
1

Parallelism in the Front-End

Paramjit S. Oberoi and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin–Madison

{param,sohi}@cs.wisc.edu

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

Abstract

Asprocessorback-endsget more aggressive, front-ends
will have to scale as well. Although the back-endsof
superscalar processors have continuedto becomemore
parallel, the front-endsremain sequential.This paper
describestechniquesfor fetching and renamingmultiple
non-contiguous portions of the dynamic instruction
streamin parallel usingmultiplefetch andrenameunits.It
demonstrates that parallel front-ends are a viable
alternative to high-performance sequential front-ends.

Compared with an equivalently-sizedtrace cache, our
techniqueincreasescache bandwidthutilization by 17%,
front-endthroughputby 20%, and performanceby 5%.
Parallelism also enhanceslatency tolerance: a parallel
front-endlosesonly 6% performanceas the cache sizeis
decreasedfrom128KB to 8 KB, comparedwith a 50–65%
performance loss for sequential fetch mechanisms.

1 Introduction

Increasing the exploitation of parallelism, especially
instruction-level parallelism, has been the focus of archi-
tectural techniques for several decades. Starting with
serial, in-order operation of all stages in instruction pro-
cessing, processors have gradually become increasingly
parallelin differentstages.Thefirst steptowardmorepar-
allelism was to increase the width of execution, i.e., pro-
cessing mul tiple operations at the same time, but in
program order. The next step was to remove the artificial
constraints due to serial processing and perform out-of-
order processing, further increasing parallelism.

Despite the use of parallel processing techniques in the
back-end, the front-end stages of the processing pipe-
line—instruction fetching, decoding, and renaming—have
remained sequential processes. Increasing parallelism in
the back-end has placed increasing demands on the front-
end, and processor architects have responded by increas-
ing the width of sequential front-ends. We believe that the
brute force solution of increasing the width of the front-
end pipeline stages while retaining their sequential nature

is not the preferred approach for future processors.
Accordingly, we propose techniques to paral lel ize the
front-end of the processing pipeline. The techniques that
we propose are able to achieve better front-end perfor-
manceand,in mostcases,betteror equivalentoverall per-
formance, than known high-performance sequential front-
ends.

In Section 2 we discuss the limitations of sequential
front-ends and introduce parallel front-ends. The next two
sectionsdescribeour proposedparallelfront-endin detail:
Section 3 describes the parallel fetch unit and Section 4
describes the parallel rename unit. Section 5 presents an
evaluation of our proposal, and Section 6 concludes the
paper.

2 Sequential and Parallel Front-Ends

We use the term front-end to denote the mechanism(s)
responsible for supplying instructions to the execution
units(theback-end). Thefront-endincludesthefetchunit,
the rename unit, and other support structures (e.g., a
branch predictor). The aim of a high-performance front-
end is to keep the later stages of the processing pipeline
busy by providing them with a sufficient number of
instructions every cycle. We start our discussion of the
front-end with the fetch unit since it is the earliest part of
the pipeline. The discussion of renaming is postponed
until Section 4, at which point we will be able to discuss
theimplicationsof aparallelfetchunit on therenameunit.

A sequentialfetchunit reliesonbeingableto fetchlong
contiguous sequences of instructions every cycle. Increas-
ing the throughput of a sequential fetch unit therefore
requiresincreasingthelengthof thecontiguousinstruction
sequences fetched each cycle. As the required length
becomeslonger, it becomesprogressively moredifficult to
achieve. Section 2.1 discusses these difficulties in more
detail.

To overcome these difficulties, we propose that higher
fetchthroughputbeachievedby usingparallelism:several
sequential fetch units fetching different fragments of the
programin parallel,ratherthanasinglefetchunit trying to
fetch longer sequences of instructions. Section 2.2

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

2

describes paral lel fetch and the advantages of paral lel
fetch over sequential fetch.

2.1 Limitations of Sequential Fetch

Most limitations of sequential fetch mechanisms result
from the fact that they are designed to fetch instructions
that are stored in consecutive memory locations (i .e.,
storedsequentially),eventhoughthearbitrarycontrolflow
structure of programs generally cannot be mapped onto a
static sequential storage order. Thus, to improve fetch
throughput, the mechanism must fetch a large number of
instructions that are not consecutive in the static program
representation. This is accomplished in one of several
ways, used either in isolation or in combination.

Thefirst way is to rearrangethestaticcodesothatbasic
blocks,andthereforeinstructions,thatarelikely to becon-
secutive in the dynamic program are also consecutive in
the static program [2, 5, 18]. This rearrangement may be
done statically, for example at link time [12], or dynami-
cally [1]. Since this approach is not always successful,
especial l y as the demands on fetch bandwidth are
increased, other approaches have been necessary.

The second way is to design hardware that can read
multiplecachelinessimultaneouslyandthusfetchinstruc-
tionsthatarecontiguousin dynamicprogramorderbut not
in thestaticprogram.A collapsingbuffer [7] is anexample
of this approach. Studies have shown that this approach is
also unable to deliver high fetch throughput [20].

A third way is to observe the dynamic execution order
as the program executes and cache instructions in their
dynamic execution order. A trace cache [14, 16, 20] is an
example of this approach. Accessing a single entry in a
tracecachereturnsmultiple instructionsthatwerenotnec-
essarilycontiguousin thestaticprogram,therebyallowing
a sequential fetch unit to achieve a high fetch throughput.
Thisapproachusesadditionalstorageresourcesthatmight
be put to more productive use i f other approaches to
achievehigh fetchthroughputwerepossible.Furthermore,
it makes inefficient use of storage resources due to frag-
mentation and duplication [17].

Sequentialfetchmechanisms,like in-orderissuemech-
anisms,arealsosusceptibleto stalls.A stall conditionlike
an instruction cache miss prevents any further fetch activ-
ity until the stall ends. Increasing stall latencies increase
the time in which no fetch activity occurs.

