correct data item may reside in other
caches in the system, including the requestor’s cache, de-
spite the lack of permission to read from the line. More-
over, values in these locations are natural candidates for
value prediction, even though the corresponding cache
lines may not contain the most recent value. Speculatively
using a predicted value and verifying the result later could
hide much or all of the miss latency.

Similarly, writes to shared data can also be broken
into steps and speculatively executed. One application of
this mechanism is to enhance the existing optimization

of read-modify-write sequences [14]. Such a sequence
consists of ordered read, modify and write operations on
the same data, so issuing a get-exclusive request when
it is first loaded will save the upgrade operation upon
write. Separately obtaining the value and permission al-
lows further optimization, in which the value part of a get-
exclusive request is served in parallel with the actions re-
quired to invalidate other sharers.
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Figure 2: Coherent Value Speculation

Figure 2 provides an example of coherence decoupling
using coherent value speculation. In this scheme, the
value of shared data is locally predicted upon a coher-
ence miss, and immediately used by the processor. The
real coherence request is sent out in parallel, and even-
tually completes with the proper value and permission.
Here the value and permission can come back in either
order, as long as atomicity appears to be maintained be-
tween the first use of the value and the commitment of
the load instruction. Martin et al. discussed how to detect
consistency violations in this process for correctness rea-
sons [11]. Finally the value is verified. If the prediction is
correct and no violation is detected, the speculation suc-
ceeds; otherwise it results in a misspeculation, the depen-
dent instructions should be squashed, and the load retried.
During this period, dependent results are buffered locally
to allow rollback in case of misspeculation. The chance
of misspeculation can be reduced by better predictor or
selective speculation, and the misspeculation penalty can
be mitigated by selective re-execution.

The figure also compares the speculative execution
with sequential execution in terms of latency. The top half
of the figure depicts the events in a sequential execution
and its miss latency. The bottom half shows the events in a
speculative execution. If the prediction is accurate, value



speculation on shared data experiences only the best case
latency, which is much less than the latency of sequential
execution. The key to higher performance in this case is
better value prediction accuracy and coverage.

There are many approaches to get speculative val-
ues, which can be classified by (1) where the values are
stored, and (2) what information is used to search for
the values. In the following subsections, we study three
schemes that implement coherent value speculation. (1)
address-cache-based speculation, in which the data cache
is used as the storage for values, (2) PC-table-based and
(3) PC+address-table-based speculation, in which PC and
PC+address, respectively, are used to index into separate
recent value tables.

Address-cache-based: This scheme exploits the
“stale” value stored in the cache upon a shared load miss,
speculating that either the miss is caused by false shar-
ing, or the silent stores [8] and temporally silent stores
[9] have left the value unchanged. This scheme requires
less area by using the local L2 cache as the prediction ta-
ble, while focusing on an important subset of shared value
speculations. Section 3.1 will present the accuracies when
loading invalid data from the cache for the different types
of operations, and different cache sizes.

PC- and PC+address-table-based: In these schemes,
value prediction tables are searched upon shared load
misses. Either the PC of the faulting instruction or the
PC and the data address can be used to index into the re-
cent value table. Conventional load value prediction [10]
only uses PC as the index because the data address may
not be available when the prediction is made. However for
coherence misses, not only is the address already known,
but the long miss latency allows for slower but more ac-
curate value predictors. Section 3.2 will give some initial
data on shared value locality and predictor performance.

3 Evaluation Results
We currently use different multiprocessor simulation in-
frastructures for cache- and table-based schemes, so we
present the results separately.

3.1 Address-cache-based Scheme
In this section we briefly describe our profiling results
showing the potential accuracy of exploiting the “stale”
values in the cache.

3.1.1 Methodology

We ran six benchmarks – selected from various scientific
application suites – on a version of SimOS-PPC that uses
IBM’s AIX 4.3.1 as the simulated OS. The experiments
were performed on a fully execution-driven multiproces-
sor timing simulator based on the SimpleScalar proces-
sor model. Our simulated system models an 8-node SMP
multiprocessor system. Each node in the SMP system has
64KB split L1 instruction and data caches, and a unified
L2 cache with the size of 1MB, 2MB or 4MB. All caches
have 64-byte lines. These caches are kept coherent with a
snoopy bus using a MOESI coherence protocol.

Our scientific applications consist of two common
types of parallelization models, MPI (Message Passing
Interface) and shared-memory. The MPI-based applica-
tions are SMG2000 and Sweep3D from the ASCI bench-
marks, and LU from the NAS benchmark suite. We used
MPICH 1.2.5 as our MPI implementation. The shared-
memory benchmarks are Barnes from the SPLASH-2
benchmark suite, and sPPM and MDCASK from the
ASCI benchmarks. A standard pthread library is used for
synchronization of these shared-memory benchmarks.

