Vulnerability Assessment and
Secure Coding Practices
for Middleware

Part 2

James A. Kupsch

Computer Sciences Department
University of Wisconsin

TTTTTTTTTTTTT

© 2007-2008, James A. Kupsch. All rights reserved. SDSC

MADISON

Part 2 Roadmap

* Part 1: Vulnerability — Integer
assessment Pprocess — Race conditions
 Part 2: Secure coding - File system issues
practices — Canonical form

— Introduction — Privileges

— Handling errors - Command line

— Numeric parsing — Environment

— ISO/IEC 24731 intro — Denial of service

— Variadic functions — Information leaks

— Buffer overflows — Memory allocators
— Injections — General engineering
— Directory traversal — Compiler warnings

QW'SCONS'N) SDSC

Vulnerability Types

Description of vulnerability
Signs of presence in the code
Mitigations

Safer alternatives

THE UNIVERSITY

SDSC

Handling Errors

e |f a call can fail, always check the status

* When an error is detected
— Handle locally and continue
— Cleanup and propagate the error
— Exit the application
 All APIs you use, or develop, that can fail

need to be able to report errors to the
caller

 Using exceptions makes it harder to
ighore

0 viscosin ; SDSC

Numeric Parsing
No Error Indication

« atoi, atol, atof, scanf family (with %u,
%$i, %d, $x and %o specifiers)

— Out of range values results in unspecified
behavior

— Non-numeric input results in 0

— Use strtol, strtoul, strtoll, strtoull,
strtof, strtod, strtold which provide an
error indication

THE UNIVERSITY
/

WISCONSIN 5 SDSC

Correct Numeric Parsing

char *endptr;
long longVal;

errno = 0;

longVal strtol (s, &endptr, 10);
if (errno == ERANGE)

{ERROR ("overflow") ;}
if (errno '= 0)

{ERROR ("other error") ;}
if (endptr == 0)

{ERROR ("non-numeric") ;}
if (*endptr '= '\0')

{ERROR ("non-numeric at end") ;}
if (isspace(*s))

{ERROR ("space at beginning") ;}

THE UNIVERSITY

WISCONSIN 6 SDSC

Correct Numeric Parsing in C++

e jostream inserter's

— Type safe
— All errors set stream to failed (test with !is)

— Use istringstream to parse a string
istringstream is("123 87.32");
is >> i >> f£;
if ('is) {ERROR("parse error");

* Boost's lexical cast<T>(s)

— http://www.boost.org

— Throw's bad lexical cast exceptionon
failure

0 visces 7 SDSC

Not enough information to
report an error

* strcat, strcpy, strncat, strncpy,
gets, getpass, getwd, scanf (with %s
or %[..], without width specified)

— Unable to report an error if buffer would

overflow as it does not have enough
information

— Only secure in rare case where files or strings
are verified for secure values before use

— Never use these

THE UNIVERSITY

WISCONSIN 8 SDSC

e http://www.open-std.orgl/jtcl/sc22/wg14

Functions to make the C library safer

ISO/IEC 24731

Extensions for the C library:

Part 1, Bounds Checking Interface

Meant to easily replace existing library

calls with little or no other changes

Easy to check errors
Very few unspecified behaviors
All updated buffers require a size

THE UNIVERSITY

9

SDSC

ISO/IEC 24731:
Run-time Constraints

A run-time constraintis a property of the
arguments that must be true at call time

e A violation is handled by callback
 Set with set constraint handler s
e Defaultis abort handler s
e Violations not allowed affect program
° ignore handler s
* Allows detection and handling of violations locally
 Define your own callback

THE UNIVERSITY

WISCONSIN 10 SDSC

ISO/IEC 24731:
Common Run-time Constraints

- rsize t parameter type used to indicate

the size of the buffer or amount to copy
— Violation if size > RSIZE MAX

— Catches large size caused by integer overflow

 Buffer pointers
— Violation if NULL

- dst buffer too small for operation
— Usually a violation (snprintf truncates)

THE UNIVERSITY

WISCONSIN 11 SDSC

ISO/IEC 24731
gets_s
- gets_s(buf, bufSize)
 Like fgets (buf, bufSize, stdin),
except new-line removed

e Run-time constraint failure if new-line is
not found in bufSize characters

e |ferror
— Null-terminates buf

— Reads complete line and discards instead of
returning partial line like £gets

0 viscosin 12 SDSC

Variadic Functions

C functions that can take a variable number of
parameters

Not type safe

— Types and number know from format string or implicit
and sentinel values are used

Signs: va_list va start va arg va end
<stdarg.h> <cstdarg>

Common variadic functions
— printf, scanf, syslog families
- execl family
— open With O _CREAT (3rd argument is the mode)