Many enhancements to these mechanisms have been
proposed [9, 10, 15, 19, 22], but each of these inherits
someproblemsfrom thesequentialfetchmechanismupon
which it is based.

2.2 Parallel Fetch

A parallel fetch unit achieves higher fetch throughput
by fetching multiple (possibly discontinuous) instruction

blocksin parallel,ratherthanincreasingthewidth of indi-
vidual blocks.Parallelismenableshigherfetchthroughput
without beingsubjectto thelimitationsof sequentialfetch
mechanisms.

Fetching multiple discontiguous blocks of instructions
every cycle requires predicting multiple points in the
upcoming dynamic instruction stream and fetching
instructions from each of those points in parallel. Thus,
instead of a single program counter (PC), there are multi-
ple PCs, each representing the start of a fragment of the
dynamic instruction stream. Instructions from each of
these fragments are fetched concurrently using multiple
sequencers. A sequencer is a mechanism that sequences
through instructions in program order (like a sequential
fetch unit).

The basic idea is very similar to instruction fetch in
Multiscalar [3, 21]: Multiscalar divides the sequential
instruction stream into tasks and assigns each task to a
processing element. All processing elements fetch and
execute the assigned task in parallel. However, parallel
fetch in Multiscalar is an arti fact of a ful ly clustered
microarchitecture. The technique we are proposing is
completely general and makes no assumptions about the
back-end.

The net throughput of a parallel fetch unit is the aggre-
gate throughput of all the sequencers, rather than being
constrained by the throughput of a single sequencer. The
maximum achievable throughput is sti l l l imited by the
instruction cache bandwidth, but unlike a sequential fetch
unit, the available bandwidth can be better utilized since
fetch can be reordered to accommodate constraints of the
instruction cache (e.g., misses and bank conflicts).

Parallelism in the fetch unit, l ike parallelism in other
parts of the processor, also increases latency tolerance. If
oneof thesequencersexperiencesacachemiss,otherscan
sti l l continue fetching the fragments assigned to them.
Thus, the cache miss can be overlapped with the fetch of
other useful instructions, or with other cache misses. In
addition,thecache-missingsequencercouldfetchadiffer-
ent fragment while the miss is serviced and later return to
the original fragment.

Finally, a parallel fetch unit has various benefits not
related to performance. Building an instruction delivery
mechanismoutof replicatedhardwaresimplifiesits design
and hence makes veri fication easier. Use of narrower
sequencers may simplify their circuitry. It also makes the
fetch unit more flexible: parallel fetch units easily lend
themselves to fetching multiple threads, fetching down
both paths of frequently mispredicted branches, fetching
instructions from reconvergent points, etc.

The Alpha EV8 processor design included a fetch unit
capable of a limited degree of parallel ism [8]. It could
fetch two discontiguous cache blocks simultaneously, like

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

3

a collapsing buffer. The blocks could be from two different
threads, but each thread was fetched in-order.

3 Parallel Fetch using Multiple Sequencers

A sequential fetch unit contains a single sequencer
which fetches one or more lines from the instruction cache
every cycle depending on the design of the cache and the
sequencer. The required instructions are extracted from the
fetched cache lines, and the output from the fetch unit is a
block of instructions in program order.

Figure 1 illustrates a parallel fetch unit based on the
design we proposed earlier [13]. We refer the reader to the
original paper for a complete description, but a short over-
view of the design follows. It consists of multiple sequenc-
ers that write the fetched instructions into an array of
fragment buffers. These buffers provide temporary storage
until instructions can be merged into the in-order instruc-
tion stream. A fragment predictor predicts control flow on
the granularity of fragments, and each predicted fragment
is assigned a fragment buffer. Sequencers fetch multiple
fragments into the corresponding fragment buffers in par-
allel. The instruction cache is banked so that it can handle
multiple requests simultaneously (barring bank conflicts).

Instructions are read out of fragment buffers in oldest-
fragment-first order, i.e., program order. Since instructions
exit the fetch unit in program order, no changes are
required to any other stage of the processor pipeline except
support for training the fragment predictor and recovering
its state on mispredictions.

3.1 Fragment Selection and Prediction

A program fragment is a portion of the dynamic
instruction stream. The entire dynamic execution stream
of the program can be obtained by concatenating all frag-
ments. This is similar to the idea of traces [20] or
tasks [21], except that fragments are completely general,
whereas the other terms make assumptions about the
nature of fragments or about how they are processed.

Conceptually, a fragment predictor only needs to pre-
dict fragment boundaries. Intra-fragment control flow can
be predicted by each sequencer using a local mechanism.
A variety of fragment predictor designs are possible, but in
this paper we use the trace predictor proposed by Jacob-
son, Rotenberg, and Smith [11]. Since the trace predictor
predicts trace addresses as well as branch directions for all
branches in the trace, local branch predictors are not
required.

The heuristics used to split the instruction stream into
fragments are fairly similar to commonly used trace selec-
tion heuristics: fragments are terminated at all indirect
branches, at any conditional branch after the eighth
instruction, or at the sixteenth instruction. These heuristics
are discussed in more detail in our prior work [13].

3.2 Fragment Buffers

Fragment buffers are FIFO queues of instructions large
enough to store an entire fragment. In addition to instruc-
tions, they store other information relating to the fragment:
its starting address, the current PC, and branch predictions
from the fragment predictor. As instructions are fetched
into a fragment buffer, the PC is updated to reflect the next
instruction to be fetched. When the entire fragment has
been fetched, a flag is set indicating that the buffer is com-
plete.

Once all instructions have been read from a buffer by
the next pipeline stage, the buffer is marked unused, but its
instructions are not discarded. If the same fragment is
encountered again before its buffer has been reallocated,
the instructions are reused instead of being fetched again
from the instruction cache. Depending on the benchmark,
20–70% of fragments can be reused with just 16 fragment
buffers [13].

