
1

Vulnerability Assessment and
Secure Coding Practices

for Middleware
Part 2

James A. Kupsch
Computer Sciences Department

University of Wisconsin

© 2007-2008, James A. Kupsch. All rights reserved.

2

Part 2 Roadmap
• Part 1: Vulnerability

assessment process
• Part 2: Secure coding

practices
– Introduction
– Handling errors
– Numeric parsing
– ISO/IEC 24731 intro
– Variadic functions
– Buffer overflows
– Injections
– Directory traversal

– Integer
– Race conditions
– File system issues
– Canonical form
– Privileges
– Command line
– Environment
– Denial of service
– Information leaks
– Memory allocators
– General engineering
– Compiler warnings

3

Vulnerability Types

• Description of vulnerability
• Signs of presence in the code
• Mitigations
• Safer alternatives

4

Handling Errors

• If a call can fail, always check the status
• When an error is detected

– Handle locally and continue
– Cleanup and propagate the error
– Exit the application

• All APIs you use, or develop, that can fail
need to be able to report errors to the
caller

• Using exceptions makes it harder to
ignore

5

Numeric Parsing
No Error Indication

• atoi, atol, atof, scanf family (with %u,
%i, %d, %x and %o specifiers)
– Out of range values results in unspecified

behavior
– Non-numeric input results in 0
– Use strtol, strtoul, strtoll, strtoull,
strtof, strtod, strtold which provide an
error indication

6

Correct Numeric Parsing
char *endptr;
long longVal;

errno = 0;
longVal = strtol(s, &endptr, 10);
if (errno == ERANGE)

{ERROR("overflow");}
if (errno != 0)

{ERROR("other error");}
if (endptr == 0)

{ERROR("non-numeric");}
if (*endptr != '\0')

{ERROR("non-numeric at end");}
if (isspace(*s))

{ERROR("space at beginning");}

7

Correct Numeric Parsing in C++

• iostream inserter's
– Type safe
– All errors set stream to failed (test with !is)
– Use istringstream to parse a string

istringstream is("123 87.32");
is >> i >> f;
if (!is) {ERROR("parse error");

• Boost's lexical_cast<T>(s)
– http://www.boost.org
– Throw's bad_lexical_cast exception on

failure

8

Not enough information to
report an error

• strcat, strcpy, strncat, strncpy,
gets, getpass, getwd, scanf (with %s
or %[…], without width specified)
– Unable to report an error if buffer would

overflow as it does not have enough
information

– Only secure in rare case where files or strings
are verified for secure values before use

– Never use these

9

ISO/IEC 24731

Extensions for the C library:
Part 1, Bounds Checking Interface

• Functions to make the C library safer
• Meant to easily replace existing library

calls with little or no other changes
• Easy to check errors
• Very few unspecified behaviors
• All updated buffers require a size
• http://www.open-std.org/jtcl/sc22/wg14

10

ISO/IEC 24731:
Run-time Constraints

• A run-time constraint is a property of the
arguments that must be true at call time

• A violation is handled by callback
• Set with set_constraint_handler_s
• Default is abort_handler_s

• Violations not allowed affect program
• ignore_handler_s

• Allows detection and handling of violations locally

• Define your own callback

11

ISO/IEC 24731:
Common Run-time Constraints

• rsize_t parameter type used to indicate
the size of the buffer or amount to copy
– Violation if size > RSIZE_MAX
– Catches large size caused by integer overflow

• Buffer pointers
– Violation if NULL

• dst buffer too small for operation
– Usually a violation (snprintf truncates)

12

ISO/IEC 24731:
gets_s

• gets_s(buf, bufSize)
• Like fgets(buf, bufSize, stdin),

except new-line removed
• Run-time constraint failure if new-line is

not found in bufSize characters
• If error

– Null-terminates buf
– Reads complete line and discards instead of

returning partial line like fgets

13

Variadic Functions

• C functions that can take a variable number of
parameters

• Not type safe
– Types and number know from format string or implicit

and sentinel values are used

• Signs: va_list va_start va_arg va_end
<stdarg.h> <cstdarg>

• Common variadic functions
– printf, scanf, syslog families
– execl family
– open with O_CREAT (3rd argument is the mode)