THE UNIVERSITY

WISCONSIN 13 SDSC

Variadic Function Safety

 printf, scanf, syslog families
— Never take the format string from the user

— Use compile time constants for the format
string

— Turn on compile time warning to check
arguments against the format string

— Use C++ jostreams

* Check all calls to open with O CREAT
includes the 3rd argument for the mode

0 viscosin y SDSC

Buffer Overflows

 Description

— Accessing locations of a buffer outside the
boundaries of the buffer

e Common causes
— C-style strings
— Array access and pointer arithmetic in languages
without bounds checking
— Off by one errors
— Fixed large buffer sizes (make it big and hope)

— Decoupled buffer pointer and its size
* If not together overflows are impossible to detect
 Require synchronization between the two
Ok if size is implicitly known and every use knows it (hard)

THE UNIVERSITY

WISCONSIN 15 SDSC

Why Buffer Overflows
are Dangerous

 An overflow overwrites memory adjacent
to a buffer
 This memory could be
— Unused
— Program data that can affect operations
— Internal data used by the runtime system

 Usual sign is a crash

e Specially crafted values can be used for
an attack

THE UNIVERSITY

WISCONSIN 16 SDSC

Buffer Overflow of User Data
Affecting Flow of Control

char id[8];
int wvalidId = 0; /* not wvalid */

id logFunc

\O [\0 [\O |\O
gets (id) ; /* reads "evilguyxy"*/
id logFunc

e v |i [I (g |uly |x ;79 \0 |\0 [\0

/* validId is now 121 decimal */
if (Isvalid(id)) wvalidId = 1;
if (validId) {DoPrivilegedOp();} /* runs */

0 viscosin 1 SDSC

Pointer Attacks

* First, overwrite a pointer
— In the code

— In the run-time environment

 Heap attacks use the pointers usually at the
beginning and end of blocks of memory

e Second, cause the pointer to be used

— Read user controlled data that causes a
security violation

— Write user controlled data that later causes a
security violation

0 viscosin 8 SDSC

Stack Smashing

 This is a buffer overflow of a variable local
to a function that corrupts the internal
state of the run-time system

 Target of the attack is the value on the
stack to jump to when the function
completes

 Can resultin arbitrary code being
executed

 Not trivial, but not impossible either

0 viscosin 1o SDSC

Attacks on Code Pointers

 Stack Smashing is an example

 There are many more pointers to functions or
addresses in code

— Dispatch tables for libraries

— Function pointers in code

— C++ vtables

— jmp buf

— atexit

— Exception handling run-time

— Internal heap run-time data structures

THE UNIVERSITY
/

WISCONSIN 20 SDSC

Buffer Overflow of a
User Pointer

char id[8];
int (*logFunc) (char*) = Mylogger;
id logFunc

| | |
| Ptr to MyLogger |
I

gets(1id) ; /* reads "evilguyx |[Ptrto system|*/
id logFunc
. | | |
e |v |i || |9 [ul]y |X | (Pirtosystem |
| | |

/* equivalent to system(userMsg) */
logFunc (userMsgqg) ;

THE UNIVERSITY

WISCONSIN 21 SDSC

C-style String Design Flaws

* Null terminated array of characters
e Represented by a pointer to this array
 Not a proper type, just a convention

 Only language supportis string literals
— Initialize a char array
— Create array containing a constant string literal

* Problems
— Null may be missing
— Pointers are difficult to use correctly
— Size of buffer is kept externally from pointer if at all
— Many common operations are expensive
— Can't have a string with a null in it

0 viscosin ” SDSC

C-style String Example

{
char u[4] = "cows";
char t[] = "dog";
char *s = "cat";
string store
(U) t) c la |t |\0
/ / *
v stack v
I I

THE UNIVERSITY

WISCONSIN 23 SDSC

Buffer Overflow Danger Signs:
Missing Buffer Size

- gets, getpass, getwd, and scanf family
(with $s or $[...] specifiers without width)

— Impossible to use correctly: size comes solely
from user input

— Alternatives

Unsafe Safe

gets(s) fgets (s, slLen, stdin)
getcwd (s) getwd (s, sLen)

scanf ("%$s", s) scanf ("%$100s", s)

WISCONSIN 2 SDSC

strcat, strcpy, sprintf,

vsprintf

— Destination buffer size not passed
* Impossible for function to detect overflow

— Difficult to use safely w/o preflight checks

 Checks require destination buffer size
* Length of data formatted by printf

e Difficult & error prone

e Best incorporated in the function

Proper usage: concat s1, s2 into dst

If (dstSize < strlen(sl) + strlen(s2) + 1)
{ERROR ("buffer overflow") ;}
strcpy(dst, sl);

strcat (dst, s2);

THE UNIVERSI

WISCONSIN 25

SDSC

Buffer Overflow Danger Signs:

Difficult to Use and Truncation

e strncat (dst, src, n)