Thus, the fragment buffers act like a very small trace
cache, and the sequencers act like a prefetch/fill mecha-
nism. A large trace cache can exploit most of the locality
in the instruction stream but typically has a relatively slow
sequential fill mechanism. The fragment buffers, on the
other hand, can exploit only a fraction of the locality, but
have a powerful parallel fill mechanism. Depending on
design constraints, a fetch mechanism could lie anywhere
on this spectrum. A complete study of this design space is
beyond the scope of the paper.

3.3 Performance Intuition

The time taken by this mechanism to construct an indi-
vidual fragment is typically more than the time that a
sequential fetch mechanism would take because (1) the
individual sequencers are not as wide as the monolithic
fetch unit that they are replacing, and (2) access to the
instruction cache is shared among multiple sequencers.
However, since the fetch rate is higher than the commit

B
an

ke
d

I-
C

ac
he

Sequencers Fragment Buffers

Fragment Predictor

Buffers

Figure 1. Parallel Fetch Unit

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

4

rate, sequencers are usually fetching fragments far ahead
of the back-end. Therefore, when the rename stage begins
renaming instructions from a fragment, usually the entire
fragment has already been fetched. Consequently, this
mechanism operates l ike a just-in-time fragment/trace
constructor, giving the illusion of a large trace-cache-like
mechanism to the rest of the pipeline. Our simulations
indicatethat84%of fragmentsarecompletelyconstructed
before they are sent to the rename stage—as compared to
an average trace cache hit rate of 87%.

Using parallelism to overcome the higher latency of
constructing individual fragments also makes this mecha-
nismmorelatency tolerantthansequentialfetch.Sincethe
fetch of different fragments is overlapped, a cache miss
can be hidden behind the fetch of instructions from other
fragments, or the latency of multiple cache misses can be
overlapped.

Final ly, since this mechanism uses a conventional
instruction cache instead of a trace cache, it is able to uti-
l ize cache space more effectively. Therefore, programs
with large working sets are likely to perform better—pro-
videdthatthefragmentpredictorisn’t overwhelmedby the
code size as well. Although performance of both the pre-
dictor and the cache suffers as the code size grows, a pre-
dictor canusuallyperformacceptablyover a greaterrange
of code sizes than a cache since the space occupied by
information about a fragment in the predictor is a small
fraction of the space occupied by the fragment in a cache.
For the same reason, it is easier to resize a predictor to
handle larger programs than it is to resize a cache.

3.4 Limitations of Multiple Sequencers

Relying on parallelism for higher throughput has the
result that during the time when parallel ism is low, the
throughput is also low. For paral lel fetch, this occurs
immediately after fetch is redirected due to a control
misprediction. It takes a few cycles for all sequencers to
become active again since the fragment predictor makes
only one prediction every cycle.

The problem is further exacerbated if the parallel fetch
unit is feeding a sequential decode and rename stage. In
thiscasetheeffective throughputis limited to thethrough-
put of a single sequencer since all the instructions fetched
by the first sequencer must be renamed before any of the
instructionsfetchedby othersequencers,eventhoughthey
may be fetched earlier. A similar problem occurs when a
sequencer encounters a cache miss. Later fragments are
fetched into fragment buffers before the cache-missing
fragment, but instructions from later fragments cannot be
forwardedto thelaterstagesof thepipelineuntil thecache
miss is serviced.

Thus, although parallel fetch is able to maintain a high
fetchrateatmosttimes,andis ableto reachits steadystate

fetch rate soon after a fetch redirect, sequential renaming
of instructionsexposeslatenciesthatcouldotherwisehave
been hidden by parallelism.

4 Parallel Renaming

The cause of the limitations described in Section 3.4 is
that a parallel pipeline stage is feeding a serial pipeline
stage; therefore, the instruction stream must be serialized.
For somestagesin thepipeline,suchasthecommitstage,
this may be unavoidable; but could this loss in perfor-
mance be avoided for intermediate pipeline stages?

Serialization can be avoided if the rename stage can be
built in a parallel fashion as well, as shown in Figure2. A
single monolithic renamer is replaced by multiple identi-
cal renamers. Each individual renamer renames a single
fragment—just like each individual sequencer fetches a
fragment—and al l renamers operate concurrently to
rename multiple fragments in parallel.

In addition to avoiding serialization of the instruction
stream, a renaming unit composed of smaller replicated
rename units may allow higher clock rates since small,
loosely-coupled structures can typically be clocked faster
thana largemonolithicstructure,andthecritical pathof a
renamingunit is shorterif thenumberof instructionsto be
simultaneously renamed is smaller.

Themainissuein building sucha renameunit is ensur-
ing that the consumer instruction in a RAW dependence
pair gets renamed correctly. Figure 3 illustrates the prob-
lem with two example program fragments. Instruction I2
from fragment 2 uses the mapping created for logical reg-
ister R1 when instruction I1 is renamed. A sequential
renamer always renames I1 before I2, so this mapping is
always available when I2 is renamed; however, if the two
fragments were renamed in parallel, I2 may be renamed
before I1. Since I2 cannot be renamed until the mapping
created by I1 is available, a parallel renaming mechanism
must do one of these two things [22]: (1) delay renaming
I2 until I1 has been renamed, or (2) rename I2 specula-
tively and ensure that I1 maps its output to the predicted
register.

RenameFragment Buffers

Buffers

In
st

ru
ct

io
n

W
in

do
w

Figure 2. Parallel Renaming

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

5

The fi r s t so lu t ion i s s imi la r to tha t used by
Multiscalar [3, 21]. When a fragment is renamed, the
hardware determines which register mappings are not yet
available (either via a predictor, or using compiler infor-
mation). The corresponding instructions are delayed until
the missing mappings are available. This solution requires
the renamers to exchange information about the register
map table as they rename instructions.