14

Variadic Function Safety

• printf, scanf, syslog families
– Never take the format string from the user
– Use compile time constants for the format

string
– Turn on compile time warning to check

arguments against the format string
– Use C++ iostreams

• Check all calls to open with O_CREAT
includes the 3rd argument for the mode

15

Buffer Overflows
• Description

– Accessing locations of a buffer outside the
boundaries of the buffer

• Common causes
– C-style strings
– Array access and pointer arithmetic in languages

without bounds checking
– Off by one errors
– Fixed large buffer sizes (make it big and hope)
– Decoupled buffer pointer and its size

• If not together overflows are impossible to detect
• Require synchronization between the two
• Ok if size is implicitly known and every use knows it (hard)

16

Why Buffer Overflows
are Dangerous

• An overflow overwrites memory adjacent
to a buffer

• This memory could be
– Unused
– Program data that can affect operations
– Internal data used by the runtime system

• Usual sign is a crash
• Specially crafted values can be used for

an attack

17

Buffer Overflow of User Data
Affecting Flow of Control

{
char id[8];
int validId = 0; /* not valid */

gets(id); /* reads "evilguyxy"*/

/* validId is now 121 decimal */
if (IsValid(id)) validId = 1;
if (validId) {DoPrivilegedOp();} /* runs */

\0\0\0x79
y

xyuglive
id logFunc

\0\0\0\0
id logFunc

18

Pointer Attacks

• First, overwrite a pointer
– In the code
– In the run-time environment

• Heap attacks use the pointers usually at the
beginning and end of blocks of memory

• Second, cause the pointer to be used
– Read user controlled data that causes a

security violation
– Write user controlled data that later causes a

security violation

19

Stack Smashing

• This is a buffer overflow of a variable local
to a function that corrupts the internal
state of the run-time system

• Target of the attack is the value on the
stack to jump to when the function
completes

• Can result in arbitrary code being
executed

• Not trivial, but not impossible either

20

Attacks on Code Pointers

• Stack Smashing is an example
• There are many more pointers to functions or

addresses in code
– Dispatch tables for libraries
– Function pointers in code
– C++ vtables
– jmp_buf
– atexit

– Exception handling run-time
– Internal heap run-time data structures

21

Buffer Overflow of a
User Pointer

{
char id[8];
int (*logFunc)(char*) = MyLogger;

gets(id); /* reads "evilguyx "*/

/* equivalent to system(userMsg) */
logFunc(userMsg);

xyuglive
id logFunc

id logFunc

Ptr to MyLogger

Ptr to system

Ptr to system

22

C-style String Design Flaws
• Null terminated array of characters
• Represented by a pointer to this array
• Not a proper type, just a convention
• Only language support is string literals

– Initialize a char array
– Create array containing a constant string literal

• Problems
– Null may be missing
– Pointers are difficult to use correctly
– Size of buffer is kept externally from pointer if at all
– Many common operations are expensive
– Can't have a string with a null in it

23

C-style String Example
{
char u[4] = "cows";
char t[] = "dog";
char *s = "cat";
…

\0godswoc

\0tac

s

u t

string store

stack

24

Buffer Overflow Danger Signs:
Missing Buffer Size

• gets, getpass, getwd, and scanf family
(with %s or %[…] specifiers without width)
– Impossible to use correctly: size comes solely

from user input
– Alternatives

scanf("%100s", s)scanf("%s", s)

getwd(s, sLen)getcwd(s)
fgets(s, sLen, stdin)gets(s)
SafeUnsafe

25

strcat, strcpy, sprintf,
vsprintf

– Destination buffer size not passed
• Impossible for function to detect overflow

– Difficult to use safely w/o preflight checks
• Checks require destination buffer size
• Length of data formatted by printf
• Difficult & error prone
• Best incorporated in the function

If (dstSize < strlen(s1) + strlen(s2) + 1)
{ERROR("buffer overflow");}

strcpy(dst, s1);
strcat(dst, s2);

Proper usage: concat s1, s2 into dst

26

Buffer Overflow Danger Signs:
Difficult to Use and Truncation

• strncat(dst, src, n)
– n is the maximum number of chars of src to append

(trailing null also appended), implying n must be
(dstSize - strlen(dst) - 1) or less