3.1.2 Speculation Accuracies

To measure the accuracy of speculation, we measured the
number of references that continue to have valid data after
invalidations. On a L2 miss, if the cache block is resident
in the L2 cache in an invalid state (R-miss), we use the
value as a predicted value, and then verify it with the cor-
rect value, when it is returned from memory or other L2
caches. Table 1 shows the accuracy of the address-cache-
based speculation for all L2 misses incurred, partitioned
into regular accesses (correct pred normal) and synchro-
nizing load locked instructions (correct pred synch). For
all the benchmarks except sPPM, the address-cache-based
speculation correctly predicted the values for more than
50% of R-misses, with a lower accuracy of 30% for
sPPM. R-misses may vary from 2% to more than 90%
of all L2 misses, and the performance of the applica-
tions with high-coherence misses such as sPPM and MD-
CASK, can be improved significantly by this simple pre-
diction. The results suggest that this scheme has the po-
tential to greatly reduce the miss overhead induced by
false sharing, thus allowing for larger L2 cache lines.



Benchmarks 1 MB L2 2 MB L2 4 MB L2
# misses # R-misses correct correct # misses # R-misses correct correct # misses # R-misses correct correct

pred pred pred pred pred pred
normal synch normal synch normal synch

SMG2000 10.2M 3.4M 1.8M 0.16M 8.2M 3.5M 1.8M 0.16M 7.1M 3.5M 1.8M 0.16M
Sweep3D 5.8M 0.51M 0.26M 0.06M 3.3M 0.54M 0.25M 0.06M 1.6M 0.55M 0.24M 0.06M
LU 5.0M 0.13M 0.085M 0.018M 3.9M 0.12M 0.067M 0.013M 2.3M 0.13M 0.072M 0.014M
Barnes 0.85M 0.07M 0.05M 0.009M 0.65M 0.11M 0.08M 0.010M 0.50M 0.14M 0.11M 0.011M
sPPM 36.6M 31.2M 11.7M 0.03M 34.8M 30.8M 11.7M 0.03M 34.6M 31.0M 11.6M 0.04M
MDCASK 11.0M 10.3M 7.7M 0.004M 10.2M 9.6M 7.1M 0.004M 10.8M 10.2M 7.7M 0.004M

Table 1: Speculation Accuracy for 1MB, 2MB, and 4MB L2 Caches

3.2 Table-based Schemes
3.2.1 Methodology
We use five commercial and scientific benchmarks from
the Wisconsin commercial workload suite [2] to exam-
ine shared load value locality. These workloads include
OLTP (TPC-C), Apache (static web content serving), JBB
(a Java server benchmark), plus Barnes-Hut (16K bodies)
and Ocean (514x514 grid) from the SPLASH-2 bench-
mark suite. A 16-node system similar to Sun E10000
is modeled, each node with split L1 instruction and data
caches (each is 128 KB, 4-way set associative, using 64-
byte blocks), a unified L2 cache (4 MB, 4-way set associa-
tive, 64-byte blocks). An MOSI snooping protocol keeps
the caches coherent. To simplify the analysis, no store
buffer is used.

Memory access traces (whose lengths vary from 1.7
to 3.0 billion instructions) are obtained to identify shared
load misses. Load-modify-store style atomic accesses are
included in traces, but separated from normal (or non-
atomic) loads in our results.

OLTP Apache2 JBB Barnes Ocean
# L2 Miss 11.6M 10.1M 5.0M 3.1M 0.55M

# Shared-LD 3.14M 4.58M 1.43M 1.27M 0.21M
(%/L2-Miss) 27.1% 45.2% 28.5% 40.6% 38.9%
# Normal-LD 2.43M 3.48M 1.16M 9.06M 0.16M

(%/Shared-LD) 77.5% 76.0% 80.7% 71.3% 76.1%

Table 2: Benchmark Statistics

Table 2 lists the statistics of the benchmarks, on the
number of L2 cache misses, shared load misses, and
shared load misses by non-atomic accesses. It also shows

that 27% to 45% of L2 cache misses are R-misses, and
70% to 80% of the shared load misses are made by nor-
mal non-atomic load instructions.

3.2.2 Potential Value Prediction Performance
To probe the potential value prediction performance, we
feed the traces into counters that collect prediction results
for two different prediction schemes. The first scheme is
per-PC last value prediction, in which the last value seen
by the given PC on a given processor is predicted as the
outcome of the miss. The predictor is probed upon ev-
ery R-miss, updated with the actual load value, and the
predictor statistics are updated according to whether the
prediction is correct or not.

The other scheme is per-PC-address last value predic-
tion, which exploits the data address information available
upon a miss. In this scheme, a last value cache with an in-
finite number of sets and 16 ways within a set is used. The
cache is indexed by the PC, tagged by data block address,
and maintained by LRU replacement. No prediction is
made if it misses in the table, otherwise the cache is up-
dated with actual load value, and per-PC statistics is up-
dated accordingly. At maximum, 16 addresses are cached
for a given PC to save table space and replacement time.
This serves as a limit study because an infinite number of
sets (PCs) are supported by the value table. This scheme
gives better results on many PCs seeing different but pre-
dictable values from different addresses.