- nis the maximum number of chars of src to append
(trailing null also appended), implying n must be
(dstSize - strlen(dst) -1) orless

e strncpy (dst, src, n)

— Writes nchars into dst, if strlen(src) < n,itfills
the other n - strlen(src) chars with 0’s

— If strlen(src) >= n, dstis not null terminated

* Neither allows truncation detection directly from
result

THE UNIVERSITY

WISCONSIN 26 SDSC

Proper Usage of strncat and
strncpy

* Requires essentially the same check as
before

 Checks are inefficient, but required

Proper usage: concat s1, s2 into dst

curDstSize = dstSize;
strncpy (dst, sl, curDstSize);
curDstSize -= strlen(sl);
strncat (dst, s2, curDstSize);
curDstSize -= strlen(s2);
If (curDstSize < 1)

{ERROR ("truncation") ;}

0 viscosin - SDSC

Buffer Overflow Danger Signs:

scanf family

 Max field can not be taken from an argument
— * width suppresses assignment

* $nc does not null terminate
« $ns and $n[..] require a buffer of size n+1

 Requires manual coordination of format string,
number and types of arguments, and result

Example: 3 items must be coordinated

char big[100], small[10];

int r, j;
r = scanf ("$99s %9s %d", big, small, &j);
If (r == EOF) ERROR("EOF")

If (r '= [3) ERROR("bad line");

EEEEEEEEEEEEE

WISCONSIN 28 SDSC

Unterminated String: readlink

e readlink (path, buf, bufSize)

 Reads symbolic link referent
 Does not null terminate

e Returns number of characters written to
buf or -1 on error

Proper usage: readlink

r = readlink (path, buf, bufSize)

If (r == -1) {ERROR ("error in errno'") ;}
If (r == bufSize) {ERROR("referent truncated") ;}
buf[r] = '\0';

0 viscosin 2 SDSC

Buffer Overflow Mitigations

 snprintf (buf, bufSize, fmt, ..) and
vsnprintf

— Truncation detection possible
(result >= bufSize implies truncation)

— Can be used as a safer version of strcpy and
strcat

— Officially doesn’t exist until C99 standard

Proper usage: concat s1, s2 into dst
r = snprintf (dst, dstSize, "%s%s",sl, s2);
If (r >= dstSize)

{ERROR (" truncation") ;}

THE UNIVERSITY

WISCONSIN 30 SDSC

Safer String Handling:
BSD’s strlcpy and strlcat

« strlcpy (dst, src, size) and
strlcat(dst, src, size)

— size is always the size of the dst buffer
— Returns number of chars required
—result >= size indicates truncation

— dst always null terminated, except strlcat
where dst is not terminated

— Can read outside src if not null-terminated
— Not universally implemented (not in linux)

THE UNIVERSITY

WISCONSIN 31 SDSC

Safer String Handling:
BSD’s strlcpy and strlcat

Proper usage: concat s1, s2 into dst

/* safe to just check errors at last call */
(void) strlcpy(dst, sl, dstSize);

r strlcat(dst, s2, dstSize)
if (r >= dstSize) {
if (r == dstSize && dst[r] !'= '\0') {
/* this should not happen as

strlcpy will always terminate */
ERROR ("unterminated dst") ;
} else {
ERROR ("truncation") ;

THE UNIVERSITY

WISCONSIN 32 SDSC

ISO/IEC 24731
string and memory functions

strcpy s strncpy s memcpy s
strcat s strncat s memmove_ s

Like standard counterpart, except all
include an additional parameter for the
length of the destination buffer

Run-time constraint failure if destination

If error

— Null-terminates destination buffer, null fills
buffer for mem functions

THE UNIVERSITY

WISCONSIN 33 SDSC

ISO/IEC 24731
string and memory functions

 Very easy to convert typical unsafe code
— Add _s to function name

— Add destination buffer size parameter

Proper usage: concat s1, s2 into dst

/* program will abort on error */

strcpy s(dst, dstSize, sl);
strcat s(dst, dstSize, s2);

WISCONSIN 34 SDSC

ISO/IEC 24731
printf s family
 3n conversion not allowed as it is often

used by attackers to write to arbitrary
memory

 Null arguments to $s are a violation
* Use sprintf s instead of snprintf s
- snprintf s truncates justlike snprintf

Proper usage: concat s1, s2 into dst

/* program will abort on error */

sprintf s(dst, dstSize, "%s%s", sl, s2);

0 viscosin s SDSC

ISO/IEC 24731
scanf s family

« $s, $c and % [..] now require the argument

to be a pointer to a buffer followed by the
size of the buffer

 Null arguments are a violation

e Still requires synchronizing result, format
string and arguments

0 viscosin 3 SDSC

Preventing Buffer Overflows

in C++
 Don't use pointers, C-style string, or C-arrays
e std: :string

— Buffer, length and current size are encapsulated
together

— Dynamically sized

— Provides many useful and efficient methods
e std: :vector<>

— Dynamically sized array

— Safe except operator[] (use at method for safety)
« std: :array<> (new in C++ TR1)