The second solution is similar to that used by
Skipper [6]. It is based on the observation that renaming
an instruction and creating the corresponding register
mapping do not necessarily have to be done at the same
time. Before starting to rename each fragment, the hard-
ware determines (speculatively or otherwise) which new
mappings will be created by that fragment. Future frag-
ments can use these mappings to rename instructions cor-
rectly. This allows multiple fragments to be renamed in
parallel, but the process of creating new mappings must be
performed serially for each fragment. The serialization is
not a serious performance limiter since the process of cre-
ating these mappings only involves making a copy of the
renaming table and allocating a group of physical regis-
ters. Some of this serialization could also be removed by
having some conventions that restrict which physical reg-
isters the logical registers of a fragment can be mapped to.

The first solution removes serialization completely, but
is more complex since it requires delaying instructions and
communication between renamers. Moreover, delaying
instructions increases the time fragments spend in the
fragment buffer, which limits the ability of the fetch unit to
look ahead in the instruction stream.

The second solution does not completely eliminate seri-
alization, but it is simpler since the operation of individual
renamers is largely unchanged and a renamer communi-
cates only at the beginning of its renaming process. Since
the fragment predictor limits the maximum throughput of
this mechanism to one fragment per cycle anyway, the sec-
ond solution has the benefit of lower latency without any
significant performance loss. The rest of this section
describes our proposed implementation of the second
solution in greater detail.

4.1 Live-out Prediction

Two predictions are made for each fragment: (1) the
logical registers written by that fragment, and (2) the
instructions that write the live-out values seen by future
fragments (i.e., for each register, the last instruction which
writes a value to that register). Predicting this is relatively
straightforward: the first time a fragment is seen, the live-
outs are recorded in a table, and that table is used to make
predictions later.

The live-out registers are stored as a bitmap containing
one bit for each register, with a 1 indicating that the corre-
sponding register is a live-out. The instructions corre-
sponding to the last writes are stored as a bitmap
containing one bit for each instruction in the fragment,
with the nth bit indicating if the nth instruction in the frag-
ment is a last write. In our example implementation, the
predictor has a 4-bit tag to detect aliasing and it is indexed
by a hash of the address and predicted branch directions of
the fragment.

4.2 Fragment Renaming

In addition to the live-outs, the length of each fragment
is also predicted. Every cycle, free reorder buffer entries
are allocated to the oldest fragment which has not yet been
allocated entries for all its instructions. Instructions from
later fragments can be written into the reorder buffer
before earlier fragments have been fetched completely.

Fragments are renamed in two phases. In phase 1, all
the predicted live-outs of the fragment are allocated new
physical registers. A copy of the register map table with
the newly allocated registers is sent to the next renamer. In
phase 2, instructions in the fragment are renamed sequen-
tially. The physical register allocated in phase 1 is used for
the result when renaming an instruction corresponding to a
live-out value; otherwise, a new physical register is allo-
cated.

Phase 1 is performed one fragment at a time, in pro-
gram order; phase 2 is performed in parallel for multiple
fragments. Phase 2 is performed only after the fragment
has been allocated space in the reorder buffer.

P
ro

gr
am

 O
rd

er

Fragment 1

I1 R1 = R4 + R5 R1 mapped to P4

Reg Map
R4 → P2
R5 → P3

Fragment 2

I2 R2 = R1 + 1

Reg Map
R4 → P2
R5 → P3
R1 → P4

Figure 3. Difficulty with Parallel Renaming: I2 can
not be renamed unless the latest mapping of R1
(produced when I1 is renamed) is known.

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

6

4.3 Mispredictions

There are two live-out misprediction scenarios:
(1) under-predicting the live-outs, and (2) over-predicting
the live-outs. Since two predictions are made per fragment
to determine live-outs (registers and instructions), we need
to detect a total of four misprediction conditions: (1) A
write to a register that was not predicted to be a live-out;
(2) No writes to a register that was predicted to be a live-
out; (3) A write to a live-out register after the predicted
last write; (4) No instruction predicted to be the last write
of a live-out register.

Condition 4 supersedes condition 2. Conditions 1 & 3
can be easily detected during the rename process, and con-
dition 4 can be detected after all instructions in a fragment
have been renamed. On a misprediction, all future frag-
ments are squashed. Alternatively, it is possible to selec-
tively re-execute the incorrectly renamed instructions, but
the extra expense may not be justified if the misprediction
rates are sufficiently low.

In addition, another source of misprediction is the frag-
ment length. Overpredicting the fragment length is safe—
it only wastes resources. Underprediction is handled by
squashing all future fragments.

4.4 Parallel Renaming with Sequential Fetch

The renaming scheme proposed above only depends on
the existence of a set of fragment buffers so that multiple
fragments can be read out and renamed in parallel. The
details of how the fragment buffers are filled do not affect
parallel renaming. For example, even if the fetch mecha-
nism was a trace cache which placed one trace every cycle
into a free fragment buffer, the parallel renaming mecha-
nism described could be used without any changes.

5 Evaluation

We modelled three different front-ends—a conven-
tional sequential mechanism, a trace cache, and the paral-
lel front end described in this paper—using an execution
driven simulator based on the SimpleScalar toolkit [4].
Only the system call emulation and the instruction defini-
tions were taken from SimpleScalar; the out-of-order tim-
ing model was rewritten entirely. Since improving the
front-end is only useful if it is a bottleneck, we simulate a
16-wide out-of-order superscalar processor with abundant
functional units and large caches. Table 1 describes the
simulated processor in detail.

The conventional sequential front-end is labelled W16
in the rest of the paper. W16 fetches at most 16 instruc-
tions sequentially starting at a given PC until it encounters
a taken branch or a cache-line boundary. We assume that
there is no restriction on the number of branch predictions

in a cycle, i.e., fetch can proceed past any number of not-
taken branches in a cycle. The cache can supply only one
cache line every cycle, so fetch must stop at cache-line
boundaries. Fetch stops at taken branches regardless of
whether the target is in the same cache line. The L1
instruction cache size is 64 KB. NOP instructions are elim-
inated very early in the pipeline and do not count towards
the number of instructions fetched, renamed, or commit-
ted. Branches are predicted using a trace predictor.