• strncpy(dst, src, n)
– Writes n chars into dst, if strlen(src) < n, it fills

the other n - strlen(src) chars with 0’s
– If strlen(src) >= n, dst is not null terminated

• Neither allows truncation detection directly from
result

27

Proper Usage of strncat and
strncpy

• Requires essentially the same check as
before

• Checks are inefficient, but required

curDstSize = dstSize;
strncpy(dst, s1, curDstSize);
curDstSize -= strlen(s1);
strncat(dst, s2, curDstSize);
curDstSize -= strlen(s2);
If (curDstSize < 1)

{ERROR("truncation");}

Proper usage: concat s1, s2 into dst

28

Buffer Overflow Danger Signs:
scanf family

• Max field can not be taken from an argument
– * width suppresses assignment

• %nc does not null terminate
• %ns and %n[…] require a buffer of size n+1
• Requires manual coordination of format string,

number and types of arguments, and result

Example: 3 items must be coordinated

char big[100], small[10];
int r, j;
r = scanf("%99s %9s %d", big, small, &j);
If (r == EOF) ERROR("EOF")
If (r != 3) ERROR("bad line");

29

Unterminated String: readlink

• readlink(path, buf, bufSize)

• Reads symbolic link referent
• Does not null terminate
• Returns number of characters written to

buf or -1 on error

r = readlink(path, buf, bufSize);
If (r == -1) {ERROR("error in errno");}
If (r == bufSize) {ERROR("referent truncated");}
buf[r] = '\0';

Proper usage: readlink

30

Buffer Overflow Mitigations

• snprintf(buf, bufSize, fmt, …) and
vsnprintf
– Truncation detection possible

(result >= bufSize implies truncation)
– Can be used as a safer version of strcpy and
strcat

– Officially doesn’t exist until C99 standard

r = snprintf(dst, dstSize, "%s%s",s1, s2);
If (r >= dstSize)

{ERROR("truncation");}

Proper usage: concat s1, s2 into dst

31

Safer String Handling:
BSD’s strlcpy and strlcat

• strlcpy(dst, src, size) and
strlcat(dst, src, size)
– size is always the size of the dst buffer

– Returns number of chars required
– result >= size indicates truncation
– dst always null terminated, except strlcat

where dst is not terminated
– Can read outside src if not null-terminated
– Not universally implemented (not in linux)

32

Safer String Handling:
BSD’s strlcpy and strlcat

/* safe to just check errors at last call */
(void)strlcpy(dst, s1, dstSize);

r = strlcat(dst, s2, dstSize)
if (r >= dstSize) {

if (r == dstSize && dst[r] != '\0') {
/* this should not happen as
 strlcpy will always terminate */
ERROR("unterminated dst");

} else {
ERROR("truncation");

}

Proper usage: concat s1, s2 into dst

33

ISO/IEC 24731:
string and memory functions

• strcpy_s strncpy_s memcpy_s
strcat_s strncat_s memmove_s

• Like standard counterpart, except all
include an additional parameter for the
length of the destination buffer

• Run-time constraint failure if destination
• If error

– Null-terminates destination buffer, null fills
buffer for mem functions

34

ISO/IEC 24731:
string and memory functions

• Very easy to convert typical unsafe code
– Add _s to function name
– Add destination buffer size parameter

/* program will abort on error */
strcpy_s(dst, dstSize, s1);
strcat_s(dst, dstSize, s2);

Proper usage: concat s1, s2 into dst

35

ISO/IEC 24731:
printf_s family

• %n conversion not allowed as it is often
used by attackers to write to arbitrary
memory

• Null arguments to %s are a violation
• Use sprintf_s instead of snprintf_s
• snprintf_s truncates just like snprintf

/* program will abort on error */
sprintf_s(dst, dstSize, "%s%s", s1, s2);

Proper usage: concat s1, s2 into dst

36

ISO/IEC 24731:
scanf_s family

• %s, %c and %[…] now require the argument
to be a pointer to a buffer followed by the
size of the buffer

• Null arguments are a violation
• Still requires synchronizing result, format

string and arguments

37

Preventing Buffer Overflows
in C++

• Don't use pointers, C-style string, or C-arrays
• std::string

– Buffer, length and current size are encapsulated
together

– Dynamically sized
– Provides many useful and efficient methods

• std::vector<>
– Dynamically sized array
– Safe except operator[] (use at method for safety)