— Fixed size array

Proper usage: concat s1, s2 into dst
dst = sl + s2;

0 viscosin 7 SDSC

Potential Problems
with C++ Strings

 System call and libraries expect C-strings

- c_str method will return a constant C-string
pointer

— Valid only until string is modified

— Nulls are allowed

* When converted to C-string everything after the
null is essentially lost

* If tests are done on C++-string and used as a C-
string these may be different

« Same problem in other languages such as Perl
 Denial of service if length not restricted

0 viscosin s SDSC

Injection Attacks

 Description

— A string constructed with user input, that is then
interpreted by another function, where the string is
not parsed as expected

e Command injection (in a shell)
 Format string attacks (in printf/scanf)
e SQL injection

e Cross-site scripting or XSS (in HTML)

e General causes
— Not performing data validation on user input

— Not properly quoting user data to prevent
misinterpretation of metacharacters when they can’t
be rejected during validation

0 viscosin 0 SDSC

SQL Injections

 User supplied values used in SQL
command must be validated, quoted, or
prepared statements must be used

e Signs of vulnerability

— Uses a database mgmt system (DBMS)
— Uses SQL commands created at run-time

« SQL fragments must not be accepted from
user; create parsable language and
translate to SQL if needed

L) WiscOnsin 40 SDSC

SQL Injection Attacks

 Dynamically generated SQL without
validation or quoting is vulnerable

Su =" "; drop table t --"

$Ssth = $dbh->do("select * from t where u = 'S$u'")

-- select * from t where u = ' '; drop table t --'
 Quoting values is safe if done correctly

Su =" \\';, drop table t --"; # perl eats one \

Su =~ s/'/"''/g; # quote (' -> ''")

$sth = $dbh->do("select * from t where u = '$u'")

-- select * from t where u = ' \''; drop table t --'

 Previous example is correct in standard
SQL, but incorrect in systems that allow
\-escapes

THE UNIVERSITY

WISCONSIN 41 SDSC

SQL Injection Mitigations

Use prepared statements (no quoting)

$sth = $dbh->do ("select * from t where u = ?",

Su)

Use library functions to perform quoting

$sth = $dbh->do("select * from t where u = "
. $dbh->quote ($u))

Views can be used to limit access to data
Stored procedures can help, but not if they

dynamically create and execute SQL

Restrict rights of database account to

minimum required

THE UNIVERSITY

42

SDSC

Command Injections

 User supplied data used to create a string

that is the interpreted by command shell
such as /bin/sh

e Signs of vulnerability
— Use of popen, or system
— exec of a shell such as sh, or csh

 Usually done to start another program
— That has no C API
— Out of laziness

0 viscosin s SDSC

Command Injection Mitigations

e Check user input for metacharacters

 Quote those that can’t be eliminated or rejected

— replace single quotes with the four characters, '\'",
and enclose each argument in single quotes

e Beware of program argument injections,
allowing arguments to begin with "-" can be

dangerous

e Use fork, drop privileges and exec for more
control

 Avoid if at all possible
e Use C API if possible

0 viscosin y SDSC

Perl Command Injection
Danger Signs

« open (F, $filename)

— Filename is a tiny language besides opening
 Open files in various modes
e Can start programs

 dup file descriptors
— If SuserFileis "rm -rf /|", you probably
won’t like the result

— Use separate mode version of open to
eliminate vulnerability

THE UNIVERSITY

WISCONSIN 45 SDSC

Perl Command Injection

Danger Signs
 Vulnerable to shell interpretation
open(C, "Scmd|") open(C, "-|", $cmd)
open(C, "|Scmd") open(C, "|-", $cmd)
"Semd qx/Scmd/
system ($cmd)
o Safe from shell interpretation
open(C, "—-|", @argList)
open(C, "|-", @cmdList)
system(QargList)

0 viscors 5 SDSC

Perl Command Injection
Examples

open (CMD, "|/bin/mail -s $sub $to");

— Bad if $to is "badguyRevil.com; rm -rf /"
open (CMD, “|/bin/mail -s '$sub' '$to'");
— Bad if $to is "badguy@evil.com'; rm -rf /'"

(SgSub = $sub) =~ s/'/'\\''/g;
($SgTo = $Sot) =~ s/'/'\\""/g;
open(CMD, "|/bin/mail -s 'S$qgSub' '$qTo'");

— Safe from command injection
open(cmd, "|-", "/bin/mail", "-s", $sub, $to);