TC represents a 2-way set associative trace cache with
a maximum trace size of 16 instructions. On a cache hit,
the trace cache can supply an entire trace in a single cycle.
On a miss, instructions are fetched using the W16 mecha-
nism. The processor contains an L1 instruction cache in
addition to a trace cache, and space is divided equally
between the instruction cache and the trace cache1. We
simulate two trace cache configurations: (1) TC denotes a
32 KB trace cache and a 32 KB instruction cache, and
(2) TC2x denotes a 64 KB trace cache and a 64 KB
instruction cache. TC2x uses double the amount of L1
instruction storage as W16. As in the case of W16, NOP
instructions are not counted towards trace size.

PF represents the parallel fetch mechanism based on
multiple sequencers described in Section 3. It contains 16
fragment buffers of 16 instructions each. Two different PF
configurations are simulated: PF-2x8w consists of 2
sequencers, 8-wide each; and PF-4x4w consists of 4
sequencers, 4-wide each. The aggregate width of the front
end is 16 in each case. Each individual sequencer is identi-
cal to W16 except for its width. The aggregate size of the

1.This combination of an instruction cache and a trace cache performs
better than allocating the entire L1 cache space to a trace cache.

Table 1: Simulation Parameters

Width Fetch, decode and commit at most
16 instructions per cycle

Functional Units 16 Int adders, 4 Int multipliers,
4 FP adders, 1 FP multiplier,
4 load/store units.

Window 256 entry instruction window
L1 Caches
(Instr. & Data)

64 KB, 2-way set-associative,
1 cycle access time, 64 byte blocks
(16 instructions per cache block)

L2 Cache
(Unified)

1 MB, 4-way set-associative,
10 cycle access time, 128 byte blocks

Memory 100 cycle access time
Trace &
Fragment
Predictor

DOLC [11], 64K entry primary table,
16K entry secondary table,
D=9, O=4, L=7, C=9

Parallel Fetch and
Rename

16 fragment buffers, 16 instructions
each (1 KB). 2-way 4K entry live-out
predictor (84 bits per entry, 42 KB)

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

7

L1 cacheis thesameasin W16 (64KB), andthecacheis
split into 16 banks. The fragment predictor and fragment
selection heuristics are identical to TC to allow an unbi-
ased comparison.

Finally, PR denotes the PF mechanism coupled with
the parallel renaming mechanism described in Section 4.
PR-2x8w denotes 2 sequencers, 8-wide each, coupled
with 2 renamers, also 8-wide each; similarly, PR-4x4w
denotes4 sequencers,4-wideeach,coupledwith 4 renam-
ers, 4-wide each. The l ive-out predictor contains 4K
entries, and is 2-way set associative. Perfect fragment
length prediction is assumed.

PF and PR have a slight storage advantage over W16
and TC since the total L1 storage available to them is the
size of the cache plus the size of the fragment buffers
(16 × 16 × 4 = 1 KB). We decided not to correct this dis-
crepancy since it would require simulating a 63 KB L1
cache—which is nei ther practical for simulation, nor
meaningful for a real machine. We do not expect this to
skew theconclusionssignificantlysincethefragmentbuff-
ers increase the total available L1 storage by only 1.6%.

All benchmarks were taken from the SPEC CPU 2000
benchmark suite and were compiled with ‘peak’ settings
using the Compaq Alpha compiler. We report results only
for the twelve integer benchmarks. Floating point bench-
marks were omitted since they are either memory limited
or have very simple control flow, with the result that all
front ends perform equivalently on them. Excluding them
prevents dilution of differences between the schemes.

All programs were simulated for the first one bill ion
instructions. Test inputs were used, except for the bench-
markseon, mcf, perl, twolf, andvpr, sincetheir test
run was shorter than a bill ion instructions—train inputs
were used for these. Table 2 l ists the benchmarks, the
inputs used, and the average fragment length.

The results are organized as follows: in Section 5.1 we
study the efficiency with which various fetch mechanisms
utilize theavailablecachebandwidth,andthenetthrough-
put they achieve. Following that, we study our parallel
renaming mechanism: Sections 5.2 and 5.3 evaluate the
parallelrenameunit andthelive-outpredictorrespectively.
Section 5.4 compares the overall performance of various
schemes. Finally, Section 5.5 and Section 5.6 study the
sensitivity of performance to the amount of L1 instruction
storage and the trace/fragment predictor size.

5.1 Parallel Fetch

All threefetchmechanisms—W16, TC, andPF—have
identical maximum throughput: each can fetch at most 16
instructions every cycle. However, each fetch mechanism
has different limitations on how efficiently this available
bandwidth can be uti l ized. The number of instructions
fetched per cycle is not an accurate measure of bandwidth
utilization since, in addition to being affected by the fetch
unit, it is alsoaffectedby theIPCof theprogram.At times
of low IPCthefetchunit will bestalled,andthusunableto
utilize the available bandwidth. Therefore, measuring the
instructions fetched per cycle may hide limitations of the
fetch unit.

The ratio of the number of instructions fetched to the
numberof cyclesin which thefetchunit wasnot stalledis
not accurate either: a parallel fetch unit may be partially
stalled sometimes (i.e., some sequencers may be stalled,
but not all), andthereforethis metricdiscriminatesagainst
a parallel fetch unit.

We use the notion of fetch slots to abstract away the
back-end from the fetch unit. Each cycle that a sequencer
is active, there is a potential maximum number of instruc-
tions it can fetch. That is the total number of fetch slots.
Thus W16 and TC have either 0 or 16 fetch slots every
cycle, whereas PF has a varying number of fetch slots
dependingon thenumberof sequencersthatareactive.To
measuretheefficiency of eachfetchmechanism,wedeter-
mine the ratio of the number of instructions fetched to the
total number of fetch slots, i.e., thefetch slot utilization.