• std::array<> (new in C++ TR1)
– Fixed size array

dst = s1 + s2;

Proper usage: concat s1, s2 into dst

38

Potential Problems
with C++ Strings

• System call and libraries expect C-strings
– c_str method will return a constant C-string

pointer
– Valid only until string is modified
– Nulls are allowed

• When converted to C-string everything after the
null is essentially lost

• If tests are done on C++-string and used as a C-
string these may be different

• Same problem in other languages such as Perl

• Denial of service if length not restricted

39

Injection Attacks
• Description

– A string constructed with user input, that is then
interpreted by another function, where the string is
not parsed as expected

• Command injection (in a shell)
• Format string attacks (in printf/scanf)
• SQL injection
• Cross-site scripting or XSS (in HTML)

• General causes
– Not performing data validation on user input
– Not properly quoting user data to prevent

misinterpretation of metacharacters when they can’t
be rejected during validation

40

SQL Injections

• User supplied values used in SQL
command must be validated, quoted, or
prepared statements must be used

• Signs of vulnerability
– Uses a database mgmt system (DBMS)
– Uses SQL commands created at run-time

• SQL fragments must not be accepted from
user; create parsable language and
translate to SQL if needed

41

SQL Injection Attacks

• Dynamically generated SQL without
validation or quoting is vulnerable
$u = " '; drop table t --"
$sth = $dbh->do("select * from t where u = '$u'")
-- select * from t where u = ' '; drop table t --'

• Quoting values is safe if done correctly
$u = " \\'; drop table t --"; # perl eats one \
$u =~ s/'/''/g; # quote (' -> '')
$sth = $dbh->do("select * from t where u = '$u'")
-- select * from t where u = ' \''; drop table t -–'

• Previous example is correct in standard
SQL, but incorrect in systems that allow
\-escapes

42

SQL Injection Mitigations

• Use prepared statements (no quoting)
 $sth = $dbh->do("select * from t where u = ?", $u)

• Use library functions to perform quoting
 $sth = $dbh->do("select * from t where u = "
 . $dbh->quote($u))

• Views can be used to limit access to data
• Stored procedures can help, but not if they

dynamically create and execute SQL
• Restrict rights of database account to

minimum required

43

Command Injections

• User supplied data used to create a string
that is the interpreted by command shell
such as /bin/sh

• Signs of vulnerability
– Use of popen, or system
– exec of a shell such as sh, or csh

• Usually done to start another program
– That has no C API
– Out of laziness

44

Command Injection Mitigations
• Check user input for metacharacters
• Quote those that can’t be eliminated or rejected

– replace single quotes with the four characters, '\'',
and enclose each argument in single quotes

• Beware of program argument injections,
allowing arguments to begin with "-" can be
dangerous

• Use fork, drop privileges and exec for more
control

• Avoid if at all possible
• Use C API if possible

45

Perl Command Injection
Danger Signs

• open(F, $filename)
– Filename is a tiny language besides opening

• Open files in various modes
• Can start programs
•dup file descriptors

– If $userFile is "rm -rf /|", you probably
won’t like the result

– Use separate mode version of open to
eliminate vulnerability

46

Perl Command Injection
Danger Signs

• Vulnerable to shell interpretation
open(C, "$cmd|") open(C, "-|", $cmd)
open(C, "|$cmd") open(C, "|-", $cmd)
`$cmd` qx/$cmd/
system($cmd)

• Safe from shell interpretation
open(C, "-|", @argList)
open(C, "|-", @cmdList)
system(@argList)

47

Perl Command Injection
Examples

• open(CMD, "|/bin/mail -s $sub $to");
– Bad if $to is "badguy@evil.com; rm -rf /"

• open(CMD, “|/bin/mail -s '$sub' '$to'");
– Bad if $to is "badguy@evil.com'; rm -rf /'"

• ($qSub = $sub) =~ s/'/'\\''/g;
($qTo = $ot) =~ s/'/'\\''/g;
open(CMD, "|/bin/mail -s '$qSub' '$qTo'");

– Safe from command injection

• open(cmd, "|-", "/bin/mail", "-s", $sub, $to);