— Also safe and simpler

THE UNIVERSITY

WISCONSIN 47 SDSC

Command Argument Injections

e A string formed from user supplied input

that is used as a command line argument
to another executable

 Does not attack shell, attacks command line of
program started by shell

* Need to fully understand command line
interface

e |f value should not be an option
— Make sure it doesn't start with a -

— Place after an argument of -- if supported

THE UNIVERSITY

WISCONSIN 48 SDSC

Command Argument

Injection Example
« Example

snprintf (s, sSize, "/bin/mail -s hi %s", email);
M = popen(s, "w");

fputs (userMsg, M) ;

pclose (M) ;

e [femailis -I ,turns on interactive mode

e« Can run arbitrary code by if userMsg includes:
~1cmd

THE UNIVERSITY

WISCONSIN 49 SDSC

Eval Injections

e A string formed from user supplied input that is
used as an argument that is interpreted by the
language running the code

e Usually allowed in scripting languages such as
Perl, sh and SQL

e InPerleval ($s) and s/$pat/$replace/ee
- $s and Sreplace are evaluated as perl code

0 viscosin 5 SDSC

Format String Injections

 User supplied allowed to create format strings in
scanf or printf

« printf (userData) is insecure
— %n can be used to write memory

— large field width values can be used to create a denial
of service attack

— Safetouse printf ("%s", userData) or
fputs (userData, stdout)

 scanf (userData, ..) allows arbitrary writes to
memory pointed to by stack values
e |ISO/IEC 24731 does not allow %$n

THE UNIVERSITY

WISCONSIN 51 SDSC

Cross Site Scripting (XSS)

Attacker supplied data passed to through a web
server to be delivered to a victim
— Can be part of the URL

— Stored by attacker from previous interaction with web
server

Injected javascript in HTML can be used to
modify HTML interpreted by user's browser

Allows stealing of cookies and redirecting page

Web server needs to escape all user supplied
data

THE UNIVERSITY

WISCONSIN 52 SDSC

Other Injections

* Line delimited log and data files

— Need to verify user supplied data does not
contain the delimiter character

— Escape or reject if it does
— If not, user can inject records in the file

 User supplied data to XPath queries
 User supplied data used in LDAP queries

0 viscosin s SDSC

Directory Traversal

 Description

— When user data is used to create a pathname to afile
system object that is supposed to be restricted to a
particular set of paths or path prefixes, but which the
user can circumvent

e General causes

— Not checking for path components that are empty,
"." or". ."

— Not creating the canonical form of the pathname
(there is an infinite number of distinct strings for the
same object)

— Not accounting for symbolic links

0 viscosin " SDSC

Directory Traversal Mitigation

e Use realpath or something similar to
create canonical pathnames

 Use the canonical pathname when
comparing filenames or prefixes

e |f using prefix matching to check if a path
iIs within directory tree, also check that the

next character in the path is the directory
separatoror '\0'

0 viscosin s SDSC

Integer Vulnerabilities

 Description

— Many programming languages allow silent loss of
integer data without warning due to
e Overflow
 Truncation
e Signhed vs. unsigned representations

— Code may be secure on one platform, but silently
vulnerable on another, due to different underlying
integer types.

e General causes
— Not checking for overflow
— Mixing integer types of different ranges
— Mixing unsigned and signed integers

0 viscosin ” SDSC

Integer Danger Signs

 Mixing signed and unsigned integers

e Converting to a smaller integer
- size tisunsigned, ptrdiff tis sighed

 Using an integer type instead of the
correct integral typedef type

 Not assigning values to a variable of the
correct type before data validation, so the
validated value is not the same as the
value used

THE UNIVERSITY

WISCONSIN 57 SDSC

Integer Mitigations

 Use correct types, before validation
e Validate range of data

e Add code to check for overflow, or use
safe integer libraries or large integer
libraries

 Not mixing signed and unsigned integers
in a computation

« Compiler options for signed integer run-
time exceptions, and integer warnings

0 viscosin ” SDSC

Race Conditions

 Description

— A race condition occurs when multiple threads of
control try to perform a non-atomic operation on a
shared object, such as

 Multithreaded applications accessing shared data
e Accessing external shared resources such as the file system

e General causes

— Using threads without proper synchronization
including non-thread (non-reentrant) safe functions

— Performing non-atomic sequences of operations on
shared resources (file system, shared memory) and
assuming they are atomic

— Signal handlers

0 viscosin 50 SDSC

File System Race Conditions

e A file system maps a path, name of a file or
other object in the file system, to the
internal identifier (device and inode)

e |If an attacker can control any component
of the path, multiple uses of a path can
result in different file system objects

 To be safe path should only be used once
to create a file descriptor (fd) which is a
handle to internal identifier

e Other checks should be done on fd

0 viscosin o0 SDSC

Race Conditions Checking File
Properties

 Use the path to check properties of a file,
and then open the file (also called time of
check, time of use TOCTOU)
— access followed by open

e Safe to just set the effective ids and then just open
the file

- stat followed by open

e Safe to open the file and then £stat the file
descriptor

THE UNIVERSITY

WISCONSIN 61 SDSC

Race Condition File Attributes

 Using the path to create or open a file and
then using the same path to change the
ownhership or mode of the file