Figure 4 shows the fetch slot uti l ization of different
fetch mechanisms. Each bar in the graph represents the
harmonic mean across all benchmarks. As expected, W16
doesnot performwell. It is ableto utilize only 40%of the
availableslots.A tracecacheincreasestheaverageutiliza-
tion to about 60%—a little lower than the ratio between
average and maximum trace size (Table 2). PF-2x8w
achieves about 70% util ization on average—17% more
than TC and TC2x. PF-4x4w further increases utilization,
since narrower sequencers lead to fewer wasted slots,
achieving 80% utilization on average.

Figure 5 shows the average number of instructions
fetched and renamed every cycle by each mechanism,

Table 2: Benchmark Characteristics

Benchmark Input
Avg Frag Size
(instructions)

bzip2 test 12.79
crafty test 11.99
eon train (cook) 10.98
gap test 10.69
gcc test 11.15
gzip test 12.06
mcf train 9.04
parser test 10.35
perl train (diffmail) 11.32
twolf train 12.16
vortex test 11.20
vpr train (place) 12.33

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

8

including wrong-path instructions. PF is able to sustain an
average fetch rate of 7 instructions per cycle—about 20%
higher than the trace cache, and 49% higher than W16.

Of course, high fetch efficiency and/or rate may not
directly translate to higher performance since the fetch
unit may be fetching many wrong-path instructions. How-
ever, it is important to realize that there are two problems
in instruction fetch: (1) what to fetch, and (2) how to fetch.
Parallel fetch is aimed at the second problem, and the
above results show that it successfully achieves this aim.

5.2 Parallel Renaming

As discussed in Section 3.4, the high fetch rate of PF
does not necessarily lead to a high rename rate, since the
instruction stream could be serialized at the rename unit.
However, the rename rate has a more direct impact on per-
formance than the fetch rate. High IPC can be obtained
only if the back-end has enough ready instructions, and
increasing the rename rate directly increases the number
of instructions available for execution.

The light gray bars in Figure 5 show the average num-
ber of instructions renamed each cycle by the mechanisms
under study. For sequential fetch mechanisms, the rename
rate is similar to the fetch rate; a little lower, since on
branch mispredictions some fetched instructions are dis-
carded before they reach the rename stage. However, the
rename rate of PF is much lower than its fetch rate, indi-
cating that serializing the instruction stream at the rename
stage severely impacts the front-end throughput.

PR increases the rename rate of PF by 13% on average.
However, there is still a significant gap between the fetch
rate and the rename rate of PR that is larger than the corre-
sponding gap for W16 and TC. This gap exists because
the number of instructions discarded due to mispredictions
by a parallel fetch unit is higher than by sequential fetch
schemes. A parallel fetch unit buffers many more instruc-
tions in the fetch stage, and is required to predict control
flow much further into the future.

As described in Section 4.4, a sequential fetch unit can
be combined with a parallel renaming unit. Note that par-
allel renaming, while adding performance to parallel fetch,
is not a performance enhancing technique by itself. It may

Figure 4. Fetch Slot Utilization

W16 TC TC2x PF-2x8w PF-4x4w0

20

40

60

80

100

F
et

ch
 S

lo
t U

til
iz

at
io

n
(%

)

Figure 5. Fetch and Rename Throughput

W16 TC TC2x PF
2x8w

PF
4x4w

PR
2x8w

PR
4x4w

4

5

6

7

8

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Fetch
Rename

TC-2x8w TC2x-2x8w TC-4x4w TC2x-4x4w0

1

2

3

4

5

S
lo

w
do

w
n

(%
)

Figure 6. Monolithic versus Parallel Renaming

1K 2K 4K 8K
Live-Out Predictor Size (entries)

88

90

92

94

96

98

100

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

1-way
2-way
4-way

Figure 7. Live-Out Prediction Accuracy

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

9

simplify rename, however, and thus enable faster circuit
implementations. Figure 6 shows the performance penalty
of using a parallel renaming unit with a trace cache fetch
mechanism. Two paral le l renamers are studied:
(1) 2x8w—two 8-wide renamers operating in parallel, and
(2) 4x4w—four 4-wide renamers operating in parallel.

A 2x8w renaming unit performs within 1% of a mono-
lithic renaming unit on average. A 4x4w renamer suffers a
higher penalty of about 3.5%. Only one-third of this slow-
down is due to live-out mispredictions; the rest is caused
by instructions being renamed before their sources. Our
simulations indicate that 4–12% of dynamic instructions
are renamed before the instructions producing the corre-
sponding sources when a 4x4w renamer is used.

5.3 Live-Out Predictor

Figure 7 shows the prediction accuracy of the live-out
predictor for a range of sizes and associativities. The pre-
dictor is clearly space-limited and benefits substantially as
the number of entries is increased. Increasing the associa-
tivity to two increases accuracy, but a further increase does
not help much. In this paper, we use a 2-way 4K entry pre-
dictor (42 KB) which achieves 98% accuracy on average.

The number of live-outs per fragment is typically small
(4–6 registers), so a more complex encoding could signifi-
cantly reduce the storage requirements of the predictor.

5.4 Overall Performance

Figure 8 shows the performance of different front-ends
over all benchmarks. The Y-axis indicates the percent
speedup over W16. The four bars in each cluster represent
TC, TC2x, PR-2x8w, and PR-4x4w respectively. The
lower section of last two bars indicates the performance of
the corresponding parallel fetch configuration, and the
upper section shows the benefit due to parallel renaming.