– Also safe and simpler

48

Command Argument Injections

• A string formed from user supplied input
that is used as a command line argument
to another executable

• Does not attack shell, attacks command line of
program started by shell

• Need to fully understand command line
interface

• If value should not be an option
– Make sure it doesn't start with a -
– Place after an argument of -- if supported

49

Command Argument
Injection Example

• Example
snprintf(s, sSize, "/bin/mail -s hi %s", email);
M = popen(s, "w");
fputs(userMsg, M);
pclose(M);

• If email is -I , turns on interactive mode

• Can run arbitrary code by if userMsg includes:
~!cmd

50

Eval Injections

• A string formed from user supplied input that is
used as an argument that is interpreted by the
language running the code

• Usually allowed in scripting languages such as
Perl, sh and SQL

• In Perl eval($s) and s/$pat/$replace/ee
– $s and $replace are evaluated as perl code

51

Format String Injections

• User supplied allowed to create format strings in
scanf or printf

• printf(userData) is insecure
– %n can be used to write memory
– large field width values can be used to create a denial

of service attack
– Safe to use printf("%s", userData) or
fputs(userData, stdout)

• scanf(userData, …) allows arbitrary writes to
memory pointed to by stack values

• ISO/IEC 24731 does not allow %n

52

Cross Site Scripting (XSS)

• Attacker supplied data passed to through a web
server to be delivered to a victim
– Can be part of the URL
– Stored by attacker from previous interaction with web

server

• Injected javascript in HTML can be used to
modify HTML interpreted by user's browser

• Allows stealing of cookies and redirecting page
• Web server needs to escape all user supplied

data

53

Other Injections

• Line delimited log and data files
– Need to verify user supplied data does not

contain the delimiter character
– Escape or reject if it does
– If not, user can inject records in the file

• User supplied data to XPath queries
• User supplied data used in LDAP queries

54

Directory Traversal

• Description
– When user data is used to create a pathname to a file

system object that is supposed to be restricted to a
particular set of paths or path prefixes, but which the
user can circumvent

• General causes
– Not checking for path components that are empty,
"." or ".."

– Not creating the canonical form of the pathname
(there is an infinite number of distinct strings for the
same object)

– Not accounting for symbolic links

55

Directory Traversal Mitigation

• Use realpath or something similar to
create canonical pathnames

• Use the canonical pathname when
comparing filenames or prefixes

• If using prefix matching to check if a path
is within directory tree, also check that the
next character in the path is the directory
separator or '\0'

56

Integer Vulnerabilities
• Description

– Many programming languages allow silent loss of
integer data without warning due to

• Overflow
• Truncation
• Signed vs. unsigned representations

– Code may be secure on one platform, but silently
vulnerable on another, due to different underlying
integer types.

• General causes
– Not checking for overflow
– Mixing integer types of different ranges
– Mixing unsigned and signed integers

57

Integer Danger Signs

• Mixing signed and unsigned integers
• Converting to a smaller integer
• size_t is unsigned, ptrdiff_t is signed

• Using an integer type instead of the
correct integral typedef type

• Not assigning values to a variable of the
correct type before data validation, so the
validated value is not the same as the
value used

58

Integer Mitigations

• Use correct types, before validation
• Validate range of data
• Add code to check for overflow, or use

safe integer libraries or large integer
libraries

• Not mixing signed and unsigned integers
in a computation

• Compiler options for signed integer run-
time exceptions, and integer warnings

59

Race Conditions
• Description

– A race condition occurs when multiple threads of
control try to perform a non-atomic operation on a
shared object, such as

• Multithreaded applications accessing shared data
• Accessing external shared resources such as the file system

• General causes
– Using threads without proper synchronization

including non-thread (non-reentrant) safe functions
– Performing non-atomic sequences of operations on

shared resources (file system, shared memory) and
assuming they are atomic

– Signal handlers

60

File System Race Conditions

• A file system maps a path, name of a file or
other object in the file system, to the
internal identifier (device and inode)

• If an attacker can control any component
of the path, multiple uses of a path can
result in different file system objects

• To be safe path should only be used once
to create a file descriptor (fd) which is a
handle to internal identifier

• Other checks should be done on fd

61

Race Conditions Checking File
Properties

• Use the path to check properties of a file,
and then open the file (also called time of
check, time of use TOCTOU)
– access followed by open