— Best to create the file with the correct owner
group and mode at creation

— Otherwise the file should be created with

restricted permissions and then changed to
less restrictive using £fchown and £chmod

— If created with lax permissions there is a race
condition between the attacker opening the
file and permissions being changed

THE UNIVERSITY

WISCONSIN 62 SDSC

Race Condition Creating a File

e Want to atomically check if file exists and
create if not, or fail if it exists

e Common solution is to check if file exists
with stat, then open if it doesn't

* Open afile or create it if does not exist

— creat (fname, mode)
open (fname, O CREAT|O WRONLY|O TRUNC, mode)

* Mustuse O CREATE |0 _EXCL to get
desired property
* Never use O CREATE without 0 EXCL

THE UNIVERSITY

WISCONSIN 63 SDSC

Race Condition Creating a File

« open also fails if the last component of the path
iIs a symbolic link when using O CREATE |0 EXCL
 fopen never uses O EXCL

— Only use for read mode

— For append or write modes use open and £dopen to
create a FILE* from a file descriptor

* C++iostreams never use O EXCL

— No standard way to get iostream from fd
— Use use non-standard extension

— Use library that can create a stream from a fd, such as
http://www.boost.org/libs/iostream

THE UNIVERSITY

64 SDSC

Race Condition Creating a File

* If you want to open or create like O CREAT
without 0 EXCL use the following:

f = open(fname, O CREAT|O EXCL|O RDWR, mode);
if (£ == -1 && errno == EEXIST) ({
f = open(fname, O RDWR)

}

0 viscosin o5 SDSC

Race Condition Saving Directory
and Returning

e There is a need to save the current working
directory, chdir somewhere else, and chdir

back to original directory

* |Insecure pattern is to use getwd, and chdir to
value returned

- getwd could fail
— Path not guaranteed to be the same directory

 Safe method is get a file descriptor to the
directory and to use £chdir to go back

savedDir = open(".", O RDONLY) ;
chdir (newDir) ;

.. Do work ..

fchdir (savedDir) ;

THE UNIVERSITY
/

WISCONSIN 66 SDSC

Race Condition Temporary Files

e Temporary directory (/tmp) is the bad part of
town for the file system

 Any process can create a file there

e Usually has the sticky bit set, so only the owner
can delete their files

e Ok to create true temporary files here

— Created, immediately deleted, and only accessed
through the original file descriptor

— Storage vanishes when file descriptor is closed

e |f you must use the /tmp directory at least create
a secure bunker by creating a restricted
directory to store your files

THE UNIVERSITY

WISCONSIN 67 SDSC

Race Condition Temporary Files

 mktemp, tmpnam, Or tempnam, then open

— Return filename that does not exist
— arace condition exists if 0 _EXCL is not used

e Use mkstemp which returns the filename and a

file descriptor to the opened file (use umask to
restrict privileges)

 To create a directory use mkdtemp if available or

the following:
for (int j = 0; j < 10; ++3j) {
strcpy (path, template);

if (mktemp (path) == NULL) {ERROR ("mktemp failed") ;}
if (mkdir (path) !'= -1 || errno !'= EEXIST) {
break;

THE UNIVERSITY
/

WISCONSIN 68 SDSC

Race Condition Examples

time

e Your Actions Attackers Action

s=strdup (V' /tmp/zXXXXXX)

tempnam (s)

// s now “/tmp/zRANDOM” link = “/etc/passwd”
file = “/tmp/zRANDOM”
symlink (link, file)

£ fopen(s, “w+”)
// writes now update
// /etc/passwd

Safe Version

fd = mkstemp (s)
f = fdopen(s, “w+”) \ 4

THE UNIVERSITY

WISCONSIN 69 SDSC

Race Condition Examples

Your Actions ume Attackers Action

s="/bin/rooty" I___

// umask is 0000 s="/bin/rooty"

F = fopen(s, "w+")

// mode is 0666 here f = open(s, O WRONLY)

chmod (s, 06555)

// setuid plus rx write (f, evilExec, sz)
close (£f) ;

// owner is root execl (£, 0)

chown (s, uid, gid) // evilExec is now run

Safe Version

fd = fopen(s, "w", 0)
fchown (£d, uid, gid) v
fchmod (£d, 06555)

F = fdopen(s, "w+'")

THE UNIVERSITY

WISCONSIN 70 SDSC

ISO/IEC 24731
fopen s family

e Permissions of created files
—Only allow access to owner

e "u..." modes

— Behaves like fopen in that permissions of a
newly created file are only affected by the
umask