As noted earlier, TC2x is identical to TC, except that
total L1 instruction storage is doubled from 64K to 128K.
The difference between the TC and TC2x bars is therefore
the benefit due to a larger cache. This difference is small in
most cases, indicating that the working sets of most bench-
marks fit in 64KB of L1 cache space. PR-2x8w performs
within 2% of both TC and TC2x on these benchmarks. On
the four benchmarks that gain significantly from doubling
the L1 cache (crafty, gcc, perl, and vortex),
PR-2x8w performs 10–20% better than TC.

On average, PR-2x8w performs equivalently to TC2x
with just half the cache space and 5% better than TC with
a similar amount of space. PR-4x4w performs 3% better
than TC on average but a little worse than TC2x. Out-of-
order renaming increases performance of the parallel fetch
unit by 0–6% depending on the benchmark. These results
represent a 10–13% average speedup over the base W16
configuration, indicating the importance of a high perfor-
mance fetch mechanism when using an aggressive back-
end.

PR-4x4w performs 3% worse than PR-2x8w on aver-
age since it looks further into the future, and thus is more
likely to fetch down mispredicted paths. In addition, it
takes longer to recover from mispredictions since it takes
at least four cycles for all four sequencers to become
active, rather than two cycles in the case of PR-2x8w.
Finally, as described in Section 5.2, greater parallelism in
the renaming stage causes instructions to be renamed in
suboptimal order. Thus, better control prediction and more
intelligent parallel renaming would be necessary to
achieve the advantage of four sequencers over two.

5.5 Sensitivity to Cache Size

Results presented in the Section 5.4 already indicate
that a parallel fetch unit is more suitable than a trace cache
for workloads with large code footprints. In this section,

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr HMean
0

10

20

30

S
pe

ed
up

 o
ve

r
W

16
 (

%
)

TC
TC2x

PF-2x8w
PR-2x8w
PF-4x4w
PR-4x4w

Figure 8. Performance

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

10

we take this further and show that a parallel fetch unit pro-
vides robust performance over a wide range of L1 instruc-
tion cache miss rates.

Figure 9 shows the performance of the fetch mecha-
nisms under study over a range of cache sizes, and thus a
range of cache miss rates. The X-axis indicates the total
L1 instruction storage (instruction cache + trace cache)
and the Y-axis indicates speedup over W16 with a 64 KB
cache. Since TC and TC2x differ only in cache size, TC2x
is not shown on the graph.

The line representing TC has the highest slope of all,
indicating that a trace cache loses performance most rap-
idly as the number of cache misses increase. On the other
hand, PR-2x8w and PR-4x4w lose only about 6% perfor-
mance as the cache size is reduced by a factor of sixteen
from 128 KB to 8 KB. For small cache sizes, sequential
fetch mechanisms are 50–62% slower than PR. PF, not
shown on the graph to reduce clutter, has slope similar to
PR, but slightly lower performance.

Two factors contribute to this resilience: (1) the ability
to continue fetching and executing instructions beyond a
cache miss, and (2) the ability to overlap multiple cache
misses with each other. We expect that tolerance to cache
miss rates will become increasingly important in the future
as technology constraints make it harder to design large
structures, and as program sizes become larger. Small
caches are also attractive since they can be clocked faster,
and parallel fetch allows the cache size to be reduced with
little impact on performance.

5.6 Sensitivity to Trace/Fragment Predictor Size

Figure 10 shows the sensitivity of performance to trace/
fragment predictor size. The X-axis indicates the number
of entries in the primary table; the number of entries in the
secondary table is one fourth of that in all cases1. The Y-
axis indicates the speedup over W16 with a default sized
predictor (64K entries).

We see that all mechanisms gain about 1.25% perfor-
mance on average when the predictor size is doubled. For
a trace cache, this is a significantly smaller increase as
compared to the benefit of doubling the cache size. For
parallel fetch, however, this is similar to the benefit from
doubling the instruction cache size. This suggests that a
parallel fetch mechanism should have a large predictor,
even at the expense of a smaller instruction cache, since
doubling the predictor may be less expensive in terms of
chip area than doubling the cache.

6 Conclusions

Sequential front-ends are limited in the throughput they
can achieve since they are designed to fetch instructions
from contiguous memory locations, but the control flow
structure of many programs cannot be mapped onto a
sequential storage order. Therefore, we propose that fetch
throughput be increased not by widening sequential front-
ends, but by building parallel front-ends—front-ends com-
posed of multiple sequential fetch and rename units oper-
ating in parallel. We described a possible implementation
of such a parallel front-end and qualitatively discussed its
characteristics. In particular, we discussed why a parallel
fetch unit cannot be used effectively unless coupled with a
parallel rename unit, and described ways in which a paral-
lel rename unit could be built.

We found that a parallel front-end is able to achieve
higher throughput than a trace cache, and in most cases
better or equivalent overall performance as well. As a
result of being parallel, the proposed front end is able to
tolerate cache miss latency better than sequential front
ends, and thus provide good performance even on pro-
grams with a high L1 instruction cache miss rate.

W16 (64 KB)

8 16 32 64 128
L1 Instruction Storage (KB)

-60

-50

-40

-30

-20

-10

0

10

20

S
pe

ed
up

 o
ve

r W
16

 -
64

 K
B

 (%
)

W16
TC
PR-2x8w
PR-4x4w

Figure 9. Sensitivity to Cache Size

1.The reader is referred to prior work [11] for a detailed description of
the trace/fragment predictor.

4K 8K 16K 32K 64K
Fragment Predictor Size (entries)

0

5

10

15

S
pe

ed
up

 o
ve

r W
16

 -
64

K
 (%

)

TC
TC2x

PR-2x8w
PR-4x4w

Figure 10. Sensitivity to Fragment Predictor Size

To appear in The 30th International Symposium on Computer Architecture, June 9–11, 2003

11

Since the objective of this paper was to compare a par-
allel front-end with a high-performance sequential front-
end, we chose to make fragments identical to traces. This
enabled us to directly compare our scheme to a trace
cache. However, this mechanism has fewer restrictions on
fragment selection than a trace cache has on trace selec-
tion. Fragments can be longer and can have a larger vari-
ance in size without affecting cache storage efficiency.
They can contain intra-fragment control flow, unlike
traces. Further research on fragment selection and predic-
tion is necessary to fully exploit the potential of parallel
front-ends.