We observe that not only do a small number of PCs
contribute to the majority of correct predictions, but also
a small number of (probably different) PCs cause the ma-
jority of mispredictions. To filter predictions for unpre-
dictable PCs, we compute the benefit gained by value pre-



Coverage Coverage Coverage Mispred. Mispred.
No-atomic All access All access Ratio Ratio
Good PC Good PC All PC Good PC All PC

PC+addr 14% 29% 62% 0.99% 25%
PC-only 12% 27% 55% 15.86% 44%

Table 3: PC-only vs. PC+address Last Value Prediction
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Figure 3: Percentage of Correct Value Predictions over Total
R-misses

diction on a PC using a simple cost formula (with con-
stants gain equals to 4 cycles, and lose to 40 cycles):

benefit = gain*#correct_pred - lose*#mis_pred

Using this formula, the benefits for each PC using dif-
ferent strategies are computed. We choose to use the re-
sult of the better strategy (with larger benefit) to mimic the
behavior of a hybrid predictor with both PC-address and
PC-only predictions. Figure 3 gives the correct prediction
coverage for three counting strategies: (1) non-atomic ac-
cesses, “good” PCs (where only PCs with positive value
prediction benefits are counted); (2) all accesses, “good”
PCs; and (3) all accesses, all PCs. On average, 14%, 29%
and 62% of all shared load misses are covered by the three
strategies, respectively. On the other hand, table 3 com-
pares the prediction accuracy and R-miss coverage of PC-
only and PC+address based schemes, it shows that using

both PC and address information gives higher coverage
and much lower misprediction ratio.

Although considering all accesses on all PCs renders
the best coverage, its misprediction ratio is high, 24.8%
on average. On the contrary, the average misprediction
ratio for “good” PCs is only 0.99%. This suggests that
adding confidence levels to value predictor is beneficial.

Figure 4 shows that a small fraction of PCs can cover
the majority of correct predictions. On average, using the
best 16, 64 and 256 PCs covers 69%, 89% and 97.5% of
total correct predictions made on all “good” PCs. This
high accuracy shows that small tables can provide most
of the benefit of infinitely large last value tables. The PC
locality of mispredictions suggests not only that PC-based
confidence predictors would work well, but also that fu-
ture study can focus more on the small number of PCs that
produce unpredictable values.
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Figure 4: Percentage of Correct Predictions Covered by Var-
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4 Related Work
The three most pertinent classes of related work include
load value speculation, coherence prediction, and syn-
chronization speculation. Coherence decoupling extends
previous work on load value speculation to the mul-
tiprocessor coherence domain, since previous work on
load value speculation has focused on single-threaded
codes [10, 16, 17, 3, 4]. In [11], the authors examine
the correctness issue when extending value prediction to
multithreaded programs or multiprocessors, while coher-
ent value speculation focusing on the performance aspect.
The techniques covered in [11] can be used by this work
to ensure correct speculation.

Coherence prediction has been proposed in multiple
forms by numerous researchers [6, 5, 13, 7]. In it, co-



herence operations are speculatively initiated, predicting
the sharing patterns in advance of the coherence requests.
Coherence decoupling differs from coherence prediction,
since in coherence decoupling the memory operation it-
self is speculative, while the coherence operation could
be either speculative or non-speculative.

The prior work most similar to coherence decoupling is
synchronization speculation, in which a lock is speculated
to be unheld, permitting speculative entry into critical sec-
tions [12, 14, 15]. The similarity consists of speculative
access to shared variables, which are limited to locks in
synchronization speculation.

5 Conclusions
Coherence decoupling, the breaking of a coherent mem-
ory operation into the memory portion and the coherence
portion, offers new possibilities for reducing the overhead
of sharing in a multiprocessor. In this paper, we have
described three schemes for coherent value speculation,
one application of coherence decoupling, in which either
a value prediction table produces a result for a load before
the coherence state is known, or the value loaded from an
invalidated line is used while the coherence upgrade oc-
curs in the background. The latter succeeds when a load
is issued to a falsely shared word in a cache line, or when
the remote producer issues a silent store. PC and data ad-
dress are used to index into the table or the cache. We
have shown that these schemes show sufficient accuracy
to greatly reduce the performance degradations caused by
long-latency coherence operations.

Our future work will first analyze the variation of these
policies across our two multiprocessor simulation envi-
ronments. Future enhancements to these policies will
search for more accurate but slower value predictors, ex-
ploiting the long latencies of remote multiprocessor co-
herence operations for more accurate prediction. We will
also work to detect consistency violations in our predic-
tors, or make predictions only for loads that do not pro-
duce such violations, since recent work [11] has shown
that simply verifying that a value eventually read is the
same as the value predicted is sometimes insufficient to
conform to a defined memory consistency model. Finally,
since coherence decoupling is a more general form of syn-
chronization speculation, we plan to study a unified ap-
proach for both speculation on normal loads and specula-

tive lock elision [15].
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