— Must go before all other mode characters

 Null arguments are a violation

* Doesn’t fix lack of 0 EXCL when creating,
so should still use open and £dopen

0 viscosin . SDSC

ISO/IEC 24731
temporary files
* tmpfile s(FILE** f)
— Creates afile

— Permissions only allows access to owner
— File deleted by time of exit

* tmpnam s
— Create non-existing temporary file names

— Buffer includes length

— Use of name can lead to race condition unless
precautions are taken

THE UNIVERSITY

WISCONSIN 72 SDSC

ISO/IEC 24731:
Reentrant safe functions

* strtok_s
— Like strtok_r plus size of buffer
* getenv_s
— Copy value to buffer with size
* asctime s ctime s
— Copy value to buffer with size
* gmtime s localtime s
— Like _r versions with non-null constraint
* strerror s strerrorlen s

— Copy value to buffer with size
- strerror_s truncates if not big enough

THE UNIVERSITY

WISCONSIN 73 SDSC

Other Dangers in the File System

e Some file systems are case-insensitive,
but might be case-preserving

 Any user can create a hard link to any file,
even if permissions don't allow any access

e Some file systems have files with multiple
forks

— Special path or API to get at non-default fork
— MacOS: f/l..namedfork/data = f = f/._ Fork/data

— Windows: f=f$DATA

0 viscosin ” SDSC

Other Dangers in the File System

e Data can be hidden in other forks if only
using standard API

e Some file systems support extended file
attributes that are key, value pairs that
can used to hide data

e Other privilege systems may be in use that
change the privileges a user would appear
to have from the standard POSIX model
— AFS
— Extended ACLs

THE UNIVERSITY

WISCONSIN 75 SDSC

Non-canonical Forms

* |If one value can be encoded in multiple
different forms they must be converted to
a unique canonical form before
comparison

— Paths: use (device, inode) pair, or convert to a
canonical form using realpath

— Usernames and groups: use uid and gid
— utf: convert to utf-32 or canonical form
- HTML & URL encoded: decode

— Case insensitive: convert to all lower (some
languages lose info if converted to upper)

0 viscosin " SDSC

Non-canonical Forms

* In weakly typed language, such as a shell
or Perl, where a value can be a number or
string use the correct comparison
operator

— Comparing numbers lexically is bad
°® "100" le "2"
°® "OOO" ne "O"

— Comparing strings numerically is bad
«"111111" > "9sdflkj"

°® "OOO" —— "Oabc"
o xyz (A —— (A abc 1A

0 viscosin - SDSC

Not Dropping Privilege

 Description

— When a program running with a privileged status
(running as root for instance), creates a process or
tries to access resources as another user

e General causes
— Running with elevated privilege

— Not dropping all inheritable process attributes such
as uid, gid, euid, egid, supplementary groups, open
file descriptors, root directory, working directory

— not setting close-on-exec on sensitive file descriptors

0 viscosin " SDSC

Not Dropping Privilege: chroot

 chroot changes the root directory for the
process, files outside cannot be accessed

e Only root can use chroot

e Needtochdir ("/") to somewhere

underneath the new root directory,
otherwise relative pathnames are not
restricted

 Everything executable requires must be in
new root: /etc, libraries, ...

0 viscosin " SDSC

Insecure Permissions

e Set umask when using mkstemp or fopen

— File permissions need to be secure from
creation to destruction

 Don’t write sensitive information into
insecure locations (directories need to
have restricted permission to prevent
replacing files)

 Executables, libraries, configuration, data
and log files need to be write protected

THE UNIVERSITY

WISCONSIN 80 SDSC

Insecure Permissions

e |f a file controls what can be run as a
privileged user the owner of the file is
equivalent to the privileged user
— Owned by privileged user
— Owned by administrative account

* No login
* Never executes anything, just owns files

e DBMS accounts should be granted
minimal privileges for their task

WISCONSIN 8 SDSC

Trusted Directory

A trusted directory is one where only
trusted users can update the contents of
anything in the directory or any of its
ancestors all the way to the root

e A trusted path needs to check all
components of the path including symbolic
links referents for trust

e A trusted pathis immune to TOCTOU
attacks except from trusted users

L) Wisconsin 82 SDSC

Command Line

 Description

— Convention is that argv[0] is the path to the
executable

— Shells enforce this behavior, but it can be set
to anything if you control the parent process
e General causes

— Using argv[0] as a path to find other files
such as configuration data

— Process needs to be setuid or setgid to be a
useful attack

THE UNIVERSITY

WISCONSIN 83 SDSC

Environment

 Description

— A program’s environment is a list of strings that a
program is allowed to interpret. Libraries are also
allowed to use the environment to alter their behavior.
Since changes to the environment can alter the
execution of a program, library code, and spawned
programs, the environment must be carefully
controlled.