7 Acknowledgements

We would like to thank Adam Butts, Philip Wells,
Manoj Plakal, and Allison Holloway for commenting on
drafts of this paper. The comments of the anonymous
reviewers have also helped improve the quality of this
paper. This work was supported in part by National Sci-
ence Foundation grants CCR-9900584 and EIA-0071924,
donations from Intel and Sun Microsystems, and the Uni-
versity of Wisconsin Graduate School.

8 References

[1] V. Bala, E. Duesterwald, and S. Banerjia. Transparent
Dynamic Optimization. Technical Report HPL-1999-77,
Hewlett Packard Labs, June 1999.

[2] T. Ball and J. R. Larus. Branch Prediction For Free. In Pro-
ceedingsof the ACM SIGPLAN’93 Conferenceon Pro-
gramming Language Design and Implementation, pages
300–313, Albuquerque, New Mexico, June 23–25, 1993.

[3] S. Breach. DesignandEvaluationof a MultiscalarProces-
sor. Ph.D. thesis, University of Wisconsin-Madison, 1998.

[4] D. C. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin-Madison, Jun. 1997.

[5] B. Calder and D. Grunwald. Reducing Branch Costs via
Branch Alignment. In Proceedingsof the Sixth Interna-
tional Conferenceon Architectural Supportfor Program-
ming Languages and Operating Systems, pages 242–251,
San Jose, California, October 4–7, 1994.

[6] C-Y. Cher and T. N. Vijaykumar. Skipper: A Microarchi-
tecture For Exploiting Control-flow Independence. In Pro-
ceedingsof the 34th Annual International Symposiumon
Microarchitecture, Austin, Texas, Dec. 2–5, 2001.

[7] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel.
Optimization of Instruction Fetch Mechanisms for High
Issue Rates. In Proceedingsof the 22nd Annual Interna-
tional Symposiumon ComputerArchitecture, pages 333–
344, Santa Margherita Ligure, Italy, June 22–24, 1995.

[8] J. Emer. EV8: The Post–Ultimate Alpha. Keynote Address,
10th International Conference on Parallel Architectures
and Compilation Techniques, 2001.

[9] M. Franklin and M. Smotherman. A Fill-Unit Approach to
Multiple Instruction Issue. In Proceedingsof the 27th

Annual International Symposiumon Microarchitecture,
pages 162–171, November 30–December 2, 1994.

[10] D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the Fill
Unit to Work: Dynamic Optimizations for Trace Cache
Microprocessors. In Proceedingsof the31stAnnualInter-
nationalSymposiumonMicroarchitecture, pages 173–181,
Dallas, Texas, November 30–December 2, 1998.

[11] Q. Jacobson, E. Rotenberg, and J. E. Smith. Path-Based
Next Trace Prediction. In Proceedingsof the 30th Annual
InternationalSymposiumon Microarchitecture, pages 14–
23, Dec. 1–3, 1997.

[12] R. Muth, S. Debray, S. Watterson, and K. de Bosschere.
ALTO: A Link-Time Optimizer for the DEC Alpha. Tech-
nical Report TR98-14, University of Arizona, September
1998.

[13] P. S. Oberoi and G. S. Sohi. Out-of-Order Instruction Fetch
using Multiple Sequencers. In Proceedingsof the 2002
International Conference on Parallel Processing, pages
14–23, Vancouver, Canada, August 18–21, 2002.

[14] S. J. Patel, D. H. Friendly, and Y. N. Patt. Critical Issues
Regarding the Trace Cache Fetch Mechanism. Technical
Report CSE-TR-335-97, Department of Electrical Engi-
neering and Computer Science, University of Michigan,
May 1997.

[15] S. J. Patel, T. Tung, S. Bose, and M. M. Crum. Increasing
the Size of Atomic Instruction Blocks Using Control Flow
Assertions. In Proceedingsof the 33rd Annual Interna-
tional Symposiumon Microarchitecture, pages 303–313,
Monterey, California, December 10–13, 2000.

[16] A. Peleg and U. Weiser. Dynamic Flow Instruction Cache
Memory Organized Around Trace Segments Independent
of Virtual Address Line. US Patent 5,381,533, March 30,
1994.

[17] M. Postiff, G. Tyson, and T. Mudge. Performance Limits
of Trace Caches. Journal of Instruction-Level Parallelism,
1, August 1998.

[18] A. Ramirez, J-L. Larriba-Pey, C. Navarro, J. Torrellas, and
M. Valero. Software Trace Cache. In Proceedingsof the
1999 international conferenceon Supercomputing, pages
119–126, Rhodes, Greece, 1999.

[19] A. Ramirez, O. J. Santana, J. L. Larriba-Pey, and
M. Valero. Fetching Instruction Streams. In Proceedingsof
the 35rd Annual InternationalSymposiumon Microarchi-
tecture, Istanbul, Turkey, November 18–22, 2002.

[20] E. Rotenberg, S. Bennett, and J. E. Smith. Trace Cache: A
Low Latency Approach to High Bandwidth Instruction
Fetching. In Proceedingsof the29thAnnualInternational
Symposiumon Microarchitecture, pages 24–34, Paris,
France, Dec. 2–4, 1996.

[21] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proc. 22nd International Symposiumon
Computer Architecture, pages 414–425, Jun. 1995.

[22] J. Stark, P. Racunas, and Y. N. Patt. Reducing the Perfor-
mance Impact of Instruction Cache Misses by Writing
Instructions into the Reservation Stations Out-of-Order. In
Proceedingsof the 30th Annual InternationalSymposium
on Microarchitecture, pages 34–43, Dec. 1–3, 1997.