• Safe to just set the effective ids and then just open
the file

– stat followed by open
• Safe to open the file and then fstat the file

descriptor

62

Race Condition File Attributes

• Using the path to create or open a file and
then using the same path to change the
ownership or mode of the file
– Best to create the file with the correct owner

group and mode at creation
– Otherwise the file should be created with

restricted permissions and then changed to
less restrictive using fchown and fchmod

– If created with lax permissions there is a race
condition between the attacker opening the
file and permissions being changed

63

Race Condition Creating a File

• Want to atomically check if file exists and
create if not, or fail if it exists

• Common solution is to check if file exists
with stat, then open if it doesn't

• Open a file or create it if does not exist
– creat(fname, mode)
open(fname, O_CREAT|O_WRONLY|O_TRUNC, mode)

• Must use O_CREATE|O_EXCL to get
desired property

• Never use O_CREATE without O_EXCL

64

Race Condition Creating a File
• open also fails if the last component of the path

is a symbolic link when using O_CREATE|O_EXCL
• fopen never uses O_EXCL

– Only use for read mode
– For append or write modes use open and fdopen to

create a FILE* from a file descriptor

• C++ iostreams never use O_EXCL
– No standard way to get iostream from fd
– Use use non-standard extension
– Use library that can create a stream from a fd, such as

http://www.boost.org/libs/iostream

65

Race Condition Creating a File

• If you want to open or create like O_CREAT
without O_EXCL use the following:

f = open(fname, O_CREAT|O_EXCL|O_RDWR, mode);
if (f == -1 && errno == EEXIST) {

f = open(fname, O_RDWR)
}

66

Race Condition Saving Directory
and Returning

• There is a need to save the current working
directory, chdir somewhere else, and chdir
back to original directory

• Insecure pattern is to use getwd, and chdir to
value returned
– getwd could fail
– Path not guaranteed to be the same directory

• Safe method is get a file descriptor to the
directory and to use fchdir to go back

savedDir = open(".", O_RDONLY);
chdir(newDir);
… Do work …
fchdir(savedDir);

67

Race Condition Temporary Files
• Temporary directory (/tmp) is the bad part of

town for the file system
• Any process can create a file there
• Usually has the sticky bit set, so only the owner

can delete their files
• Ok to create true temporary files here

– Created, immediately deleted, and only accessed
through the original file descriptor

– Storage vanishes when file descriptor is closed

• If you must use the /tmp directory at least create
a secure bunker by creating a restricted
directory to store your files

68

Race Condition Temporary Files
• mktemp, tmpnam, or tempnam, then open

– Return filename that does not exist
– a race condition exists if O_EXCL is not used

• Use mkstemp which returns the filename and a
file descriptor to the opened file (use umask to
restrict privileges)

• To create a directory use mkdtemp if available or
the following:
for (int j = 0; j < 10; ++j) {

strcpy(path, template);
if (mktemp(path) == NULL) {ERROR("mktemp failed");}
if (mkdir(path) != -1 || errno != EEXIST) {

break;
}

}

69

Race Condition Examples

• Your Actions Attackers Action
s=strdup(“/tmp/zXXXXXX)
tempnam(s)
// s now “/tmp/zRANDOM” link = “/etc/passwd”

file = “/tmp/zRANDOM”
symlink(link, file)

f = fopen(s, “w+”)
// writes now update
// /etc/passwd

time

Safe Version

fd = mkstemp(s)
f = fdopen(s, “w+”)

70

Race Condition Examples

Your Actions Attackers Action
s="/bin/rooty"
// umask is 0000 s="/bin/rooty"
F = fopen(s, "w+")
// mode is 0666 here f = open(s, O_WRONLY)
chmod(s, 06555)
// setuid plus rx write(f, evilExec, sz)

close(f);
// owner is root execl(f, 0)
chown(s, uid, gid) // evilExec is now run

time

Safe Version

fd = fopen(s, "w", 0)
fchown(fd, uid, gid)
fchmod(fd, 06555)
F = fdopen(s, "w+")