e General causes
— Not sanitizing the environment
— Allowing user input to alter the environment

— Not fully specified as to what happens when multiple
values with the same name, or value without '=' in it

L) WiscOnsin 84 SDSC

Environment Mitigation

Record needed values of the environment,
sanitize them, clear the environment, add
only necessary values, discard others

Don't make assumptions about size of
values

Don’t allow code from the user to set
environment

Use execle or execve to start a process
with user supplied environment variables

Use setenv instead of putenv

THE UNIVERSITY

WISCONSIN 85 SDSC

Environment Mitigation

- PATH: list of directories to search for
executables given as just a name
— Only used by execlp and execvp
— Use execle or execve and full paths
— Set PATH to something safe /bin: /usr/bin

- LD LIBRARY PATH: list of directories to

search for shared libraries, could be used
to inject a library into your process

THE UNIVERSITY

WISCONSIN 86 SDSC

Denial of Service

 Description

— Programs becoming unresponsive due to over
consumption of a limited resource or unexpected
termination.

e General causes
— Not releasing resources
— Crash causing bugs

— Infinite loops or data causing algorithmic complexity
to consume excessive resources

— Failure to limit data sizes
— Failure to limit wait times
— Leaks of scarce resources (memory, file descriptors)

THE UNIVERSITY

WISCONSIN 87 SDSC

Information Leaks

 Description

— Inadvertent divulgence of sensitive
information

 General causes
— Reusing buffers without completely erasing
— Providing extraneous information that an
adversary may not be able to otherwise obtain
 Generally occurs in error messages

e Give as few details as possible

* Log full details to a database and return id to user,
so admin can look up details if needed

0 viscosin a8 SDSC

Information Leaks

 General causes (cont.)

— Timing attacks where the duration of the
operation depends on secret information

— Lack of encryption when using observable
channels

— Allowing secrets on devices where they can't
be erased such as swap space (use mlock) or

backups

THE UNIVERSITY

WISCONSIN 89 SDSC

Memory Allocation Errors

 Description

— For languages with explicit dynamic memory
allocation (C and C++), if the internal heap
data structures can be corrupted, they can
lead to arbitrary execution of code.

e General causes
— Buffer overflows
— Releasing memory multiple times

— Releasing invalid pointers for the allocator
(from a different allocator or garbage
pointers)

THE UNIVERSITY

WISCONSIN 90 SDSC

Memory Allocation Mitigations

In C++ use the STL, auto ptr, and
destructors to let the compiler free
memory

Matchmalloc/free, new/delete, and
new|[]/delete][]

Allocate and deallocate memory for an
object "close" to each other

Use tools such as Purify or valgrind to find
problems

THE UNIVERSITY

WISCONSIN o1 SDSC

General Software Engineering

e Don’t trust user data
— You don’t know where that data has been

e Don’t trust your own client software either

— It may have been modified, so always revalidate data
at the server.

e Don’t trust your own code either

— Program defensively with checks in high and low level
functions

e KISS - Keep it simple, stupid

— Complexity Kills security, its hard enough assessing
simple code

0 viscosin o SDSC

Let the Compiler Help

e Turn on compiler warnings and fix problems

e Easy to do on new code

 Time consuming, but useful on old code

 Use lint, multiple compilers

e gcc: -Wall, -W, -02, -Werror, -Wshadow,
-Wpointer-arith, -Wconversion, -Wcast-qual,

-Wwrite-strings, -Wunreachable-code and many
more

— Many useful warning including security related
warnings such as format strings and integers

0 viscosin o5 SDSC

Let the Perl Compiler Help

-w - produce warning about suspect code
and runtime events
use strict - fail if compile time

use Fatal - cause built-in function to

raise an exception on error instead of
returning an error code

use diagnostics - better diagnostic
messages

WISCONSIN o4 SDSC

Perl Taint Mode

 Taint mode (-T) prevents data from untrusted
sources from being used in dangerous ways

 Untrusted sources
— Data read from a file descriptor
— Command line arguments
— Environment
— User controlled fields in password file
— Directory entries
— Link referents
— Shared memory
— Network messages

 Environment sanitizing required for exec

w..tFS PATH CDPATH ENV BASH ENV
o W|.§SQN§IN 95 SDSC

A

Resources

e Viega, J. & McGraw, G. (2002). Building secure
software: How to avoid security problems the
right way. Addison-Wesley.

e Seacord, R. C. (2005). Secure coding in C and
C++. Addison-Wesley.

e McGraw, G. (2006). Software security: Building
security in. Addison-Wesley.

e Dowd, M., McDonald, J., & Schuh, J. (2006). The
art of software assessment: Identifying and
preventing software vulnerabilities. Addison-
Wesley.

) Wiscorsin o6 SDSC

TTTTTTTTTTTTT

Questions

97

SDSC