71

ISO/IEC 24731:
fopen_s family

• Permissions of created files
– Only allow access to owner

• "u…" modes
– Behaves like fopen in that permissions of a

newly created file are only affected by the
umask

– Must go before all other mode characters

• Null arguments are a violation
• Doesn't fix lack of O_EXCL when creating,

so should still use open and fdopen

72

ISO/IEC 24731:
temporary files

• tmpfile_s(FILE** f)
– Creates a file
– Permissions only allows access to owner
– File deleted by time of exit

• tmpnam_s
– Create non-existing temporary file names
– Buffer includes length
– Use of name can lead to race condition unless

precautions are taken

73

ISO/IEC 24731:
Reentrant safe functions

• strtok_s
– Like strtok_r plus size of buffer

• getenv_s
– Copy value to buffer with size

• asctime_s ctime_s
– Copy value to buffer with size

• gmtime_s localtime_s
– Like _r versions with non-null constraint

• strerror_s strerrorlen_s
– Copy value to buffer with size
– strerror_s truncates if not big enough

74

Other Dangers in the File System

• Some file systems are case-insensitive,
but might be case-preserving

• Any user can create a hard link to any file,
even if permissions don't allow any access

• Some file systems have files with multiple
forks
– Special path or API to get at non-default fork
– MacOS: f/..namedfork/data ≡ f ≡ f/.__Fork/data
– Windows: f ≡ f$DATA

75

Other Dangers in the File System

• Data can be hidden in other forks if only
using standard API

• Some file systems support extended file
attributes that are key, value pairs that
can used to hide data

• Other privilege systems may be in use that
change the privileges a user would appear
to have from the standard POSIX model
– AFS
– Extended ACLs

76

Non-canonical Forms

• If one value can be encoded in multiple
different forms they must be converted to
a unique canonical form before
comparison
– Paths: use (device, inode) pair, or convert to a

canonical form using realpath
– Usernames and groups: use uid and gid
– utf: convert to utf-32 or canonical form
– HTML & URL encoded: decode
– Case insensitive: convert to all lower (some

languages lose info if converted to upper)

77

Non-canonical Forms

• In weakly typed language, such as a shell
or Perl, where a value can be a number or
string use the correct comparison
operator
– Comparing numbers lexically is bad

•"100" le "2"
•"000" ne "0"

– Comparing strings numerically is bad
•"111111" > "9sdflkj"
•"000" == "0abc"
•"xyz" == "abc"

78

Not Dropping Privilege

• Description
– When a program running with a privileged status

(running as root for instance), creates a process or
tries to access resources as another user

• General causes
– Running with elevated privilege
– Not dropping all inheritable process attributes such

as uid, gid, euid, egid, supplementary groups, open
file descriptors, root directory, working directory

– not setting close-on-exec on sensitive file descriptors

79

Not Dropping Privilege: chroot
• chroot changes the root directory for the

process, files outside cannot be accessed
• Only root can use chroot
• Need to chdir("/") to somewhere

underneath the new root directory,
otherwise relative pathnames are not
restricted

• Everything executable requires must be in
new root: /etc, libraries, …

80

Insecure Permissions

• Set umask when using mkstemp or fopen
– File permissions need to be secure from

creation to destruction

• Don’t write sensitive information into
insecure locations (directories need to
have restricted permission to prevent
replacing files)

• Executables, libraries, configuration, data
and log files need to be write protected

81

Insecure Permissions

• If a file controls what can be run as a
privileged user the owner of the file is
equivalent to the privileged user
– Owned by privileged user
– Owned by administrative account

• No login
• Never executes anything, just owns files

• DBMS accounts should be granted
minimal privileges for their task

82

Trusted Directory

• A trusted directory is one where only
trusted users can update the contents of
anything in the directory or any of its
ancestors all the way to the root

• A trusted path needs to check all
components of the path including symbolic
links referents for trust

• A trusted path is immune to TOCTOU
attacks except from trusted users

83

Command Line

• Description
– Convention is that argv[0] is the path to the

executable
– Shells enforce this behavior, but it can be set

to anything if you control the parent process

• General causes
– Using argv[0] as a path to find other files

such as configuration data
– Process needs to be setuid or setgid to be a

useful attack

84

Environment
• Description

– A program’s environment is a list of strings that a
program is allowed to interpret. Libraries are also
allowed to use the environment to alter their behavior.
Since changes to the environment can alter the
execution of a program, library code, and spawned
programs, the environment must be carefully
controlled.

• General causes
– Not sanitizing the environment
– Allowing user input to alter the environment
– Not fully specified as to what happens when multiple

values with the same name, or value without '=' in it

85

Environment Mitigation

• Record needed values of the environment,
sanitize them, clear the environment, add
only necessary values, discard others

• Don't make assumptions about size of
values

• Don’t allow code from the user to set
environment

• Use execle or execve to start a process
with user supplied environment variables

• Use setenv instead of putenv

86

Environment Mitigation

• PATH: list of directories to search for
executables given as just a name
– Only used by execlp and execvp
– Use execle or execve and full paths
– Set PATH to something safe /bin:/usr/bin

• LD_LIBRARY_PATH: list of directories to
search for shared libraries, could be used
to inject a library into your process

87

Denial of Service
• Description

– Programs becoming unresponsive due to over
consumption of a limited resource or unexpected
termination.

• General causes
– Not releasing resources
– Crash causing bugs
– Infinite loops or data causing algorithmic complexity

to consume excessive resources
– Failure to limit data sizes
– Failure to limit wait times
– Leaks of scarce resources (memory, file descriptors)

88

Information Leaks

• Description
– Inadvertent divulgence of sensitive

information

• General causes
– Reusing buffers without completely erasing
– Providing extraneous information that an

adversary may not be able to otherwise obtain
• Generally occurs in error messages
• Give as few details as possible
• Log full details to a database and return id to user,

so admin can look up details if needed

89

Information Leaks

• General causes (cont.)
– Timing attacks where the duration of the

operation depends on secret information
– Lack of encryption when using observable

channels
– Allowing secrets on devices where they can't

be erased such as swap space (use mlock) or
backups

90

Memory Allocation Errors

• Description
– For languages with explicit dynamic memory

allocation (C and C++), if the internal heap
data structures can be corrupted, they can
lead to arbitrary execution of code.

• General causes
– Buffer overflows
– Releasing memory multiple times
– Releasing invalid pointers for the allocator

(from a different allocator or garbage
pointers)

91

Memory Allocation Mitigations

• In C++ use the STL, auto_ptr, and
destructors to let the compiler free
memory

• Match malloc/free, new/delete, and
new[]/delete[]

• Allocate and deallocate memory for an
object "close" to each other

• Use tools such as Purify or valgrind to find
problems

92

General Software Engineering
• Don’t trust user data

– You don’t know where that data has been

• Don’t trust your own client software either
– It may have been modified, so always revalidate data

at the server.

• Don’t trust your own code either
– Program defensively with checks in high and low level

functions

• KISS - Keep it simple, stupid
– Complexity kills security, its hard enough assessing

simple code

93

Let the Compiler Help

• Turn on compiler warnings and fix problems
• Easy to do on new code
• Time consuming, but useful on old code
• Use lint, multiple compilers
• gcc: -Wall, -W, -O2, -Werror, -Wshadow,

-Wpointer-arith, -Wconversion, -Wcast-qual,
-Wwrite-strings, -Wunreachable-code and many
more
– Many useful warning including security related

warnings such as format strings and integers

94

Let the Perl Compiler Help

• -w - produce warning about suspect code
and runtime events

• use strict - fail if compile time
• use Fatal - cause built-in function to

raise an exception on error instead of
returning an error code

• use diagnostics - better diagnostic
messages

95

Perl Taint Mode
• Taint mode (-T) prevents data from untrusted

sources from being used in dangerous ways
• Untrusted sources

– Data read from a file descriptor
– Command line arguments
– Environment
– User controlled fields in password file
– Directory entries
– Link referents
– Shared memory
– Network messages

• Environment sanitizing required for exec
– IFS PATH CDPATH ENV BASH_ENV

96

Resources
• Viega, J. & McGraw, G. (2002). Building secure

software: How to avoid security problems the
right way. Addison-Wesley.

• Seacord, R. C. (2005). Secure coding in C and
C++. Addison-Wesley.

• McGraw, G. (2006). Software security: Building
security in. Addison-Wesley.

• Dowd, M., McDonald, J., & Schuh, J. (2006). The
art of software assessment: Identifying and
preventing software vulnerabilities. Addison-
Wesley.

97

Questions

